WorldWideScience

Sample records for alternative fuel vehicles

  1. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  2. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  3. 76 FR 31513 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2011-06-01

    ... added these three types of vehicles to the statutory definition of ``alternative fuel vehicle.'' \\15... Alternative Fuels Rule already covers hydrogen fuel cell vehicles, additional labeling requirements for them... FEDERAL TRADE COMMISSION 16 CFR Part 309 Labeling Requirements for Alternative Fuels and...

  4. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  5. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  6. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... electric vehicle (HEV) that has an engine that operates solely on alternative fuel (e.g., compressed... vehicle, the vehicle also must be one that ``has received a certificate of conformity under the Clean Air... duty vehicle greenhouse gas emission standards under the Clean Air Act. See 75 FR 25324, 25684 (May 7...

  7. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  8. Preferences for alternative fuel vehicles by Dutch local governments

    NARCIS (Netherlands)

    Rijnsoever, F.J. van; Hagen, P.; Willems, M

    2013-01-01

    Using a choice model, we estimate the preferences for alternative fuel vehicles by Dutch local governments. The analysis shows that local governments are willing to pay between 25% and 50% extra for an alternative fuel vehicle without a serious loss of utility. Further, local emissions are an

  9. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    .... These include conversions of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel... Motor and Generator Manufacturing. 336312 Gasoline Engine and Engine Parts Manufacturing. 336322 Other...

  10. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    .... These include conversions of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel... Motor and Generator Manufacturing. 336312 Gasoline Engine and Engine Parts Manufacturing. 336322 Other...

  11. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  12. Energy Policy Act of 1992 : limited progress in acquiring alternative fuel vehicles and reaching fuel goals

    Science.gov (United States)

    2000-02-01

    Since the passage of the Energy Policy Act of 1992, some, albeit limited, progress has been made in acquiring alternative fuel vehicles and reducing the consumption of petroleum fuels in transportation. DOE estimates about 1 million alternative fuel ...

  13. Guide to alternative fuel vehicle incentives and laws: September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Riley, C.; O' Connor, K.

    1998-12-22

    This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov

  14. Case Study: Transportation Initiative Incorporates Alternative Fuels and Electric Vehicles

    Science.gov (United States)

    James A. Lovell Federal Health Care Center in North Chicago, Illinois, reduced greenhouse gases by incorporating electric vehicles and alternative fuels into fleet operations. Lovell FHCC increased its electric fleet by 200 in one year.

  15. Alternative fuels and advanced technology vehicles : issues in Congress

    Science.gov (United States)

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  16. 77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2012-06-19

    ..., Division of Enforcement, Bureau of Consumer Protection, Federal Trade Commission, 600 Pennsylvania Avenue... cell, advanced lean burn, and hybrid motor vehicles) that were added to the definition of ``alternative..., including ``fuel displacement'' of foreign oil, a full life cycle assessment of greenhouse gas emissions and...

  17. Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    James Bartel

    2004-11-26

    This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

  18. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  19. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  20. Does habitual behavior affect the choice of alternative fuel vehicles?

    DEFF Research Database (Denmark)

    Valeri, Eva; Cherchi, Elisabetta

    2016-01-01

    Because of the recent improvements in the electrification process of cars, several types of alternative fuel vehicles are appearing in the car market. However, these new engine technologies are not easily penetrating the market around the world and the conventional ones are still the leaders....... A vast literature has explored the reasons for such low market penetration, due mainly to car's features. Using a hybrid choice model approach, in this research we study if, and to which extent, habitual car use influences individual propensity to buy a specific type of engine technology. We found...... significant latent habitual effect on choices of type of car engine. This effect is important only for some of the car alternatives considered in the study. In particular, habitual car users prefer to buy a new car with liquefied petroleum gas and compressed natural gas types of engine technology instead...

  1. Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Dong-Shang Chang

    2015-08-01

    Full Text Available Road transport accounts for 72.06% of total transport CO2, which is considered a cause of climate change. At present, the use of alternative fuels has become a pressing issue and a significant number of automakers and scholars have devoted themselves to the study and subsequent development of alternative fuel vehicles (AFVs. The evaluation of AFVs should consider not only air pollution reduction and fuel efficiency but also AFV sustainability. In general, the field of sustainable development is subdivided into three areas: economic, environmental, and social. On the basis of the sustainable development perspective, this study presents an evaluation framework for AFVs by using the DEMATEL-based analytical network process. The results reveal that the five most important criteria are price, added value, user acceptance, reduction of hazardous substances, and dematerialization. Price is the most important criterion because it can improve the popularity of AFVs and affect other criteria, including user acceptance. Additional, the energy usage criterion is expected to significantly affect the sustainable development of AFVs. These results should be seriously considered by automakers and governments in developing AFVs.

  2. A Choice Experiment on Alternative Fuel Vehicle Preferences of Private Car Owners in the Netherlands

    NARCIS (Netherlands)

    Hoen, A.; Koetse, M.J.

    2014-01-01

    This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car,

  3. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  4. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  5. Alternative Fuel Light-Duty Vehicles: Summary of Results From the National Renewable Energy Laboratory's Vehicle Evaluation Data Collection Efforts

    Science.gov (United States)

    1996-05-01

    The U.S. Department of Energy's National Renewable Energy Laboratory conducted : a data collection project for light-duty, alternative fuel vehicles (AFVs) for : about 4 years. The project has collected data on 10 vehicle models (from the : original ...

  6. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  7. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  8. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... rating. (a) If you are a retailer who offers for sale or sells non-liquid alternative vehicle fuel (other... fuel. If you are a retailer who offers for sale or sells electricity to consumers through an electric... vehicle fuel dispensing system, either by letter or on the delivery ticket or other paper, or by a...

  9. Demand for alternative-fuel vehicles when registration taxes are high

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    2011-01-01

    This paper investigates the potential futures for alternative-fuel vehicles in Denmark, where the vehicle registration tax is very high and large tax rebates can be given. A large stated choice dataset has been collected concerning vehicle choice among conventional, hydrogen, hybrid, bio......-diesel, and electric vehicles. We estimate a mixed logit model that improves on previous contributions by controlling for reference dependence and allowing for correlation of random effects. Both improvements are found to be important. An application of the model shows that alternative-fuel vehicles with present...... technology could obtain fairly high market shares given tax regulations possible in the present high-tax vehicle market....

  10. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  11. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  12. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  13. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    Science.gov (United States)

    2009-03-01

    into a solid when the temperature falls below 160 degrees, making a heating system paramount. Switching valves are equally important. The engine...Toyota, and Tesla were recently unveiled at the 2009 North American International Auto Show. With the exception of Tesla , none of the vehicles are...is used to heat the WVO up to 140° to separate the oil from the water and features a valve to dispose of the water. Another Fryer to Fuel system

  14. An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles

    International Nuclear Information System (INIS)

    Yeh, Sonia

    2007-01-01

    The adoption of alternative fuel vehicles (AFVs) has been regarded as one of the most important strategies to address the issues of energy dependence, air quality, and, more recently, climate change. Despite decades of effort, we still face daunting challenges to promote wider acceptance of AFVs by the general public. More empirical analyses are needed to understand the technology adoption process associated with different market structures, the effectiveness of regulations and incentives, and the density of infrastructure adequate to reach sustainable commercial application. This paper compares the adoption of natural gas vehicles (NGVs) in eight countries: Argentina, Brazil, China, India, Italy, New Zealand, Pakistan, and the US. It examines the major policies aimed at promoting the use of NGVs, instruments for implementing those policies and targeting likely stakeholders, and a range of factors that influence the adoption of NGVs. The findings in this paper should be applicable to other AFVs

  15. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Gonzales, J.

    2017-10-02

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  16. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-17

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  17. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  18. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  19. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  20. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Science.gov (United States)

    2010-10-01

    ... economy calculations are treated as a change in the underlying fuel economy of the vehicle for purposes of... TRANSPORTATION TRANSFER AND TRADING OF FUEL ECONOMY CREDITS § 536.10 Treatment of dual-fuel and alternative fuel... dual fuel vehicle fuel economy as calculated pursuant to 49 U.S.C. 32905 and limited by 49 U.S.C. 32906...

  1. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  2. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  3. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  4. 78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2013-04-23

    ...); Johnston, Jenna ( 560902-00002); National Automobile Dealers Association (NADA) ( 560902-00010); NGVAmerica... raised concerns about the marketing practices of companies that manufacture ``zero emission vehicles... inaccurate and misleading marketing claims. The Commission may consider these and other advertising issues as...

  5. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  6. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  7. Multiple criteria decision making of alternative fuels for waste collection vehicles in southeast region of Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Goran S.

    2016-01-01

    Full Text Available In this paper multiple criteria decision making approach of alternative fuels for waste collection vehicles in southeast region of Serbia was presented. Eight alternative fuels and advanced vehicle technologies were ranked according to thirteen criteria, including financial, socio-technical, and environmental. Assessment of alternatives was performed by using the weighted aggregated sum product assessment method and results were verified using multi-objective optimization on the basis of ratio analysis method. Considered criteria were obtained from previous researches and by assessment of professional experts from manufacturing industries, public utility companies, and academics institutions. The analysis showed that both biodiesel fuels - derived from used cooking oil or from vegetable oils are the best alternative fuels for Serbian waste collection vehicles in this point of time. Compressed natural gas-powered vehicles were also ranked high in this analysis, but due to the lack of financial capability for their purchase (especially in southeast region of Serbia, their gradual introduction into the waste collection fleet was proposed.

  8. A study of the diffusion of alternative fuel vehicles : An agent-based modeling approach

    NARCIS (Netherlands)

    Zhang, Ting; Gensler, Sonja; Garcia, Rosanna

    This paper demonstrates the use of an agent-based model (ABM) to investigate factors that can speed the diffusion of eco-innovations, namely alternative fuel vehicles (AFVs). The ABM provides the opportunity to consider the interdependencies inherent between key participants in the automotive

  9. Bio Diesel An Alternative Vehicles Fuel; Analytical View

    International Nuclear Information System (INIS)

    El Banna, S.; El Deen, O.N.

    2004-01-01

    Transesterification of a vegetable oil was conducted as early as 1853, by scientists E. Duffy and J. Patrick, many years before the first diesel engine became functional(1). Rudolf Diesel's prime model, a single 10 ft (3 m) iron cylinder with a flywheel at its base, ran on its own power for the first time in Augsburg, Germany on August 10, 1893(2). Diesel later demonstrated his engine at the World Fair in Paris, France in 1898. This engine stood as an example of Diesel's vision because it was powered by peanut oil-a bio fuel. He believed that the utilization of a biomass fuel was the real future of his engine. In a 1912 speech, Rudolf Diesel said, (I) t he use of vegetable oils for engine fuels may seem insignificant today, but such oils may become, in the course of time, as important as petroleum and the coal-tar products of the present time. Rudolf Diesel was not the only inventor to believe that biomass fuels would be the mainstay of the transportation industry. Henry Ford designed his automobiles, beginning with the 1908 Model T(1), to use ethanol. Ford was so convinced that renewable resources were the key to the success of his automobiles that he built a plant to make ethanol in the Midwest and formed a partnership with Standard Oil to sell it in their distributing stations

  10. Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage

    International Nuclear Information System (INIS)

    Melaina, Marc; Bremson, Joel

    2008-01-01

    Alternative fuel vehicles can play an important role in addressing the challenges of climate change, energy security, urban air pollution and the continued growth in demand for transportation services. The successful commercialization of alternative fuels for vehicles is contingent upon a number of factors, including vehicle cost and performance. Among fuel infrastructure issues, adequate refueling availability is one of the most fundamental to successful commercialization. A commonly cited source reports 164,300 refueling stations in operation nationwide. However, from the perspective of refueling availability, this nationwide count tends to overstate the number of stations required to support the widespread deployment of alternative fuel vehicles. In terms of spatial distribution, the existing gasoline station networks in many urban areas are more than sufficient. We characterize a sufficient level of urban coverage based upon a subset of cities served by relatively low-density station networks, and estimate that some 51,000 urban stations would be required to provide this sufficient level of coverage to all major urban areas, 33 percent less than our estimate of total urban stations. This improved characterization will be useful for engineering, economic and policy analyses. (author)

  11. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.-O.; Aakko-Saksa, P.; Sipilae, K.

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  12. Life cycle cost analysis of alternative vehicles and fuels in Thailand

    International Nuclear Information System (INIS)

    Goedecke, Martin; Therdthianwong, Supaporn; Gheewala, Shabbir H.

    2007-01-01

    High crude oil prices and pollution problems have drawn attention to alternative vehicle technologies and fuels for the transportation sector. The question is: What are the benefits/costs of these technologies for society? To answer this question in a quantitative way, a web-based model (http://vehiclesandfuels.memebot.com) has been developed to calculate the societal life cycle costs, the consumer life cycle costs and the tax for different vehicle technologies. By comparing these costs it is possible to draw conclusions about the social benefit and the related tax structure. The model should help to guide decisions toward optimality, which refers to maximum social benefit. The model was applied to the case of Thailand. The life cycle cost of 13 different alternative vehicle technologies in Thailand have been calculated and the tax structure analyzed

  13. Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To this day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles

  14. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model

    International Nuclear Information System (INIS)

    Chorus, Caspar G.; Koetse, Mark J.; Hoen, Anco

    2013-01-01

    This paper presents a utility-based and a regret-based model of consumer preferences for alternative fuel vehicles, based on a large-scale stated choice-experiment held among company car leasers in The Netherlands. Estimation and application of random utility maximization and random regret minimization discrete choice models shows that while the two models achieve almost identical fit with the data and differ only marginally in terms of predictive ability, they generate rather different choice probability-simulations and policy implications. The most eye-catching difference between the two models is that the random regret minimization model accommodates a compromise-effect, as it assigns relatively high choice probabilities to alternative fuel vehicles that perform reasonably well on each dimension instead of having a strong performance on some dimensions and a poor performance on others. - Highlights: • Utility- and regret-based models of preferences for alternative fuel vehicles. • Estimation based on stated choice-experiment among Dutch company car leasers. • Models generate rather different choice probabilities and policy implications. • Regret-based model accommodates a compromise-effect

  15. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    Shen Wei; Han Weijian; Chock, David; Chai Qinhu; Zhang Aling

    2012-01-01

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  16. Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

  17. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  18. Alternative Fuel News, Vol. 6, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    2003-03-01

    Quarterly magazine with articles on Alternate Fuel Vehicles (AFVs) in India, alternative fuels for emergency preparedness, and testing of propane vehicles by UPS. Also an interview of author Jeremy Rifkin on how alternative fuels provide pathways to hydrogen.

  19. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  20. A STUDY ON LIMITATION OF GOVERNMENT INITIATIVE MODEL FOR ALTERNATIVE FUEL VEHICLE (AFV PROMOTION IN CHINA

    Directory of Open Access Journals (Sweden)

    Byunghun Choi

    2016-04-01

    Full Text Available Chinese responsibility for reducing Greenhouse Gas or carbon dioxide emission increases continuously. Chinese government suggested two targets; Alternative Fuel Vehicle output volume 500 thousand and AFV market share 5% by the end of 2011. However any of two targets did not come true. Therefore this study accessed the question, ‘why Chinese government initiative model for AFV promotion has been so poor?’ This study reviewed the transition process for AFV policies in China and made a structural analysis for three key policies since 2009. As a result the number of articles for related industries or factor endowments was relatively more than firm strategy or demand conditions. Also this study accessed the AFV strategy of Six SOEs from the perspective of social responsibility. Six SOEs have more concentrated on electric vehicle rather than hybrid vehicle with following the government leadership. However major EV or HEV models of them mostly were made by Joint Ventures being under control of foreign makers and the JVs have actually controlled over AFV business. So the limitation of Chinese government initiative model resulted from supplier-centric approach with targeting for public transportation and institution consumer, and it caused a failure to create the demand conditions of general customers.

  1. Preferences for Alternative Fuel Vehicles of Lease Car Drivers in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Koetse, M.J.; Hoen, A.

    2012-04-15

    In this paper we aim to get insight into preferences of Dutch lease car drivers for alternative fuel vehicles (AFVs) and their characteristics. Since AFVs are either not yet available on the market or have only very limited market shares, we have to rely on stated preference research. We perform a state-of-the-art conjoint analysis, based on data obtained through an online choice experiment among Dutch lease car drivers. Results show that under current tax regulations the average lease car driver is indifferent between the conventional technology, flexifuel and the hybrid car, while negative preferences exist for the plug-in hybrid, the electric and the fuel cell car. When current tax regulations would be abolished, strong negative preferences would result for all AFCs, and especially for the electric and fuel cell car. Increases in driving range, reductions in refuelling time, and reductions in additional detour time for reaching an appropriate fuel station, increase AFV preferences substantially. On average the gap between conventional technologies and AFVs remains large, however. We also find that there is considerable heterogeneity in preferences of lease car drivers, and that various market segments and potential early adopters can be identified. In this respect the most interesting finding is that preferences for electric and fuel cell cars decrease substantially, and willingness to pay for driving range increases substantially, when annual mileage increases. Annual mileage also has a substantial impact on sensitivity to monthly costs. We therefore use simulations to assess market shares of electric and fuel cell cars for different annual mileage categories. We find that people with a relatively low annual mileage are more likely to adopt than people with a relatively high annual mileage, regardless of driving range and monthly costs. For the fuel cell car we find similar results, although when driving range is high and cost differences are large, lease car

  2. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  3. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  4. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  5. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  6. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  7. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  8. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Directory of Open Access Journals (Sweden)

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  9. The effect of attitudes on reference-dependent preferences: Estimation and validation for the case of alternative-fuel vehicles

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Cherchi, Elisabetta; Jensen, Anders Fjendbo

    2015-01-01

    Several recent studies in transportation have analysed how choices made by individuals are influenced by attitudes. Other studies have contributed to our understanding of apparently non-rational behaviour by examining how choices may reflect reference-dependent preferences. This paper examines how...... elasticities. Using a data set with stated choices among alternative-fuel vehicles, we see that allowing for reference-dependent preferences improves our ability to explain the stated choices in the data and that the attitude (appreciation of car features) explains part of the preference heterogeneity across...... with varying attitudes and reference values will act differently when affected by policy instruments related to the demand for alternative-fuel vehicles, e.g. subsidies....

  10. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  11. The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2014-01-01

    This paper investigates the impact of CAFE standards and alternative-fuel vehicle production incentives on the biofuel market and mandate, in particular. The study develops a structural model of the domestic light-duty vehicle sector, as well as reduced-form versions of domestic gasoline, diesel, and biofuel markets. The results suggest that holding CAFE standards at the 2010 level could facilitate U.S. ethanol market expansion, making it easier to meet the mandate. Alternative-fuel vehicle production incentives appear to have small effects. However, there is uncertainty about the level of automaker response to those incentives, and analysis indicates the model is fairly sensitive to the assumed level of response. - Highlights: • CAFE standards are estimated to have a moderate impact on RFS compliance costs. • Flex-fuel vehicle production incentives are estimated to have much less impact. • Level of auto manufacturer response to production incentives is uncertain. • Analysis suggests results are fairly sensitive to level of manufacturer response

  12. Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV

    International Nuclear Information System (INIS)

    Zhang Yong; Yu Yifeng; Zou Bai

    2011-01-01

    The aim of this paper is to analyze consumers' awareness towards electric vehicle (EV) and examine the factors that are most likely to affect consumers' choice for EV in China. A comprehensive questionnaire survey has been conducted with 299 respondents from various driving schools in Nanjing. Three binary logistic regression models were used to determine the factors that contribute to consumers' acceptance of EVs, their purchase time and their purchase price. The results suggest that: (1)Whether a consumer chooses an EV is significantly influenced by the number of driver's licenses, number of vehicles, government policies and fuel price. (2)The timing of consumers' purchases of an EV is influenced by academic degree, annual income, number of vehicles, government policies, the opinion of peers and tax incentives. (3)The acceptance of purchase price of EVs is influenced by age, academic degree, number of family members, number of vehicles, the opinion of peers, maintenance cost and degree of safety. These findings will help understand consumer's purchase behavior of EVs and have important policy implications related to the promotions of EVs in China. - Highlights: → We survey 299 respondents from various driving schools in Nanjing. → We analyze consumer's awareness towards electric vehicle (EV). → The factors affecting consumers' choice for EV are examined by three binary logistic models. → Factors contributing to consumers' acceptance of EVs, purchase time and purchase price are indicated.

  13. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  14. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.

    Science.gov (United States)

    Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J

    2016-03-01

    The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.

  15. Alternative transportation fuels: Financing issues

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-06-01

    A multitude of alternative fuels could reduce air pollution and the impact of oil price shocks. Only a few of these fuels are readily available and inexpensive enough to merit serious consideration over the coming five years. In New York City, safety regulations narrow the field still further by eliminating propane. As a result, this study focuses on the three alternative fuels readily available in New York City: compressed natural gas, methanol, and electricity. Each has significant environmental benefits and each has different cost characteristics. With the Clean Air Act and the National Energy Strategy highlighting the country's need to improve urban air quality and move away from dependence on imported fuels, fleets may soon have little choice but to convert to altemative fuels. Given the potential for large infrastructure and vehicle costs, these fleets may have difficulty finding the capital to make that conversion. Ultimately, then, it will be the involvement of the private sector that will determine the success of alternative fuels. Whether it be utilities, fuel distributors or suppliers, private financing partners or others, it is critical that altemative fuels programs be structured and planned to attract their involvement. This report examines financing methods that do not involve government subsidies. It also explores financing methods that are specific to alternative fuels. Bond issues and other mechanisms that are used for conventional vehicles are not touched upon in this report. This report explores ways to spread the high cost of alternative fuels among a number of parties within the private sector. The emphasis is on structuring partnerships that suit methanol, electric, or natural gas vehicle fleets. Through these partnerships, alternative fuels may ultimately compete effectively against conventional vehicle fuels

  16. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  17. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  18. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe

    International Nuclear Information System (INIS)

    Sobrino, Fernando Hernandez; Monroy, Carlos Rodriguez; Perez, Jose Luis Hernandez

    2010-01-01

    In recent times, the global debate on the environment has been centered on CO 2 emissions. This gas is the major cause of the ''greenhouse effect'' and people are more concerned with the idea that the emissions of this gas should be minimized. As a result of this concern, the Kyoto Protocol was enacted and subscribed to by many countries, setting the maximum gas emissions for them. Fossil fuels are a major source of CO 2 emissions. For some years now The European Union has been seeking to promote some years now the use of biofuels as substitutes for diesel or petrol for transport purposes. As a result of this policy, in 2003 the European Union (EU) Directive 2003/30/EC was developed with the aim of promoting the use of biofuels as a substitute for diesel or gasoline among European Union countries as well as to contribute to fulfilling the commitments acquired on climate change, security of supply in environmentally friendly conditions and the promotion of renewable energy sources. In order to achieve these goals, the directive forces all EU members to ensure that before December 31 of 2010 at least 5.75% of all gasoline and diesel fuels sold for transport purposes are biofuels. European Union countries have social and economic characteristics unique to themselves. The energy dependence on foreign sources, the features of the agricultural sector or the degree of industrialization varies greatly from one country to another. In this context, it is questionable whether the obligation imposed by this directive is actually achieving in its application uniform and/or identical goals in each of the countries involved and whether the actions of the various governments are also aligned with these goals. All these ideas were developed in a previous report (Sobrino and Monroy (2009)). This report examines the possibility of using hydrogen as an alternative to fossil fuels and biofuels from a technical, economic and environmental point of view in the specific case of a European

  19. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  20. Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles

    International Nuclear Information System (INIS)

    Peters von Rosenstiel, Dirk; Heuermann, Daniel F.; Hüsig, Stefan

    2015-01-01

    Despite private investments exceeding two billion Euros and tax incentives of more than 500 million Euros, the market share of natural gas vehicles (NGVs) in Germany has lagged far behind expectations and behind market developments in other countries. With total cost of ownership being on average lower for NGVs than for gasoline and diesel vehicles this raises the question of the existence of market failure in the German NGV-market. We use a case study approach where we combine quantitative data with insights from a multi-industry expert panel and in-depth interviews with experts from industry, government and civil society in order to examine whether and how different types of market failure contribute to the status quo in the German market for NGVs. We conclude that coordination failure in complementary markets, an artificially created monopoly of service stations at motorways, imperfect information, bounded consumer rationality, and principle-agent-problems are the most prominent market failures inhibiting the development of a functioning market for NGVs. Our results are instructive for the design of effective public policies and investor strategies aiming to create markets for alternative fuel vehicles. - Highlights: • We analyze market failure in the German market for natural gas vehicles. • Coordination failure is the most important reason for market failure to arise. • Minor factors: regulatory deficits, imperfect information, bounded rationality. • Policies encompass stabilizing expectations and supporting actor coordination. • Our results are instructive for policies and investor strategies in AFV-markets

  1. Total life-cycle cost analysis of conventional and alternative fueled vehicles

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1993-01-01

    Total Life-Cycle Cost (TLCC) Analysis can indicate whether paying higher capital costs for advanced technology with low operating and/or environmental costs is advantageous over paying lower capital costs for conventional technology with higher operating and/or environmental costs. While minimizing total life-cycle cost is an important consideration, the consumer often identifies non-cost-related benefits or drawbacks that make more expensive options appear more attractive. The consumer is also likely to heavily weigh initial capital costs while giving limited consideration to operating and/or societal costs, whereas policy-makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. This paper summarizes a TLCC model which was developed to facilitate consideration of the various factors involved in both individual and societal policy decision making. The model was developed as part of a US Department of Energy Contract and has been revised to reflect changes necessary to make the model more realistic. The model considers capital, operating, salvage, and environmental costs for cars, vans, and buses using conventional and alternative fuels. The model has been developed to operate on an IBM or compatible personal computer platform using the commercial spreadsheet program MicroSoft Excell reg-sign Version 4 for Windows reg-sign and can be easily kept current because its modular structure allows straightforward access to embedded data sets for review and update

  2. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  3. Alternative vehicles and infrastructure requirements conference.

    Science.gov (United States)

    2011-11-01

    "A conference entitled Alternative Fuel / Advanced Vehicles Technologies & Infrastructure Requirements: Bringing Innovation to Our Streets was held in New York, NY at New York University on June 14, 2011. The conference addressed several of the...

  4. Study on the technical and economic viability of vehicles and alternative fuels; Estudo de viabilidade tecnica e economica de veiculos e combustiveis alternativos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Bruno Carvalho Alves de; Oliveira, Paulo Leandro de; Almeida, Silvio Carlos Anibal de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: baiano@labma.ufrj.br; silvio@serv.com.ufrj.br

    1999-07-01

    This paper presents a resume of the research project under development in the COPPE/UFRJ, Brazil. This project compares different vehicle types and alternative fuels, considering the following parameters: average hourly consumption, level of total hydrocarbons, NO{sub x} and CO emissions, operation and maintenance costs. The following vehicle types are analysed: conventional using gasoline, vehicles using ethanol, natural gas and liquid petroleum gas, electric, hybrid electric, electric with fuel cells, electric with fuel cells and gasoline reformation and vehicles using methanol. The simulation packet ADVISOR 2.1 has been used for analysis of the emission made available by the US DOE. For the analysis of the performance/consumption, a code developed by the authors has been used.

  5. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  6. Green to Greener -- Is Biodiesel a Feasible Alternative Fuel for U.S. Army Tactical Vehicles

    Science.gov (United States)

    2008-12-12

    names of the most common bacteria are Cladosporium resinae and Pseudomonas aeruginosa (Tickell 2003, 33). These occur naturally where favorable...called cetane number. Cloud point. The temperature at which wax-like solids first appear in diesel fuel. Cladosporium resinae . A bacteria which

  7. Alternative Fuel News, Vol. 2, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-05-20

    What's in store for alternative Fuels and advanced technology vehicles in the new millennium? The Clean Cities Coalitions now operate more than 240,000 alternative fuel vehicles in both public and private sectors and have access to more than 4,000 alternative refueling stations. DOE recently announced the selection of 15 proposals that will receive just under $1.7 million in financial assistance to help expand DOE's information dissemination and public outreach efforts for alternative fuels and advanced transportation technologies.

  8. Alternatives to traditional transportation fuels 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  9. Alternative Fuel News, Vol. 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, K.; Riley, C.; Raye, M.

    1998-11-30

    This issue of Alternative Fuel News highlights the accomplishments of the Clean Cities coalitions during the past 5 years. Now Clean Cities advocates in city after city across the US are building stations and driving alternative fuel vehicles, in addition to enhancing public awareness.

  10. Proceedings of the 1991 Windsor workshop on alternative fuels

    International Nuclear Information System (INIS)

    1991-01-01

    A workshop was held to exchange information among engine and vehicle manufacturers, fuel suppliers, research organizations, and academic and regulatory bodies on various aspects of alternative transportation fuels development. Papers were presented on alternative fuels policies and programs, zero-emission vehicles, emission control technologies, field evaluations of alternative fuel systems, and heavy duty alternate-fuel engines. Separate abstracts have been prepared for nine papers from this workshop

  11. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Chang Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  12. Scenario analysis on alternative fuel/vehicle for China's future road transport. Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. (author)

  13. The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. - Research Highlights: →The broad scale adoption of CNG for transportation in Argentina was initiated by a market demand for an effective fuel that was priced at a significantly lower level compared to the mainstream alternatives. →The Argentine played a marginal role in the development of refueling infrastructure. →The role of the government focused on sending clear signals to the marketplace and developing effective codes and standards. →Consumers willingness to switch to CNG increases as state of the economy deteriorates and disposable incomes decrease.

  14. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region; TOPICAL

    International Nuclear Information System (INIS)

    Sheffield, J.

    2001-01-01

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NOx), sulfur dioxide (SO(sub 2)), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NOx emissions from transportation may increase. The conclusions are: (1) It is essential to consider the entire fuel cycle in assessing the benefits, or disadvantages, of an alternative fuel option, i.e., feedstock and fuel production, in addition to vehicle operation; (2) Many improvements to the energy efficiency of a particular vehicle and engine combination will also reduce emissions by reducing fuel use, e.g., engine efficiency, reduced weight, drag and tire friction, and regenerative braking; (3) In reducing emissions it will be important to install the infrastructure to provide the improved fuels, support the maintenance of advanced vehicles, and provide emissions testing of both local vehicles and those from out of state; (4) Public transit systems using lower emission vehicles can play an important role in reducing emissions per passenger mile by carrying passengers more efficiently, particularly in congested areas. However, analysis is required for each situation; (5) Any reduction in emissions will be welcome, but the problems of air pollution in our region will not be solved by a few modest improvements. Substantial reductions in emissions of key pollutants are required both in East Tennessee and in

  15. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  16. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  17. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  18. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  19. Alternatives to traditional transportation fuels 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  20. Fifth annual report to congress. Federal alternative motor fuels programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  1. Alternative Fuel News, Vol. 2, No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-01-06

    In this issue of the Alternative Fuel News, the authors remember what happened just 25 years ago (the energy crisis of 1973) and reiterate that foreign oil dependence is still a national issue. Highlighted are some the successes in the Clean Cities Program and the alternative fuels industry. Also featured is the Natural Gas Vehicle Coalition (NGVC) and the United States Postal Service (USPS) delivers with AFVs.

  2. Commercial aviation alternative fuels initiative

    Science.gov (United States)

    2010-04-22

    This presentation looks at alternative fuels to enhance environmental stability, reduction of greenhouse gas emissions, air quality benefits (e.g., SOx and PM), fuel supply stability, and fuel price stability.

  3. Alternative Fuel News, Vol. 3 No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Clean Cities Program at DOE

    1999-10-29

    The alternative fuel industry is heating up. It is a very exciting time to be in the energy business, especially when it comes to transportation. Celebrating of the milestone 75th Clean Cities coalition and kick off of the new Federal Alternative Fuel Vehicle (AFV) USER Program is occurring in cities across the country. Clean Energy for the 21st Century and the events that are happening during Energy Awareness Month are covered in this issue. Spotlighted are niche markets; several airports across the country are successfully incorporating alternative fuels into their daily routines.

  4. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  5. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  6. Alternative fuels. Daitai nenryo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. (Japan Automobile Research Inst. Inc., Tsukuba (Japan))

    1992-05-05

    Evaluation of alternative fuels has been conducted by various agencies since the first oil crisis in 1973 and at that time, the development of coal, oil shale, tar sand and such synthetic fuels as coal liquefaction oil etc. was pursued in several countries like Japan and the U.S.A. as national projects. However, since the second oil crisis, due to the progress of energy saving and other measures, demand and supply of petrolium has been relaxed and synthetic oil development projects have greatly been reduced in Japan as well as other countries. At the present, because of the environmental problems, the stress has been shifted to natural gas whose cost is lower than that of coal and whose exhaust gas is expected to be cleaner than that of coal. In this article, with regard to methanol and compressible natural gas which are most expected domestically as well as overseas as alternative fuels, evaluation from the viewpoint of character, evaluation from the viewpoint 'of utilization technique and evaluation from the viewpoint of production and supply are discussed respectively. 3 refs.

  7. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  8. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: what in the future

    Energy Technology Data Exchange (ETDEWEB)

    Maggetto, G.; Van Mierlo, J. [Vrije Universiteit, Brussel (Belgium)

    2000-07-01

    In urban area, due to their beneficial effect on environment, electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are an important factor for improvement of traffic and more particular for a healthier environment. Moreover, the need for alternative energy source is growing and the price competition of alternatives against oil is becoming more and more realistic. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are offering the best possibility for the use of new energy sources, because electricity can result from a transformation with high efficiency of these sources and is always used with the highest possible efficiency in systems with electric drives or components. Some basic considerations about the situation today and in a mid and long-term perspective, are presented together with the infrastructure developments.

  9. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  10. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  11. Standardization of Alternative Fuels. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    There are different interpretations of the term 'alternative fuels', depending on the part of the world in which the definition is used. In this report, alternative fuels mainly stand for fuels that can replace gasoline and diesel oil and at the same time contribute to lowered emissions with impact on health, environment and climate. The use of alternative vehicle fuels has increased during the last 30 years. However, the increase has developed slowly and today the use is very limited, compared to the use of conventional fuels. Although, the use in some special applications, often in rather small geographical areas, can be somewhat larger. The main interest for alternative fuels has for a long time been driven by supply security issues and the possibility to reduce emissions with a negative impact on health and environment. However, the development of reformulated gasoline and low sulphur diesel oil has contributed to substantially decreased emissions from these fuels without using any alternative fuel. This has reduced the environmental impact driving force for the introduction of alternative fuels. In line with the increased interest for climate effects and the connections between these effects and the emission of greenhouse gases, and then primarily carbon dioxide, the interest for biomass based alternative fuels has increased during the 1990s. Even though one of the driving forces for alternative fuels is small today, alternative fuels are more commonly accepted than ever before. The European Commission has for example in May 2003 agreed on a directive for the promotion of the use of bio fuels. In the directive there are goals for the coming 7 years that will increase the use of alternative fuels in Europe rather dramatically, from below 1 percent now up to almost 6 percent of the total vehicle fuel consumption in 2010. The increased use of alternative fuels in Europe and the rest of the world will create a need for a common interpretation of what we

  12. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Science.gov (United States)

    2010-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... alternative sampling and testing requirements apply to importers who transport motor vehicle diesel fuel, NRLM...

  13. ALTERNATIVE FUELS POSSIBILITY OR PARADOX

    OpenAIRE

    V. Saritha*, Manoj Kumar Karnena

    2016-01-01

    Shortage of oil will be experienced by future decade’s .Fossil fuels have been during mankind over the centuries and have come to a stage where they have become a resource. Mankind cannot make requirement to search for alternative energy resources to keep mankind moving. Many authors previously have discussed the importance of alternative fuels. This review presents a detailed description of harness technology, cost analysis and advantage of alternative fuels like bio diesels, Hydrogen energy...

  14. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 5, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2001-11-01

    A quarterly magazine with articles on alternative fuel school buses, the market growth of biodiesel fuel, National AFV Day 2002, model year 2002 alternative fuel passenger cars and light trucks, the Michelin Challenge Bibendum road rally, and advanced technology vehicles at Robins Air Force Base, the Top Ten Clean Cities coalitions for 2000, and AFVs on college campuses.

  15. Methane as a Vehicle Fuel in Europe

    International Nuclear Information System (INIS)

    Maedge, M.

    2014-01-01

    NGVA Europe is aware of the importance of the promotion of Natural Gas and biomethane as an important vehicle fuels in Europe. The European Commission has recently adopted the Clean Power for Transport package including a Directive for deployment of alternative fuels infrastructure for CNG and LNG. Currently, the Member States have to report in their National Policy Frameworks, in a period of 24 months, their natural gas filling station development plans and fuel strategy in the nearest future. The European Union has a new transport infrastructure policy that connects the continent between East and West, North and South (TEN-T) and alternatives fuels will be taken into consideration for reducing the CO2 emissions, improve the air quality in urban areas, reduce the dependence with oil and enhance the competitiveness of the European industry. All of these researches have to be focus in the Horizon 2020, in which clean vehicles with CNG and LNG will be used to create 'smart cities and communities'. For achieving this idea, we are involved in the LNG Blue Corridor Project to demonstrate that the LNG is a real alternative for medium and long distance transport through the creation of new fuel stations in different countries such as Spain, France or Portugal. (author).

  16. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  17. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  18. Hawaii alternative fuels utilization program. Phase 3, final report

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  19. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  20. Fuel Savings from Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  1. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 4, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, C.

    2000-09-08

    This issue of Alternative Fuel News discusses Executive Order 13149 which is designed to not only increase the use of alternative fuel by federal agencies but also to increase the use of fuel efficient vehicles in the federal fleet. Also highlighted is the 6th National Clean Cities Conference and Expo held in San Diego, May 7-10, 2000, which attracted nearly 1,000 people for three action-packed days of alternative fuel activities. The work to develop a market for alternative fuels is more important than ever.

  2. Emissions from ethanol- and LPG-fueled vehicles

    International Nuclear Information System (INIS)

    Pitstick, M.E.

    1995-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles

  3. Alternative Fuels for Military Applications

    Science.gov (United States)

    2011-01-01

    biofuels via microalgae to succeed, Nexant expects that significant genetic breakthroughs will be needed, and high volume fuel production will need...18 This product is part of the RAND Corporation monograph series. RAND monographs present major research findings that address the challenges...potential investors in alternative fuel technologies and production facilities. This research was sponsored by the Defense Logistics Agency Energy, and

  4. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  5. Tracking costs of alternatively fueled buses in Florida.

    Science.gov (United States)

    2011-11-04

    The goal of the current project is to establish a recording and reporting mechanism for collecting field data on the performance and costs of alternatively fueled public transit vehicles operating in Florida in order to assist policy makers with thei...

  6. Alternative fuels: how real? how soon?

    International Nuclear Information System (INIS)

    Tertzakian, P.

    2003-01-01

    Nations of the Organization for Economic Cooperation and Development (OECD) are looking for politically stable sources of oil in response to the ever growing demand for fuel. World oil consumption has reached 76.5 MMB/d and demand is expected to be 80 MMB/d by 2005. More restrictive environmental policies are resulting in improved conversion efficiency of oil dependent supply chains and the switching to alternative fuels. The adoption of new fuels however, depends on many factors such as the economic advantage, technological superiority, and convenience. The dominant electrical supply chains at the moment are nuclear, coal, hydropower, hydrocarbons, and renewable energy alternatives such as wind, solar and hydrogen fuels. The paper presented graphs illustrating adoption patterns for various fuels over the past century and presented a potential adoption pattern for fuel cell vehicles. Also included in this presentation were graphs depicting how price can drive supply chain demand and allow other fuels to gain market share. The impact of fuel substitution, efficiency and price effects was mentioned along with the impact of recent policy changes on vehicle fuel efficiency and carbon dioxide emissions. The role of government incentives to promote alternative fuel sales was also discussed along with a broad assessment of renewable supply chains. It was noted that most new fuels are linked to hydrocarbons. For example, hydrogen generation through water electrolysis requires petroleum generated electricity or the steam reforming of natural gas. Ethanol processes also require hydrocarbon consumption indirectly. It was noted that the average efficiencies of coal and natural gas plants has increased in the past decade and the incumbent price trends in electricity in the United States have decreased for fuels such as oil, gas, coal and nuclear energy. With ongoing innovation in the internal combustion engine in the past 30 years, the incumbents have also improved with

  7. Development of Methanol-Reforming Catalysts for Fuel Cell Vehicles

    OpenAIRE

    Agrell, Johan

    2003-01-01

    Vehicles powered by proton exchange membrane (PEM) fuelcells are approaching commercialisation. Being inherently cleanand efficient sources of power, fuel cells constitute asustainable alternative to internal combustion engines to meetfuture low-emission legislation. The PEM fuel cell may befuelled directly by hydrogen, but other alternatives appearmore attractive at present, due to problems related to theproduction, transportation and handling of hydrogen. Fuelling with an alcohol fuel, such...

  8. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    2002-07-01

    Quarterly magazine with articles on auctions of used alternative fuel vehicles (AFVs), Royalty Enterprises of Ohio, and introducing AFVs in neglected urban areas. Plus Ford's new CNG school bus and electric buses in Connecticut.

  9. Fuel cell vehicle technologies, infrastructure and requirements.

    Science.gov (United States)

    2017-04-01

    Fuel cell electric vehicles (FCEVs) use hydrogen as fuel and exhaust only water and heat. They : provide driving ranges and fueling times comparable to gasoline vehicles. Despite the advantages, : FCEVs have been in and out of the spot light of the a...

  10. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  11. Hydrogen Internal Combustion Engine (ICE) Vehicles and Fueling Infrastructure : Alternative Fuels & Life-Cycle Engineering Program : November 29, 2006 to November 28, 2011

    Science.gov (United States)

    2011-12-20

    Wind turbines located on sites known as wind farms have become popular in the United States and elsewhere because they may be able to reduce, if not replace, the use of fossil fuels for energy production. The development of wind farms has been partic...

  12. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  13. Techno-economic assessment of fuel cell vehicles for India

    International Nuclear Information System (INIS)

    Manish S; Rangan Banerjee

    2006-01-01

    This paper compares four alternative vehicle technologies for a typical small family car in India (Maruti 800) - two conventional i) Petrol driven internal combustion (IC) engine, ii) Compressed natural gas (CNG) driven IC engine and two based on proton exchange membrane (PEM) fuel cells with different storage iii) Compressed hydrogen storage and iv) Metal hydride (FeTi) storage. Each technology option is simulated in MATLAB using a backward facing algorithm to calculate the force and power requirement for the Indian urban drive cycle. The storage for the CNG and the fuel cell vehicles is designed to have driving range of 50% of the existing petrol vehicle. The simulation considers the part load efficiency vs. load characteristics for the computed ratings of the IC engine and the fuel cell. The analysis includes the transmission efficiency, motor efficiency and storage efficiencies. The comparison criteria used are the primary energy consumption (MJ/km), the cost (Rs./km) obtained by computing the annualized life cycle cost and dividing this by the annual vehicle travel and carbon dioxide emissions (g/km). For the primary energy analysis the energy required for extraction, processing of the fuel is also included. For the fuel cell vehicles, it is assumed that hydrogen is produced from natural gas through steam methane reforming. It is found that the fuel cell vehicles have the lowest primary energy consumption (1.3 MJ/km) as compared to the petrol and CNG vehicles (2.3 and 2.5 MJ/km respectively). The cost analysis is done based on existing prices in India and reveals that the CNG vehicle has the lowest cost (2.3 Rs./km) as compared to petrol (4.5 Rs./km). The fuel cell vehicles have a higher cost of 26 Rs./km mainly due to the higher fuel cell system cost (93% of the total cost). The CO 2 emissions are lowest for the fuel cell vehicle with compressed hydrogen storage (98 g/km) as compared to the petrol vehicle (162 g/km). If the incremental annual cost of the fuel

  14. Exchange program. Alternative options for purchase of environmentally friendly vehicles in Stockholm

    Energy Technology Data Exchange (ETDEWEB)

    Rader Olsson, Amy [Inregia AB, Stockholm (Sweden); Elam, N. [Atrax Energi AB, Goeteborg (Sweden)

    1999-11-01

    The city of Stockholm has decided to exchange 300 of its gasoline-driven vehicles for vehicles which emit fewer hazardous pollutants. A vehicle exchange program is being developed based on analyses which describe the driving patterns of Stockholm's vehicles, alternative fuel technology status, and financing alternatives. This report comprises the first two analyses, that of Stockholm's fleet driving patterns and alternative fuel technology options. The report has four major sections: * a technical analysis of the status of certain fuels and vehicles, including prognoses of availability in Sweden and the future development potential of each. (electric, biogas, ethanol, RME), * a driving study, which identifies those vehicles currently in Stockholm's fleet which could be exchanged for alternatively-fueled vehicles, * an analysis of five purchase package alternatives, and * a location analysis, which describes the accessibility of vehicles in each alternative to alternative fuel refueling facilities in Stockholm. Given current prices and availability of the alternative fuels and vehicles studied, we recommend a high share of electric and biogas vehicles for purchases during 1997. The cost-effectiveness of different vehicle types in their reduction of various hazardous pollutants, may however change dramatically as prices and availability of vehicles changes and the market for alternative fuels develops. Accessibility to alternative fuel refueling facilities is adequate in Stockholm, though not always ideal. To improve the accessibility of biogas vehicles further, we suggest a third biogas refueling facility in the city's northeastern area (Ropsten, Vaertahamnen). If MFO chooses to purchase a significant number of diesel passenger vehicles to be driven on RME; we propose that a facility in the northeastern area would improve accessibility more than another facility in southern Stockholm.

  15. Costs Associated With Propane Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  16. Costs Associated With Propane Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  17. Alternative Fuel News: Vol. 3, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-01-10

    This final issue of the Alternative Fuel News (AFN) for the 20th century provides updates on specific Clean Cities Program progress and provide a glimpse of what is in store for the future. A national nonprofit organization has been part of the Clean Cities vision for some time, and now it is a reality as National Clean Cities, Inc. (NCC). While Clean Cities coalitions have had some success in securing local private foundation funds for alternative fuel vehicle (AFV) projects in their regions, now with the help of NCC, they can tap into the dollars available from large, national foundations. The Clean Cities Game Plan 2000, which is the highlight of the cover story, outlines the strategy for the next year.

  18. Alternative Fuel for Marine Application

    Science.gov (United States)

    2012-02-29

    The U.S. Maritime Administration (MARAD) is participating in the U.S. Navy's ongoing efforts to test alternative fuels for marine use by demonstrating their applicability on commercial vessels. In support of this effort, the Navy provided neat hydrot...

  19. Onboard fuel processor for PEM fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Brian J.; Zhao, Jian L.; Ruffo, Michael; Khan, Rafey; Dattatraya, Druva; Dushman, Nathan [Nuvera Fuel Cells, Inc, 20 Acorn Park, Cambridge, MA 02140 (United States); Beziat, Jean-Christophe; Boudjemaa, Fabien [Renault, Service 64240 - FR TCR GRA 0 75, Technocentre Renault - 1 avenue du Golf, 78288 Guyancourt (France)

    2007-07-15

    To lower vehicle greenhouse gas emissions, many automotive companies are exploring fuel cell technologies, which combine hydrogen and oxygen to produce electricity and water. While hydrogen storage and infrastructure remain issues, Renault and Nuvera Fuel Cells are developing an onboard fuel processor, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The fuel processor is now small enough and powerful enough for use on a vehicle. The catalysts and heat exchangers occupy 80 l and can be packaged with balance of plant controls components in a 150-l volume designed to fit under the vehicle. Recent systems can operate on gasoline, ethanol, and methanol with fuel inputs up to 200 kWth and hydrogen efficiencies above 77%. The startup time is now less than 4 min to lower the CO in the hydrogen stream to the target value for the fuel cell. (author)

  20. Tracking costs of alternatively fueled buses in Florida - phase II.

    Science.gov (United States)

    2013-04-01

    The goal of this project is to continue collecting and reporting the data on the performance and costs of alternatively fueled public transit vehicles in the state in a consistent manner in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT) c...

  1. Expectation dynamics: Ups and downs of alternative fuels

    NARCIS (Netherlands)

    Konrad, Kornelia Elke

    2016-01-01

    The transport sector must undergo radical changes if it is to reduce its carbon emissions, calling for alternative vehicles and fuel types. Researchers now analyse the expectation cycles for different fuel technologies and draw lessons for the role of US policy in supporting them.

  2. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  3. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  4. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  5. Alternate-fuel reactor studies

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a 3 He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding

  6. Alternative Fuel News, Vol. 3 No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-23

    This special issue of Alternative Fuel News highlights the Fifth National Clean Cities Conference held in Louisville, Kentucky. The momentum for the program is stronger than ever and the coalitions are working to propel the alternative fuel industry forward.

  7. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  8. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  9. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  10. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  11. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  12. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  13. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  14. Alternative Fuels Market and Policy Trends (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  15. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  16. A Life-Cycle Comparison of Alternative Automobile Fuels.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable

  17. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  18. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  19. Hydrogen-fueled postal vehicle performance evaluation

    Science.gov (United States)

    Hall, R. A.

    1979-01-01

    Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.

  20. Alternative fossil-based transportation fuels

    Science.gov (United States)

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  1. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  2. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  3. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  4. Internal combustion engine to electric vehicle. Four alternative techniques; Del motor de combustion internal al vehiculo electrico. Cuatro alternativas tecnicas

    Energy Technology Data Exchange (ETDEWEB)

    Alaez, R.; Barneto, M.; Gil, C.; Longas, J. C.; Lucea, J.; Ullibarri, M.; Bilbao, J.; Camino, V.; Intxaurburu, G.

    2010-07-01

    Auto makers are now developing alternatives to internal combustion engines. The present paper provides an analysis of four alternative vehicles: electric hybrids, full electric vehicles, hydrogen fuel cells and hydrogen vehicles. The paper focuses on the adoption dynamics for alternative vehicles. The spatial implications of this process for the organization of the value chain and the auto makers alliances linked to the alternatives development are also considered. (Author) 14 refs.

  5. Alternative Fuels and Their Potential Impact on Aviation

    Science.gov (United States)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  6. Alternative Fuel News, Vol. 7, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    2003-08-01

    Quarterly magazine with articles on Supplemental Environmental Projects, AFVs for 2004, and a European clean transportation initiative called CIVITAS. Also an interview with Boone Pickens about natural gas fueling for vehicles.

  7. Alternative Fuel News, Volume 4, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, C.

    2000-11-14

    This issue of Alternative Fuel News focuses on transit buses and refuse haulers. Many transit agencies and waste management companies are investigating alternatives to traditional diesel buses and refuse haulers.

  8. Solar-Hydrogen Fuel-Cell Vehicles

    OpenAIRE

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional or global pollution. Hydrogen FCEVs would combine the best features of battery-powere...

  9. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Ogden, Joan M.; Williams, Robert H.; Larson, Eric D.

    2004-01-01

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  10. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  11. Clean Air Program : Design Guidelines for Bus Transit Systems Using Alcohol Fuel (Methanol and Ethanol) as an Alternative Fuel

    Science.gov (United States)

    1996-08-01

    Although there are over one thousand transit buses in revenue service in the U.S. that are powered by alternative fuels, there are no comprehensive guidelines for the safe design and operation of alternative fuel facilities and vehicles for transit s...

  12. Sulphur release from alternative fuel firing

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter

    2014-01-01

    The cement industry has long been dependent on the use of fossil fuels, although a recent trend in replacing fossil fuels with alternative fuels has arisen. 1, 2 However, when unconverted or partly converted alternative fuels are admitted directly in the rotary kiln inlet, the volatiles released...... from the fuels may react with sulphates present in the hot meal to form SO 2 . Here Maria del Mar Cortada Mut and associates describe pilot and industrial scale experiments focusing on the factors that affect SO 2 release in the cement kiln inlet....

  13. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  14. Taxation on vehicle fuels: its impacts on switching to cleaner fuels

    International Nuclear Information System (INIS)

    Hung, W.-T.

    2006-01-01

    Vehicular consumption of fossil fuel contributes over 90% of air pollution in Hong Kong. A key strategy to improve Hong Kong's air quality is to discourage dirty fuels (e.g., leaded petrol and high-sulphur diesel) and to promote the use of clean fuels (e.g., low-sulphur diesel and liquefied petroleum gas (LPG)). This paper presents the empirical evidence on the effectiveness of the Government's clean fuel programs that offer tax subsidy to lower the consumption cost of such fuels. For the cases of unleaded petrol and ultra-low-sulphur diesel, lower fuel duties were offered so that the prices of these fuels were below those of leaded petrol and conventional diesel. Conventional petrol and diesel were phased out. In order to decide on the level of fuel duty concessions required to introduce LPG for taxis and bio-diesel for other vehicles, various Government-run trial programs were introduced to obtain cost estimates of using these alternative cleaner fuels. LPG using vehicles were subsequently exempted from the fuel duty in order to attract taxi and light bus operators to switch to LPG. It is apparent that the higher the subsidy, the faster is the rate at which switching to cleaner fuels takes place

  15. Alternative Fuels in Cement Clinker Production Process

    OpenAIRE

    , E Zaka; , R Pinguli; , J Gabili; , E Arapi

    2016-01-01

    Cement industry in Albania is experiencing a rapid development, but this industry is distinguished for high consumption of resources. Cement manufacturing companies do constantly researches on reducing the production cost by optimizing the equipments, replacing raw materials and fuel. However, alternative fuels should be alternative according to the process requirements, easily obtainable in quantity, and with a lower cost. Since the combustible fuels are becoming increasingly important, this...

  16. Alternative fuel news: Official publication of the clean cities network and the alternative fuels data center, Vol. 4, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-03-27

    This issue of Alternative Fuel News contains information on the upcoming Clean Cities Conference to be held May 7--10, 2000 in San Diego, California. Highlighted in this issue is the success of the Clean Cities Program in creating clean corridors that permit fleets that serve multiple cities to purchase AFVs with confidence, knowing that fueling convenience and supply will not be a problem. Also look for articles on electric vehicles, transit buses; state and fuel provider enforcement; the Salt Lake and Greater Long Island Clean Cities coalitions, HEVs and fuel cells are a big hit at auto shows; DOE awards alternative fuel grants to 33 National Parks; and the Energy Policy Act (EPAct) Section 506 report.

  17. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  18. Moving beyond alternative fuel hype to decarbonize transportation

    Science.gov (United States)

    Melton, Noel; Axsen, Jonn; Sperling, Daniel

    2016-03-01

    In the past three decades, government, industry and other stakeholders have repeatedly been swept up with the ‘fuel du jour’, claiming that a particular alternative fuel vehicle (AFV) technology can succeed in replacing conventional gasoline-powered vehicles. However, AFV technologies have experienced relatively little success, with fossil fuels still accounting for about 95% of global transport energy use. Here, using the US as a case study, we conduct a media analysis to show how society’s attention has skipped among AFV types between 1980 and 2013, including methanol, natural gas, plug-in electric, hybrid electric, hydrogen and biofuels. Although our results provide no indication as to whether hype ultimately has a net positive or negative impact on AFV innovation, we offer several recommendations that governments can follow to move past hype to support significant AFV adoption and displace fossil fuel use in the transportation sector.

  19. Determination of alternative fuels combustion products: Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  20. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  1. Fuels demand by light vehicles and motorcycles In Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jose Manoel Antelo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The purpose of this paper is to analyze the consumption of gasoline, alcohol and natural gas vehicle (NGV) by light vehicles and motorcycles in Brazil. Through the estimation of fleets per consumption class, in an environment influenced by a new engine technology (flex-fuel), this exercise estimates the fleet-elasticity of cars (and motorcycles) powered by gasoline, hydrated alcohol, natural gas vehicle (NGV) and flex-fuel, in addition to the income elasticity within the period from January, 2000 to December, 2008. This paper uses an alternative variable as income proxy and estimates the five different fleets through the combination of vehicles sales and scrapping curves. This paper's conclusion is that given specific issues of the Brazilian fuel market, in special prices and technological innovations, the fleets' equations for the consumption of the three fuels represent in a more significant manner the relationships expected between supply and demand variables than the commonly used functions of prices and income. (author)

  2. Multi-criteria analysis of alternative-fuel buses for public transportation

    International Nuclear Information System (INIS)

    Tzeng, G.-H.; Lin, C.-W.; Opricovic, Serafim

    2005-01-01

    The technological development of buses with new alternative fuels is considered in this paper. Several types of fuels are considered as alternative-fuel modes, i.e., electricity, fuel cell (hydrogen), and methanol. Electric vehicles may be considered the alternative-fuel vehicles with the lowest air pollution. Hybrid electric vehicles provide an alternate mode, at least for the period of improving the technology of electric vehicles. A hybrid electric vehicle is defined as a vehicle with the conventional internal combustion engine and an electric motor as its major sources of power. Experts from different decision-making groups performed the multiple attribute evaluation of alternative vehicles. AHP is applied to determine the relative weights of evaluation criteria. TOPSIS and VIKOR are compared and applied to determine the best compromise alternative fuel mode. The result shows that the hybrid electric bus is the most suitable substitute bus for Taiwan urban areas in the short and median term. But, if the cruising distance of the electric bus extends to an acceptable range, the pure electric bus could be the best alternative

  3. Sustainable vehicle fuels - Do they exist?

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Ericsson, Karin; Di Lucia, Lorenzo; Nilsson, Lars J.; Aahman, Max

    2009-03-15

    Our aim with this report is to discuss vehicle fuels from a wide perspective of sustainability. Biofuels and electricity are analyzed and compared to fossil vehicle fuels. Our goal is to try to point out the circumstances under which vehicle fuels can be reasonably perceived as sustainable, and which systems we should develop and which we should avoid. The all-embracing conclusion of this study is that one can not establish how sustainable fuels will develop in the future without simultaneously taking into consideration both scale and pace of growth. Today's biofuels produced in Sweden are sustainable, given the present production volume, and promote further development of new fuel systems. However, in the case of increased production volumes, exact requirements should be established for the energy- and climate efficiency of the entire fuel chain (from cultivation to tank). High priority should be given to the development of fuel-efficient cars. In this field hybrid electric technology and electric cars will grow in importance. Any long-term strategy for biofuels should include investments in technology for both thermal gasification and biological conversion methods of lignocellulose, since these are complementing as much as competing technologies, both increasing the flexibility as well as decreasing the risk of conflicts. Biogas from waste products has great environmental advantages and the sector can be expanded with only small risks of conflicts. Certification (if correctly formulated) is an important and necessary tool on the way towards more sustainable vehicle fuels and increased production volumes, but certification systems should not be overrated since they can not cover all sustainability aspects. Socio-economic aspects such as working conditions, local rural development etc. must be dealt with through general measures such as national laws, distribution policies, programs and plans, all of which should be supported by international agreements and

  4. Demonstrating and evaluating heavy-duty alternative fuel operations

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, W. [Trucking Research Inst., Alexandria, VA (United States)

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  5. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  6. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  7. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  8. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  9. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  10. Alternative Fuel News, Vol. 7, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  11. The prospects of use of alternative types of fuel in road transport ...

    African Journals Online (AJOL)

    The article is devoted to the analysis of possibilities of using alternative types of fuel in transport. Gas engine fuels are considered as potential energy carriers for diesel engines. Since the constructions of vehicles, using gas and traditional types of fuel, have some differences, the most important are the issues of ensuring ...

  12. Alternative motor fuels today and tomorrow

    International Nuclear Information System (INIS)

    Bensaid, B.

    2004-01-01

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  13. Fuels and alternative propulsion in Germany

    International Nuclear Information System (INIS)

    2005-04-01

    The transportation sector is one of the first responsible of the air pollution in Germany. The kyoto protocol and the european directive led the german Government to set about some measures. To encourage the petroleum industry to develop classical fuels/biofuels mixing, the government exempted from taxes until 2020 the biofuels part. The Government decided also financial incentives for diesel vehicles equipped with particles filters. Among the different fuels, the document presents the advantages and disadvantages of the hydrogen fuels and the hybrid motors. (A.L.B.)

  14. EU - Fuel and vehicle tax policy

    International Nuclear Information System (INIS)

    Fergusson, Malcolm

    2000-07-01

    This report addresses fiscal instruments, including taxes on fuels, vehicles and infrastructure use, which could contribute to an environmentally-sustainable transport policy for the EU. It analyses the various interests and processes underlying the development of such policy at the European level, explaining the existing state of play, the problems which are caused by current arrangements, and the various obstacles to further greening of the motor taxation system

  15. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy...

  18. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet

    International Nuclear Information System (INIS)

    Bandivadekar, Anup; Cheah, Lynette; Evans, Christopher; Groode, Tiffany; Heywood, John; Kasseris, Emmanuel; Kromer, Matthew; Weiss, Malcolm

    2008-01-01

    The unrelenting increase in the consumption of oil in the US light-duty vehicle fleet (cars and light trucks) presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce petroleum use and greenhouse gas emissions from motor vehicles. Even so, achieving a noticeable reduction on both fronts in the near term will require rapid penetration of these technologies into the vehicle fleet, and not all alternatives can meet both objectives simultaneously. Placing a much greater emphasis on reducing fuel consumption rather than improving vehicle performance can greatly reduce the required market penetration rates. Addressing the vehicle performance-size-fuel consumption trade-off should be the priority for policymakers rather than promoting specific vehicle technologies and fuels

  19. Second interim report of the Interagency Commission on Alternative Motor Fuels

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes progress the commission and government agencies have made in implementing the provisions of the Alternative Motor Fuels Act of 1988, assessing the role of alternative motor fuels in the US transportation sector, and developing policies to promote the use of alternative fuels. The alternative motor-fuels policies proposed in the National Energy Strategy (NES) are described and shows how they compose an effective long-term plan to encourage the widespread use of alternative motor fuels. The progress to date of the Department of Energy (DOE) and other agencies in implementing the programs required by the AMFA is reported. A detailed scenario of future alternative-fuel use that displaces 2.5 million barrels per day (MMBD) of petroleum and a feasible path of vehicle production and fuel supply leading to that goal is described. An analytical tool for exploring and quantifying the energy market impacts of alternative fuels, the Alternative Fuels Trade Model (AFTM), is described. The AFTM provides a means of investigating the impacts of alternative fuels in interrelated world energy markets for petroleum and natural gas. Several major initiatives have recently been enacted that have important ramifications for alternative-fuels policy. The Clean Air Act Amendments of 1990 contain provisions mandating the use of nonpetroleum oxygenates in reformulated gasoline. Other provisions for much more stringent emissions standards may affect the ability of manufacturers to make and sell conventional-fuel vehicles or, at the very least, affect their cost-effectiveness in comparison to cleaner alternative-fuel vehicles (AFV's). Finally, the key areas in which technological advances could substantially improve the competitiveness of AFV technologies in the marketplace are reviewed

  20. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  1. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  2. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  3. Commercializing an alternate transportation fuel: lessons learned from NGV

    International Nuclear Information System (INIS)

    Flynn, P.C.

    2001-01-01

    An alternate transportation fuel, compressed natural gas, was adopted in Canada in the mid-1980s due to the unique conditions present at the time. The factors that had an impact on the limited acceptance of the fuel, keeping its rate of adoption below the critical point were examined in this paper. It was revealed that a lack of infrastructure to support converted vehicles was the deciding factor. Existing refueling stations failed to become profitable, preventing further investment in refueling facilities and resulting in depressed sales of converted vehicles. Excessive parts markup by conversion dealers was another major hurdle, as was exaggerated claims for environmental and economic benefits. In addition, promotional programs were poorly designed. In the late 1980s, the relative values of oil and natural gas shifted, lowering the momentum from sales of conversions. The consequence was major players leaving the market and natural gas remained on the fringe in both Canada and the United States. Different alternate transportation fuels, including electricity and hydrogen, are being favored by new technologies and driving forces. The growth to commercial viability for those fuels will likely be influenced by some of the factors that played a role in the fate of natural gas as a transportation fuel. 4 refs., 1 fig

  4. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2012-01-01

    This paper evaluates alternative fuels for the Greek road transport sector, using the Analytic Hierarchy Process. Seven different alternatives of fuel mode are considered in this paper: internal combustion engine (ICE) and its combination with petroleum and 1st and 2nd generation biofuels blends, fuel cells, hybrid vehicles, plug-in hybrids and electric vehicles. The evaluation of alternative fuel modes is performed according to cost and policy aspects. In order to evaluate each alternative fuel, one base scenario and ten alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all ten alternative scenarios. It is concluded that ICE blended with 1st and 2nd generation biofuels are the most suitable alternative fuels for the Greek road transport sector. - Highlights: ► Alternative fuels for the Greek road transport sector have been evaluated. ► The method of the AHP was used. ► Seven different alternatives of fuel mode are considered. ► The evaluation is performed according to cost and policy aspects. ► The ICE with 1st and 2nd generation biofuels are the most suitable fuels.

  5. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  6. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.; Rugh, J.

    2000-09-22

    Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

  7. EPAct Alternative Fuel Transporation Program - State and Alternative Fuel Provider Fleets: Frequently Asked Questions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Factsheet answering frequently asked questions about the U.S. Department of Energy's Alternative Fuel Transportation Program (the Program) that implements provisions of Titles III–V of the Energy Policy Act of 1992 (EPAct). Answers to questions that are frequently asked about the Program by managers of state government and alternative fuel provider fleets are provided in the factsheet.

  8. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements...

  9. Impacts of alternative fuels on air quality

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

    1994-06-01

    The objective of this project was to determine the impact of alternative fuels on air quality, particularly ozone formation. The alternative fuels of interest are methanol, ethanol, liquefied petroleum gas, and natural gas. During the first year of study, researchers obtained qualitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol and ethanol. The thermal degradation of ethanol produced a substantially larger number of intermediate organic by-products than the similar thermal degradation of methanol, and the organic intermediate by-products lacked stability. Also, a qualitative comparison of the UDRI flow reactor data with previous engine test showed that, for methanol, formaldehyde and acetone were the organic by-products observed in both types of tests; for ethanol, only very limited data were located.

  10. Fuel cell vehicles: technological solution; La pila de combustible en los vehiculos automoviles: un reto tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Martinez, J. M.

    2004-07-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO{sub 2} as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?.

  11. Alternative fuels and power systems: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, P. [Monash Univ., Caulfield Campus, Dep. of Mechanical Engineering, Caulfiled East (Australia)

    1996-12-31

    Alternatives to the petroleum-fueled combustion engine have only prospered when concerns about oil availability were high. No single alternative has recommended itself as an obvious solution for all countries, since different countries may not only rank the problems differently, but vary in resources on which to base alternatives. Further, both resources and environmental priorities may change over time, as for example, air pollution has replaced oil availability as the major problem. It is thus clear from a global viewpoint, a wide range of alternatives will need to be investigated, some for immediate or near future application, others as long-term possibilities. (author) refs.

  12. Hydrogen-powered road vehicles : the health benfits and drawbacks of a new fuel

    NARCIS (Netherlands)

    Passchier, W.F.; Erisman, J.W.; Hazel, van den P.J.; Heederik, D.J.J.; Leemans, R.; Legler, J.; Sluijs, J.P.; Dogger, J.W.

    2009-01-01

    Because of the political, social and environmental problems associated with dependency on fossil fuels, there is considerable interest in alternative energy sources. Hydrogen is regarded as a promising option, particularly as a fuel for road vehicles. The Dutch Energy Research Centre (ECN) recently

  13. Investing in Alternative Fuel Infrastructure: Insights for California from Stakeholder Interviews: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Muratori, Matteo; McLaren, Joyce; Schwabe, Paul

    2017-03-13

    Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks and barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.

  14. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel fleet vehicle labeling... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. (a) All clean-fuel heavy...

  15. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  16. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  17. Light-Duty Vehicle CO2 and Fuel Economy Trends

    Science.gov (United States)

    This report provides data on the fuel economy, carbon dioxide (CO2) emissions, and technology trends of new light-duty vehicles (cars, minivans, sport utility vehicles, and pickup trucks) for model years 1975 to present in the United States.

  18. Household income and vehicle fuel economy in California.

    Science.gov (United States)

    2015-11-01

    This white paper presents the findings from an analysis of the fiscal implications for vehicle owners of changing from the current : statewide fuel tax to a road user charge (RUC) based on vehicle-miles traveled (VMT). Since 1923, California...

  19. Fuel cells for vehicle applications in cars - bringing the future closer

    Science.gov (United States)

    Panik, Ferdinand

    Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.

  20. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  1. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  2. Available Alternative Fuel School Bus Products--2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

  3. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  4. Alternative transport fuels: supply, consumption and conservation

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1990-01-01

    Road-based passenger and freight transport almost exclusively uses petroleum/hydrocarbon fuels in the fluid form. These fuels will probably continue to be major transport fuels well into the 21st century. As such there is need to prolong their use which can be done through: (1) conservation of fuel by increasing efficiency of internal combustion engines, and (2) conversion of natural gas, coal and peat, and biomass into alternate fuels such as ethanol, methanol, CNG, LNG, LPG, low heat-content (producer) gas and vegetable oils. Research, development and demonstration (RD and D) priorities in supply, consumption and conservation of these alternate fuels are identified and ranked in the context of situation prevailing in Brazil. Author has assigned the highest priority for research in the impact of pricing, economic, fiscal and trade policies, capital allocation criteria and institutional and legislative framework. It has also been emphasised that an integrated or systems approach is mandatory to achieve net energy gains in transport sector. (M.G.B.). 33 refs., 11 tabs., 4 figs

  5. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  6. Alternative sensor system and MLP neural network for vehicle pedal activity estimation.

    Science.gov (United States)

    Wefky, Ahmed M; Espinosa, Felipe; Jiménez, José A; Santiso, Enrique; Rodríguez, José M; Fernández, Alfredo J

    2010-01-01

    It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  7. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  8. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  9. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  10. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  11. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  12. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    Coiante, D.

    1995-03-01

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  13. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  14. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  15. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    Science.gov (United States)

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  16. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  17. Fuel Options for Vehicles in Korea and Role of Nuclear Energy

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Chang, Soon Heung

    2005-01-01

    Nowadays, almost all vehicles in Korea are powered by gasoline or diesel and they are emitting about 25% of nationwide total carbon dioxide emission. With jetting up price of oil and concerns about global warming by use of fossil fuel, transition to the hydrogen economy gains more and more interest. As alternatives to the current fossil powered vehicles, hybrid, hydrogen, electricity powered vehicles are considered. In short term we will reduce dependence upon fossil fuel by using hybrid cars. However, in the long term, we have to escape from the dependence on fossil fuel. In this context, nuclear-driven hydrogen or electricity powered cars are the alternatives. In this study, we estimated the operation cost of cars powered by hydrogen and electricity from nuclear power and studied about the major blocks on the way to independence from fossil fuels. In the analysis, we put the capital cost of car aside

  18. 40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.

    Science.gov (United States)

    2010-07-01

    ... to qualify as a clean-fuel fleet vehicle. 88.306-94 Section 88.306-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.306-94 Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle. (a) For...

  19. Systems impacts of spent fuel disassembly alternatives

    International Nuclear Information System (INIS)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  20. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  1. Study questions environmental impact of fuel-cell vehicles

    Science.gov (United States)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  2. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  3. Panorama 2009 - aviation and alternative fuels

    International Nuclear Information System (INIS)

    2008-01-01

    Several key priorities have been targeted for development in the aviation industry: diversifying energy resources, keeping consumption levels under control and reducing polluting emissions to improve air quality. Like the road transport sector, the air transport sector is mounting a determined effort to reduce the level of its greenhouse gas emissions. Among the various solutions under consideration, alternative fuels are attracting particular attention. However, not all alternative solutions can be exploited, because of the constraints specific to the use of aircraft. A precise assessment should be made of all possible solutions to determine which ones should take preference

  4. Alternative Fuel News, Vol. 2, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-03-17

    The cover story in this issue of the Alternative Fuel News highlights the niche market principle; the places in which AFVs would best fit. This year's SEP funding is expected to be the springboard needed for the development of niche projects. The Clean Cities Program, by matching those needs and attributes in niches, can dramatically increase the attractiveness of AFVs and make an impact on those high-mileage, high-use fleets.

  5. Near-term feasibility of alternative jet fuels

    Science.gov (United States)

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  6. Tracking costs of alternatively fueled buses in Florida : [summary].

    Science.gov (United States)

    2011-01-01

    In an effort to address rising fuel costs and environmental concerns, many transit agencies across Florida have introduced alternative fuel technologies to their traditional diesel-powered fleets. Fuel types include biodiesel, compressed natural gas,...

  7. Reassembling technique for irradiation vehicle at Fuel Monitoring Facility (FMF)

    International Nuclear Information System (INIS)

    Maeda, Koji; Nagamine, Tsuyoshi; Nakamura, Yasuo; Mitsugi, Takeshi; Matsumoto, Shinichiro

    1999-01-01

    The remote handling technique has been developed and demonstrated by Fuel Monitoring Facility (FMF) operated by Japan Nuclear Cycle Development Institute (JNC). In particular, the reassembling of irradiated fuels has been successfully performed, and reassembled irradiation vehicles were reinserted to Japanese experimental fast reactor 'JOYO'. This paper describes following four items; (A) Irradiation vehicle, (B) Disassembling and interim examination, (C) Decontamination of fuel pin or capsule, (D) Reassembling machine, which are necessary for the reinsertion. (J.P.N.)

  8. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S.

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  9. Biodiesel: An eco-friendly alternate fuel for the future: A review

    Directory of Open Access Journals (Sweden)

    Singaram Lakshmanan

    2009-01-01

    Full Text Available In today's society, researchers around the world are searching for ways to develop alternate forms of fuel. With the ever-rising fuel costs, developing alternate energy is a top priority. Biodiesel was developed to combat the high gas and oil prices. It is especially made for use in diesel cars and trucks. Biodiesel can be made from all natural foods that can produce oil. Oils such as vegetable, canola, peanut, rapeseed, palm, and olive oil can be used as bio diesel fuel. Virtually all oils that are used in the kitchens everyday can fuel automobiles. Biodiesel fuel is better for the environment because it burns cleaner and does not pollute the atmosphere. It is non-toxic and biodegradable, making it the perfect fuel. Many car manufacturers are realizing that the bio diesel automobile is becoming more popular, and are jumping on the bandwagon, by developing their own version of a biodiesel vehicle. They realize that the need for these vehicles will increase, and predict that they will be ready for the onslaught. Diesel engines have superior fuel efficiencies, and hence they are predominantly used in commercial transportation and agricultural machinery. Due to the shortage of diesel fuel and its increasing costs, a need for an alternate source of fuel for diesel engines is imminent. This paper investigates the suitability of biodiesels as such an alternative with particular reference to automobiles. It reviews techniques used to produce biodiesel and provides a comprehensive analysis of the benefits of using biodiesel over other fuels.

  10. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  11. Proceedings of the 1996 Windsor workshop on alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  12. Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-28

    The Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps report, published by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) provides an overview of the current state of alternative aviation fuels, based upon findings from recent peer-reviewed studies, scientific working groups, and BETO stakeholder input provided during the Alternative Aviation Fuel Workshop.

  13. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21... Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for... calculation formula; and (4) The anticipated duration of the lack of alternate fuel supply which constitutes...

  14. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  15. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2003-01-01

    Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring alternative fuels activity in every state, dealer incentives for AFV sales, and news from the Automakers.

  16. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  17. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 5, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    LaRocque, T.

    2001-04-18

    A quarterly magazine with articles on recent changes to the Clean Cities Program; the SuperTruck student engineering challenge; alternative fuel use in delivery fleets; and a propane vehicle rally and conference in February 2001, in Kansas City, Mo.

  18. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  19. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  20. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  1. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  2. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    Science.gov (United States)

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  3. Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China

    Directory of Open Access Journals (Sweden)

    Tianduo Peng

    2017-11-01

    Full Text Available The Tsinghua University Life Cycle Analysis Model (TLCAM is applied to calculate the life cycle fossil energy consumption and greenhouse gas (GHG emissions for more than 20 vehicle fuel pathways in China. In addition to conventional gasoline and diesel, these include coal- and gas-based vehicle fuels, and electric vehicle (EV pathways. The results indicate the following. (1 China’s current dependence on coal and relative low-efficiency processes limits the potential for most alternative fuel pathways to decrease energy consumption and emissions; (2 Future low-carbon electricity pathways offer more obvious advantages, with coal-based pathways needing to adopt carbon dioxide capture and storage technology to compete; (3 A well-to-wheels analysis of the fossil energy consumption of vehicles fueled by compressed natural gas and liquefied natural gas (LNG showed that they are comparable to conventional gasoline vehicles. However, importing rather than domestically producing LNG for vehicle use can decrease domestic GHG emissions by 35% and 31% compared with those of conventional gasoline and diesel vehicles, respectively; (4 The manufacturing and recovery of battery and vehicle in the EV analysis has significant impact on the overall ability of EVs to decrease fossil energy consumption and GHG emissions from ICEVs.

  4. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  5. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  6. Towards life cycle sustainability assessment of alternative passenger vehicles

    OpenAIRE

    Onat, Nuri Cihat; Küçükvar, Murat; Tatari, Ömer

    2014-01-01

    Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV). In total, 19 macro level sustainability indicators are quantified for a scenario in which elect...

  7. Sandy Hook : alternative access concept plan and vehicle replacement study

    Science.gov (United States)

    2009-06-01

    This study addresses two critical issues of concern to the Sandy Hook Unit of Gateway National : Recreational Area: (1) options for alternative access to Sandy Hook during peak summer season, : particularly when the park is closed to private vehicles...

  8. Fuel consumption from vehicles of China until 2030 in energy scenarios

    International Nuclear Information System (INIS)

    Zhang Qingyu; Tian Weili; Zheng Yingyue; Zhang Lili

    2010-01-01

    Estimation of fuel (gasoline and diesel) consumption for vehicles in China under different long-term energy policy scenarios is presented here. The fuel economy of different vehicle types is subject to variation of government regulations; hence the fuel consumption of passenger cars (PCs), light trucks (Lts), heavy trucks (Hts), buses and motor cycles (MCs) are calculated with respect to (i) the number of vehicles, (ii) distance traveled, and (iii) fuel economy. On the other hand, the consumption rate of alternative energy sources (i.e. ethanol, methanol, biomass-diesel and CNG) is not evaluated here. The number of vehicles is evaluated using the economic elastic coefficient method, relating to per capita gross domestic product (GDP) from 1997 to 2007. The Long-range Energy Alternatives Planning (LEAP) system software is employed to develop a simple model to project fuel consumption in China until 2030 under these scenarios. Three energy consumption decrease scenarios are designed to estimate the reduction of fuel consumption: (i) 'business as usual' (BAU); (ii) 'advanced fuel economy' (AFE); and (iii) 'alternative energy replacement' (AER). It is shown that fuel consumption is predicted to reach 992.28 Mtoe (million tons oil equivalent) with the BAU scenario by 2030. In the AFE and AER scenarios, fuel consumption is predicted to be 734.68 and 600.36 Mtoe, respectively, by 2030. In the AER scenario, fuel consumption in 2030 will be reduced by 391.92 (39.50%) and 134.29 (18.28%) Mtoe in comparison to the BAU and AFE scenarios, respectively. In conclusion, our models indicate that the energy conservation policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.

  9. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  10. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    %. Furthermore, it is founded that for the case with methanol, ethanol and DME then at high utilization factors, low anode recirculation is recommended while at low utilization factors, high anode recirculation is recommended. If the plant is fed by biogas from biomass gasification then for each utilization......An innovative study on anode recirculation in solid oxide fuel cell systems with alternative fuels is carried out and investigated. Alternative fuels under study are ammonia, pure hydrogen, methanol, ethanol, DME and biogas from biomass gasification. It is shown that the amount of anode off......-fuel recirculation depends strongly on type of the fuel used in the system. Anode recycling combined with fuel cell utilization factors have an important impact on plant efficiency, which will be analysed here. The current study may provide an in-depth understanding of reasons for using anode off-fuel recycling...

  11. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  12. Policy of developing alternate vehicles; La politique de developpement des vehicules alternatifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-15

    In most western cities the present-day car is by far the principal mode of transport. The wrong side of it is that automobile circulation is a source of air-pollution, noise and traffic jam, inconveniences against which public opinion shows itself more and more susceptible. Facing this situation governments in succession have since several years encouraged by different measures the development of fitted or alternative vehicles: electric, natural gas (NG) fuelled and liquefied petroleum gas (LPG) vehicles. These vehicles have the advantage of responding both to pollution problem and energy diversification challenge. The present-day regulation system gathers a number of attractive provisions: - maintaining para-fiscal taxes upon gas fuels at a level much lower than for other fuels; - VAT refunding for these gas fuels and electricity consumed by vehicles of this type; - general councils can be totally or partially exonerated from automobile taxation; - assigning future green label allowing these vehicles to be excepted from traffic restrictions applied to cope with pollution peaks. Other additional advantages are provided by the law on air and rational use of energy of 30 December 1996. Merits and drawbacks of each of the mentioned types of alternative vehicles are reviewed. So, although entirely un-polluting the electric cars are not cheap and what is even more hindering is their very limited range which for current batteries does not exceed 80 km. Only little over 3000 electric vehicles were sold, a third of them to EDF. The natural gas is rather pure a fuel at burning of which the release of sulfur and solid particles are practically negligible. Due to its characteristics, the short and medium term development of this alternative seems to reside only in buses and service vehicles, the only able to support the supplementary load of high pressure gas tanks. Being formed of liquefied butane and propane at low pressure, LPG is as attractive as NG, with respect to the

  13. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    OpenAIRE

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  14. A comparative evaluation of energy storage systems for a fuel cell vehicle. Paper no. IGEC-1-142

    International Nuclear Information System (INIS)

    Marshall, J.; Kazerani, M.

    2005-01-01

    The widespread operation of internal combustion engine (ICE) vehicles has today become a great cause for concern due to the uncertainty of fossil fuel reserves, energy security issues, and numerous adverse environmental effects. Alternatives such as fuel cell vehicles, electric vehicles, hybrid vehicles, and biodiesel vehicles provide the possibility to ease some or all of these concerns. The fuel cell vehicle, however, offers an excellent combination of reducing ICE vehicle problems while maintaining the performance, driving range, and convenience that consumers require. This paper documents a comparative evaluation of an extremely important facet of the fuel cell vehicle: the energy storage system (ESS). Batteries and ultracapacitors, the two most common choices for an ESS, are compared qualitatively to illustrate the advantages and disadvantages of each. Also, a quantitative comparison is made to choose the best technology for a small fuel cell-powered SUV having the design objectives of high performance and high efficiency. Practical issues such as availability and cost are also considered. The results of the analysis indicate that a battery ESS provides the best combination of efficiency, performance, and cost for a present-day fuel cell vehicle design. Yet, if the anticipated cost reductions and improvements in the energy storage capabilities of ultracapacitors do occur, ultracapacitors will become a very strong contender for energy storage solutions of future fuel cell vehicles. (author)

  15. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Science.gov (United States)

    2010-04-01

    ... vehicle refueling property is not a recapture event. (c) Recapture date—(1) Qualified clean-fuel vehicle... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal...

  16. Environmental impact of alternative fuel on Tehran air pollution

    International Nuclear Information System (INIS)

    Ebtekar, T.

    1995-01-01

    Seventy percent of the air pollution in the city of Tehran stems from mobile sources, and in comparison with other major cities of the world, Iran's capital experiences one of the most polluted metropolitan areas. There exists a surplus of liquid petroleum gas (LPG) in the Persian Gulf and Iranian market, in addition, Iran possesses the second largest reservoir of natural gas in the world. These alternative energy resources create a favorable potential fuel for city of Tehran. Experiments carried out in Tehran indicate that in converting the taxis from gasoline to a dual fuel (LPG/gasoline) car or to a dual fuel natural gas vehicle (NGV) reduce all major pollutants (CO, HC, NOX, Pb) substantially. Following the author's recommendation, the number of LPG dispensing units in gas stations are increasing and the number of dual fuel taxis amount to several thousands in the metropolitan area. The conversion of diesel buses in the Tehran Public Transportation Corporation to natural gas (NGV) has been recommended by the author and vast experimental works are underway at the present time

  17. Compressed natural gas fueled vehicles: The Houston experience

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  18. Potential demand for household alternative fuelled vehicles in Hamilton, Canada : a stated choices experiment and survey

    Energy Technology Data Exchange (ETDEWEB)

    Potoglou, D.; Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). Centre for Spatial Analysis]|[McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Science

    2005-07-01

    Alternative fuelled vehicle (AFV) technologies are a key strategy towards improved air quality and sustainable development. These fuel-efficient, low- or zero-emission vehicles have the potential to reduce greenhouse gas emissions and other negative externalities linked with the transportation sector. They include battery electric vehicles, fuel cell vehicles, and hybrid electric vehicles with internal combustion engines. This paper discussed AFVs development trends and modelling the demand for AFVs. It was noted that before creating policy measures that promote new vehicle technologies, one should first evaluate the demand for AFVs and the effectiveness of incentives and marketing promotions. This paper discussed the design and application of a stated choices experiment in which urban level surveys were conducted on the Internet to obtain data and public opinion on the demand for AFVs. A Choice Internet Based Experiment for Research on Cars (CIBER-CARS) was designed. This self-administered online questionnaire was used in Hamilton, Ontario. The survey design was described in detail and its implementation and data collection procedures were reviewed. Measures for evaluating the efficiency of the Internet survey were also highlighted and the characteristics of the collected information were summarized with emphasis on the profiles of respondents and households. The purpose was to determine the impact of vehicle attributes and household characteristics to the actual choice of certain vehicles. 28 refs., 2 tabs., 4 figs.

  19. Hydrogen fuel cell vehicles for the 3rd millenniums

    International Nuclear Information System (INIS)

    Fahmy, F.H.

    2006-01-01

    As the world population increases, so does the demand for transportation. Automobiles, being the most common means of transportation are on of the main sources pollution. Therefore, in order to meet the needs of society and to protect the environment, scientists began looking for a new solution to this problem. Before they suggested any answers, the scientists first looked at all aspects surrounding the issue. Fuel cell can be promoted energy diversity and a transition to renewable energy sources. This paper presents a new friendly environmental vehicles. The fuel of this vehicles is a renewable sources, solar radiation, PV arrays, electrolyzer, hydrogen and fuel cell. All the results show the capability of vehicle's design with all the details of each main component for several varieties of vehicles for transportation. This new idea realizes clean and healthy environment vehicles

  20. Can propane compete in the clean alternate fuels market

    International Nuclear Information System (INIS)

    Kovacs, K.

    1992-01-01

    This paper presents the status of various clean fuels programs for fleet vehicles. It also identifies and assesses the fleet market for clean fuels in nonattainment areas and addresses the factors critical to penetrating this market. Title II of the Clean Air Act Amendments of 1990 (CAAA) have defined clean fuels as ethanol, methanol, other alcohols, hydrogen, electricity, natural gas, and LP-Gas (propane). Leading clean fuels are identified and discussed. This paper also assesses the advantages and disadvantages for propane versus the other clean vehicle fuel options

  1. Innovative Alternatives to Lifting Overturned Military Vehicles

    Science.gov (United States)

    2014-04-25

    and sensitive equipment underneath. The current means of lifting the large weights is to use large and bulky pneumatic lifting bags. In an...buckling was investigated assuming the cylinder is simulated to be cantilevered on one side and free on the other, and that the full weight is acting in...be as lightweight and compact as possible. One idea for the implementation of these designs is to include them with any large military vehicle; this

  2. Alternative Hydrocarbon Propulsion for Nano / Micro Launch Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical innovation proposed here is the application of an alternative hydrocarbon fuel – densified propylene, in combination with liquid oxygen (LOX) – that...

  3. The performances of the LPG-fueled vehicle

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Todays, LPG-fueled vehicles are simply equipped with transformed classical petrol engines. The LPG consumption is greater but the emission of pollutants is greatly reduced (from 40 to 98% for the CO and from 30 to 80% for the HC and NOx, depending on the temperature of use). This short paper summarizes the environmental advantages of the LPG-fueled vehicles and the forthcoming technological evolutions expected in Europe, Japan and the USA. (J.S.)

  4. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Science.gov (United States)

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Beginning on June 1...

  5. Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis

    OpenAIRE

    Ziegler, Andreas

    2010-01-01

    This paper empirically examines the determinants of the demand for alternative energy sources and propulsion technologies in vehicles. The data stem from a stated preference discrete choice experiment with 598 potential car buyers. In order to simulate a realistic automobile purchase situation, seven alternatives were incorporated in each of the six choice sets, i.e. hybrid, gas, biofuel, hydrogen, and electric as well as the common fuels gasoline and diesel. The vehicle types were additional...

  6. On-board hydrogen generation for PEM fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vanderborgh, N. E.; Tafoya, J.; Inbody, M. [Los Alamos National Laboratory, Fuel Cell Engineering, Los Alamos, NM (United States)

    1999-10-01

    Hydrogen powered fuel cell vehicles are considered by many as the transportation technology for the 21. century, primarily because of hydrogen`s high efficiency and zero, or near-zero emission of pollutants to the atmosphere. First generation hydrogen technology demonstrated the feasibility of using compressed hydrogen as automotive fuel, but these vehicles can also be operated with fuel utilized for on-board hydrogen generation. Available evidence suggest that perfecting this new technology would result in simplified refueling and extended vehicle range. This paper reviews the present state of the technology of generating hydrogen on-board, and concludes that at present, there is no clear `winner` between vehicles using stored hydrogen as fuel or vehicles which incorporate on-board hydrogen generation from stored fuel. Both approaches have specific merit, and both may be broadly employed. Indeed, valid economic arguments can be made that centralized hydrogen generation could be more attractive than on-board generation, however, in the view of this author, these arguments are not convincing. His view of the various suggestions about potential fuel sources for transportation in the 21. century (petroleum, liquid natural gas) is that each of these fuels involve having to deal with carbon, which means that new pathways must be invented for managing carbon dioxide. The challenge then is to develop technologies which will result in methane energy production without concurrent carbon dioxide emissions. 13 refs., 2 figs.

  7. Optimization of a fuel cell powertrain for a sport utility vehicle. Paper no. IGEC-1-087

    International Nuclear Information System (INIS)

    Stevens, M.B.; Mendes, C.; Mali, T.J.; Fowler, M.W.; Fraser, R.A.

    2005-01-01

    A central composite design was utilized to study the effects of fuel cell powertrain sizing and efficiencies on vehicle performance based on a Chevrolet Equinox platform. Simulations were performed using the Powertrain System Analysis Toolkit (PSAT), a vehicle simulator that constructs and executes various Simulink vehicle models. Once parametric equations relating performance metrics and subcomponent sizing and efficiency were fit, optimal design points were obtained using non-linear optimization. Optimized architectures were used to compare fuel cell powertrains incorporating ultracapacitors, nickel-metal hydride battery packs, and lithium-ion battery packs. The performance metrics also provided a basis for comparison with conventional, battery, and hybrid configurations. The fuel cell configurations exhibited similar or improved acceleration performance, with approximately double the mileage of the stock vehicle. The range of the fuel cell Equinox was reduced from the stock vehicle to approximately 300 miles. The battery vehicles showed the highest efficiencies and mileages, but exhibited an unacceptable range of approximately 100 miles. The hybrid configuration showed notable improvements over the stock vehicle, but still lacked the degree of benefits provided by the fuel cell (FCVs) and battery electric vehicles (BEVs). Also, the acceleration time for the hybrid vehicle was sluggish, likely due to the increase weight of the configuration. The work described in this study was performed by members of the University Of Waterloo Alternate Fuels Team (UWAFT) as part of the Challenge X Vehicle Competition. (author)

  8. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2014-12-01

    Full Text Available Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV. In total, 19 macro level sustainability indicators are quantified for a scenario in which electric vehicles are charged through the existing U.S. power grid with no additional infrastructure, and an extreme scenario in which electric vehicles are fully charged with solar charging stations. The analysis covers all life cycle phases from the material extraction, processing, manufacturing, and operation phases to the end-of-life phases of vehicles and batteries. Results of this analysis revealed that the manufacturing phase is the most influential phase in terms of socio-economic impacts compared to other life cycle phases, whereas operation phase is the most dominant phase in the terms of environmental impacts and some of the socio-economic impacts such as human health and economic cost of emissions. Electric vehicles have less air pollution cost and human health impacts compared to conventional gasoline vehicles. The economic cost of emissions and human health impact reduction potential can be up to 45% and 35%, respectively, if electric vehicles are charged through solar charging stations. Electric vehicles have potential to generate income for low and medium skilled workers in the U.S. In addition to quantified sustainability indicators, some sustainability metrics were developed to compare relative sustainability performance alternative passenger vehicles. BEV has the lowest greenhouse gas emissions and ecological land footprint per $ of its contribution to the U.S. GDP, and has the lowest ecological footprint per unit of its energy consumption. The

  9. Strategic alliances for the development of fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maruo, Kanehira [Goeteborg Univ. (Sweden). Section of Science and Technology Studies

    1998-12-01

    The aim of this paper is to explore and describe the current stage of fuel cell vehicle development in the world. One can write three possible future scenarios - an optimistic, a realistic, and a pessimistic scenario: - The optimistic scenario -- The Daimler/Ballard/Ford alliance continues to develop fuel cell stacks and fuel cell vehicle systems as eagerly as they have been doing in recent years. Daimler(/Chrysler)-Benz continues to present its Necar 4, Necar 5, and so on, as planned, and thus keeps Toyota and Honda under severe pressure. Toyota`s and Honda`s real motivation seems to be not to allow Daimler-Benz to be the first to market. Their investment in fuel cell technology will be very large. At the same time, governments and other stake-holders will quickly and in a timely fashion build up infrastructures. We will then see many fuel cell vehicles by 2004. A paradigm shift in automotive technology will have taken place. - The realistic scenario -- Fuel cell vehicles will reach the same level of development by 2004/2005 as pure electric vehicles were at in 1997/1998. This means that fuel cell vehicles will be produced at the rate of several hundred vehicles per year per manufacturer and cost about $40,000 or more, which is still considerably more expensive than ordinary gasoline cars. These fuel cell vehicles will have a performance similar to today`s advanced electric vehicles, e.g., Toyota`s RAV4/EV and Honda`s EV Plus. To go further from this stage to the mass-production stage strong government incentives will be needed. - The pessimistic scenario -- It turns out that fuel cells are not as pure or efficient as in theory and in laboratory experiments. Prices of gasoline and diesel gas continue to be very low. The Californian 10% ZEV Requirement that has been meant to be valid at least ten years from 2003 through 2012 will be suspended or greatly modified. Daimler-Benz, Toyota, and Honda slow down their fuel cell vehicle development activities. No one is

  10. Development of a methanol reformer for fuel cell vehicles

    OpenAIRE

    Lindström, Bård

    2003-01-01

    Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. T...

  11. Alternative Liquid Fuels Simulation Model (AltSim).

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    CBTL options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. Alt

  12. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  13. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    MaClean, H.L.; Lave, L.B.

    2000-01-01

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  14. Hydrogen plant module (HPM) and vehicle fueled by same.

    Science.gov (United States)

    2011-09-29

    The goal / objective of the project was to design and fabricate hydrogen plant module (HPM) that is capable of producing : hydrogen fuel onboard a vehicle and that obviates one or more of the present issues related to compressed hydrogen fuel : stora...

  15. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Science.gov (United States)

    2010-05-11

    ... Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra-Low Sulfur... refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at...

  16. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  17. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  18. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  19. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... are motor vehicle diesel fuel credits generated? (a) Generation of credits from June 1, 2006 through...

  20. Alternative Fuels for Washington's School Buses: A Report to the Washington State Legislature.

    Science.gov (United States)

    Lyons, John Kim; McCoy, Gilbert A.

    This document presents findings of a study that evaluated the use of both propane and compressed natural gas as alternative fuels for Washington State school buses. It discusses air quality improvement actions by state- and federal-level regulators and summarizes vehicle design, development, and commercialization activities by all major engine,…

  1. Standardization of Alternative Fuels. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-15

    March 2003 the Executive Committee of the International Energy Agency's Implementing Agreement on Advanced Motor fuels (IEA/AMF) decided to continue annex XXVII 'Standardization of alternative fuels' with a second phase. The purpose of the second phase was to go further in the contacts with the International Organization for Standardization (ISO) as well as the European Committee for Standardization (CEN) and their technical committees, to better understand their needs and to investigate how IEA/AMF could contribute to their work. It was also scheduled to put forward proposals on how IEA/AMF could cooperate with CEN and ISO and their technical committees (TC: s), primarily ISO/TC 28 'Petroleum Products and Lubricants' and CEN/TC 19 'Petroleum Products, Lubricants and Related Products'. The main part of the work in IEA/AMF annex XXVII phase two has focused on personal contacts within CEN/TC 19 and ISO/TC 28, but also on data and information collection from websites and written information. Together with the analysis of this information, the internal organization of a cooperation between IEA/AMF and ISO/TC 28 and of a cooperation between IEA/AMF and CEN/TC 19 have also been discussed and analysed.

  2. Alternative institutional vehicles for geothermal district heating

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

    1980-06-01

    The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

  3. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  4. Possibilities of Using Hydrogen as Motor Vehicle Fuel

    Directory of Open Access Journals (Sweden)

    Zdravko Bukljaš

    2005-03-01

    Full Text Available Hydrogen is the fuel of the future, since it is the element ofwater (H20 whichsun·ounds us and the resources of which areunlimited. First water is divided into hydrogen and oxygen. Thepaper presents the laboratory and industrial methods of obtain·ing hydrogen, types of fuel cells for various purposes, hydrogen-propelled motor vehicles, as well as advantages and drawbacksof hydrogen used as fuel under the conditions that haveto be met in order to use it as propulsion energy for motor vehicles.

  5. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.

  6. Realistic costs of wind-hydrogen vehicle fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Linnemann, J.; Steinberger-Wilckens, R. [PLANET - Planungsgruppe Energie und Technik GbR, P.O. Box 4003, D-26030 Oldenburg (Germany)

    2007-07-15

    Electricity grids with a high penetration of fluctuating energy production from wind and solar energy sources bear a risk of electricity over-production. A surplus of renewable energy can arise at times of high production when the energy volume cannot be absorbed by the electricity grid. Furthermore, the control of the stochastic power fluctuations has to be addressed since these will result in changes to grid stability. Producing hydrogen from excess electricity is one approach to solve these problems. This hydrogen can either be sold outside the electricity market, for instance as vehicle fuel, or re-converted into electricity, for instance as a means of controlling wind power output. This paper describes two different wind-hydrogen systems and analyses the ensuing costs of hydrogen per unit of energy service (i.e. kWh and Nm{sup 3}). If hydrogen is to represent a practical fuel alternative, it has to compete with conventional energy carriers. If this is not possible on strictly (micro-) economic terms, at least a macro-economic calculation, in this case including all external costs of energy services, needs to show competitiveness. (author)

  7. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    Science.gov (United States)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  8. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development

    International Nuclear Information System (INIS)

    Paladini, Vanessa; Donateo, Teresa; De Risi, Arturo; Laforgia, Domenico

    2007-01-01

    In the last decades, due to emissions reduction policies, research focused on alternative powertrains among which hybrid electric vehicles (HEVs) powered by fuel cells are becoming an attractive solution. One of the main issues of these vehicles is the energy management in order to improve the overall fuel economy. The present investigation aims at identifying the best hybrid vehicle configuration and control strategy to reduce fuel consumption. The study focuses on a car powered by a fuel cell and equipped with two secondary energy storage devices: batteries and super-capacitors. To model the powertrain behavior an on purpose simulation program called ECoS has been developed in Matlab/Simulink environment. The fuel cell model is based on the Amphlett theory. The battery and the super-capacitor models account for charge/discharge efficiency. The analyzed powertrain is also equipped with an energy regeneration system to recover braking energy. The numerical optimization of vehicle configuration and control strategy of the hybrid electric vehicle has been carried out with a multi objective genetic algorithm. The goal of the optimization is the reduction of hydrogen consumption while sustaining the battery state of charge. By applying the algorithm to different driving cycles, several optimized configurations have been identified and discussed

  9. Quantifying the Impact of Vehicle and Motor Fuel Provisions from the Energy Policy Act on the Sustainability and Resilience of U.S. Cities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Darlene; Sears, Ted

    2017-02-01

    The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum use in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.

  10. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  11. Heuristics for Routing Heterogeneous Unmanned Vehicles with Fuel Constraints

    Directory of Open Access Journals (Sweden)

    David Levy

    2014-01-01

    Full Text Available This paper addresses a multiple depot, multiple unmanned vehicle routing problem with fuel constraints. The objective of the problem is to find a tour for each vehicle such that all the specified targets are visited at least once by some vehicle, the tours satisfy the fuel constraints, and the total travel cost of the vehicles is a minimum. We consider a scenario where the vehicles are allowed to refuel by visiting any of the depots or fuel stations. This is a difficult optimization problem that involves partitioning the targets among the vehicles and finding a feasible tour for each vehicle. The focus of this paper is on developing fast variable neighborhood descent (VND and variable neighborhood search (VNS heuristics for finding good feasible solutions for large instances of the vehicle routing problem. Simulation results are presented to corroborate the performance of the proposed heuristics on a set of 23 large instances obtained from a standard library. These results show that the proposed VND heuristic, on an average, performed better than the proposed VNS heuristic for the tested instances.

  12. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    Directory of Open Access Journals (Sweden)

    Zihan Kan

    2018-03-01

    Full Text Available The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA and stationary activities (SA. First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS. Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

  13. The use of thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1982-04-01

    The use of thorium as an alternative or supplementary nuclear fuel is examined and compared with uranium. A description of various reactor types and their suitability to thorium fuel, and a description of various aspects of the fuel cycle from mining to waste disposal, are included. Comments are made on the safety and economics of each aspect of the fuel cycle and the extension of the lifetime of nuclear fuel

  14. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Science.gov (United States)

    2010-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  15. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock

    2015-01-01

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control

  16. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    International Nuclear Information System (INIS)

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs

  17. Examining fuel economy and carbon standards for light vehicles

    International Nuclear Information System (INIS)

    Plotkin, Steven E.

    2009-01-01

    This paper examines fuel economy and carbon standards for light vehicles (passenger cars and light trucks), discussing the rationale for standards, appropriate degrees of stringency and timing, regulatory structure, and ways to deal with 'real world' fuel economy issues that may not be dealt with by the standards. There is no optimum method of establishing the stringency of a standard, but policymakers can be informed by analyses of technology cost-effectiveness from the viewpoint of different actors (e.g., society, vehicle purchasers) and of 'top runners'-vehicles in the current fleet, or projections of future leading vehicles, that can serve as models for average vehicles some years later. The focus of the paper is on the US light vehicle fleet, with some discussion of applications to the European Union. A 'leading edge' midsize car for the 2020 timeframe is identified, and various types of attribute-based standards are discussed. For the US, a 12-15 year target for new vehicle fleet improvement of 30-50% seems a reasonable starting point for negotiations. For 2030 or so, doubling current fuel economy is possible. In both cases, adjustments must be made in response to changing economic circumstances and government and societal priorities.

  18. Automobile fuel economy standards : Impacts, efficiency, and alternatives

    NARCIS (Netherlands)

    Anderson, Soren T.; Parry, Ian W H; Sallee, James M.; Fischer, Carolyn

    This article discusses automobile fuel economy standards in the United States and other countries. We first describe how these programs affect the automobile market, including impacts on fuel consumption and other dimensions of the vehicle fleet. We then review two different methodologies for

  19. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  20. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating...

  1. 40 CFR 88.308-94 - Programmatic requirements for clean-fuel fleet vehicles.

    Science.gov (United States)

    2010-07-01

    ...-fuel fleet vehicles. 88.308-94 Section 88.308-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.308-94 Programmatic requirements for clean-fuel fleet vehicles. (a) Multi-State nonattainment areas. The states...

  2. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel Fleet Vehicle Credit...) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.304-94 Clean-fuel Fleet... enable covered fleet owners/operators to meet the fleet vehicle purchase requirements of the CAA both by...

  3. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations. Motor...

  4. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Park, Su Han; Lee, Chang Sik

    2014-01-01

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NO x , HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NO x emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NO x emission, engine after-treatment devices, such as lean NO x traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NO x emission are also required

  5. On direct hydrogen fuel cell vehicles modelling and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Kristina

    2005-03-01

    In this thesis, direct hydrogen Proton Exchange Membrane (PEM) fuel cell systems in vehicles are investigated through modelling, field tests and public acceptance surveys. A computer model of a 50 kW PEM fuel cell system was developed. The fuel cell system efficiency is approximately 50% between 10 and 45% of the rated power. The fuel cell auxiliary system, e.g. compressor and pumps, was shown to clearly affect the overall fuel cell system electrical efficiency. Two hydrogen on-board storage options, compressed and cryogenic hydrogen, were modelled for the above-mentioned system. Results show that the release of compressed gaseous hydrogen needs approximately 1 kW of heat, which can be managed internally with heat from the fuel cell stack. In the case of cryogenic hydrogen, the estimated heat demand of 13 kW requires an extra heat source. A phase change based (PCM) thermal management solution to keep a 50 kW PEM fuel cell stack warm during dormancy in a cold climate (-20 deg C) was investigated through simulation and experiments. It was shown that a combination of PCM (salt hydrate or paraffin wax) and vacuum insulation materials was able to keep a fuel cell stack from freezing for about three days. This is a simple and potentially inexpensive solution, although development on issues such as weight, volume and encapsulation materials is needed. Two different vehicle platforms, fuel cell vehicles and fuel cell hybrid vehicles, were used to study the fuel consumption and the air, water and heat management of the fuel cell system under varying operating conditions, e.g. duty cycles and ambient conditions. For a compact vehicle, with a 50 kW fuel cell system, the fuel consumption was significantly reduced, {approx}50 %, compared to a gasoline-fuelled vehicle of similar size. A bus with 200 kW fuel cell system was studied and compared to a diesel bus of comparable size. The fuel consumption of the fuel cell bus displayed a reduction of 33-37 %. The performance of a fuel

  6. Hybrid energy sources for electric and fuel cell vehicle propulsion

    OpenAIRE

    Schofield, N; Yap, H T; Bingham, Chris

    2005-01-01

    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimi...

  7. Modelling of spray evaporation and penetration for alternative fuels

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressu...

  8. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  9. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  10. Navigation API Route Fuel Saving Opportunity Assessment on Large-Scale Real-World Travel Data for Conventional Vehicles and Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-06

    The green routing strategy instructing a vehicle to select a fuel-efficient route benefits the current transportation system with fuel-saving opportunities. This paper introduces a navigation API route fuel-saving evaluation framework for estimating fuel advantages of alternative API routes based on large-scale, real-world travel data for conventional vehicles (CVs) and hybrid electric vehicles (HEVs). The navigation APIs, such Google Directions API, integrate traffic conditions and provide feasible alternative routes for origin-destination pairs. This paper develops two link-based fuel-consumption models stratified by link-level speed, road grade, and functional class (local/non-local), one for CVs and the other for HEVs. The link-based fuel-consumption models are built by assigning travel from a large number of GPS driving traces to the links in TomTom MultiNet as the underlying road network layer and road grade data from a U.S. Geological Survey elevation data set. Fuel consumption on a link is calculated by the proposed fuel consumption model. This paper envisions two kinds of applications: 1) identifying alternate routes that save fuel, and 2) quantifying the potential fuel savings for large amounts of travel. An experiment based on a large-scale California Household Travel Survey GPS trajectory data set is conducted. The fuel consumption and savings of CVs and HEVs are investigated. At the same time, the trade-off between fuel saving and time saving for choosing different routes is also examined for both powertrains.

  11. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Science.gov (United States)

    2010-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? (a) A motor...-operational between January 1, 1999, and January 1, 2000, may apply for motor vehicle diesel fuel small...

  12. Use of alternative fuels in the Polish cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Mokrzycki, Eugeniusz; Uliasz-Bochenczyk, Alicja [Polish Academy of Sciences, Mineral and Energy Economy Research Inst., Krakow (Poland); Sarna, Mieczyslaw [Lafarge Cement Polska S.A., Malogoszcz (Poland)

    2003-02-01

    Alternative fuels are made up of mixtures of different wastes, such as industrial, municipal and hazardous wastes. These fuels need to have an appropriate chemical energy content which depends on the type of components and their organic content. An industry that is particularly well suited to the employment of alternative fuels is the cement industry. There are a number of factors that promote the use of alternative fuels in cement kilns. Of these factors, the most notable are: the high temperatures developed, the appropriate kiln length, the long period of time the fuel stays inside the kiln and the alkaline environment inside the kiln. There are a number of countries that use their own alternative fuels in cement plants. These fuels have different trade names and they differ in the amounts and the quality of the selected municipal and industrial waste fractions used. The fuels used should fall within the extreme values of parameters such as: minimum heating value, maximum humidity content, and maximum content of heavy and toxic metals. Cement plants in Poland also use alternative fuels. Within the Lafarge Group, the cement plants owned by Lafarge Poland Ltd. have initiated activities directed at promoting the wider use of alternative fuels. There are a number of wastes that can be incinerated as fuel in cement plants. Some that can be mentioned are: selected combustible fractions of municipal wastes, liquid crude-oil derived wastes, car tyres, waste products derived from paint and varnish production, expired medicines from the pharmaceutical industry and others. The experience gained by the cement plants of Lafarge Cement Poland Ltd confirms that such activities are economically and ecologically beneficial. The incineration of alternative fuels in cement plants is a safe method for the utilisation of waste that is ecologically friendly and profitable for the industrial plants and society alike. (Author)

  13. Heel and toe driving on fuel cell vehicle

    Science.gov (United States)

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  14. Fully Fueled TACOM Vehicle Storage Test Program.

    Science.gov (United States)

    1981-12-01

    AFLRL with a water bottom were tested as control samples. This fuel sample had been previously innoculated with a culture of Cladosporium resinae and was...turbid, light pink color * Containing active growth of Cladosporium resinae ** Sample was shaken and allowed to stand for 24 hours prior to obtaining

  15. Treatment alternatives for non-fuel-bearing hardware

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Clark, L.L.; Oma, K.H.

    1987-01-01

    This evaluation compared four alternatives for the treatment or processing of non-fuel bearing hardware (NFBH) to reduce its volume and prepare it for disposal. These treatment alternatives are: shredding; shredding and low pressure compaction; shredding and supercompaction; and melting. These alternatives are compared on the basis of system costs, waste form characteristics, and process considerations. The study recommends that melting and supercompaction alternatives be further considered and that additional testing be conducted for these two alternatives.

  16. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... fuel economy calculations. This section applies to data used for fuel economy labeling under Subpart D...

  17. Sulfur Release during Alternative fuels Combustion in Cement Rotary Kilns

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar

    Cement production is an energy-intensive process, whic h has traditionally been dependent on fossil fuels. However, the usage of selected waste, biomass, and by-products with recoverable calorific value, defined as alternative fuels, is increasing and their combustion is mo re challenging compared...... to fossil fuels, due to the lack of experience in handling the different and va rying combustion characteristics caused by different chemical and physical properties, e.g. higher moisture content and larger particle sizes. When full combustion of alternative fuels in the calcin er and/or main burner...... is not achieved, partially or unburned solid fuels may drop into the material bed in dire ct contact with the bed material of the rotary kiln. The combustion of alternative fuels in direct contact w ith the bed material of the rotary kiln causes local reducing conditions and may alter the input and the behavior...

  18. The valuation of air emission externalities of vehicles: a comparison between fossil fuels and ethanol in Brazil

    International Nuclear Information System (INIS)

    Fernandes, E.S.L.; Zylbersztain, D.

    1997-01-01

    The National Alcohol Program, Proalcool has had an important strategic role as an alternative fuel. Nevertheless, Proalcool has faced economic difficulties that endanger the Program's future. From the environmental point of view, the introduction of hydrated ethanol as an automobile fuel was beneficial because initially it reduced vehicle emissions. The lack of investment in technology for a neat-alcohol vehicle has delayed further development of an alcohol engine relative to the gasoline engine, which is reflected in current exhaust gas emissions. This paper discusses the evolution of ethanol vehicle emissions and the monetary effect of these emissions in the urban area of Sao Paulo, Brazil. (author)

  19. An evaluation of the alternative transport fuel policies for Turkey

    International Nuclear Information System (INIS)

    Arslan, Ridvan; Ulusoy, Yahya; Tekin, Yuecel; Suermen, Ali

    2010-01-01

    The search for alternative fuels and new fuel resources is a top priority for Turkey, as is the case in the majority of countries throughout the world. The fuel policies pursued by governmental or civil authorities are of key importance in the success of alternative fuel use, especially for widespread and efficient use. Following the 1973 petroleum crisis, many users in Turkey, especially in transportation sector, searched for alternative fuels and forms of transportation. Gasoline engines were replaced with diesel engines between the mid-1970s and mid-1980s. In addition, natural gas was introduced to the Turkish market for heating in the early 1990s. Liquid petroleum gas was put into use in the mid-1990s, and bio-diesel was introduced into the market for transportation in 2003. However, after long periods of indifference governmental action, guidance and fuel policies were so weak that they did not make sense. Entrepreneurs and users experienced great economical losses and lost confidence in future attempts to search for other possible alternatives. In the present study, we will look at the history of alternative fuel use in the recent past and investigate the alternative engine fuel potential of Turkey, as well as introduce possible future policies based on experience.

  20. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    Science.gov (United States)

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. Published by Elsevier Ltd.

  1. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...... and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...

  2. The environment and the use of alternative fuels

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-05-01

    The contribution of the Netherlands Energy Research Foundation (ECN) to the ANWB symposium on alternative fuels and techniques concerns the necessity to use alternatives to reduce CO 2 emissions, the importance of system integration, and a discussion of the strong and weak points with regard to the introduction of the fuel alternatives in the Netherlands. First attention is paid to the greenhouse effect (CO 2 emissions) of the use of fuels. Options to reduce CO 2 emission from automobiles are mentioned. Than several alternative fuels and accompanying techniques, and their impact on the CO 2 emission, are discussed: diesel, liquid petroleum gas (LPG), compressed natural gas (CNG), methanol, ethanol, rapeseed, electricity, and hydrogen. The possibilities to reduce CO 2 emission in the Netherlands can be calculated by means of the Energy and Materials Scenarios (EMS). For several aspects assessments are given for the above-mentioned alternatives: availability of technology, ease of fuel storage, risk of use, impact on the city climate, full fuel cycle CO 2 emission, costs, and reserves. These aspects can be considered as valid for most of the industrialized countries. For the Netherlands two other aspects have been assessed: the interest of the oil industry in the introduction of alternative fuels, the availability of the alternatives in the Netherlands. 5 figs., 6 tabs., 10 refs

  3. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Technology Demonstration of Qualified Vehicle Modifier (QVM) Compressed Natural Gas (CNG) and Gasoline Fueled Ford F-150 Series Bifuel Prep Vehicles at Ft. Hood, TX

    National Research Council Canada - National Science Library

    Alvarez, R

    2000-01-01

    ...) of 1988, the Clean Air Act (CAA) Amendments of 1990, and the Energy Policy Act of 1992. The objectives of the program were to demonstrate the acceptability of alternative-fueled- vehicles in a Department of Defense (DOD) U.S...

  5. Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems

    Science.gov (United States)

    Huo, Hong; Wu, Ye; Wang, Michael

    The potential impact on the environment of alternative vehicle/fuel systems needs to be evaluated, especially with respect to human health effects resulting from air pollution. We used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to examine the well-to-wheels (WTW) emissions of five criteria pollutants (VOCs, NO x, PM 10, PM 2.5, and CO) for nine vehicle/fuel systems: (1) conventional gasoline vehicles; (2) conventional diesel vehicles; (3) ethanol (E85) flexible-fuel vehicles (FFVs) fueled with corn-based ethanol; (4) E85 FFVs fueled with switchgrass-based ethanol; (5) gasoline hybrid vehicles (HEVs); (6) diesel HEVs; (7) electric vehicles (EVs) charged using the average U.S. generation mix; (8) EVs charged using the California generation mix; and (9) hydrogen fuel cell vehicles (FCVs). Pollutant emissions were separated into total and urban emissions to differentiate the locations of emissions, and emissions were presented by sources. The results show that WTW emissions of the vehicle/fuel systems differ significantly, in terms of not only the amounts but also with respect to locations and sources, both of which are important in evaluating alternative vehicle/fuel systems. E85 FFVs increase total emissions but reduce urban emissions by up to 30% because the majority of emissions are released from farming equipment, fertilizer manufacture, and ethanol plants, all of which are located in rural areas. HEVs reduce both total and urban emissions because of the improved fuel economy and lower emissions. While EVs significantly reduce total emissions of VOCs and CO by more than 90%, they increase total emissions of PM 10 and PM 2.5 by 35-325%. However, EVs can reduce urban PM emissions by more than 40%. FCVs reduce VOCs, CO, and NO x emissions, but they increase both total and urban PM emissions because of the high process emissions that occur during hydrogen production. This study emphasizes the importance of specifying a

  6. The KFB Program on Biobased Fuels for Vehicles

    International Nuclear Information System (INIS)

    1996-12-01

    KFB supports research and demonstration projects for bio-based transport fuels, alcohols and biogas. The program started in 1991 and will continue through 1997. The program focuses on heavy vehicles, e.g. buses for public transportation. Projects and intermediate results are described in the brochure. Information is also available at the KFB homepage. //www.kfb.se

  7. Toxicological and performance aspects of oxygenated motor vehicle fuels

    National Research Council Canada - National Science Library

    National Research Council Staff

    1996-01-01

    ... COMMITTEE ON TOXICOLOGICAL PERFORMANCE ASPECTS OXYGENATED MOTOR VEHICLE FUELS ENVIRONMENTAL STUDIES TOXICOLOGY COMMISSION LIFE SCIENCES NATIONAL RESEARCH COUNCIL AND OF BOARD ON AND ON NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the t...

  8. Toxicological and performance aspects of oxygenated motor vehicle fuels

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Life Sciences; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... COMMITTEE ON TOXICOLOGICAL PERFORMANCE ASPECTS OXYGENATED MOTOR VEHICLE FUELS ENVIRONMENTAL STUDIES TOXICOLOGY COMMISSION LIFE SCIENCES NATIONAL RESEARCH COUNCIL AND OF BOARD ON AND ON NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the t...

  9. Benefits of recent improvements in vehicle fuel economy.

    Science.gov (United States)

    2014-10-01

    For the past several years, we have calculated (on a monthly basis) the average, sales-weighted fuel economy of all light-duty vehicles (cars, pickup trucks, vans, and SUVs) sold in : the U.S. The results indicate that, from October 2007 to September...

  10. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  11. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  12. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  13. LNG as vehicle fuel and the problem of supply: The Italian case study

    International Nuclear Information System (INIS)

    Arteconi, A.; Polonara, F.

    2013-01-01

    The transport sector represents a major item on the global balance of greenhouse gas (GHG) emissions. Natural gas is considered the alternative fuel that, in the short-medium term, can best substitute conventional fuels in order to reduce their environmental impact, because it is readily available at a competitive price, using technologies already in widespread use. It can be used as compressed gas (CNG) or in the liquid phase (LNG), being the former more suitable for light vehicles, while the latter for heavy duty vehicles. The purpose of this paper is to outline the potential of LNG as vehicle fuel, showing positive and negative aspects related to its introduction and comparing the different supply options with reference to the Italian scenario, paying particular attention to the possibility of on site liquefaction. The analysis has highlighted that purchasing LNG at the regasification terminal is convenient up to a terminal distance of 2000 km from the refuelling station. The liquefaction on site, instead, asks for liquefaction efficiency higher than 70% and low natural gas price and, as liquefaction technology, the let-down plants at the pressure reduction points along the pipeline are the best option to compete with direct supply at the terminal. -- Highlights: •LNG potential as vehicles fuel is analysed. •A SWOT analysis for LNG introduction in the Italian market is presented. •An economic comparison of different supply options is performed. •Possible micro-scale liquefaction technologies are evaluated

  14. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content standard...

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Ontario Select Committee on Alternative Fuel Sources : Final Report

    International Nuclear Information System (INIS)

    Galt, D.

    2002-06-01

    On June 28, 2001, the Ontario Legislative Assembly appointed the Select Committee an Alternative Fuel Sources, comprised of representatives of all parties, with a broad mandate to investigate, report and offer recommendations with regard to the various options to support the development and application of environmentally sustainable alternatives to the fossil fuel sources already existing. The members of the Committee elected to conduct extensive public hearings, conduct site visits, attend relevant conferences, do some background research to examine a vast number of alternative fuel and energy sources that could be of relevance to the province of Ontario. A discussion paper (interim report) was issued by the Committee in November 2001, and the present document represents the final report, containing 141 recommendations touching 20 topics. The information contained in the report is expected to assist in the development and outline of policy and programs designed to specifically support alternative fuels and energy sources and applicable technologies. Policy issues were discussed in Part A of the report, along with the appropriate recommendations. The recommendations on specific alternative fuels and energy sources were included in Part B of the report. It is believed that the dependence of Ontario on traditional petroleum-based fuels and energy sources can be reduced through aggressive action on alternative fuels and energy. The benefits of such action would be felt in the area of air quality, with social, and economic benefits as well. 3 tabs

  17. The Science of Emissions from Alternative Fuels

    Science.gov (United States)

    2017-03-01

    conditions, was varied between 3 – 5 ms by changing the fuel and air flow rates. Combustion products exhaust through a ceramic stack located on top of...premixed, phi=6 and phi=2. The fuel flow rate was varied to keep a constant carbon flow for all flames. The nitrogen flow to the vaporizer was 0.2... flow of natural gas is decreased gradually and that of liquid fuel is increased. The natural gas is finally cut off completely to achieve a stable flame

  18. Health effects attributable to coal and nuclear fuel cycle alternatives

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1977-09-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation in approximately the 1975-1985 period. It was concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel cycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public

  19. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  20. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  1. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  2. Cost-benefit analysis of alternative fuels and motive designs.

    Science.gov (United States)

    2013-04-01

    This project was funded by the Federal Railroad Administration to better understand the potential cost and benefits of using alternative fuels for U.S. freight and passenger locomotive operations. The framework for a decision model was developed by T...

  3. Alternative fuels from waste cellulosic substrates and poly furfuryl alcohol

    CSIR Research Space (South Africa)

    Kumar, R

    2012-03-01

    Full Text Available This paper provides methods for manufacturing alternative fuels from waste cellulosic substrates reinforced by poly furfuryl alcohol (PFA). PFA, as a matrix, is obtained from the condensation polymerization of furfuryl alcohol – a waste of sugarcane...

  4. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  5. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  6. Abundant thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Baker Schaffer, Marvin

    2013-01-01

    It has long been known that thorium-232 is a fertile radioactive material that can produce energy in nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO-fueled systems. Among contentious commercial nuclear power issues are the questions of what to do with long-lived radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal-fired plant or a current-generation uranium-fueled nuclear reactor. Importantly, thorium reactors produce substantially less long-lived radioactive waste than uranium reactors. Thorium-fueled reactors with molten salt configurations and very high temperature thorium-based TRISO-fueled reactors are both recommended for priority Generation IV funding in the 2030 time frame. - Highlights: • Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. • Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. • Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. • Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation

  7. Non-Gasoline Alternative Fueling Stations

    Data.gov (United States)

    Department of Homeland Security — Through a nationwide network of local coalitions, Clean Citiesprovides project assistance to help stakeholders in the public and private sectors deploy alternative...

  8. Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs, identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.

  9. Alternative and sustainable fuelling options for 2-wheeled vehicles

    International Nuclear Information System (INIS)

    Burke, P.; Al-Abdeli, Y.M.; Karri, V.

    2006-01-01

    This paper provided details of an experiment in which a small, single cylinder, 4-stroke motorcycle was converted to use hydrogen as its fuel. Emissions from the motorcycle's exhaust system were then compared with emissions from both gasoline and hydrogen engines. The thermal efficiencies and performance of the vehicles were also compared and evaluated. Design modifications included the use of port-mounted gaseous fuel injectors and a manifold assembled above the intake valves. The ignition system for the engine was based on a module that used a single pulse generator mounted at one end of the crankshaft to measure engine speed. A dedicated engine management system (EMS) was used to control the fuel injectors and the ignition timing. Thermal efficiencies were derived by dividing the ratio between power output from the engine and the power output associated with the mass flow rate of fuel consumed. Maximum exhaust emission quantities were compared at 2 different speeds. Results of the study showed that the hydrogen engine had a 30 to 50 per cent reduction in power compared to the gasoline engine. The thermal efficiency of the gasoline engine was between 50 to 65 per cent higher than the hydrogen engine at 30 km per hour. However, the hydrogen engine produced no traceable amounts of carbon monoxide (CO). It was concluded that further testing is needed to examine the mixture stoichiometry and the effects of additional engine tuning on the hydrogen engine. 13 refs., 2 tabs., 10 figs

  10. Estimates of Canadian fuel fabrication costs for alternative fuel cycles and systems

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-04-01

    Unit fuel fabrication costs are estimated for alternate fuel cycles and systems that may be of interest in Ontario Hydro's strategy analyses. A method is proposed for deriving the unit fuel fabrication price to be paid by a Canadian utility as a function of time (i.e. the price that reflects the changing demand/supply situation in the particular scenario considered). (auth)

  11. Alternative bio-based fuels for aviation: the clean airports program

    International Nuclear Information System (INIS)

    Shauck, M.E.; Zanin, M.G.

    1997-01-01

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, has been designated as the national coordinator of the Clean Airports Program. The U.S. Dept. of Energy (US DOE) conferred this designation in March 1996. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. The two major fuels used in aviation are the current piston engine aviation gasoline and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation gasoline (100LL), currently used in the general aviation piston engine fleet, contributes 100% of the emissions containing lead in the U.S. today. Turbine engine fuel (jet fuel) produces two major environmental impacts: a local one, in the vicinity of the airports, and a global impact on climate change. The Clean Airports Program was established to achieve and maintain clean air at and in the vicinity of airports, through the use of alternative fuel-powered air and ground transportation vehicles. (author)

  12. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  13. The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Componenet Analysis and Cluster Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2012-01-01

    Hydrogen energy which has been recognized as an alternative instead of fossil fuel has been developed rapidly in fuel cell vehicles. Different hydrogen energy systems have different performances on environmental, economic, and energy aspects. A methodology for the quantitative evaluation...... to verify the correctness and accuracy of the principal components (PCs) determined by PCA in this paper. A case including 11 different hydrogen energy systems for fuel cell vehicles has been studied in this paper, and the system using steam reforming of natural gas for hydrogen production, pipeline...... for transportation of hydrogen, hydrogen gas tank for the storage of hydrogen at refueling stations, and gaseous hydrogen as power energy for fuel cell vehicles has been recognized as the best scenario. Also, the clustering results calculated by CA are consistent with those determined by PCA, denoting...

  14. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  15. 75 FR 58077 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2010-09-23

    ... Changes? E. Relationship of This Proposal to Other Federal and State Programs F. History of Federal Fuel... including gasoline and diesel fueled vehicles and hybrid gasoline electric vehicles (HEVs). The co-proposed... rulemaking to make any such determination. F. History of Federal Fuel Economy Label Requirements The fuel...

  16. Alternative fuels for the French fast breeder reactors programme

    International Nuclear Information System (INIS)

    Bailly, H.; Bernard, H.; Mansard, B.

    1989-01-01

    French fast breeder reactors use mixed oxide as reference fuel. A great deal of experience has been gained in the behaviour and manufacture of oxide fuel, which has proved to be the most suitable fuel for future commercial breeder reactors. However, France is maintaining long-term alternative fuels programme, in order to be in a position to satisfy eventually new future reactor design and operational requirements. Initially, the CEA in France developed a carbide-based, sodium-bonded fuel designed for a high specific power. The new objective of the alternative fuels programme is to define a fuel which could replace the oxide without requiring any significant changes to the operating conditions, fuel cycle processes or facilities. The current program concentrates on a nitride-based, helium-bonded fuel, bearing in mind the carbide solution. The paper describes the main characteristics required, the manufacturing process as developed, the inspection methods, and the results obtained. Present indications are that the industrial manufacture of mixed nitride is feasible and that production costs for nitride and oxide fuels would be not significantly different. (author) 8 refs., 2 figs

  17. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  18. Comparison of spent fuel management fee collection alternatives

    International Nuclear Information System (INIS)

    White, M.K.; Engel, R.L.

    1979-01-01

    Five alternative methods for recovering the costs of spent fuel management were evaluated. These alternatives consist of collecting the fee for various components of spent fuel management cost (AFR basin storage, transportation from AFR basin to the repository, packaging, repository, R and D, and government overhead) at times ranging from generation of power to delivery of the spent fuel to the government. The five fee collection mechanisms were analyzed to determine how well they serve the interests of the public and the electricity ratepayer

  19. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  20. Using Checklists to Assess Your Transition to Alternative Fuels: A Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Santini, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, L. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The Checklist for Transition to New Alternative Fuel(s) was published in September 2011 by Chuck Risch and Dan Santini. Many improvements, described below, have been incorporated into this current document, Checklists for Assessing the Transitions to New Highway Fuels.2 Further, the original authors and Larry Johnson, co-author of the current report, identified a need for a succinct version of the full report and prepared a brochure based on it to aid busy decisionmakers: Check It Out: Using Checklists to Assess Your Transition to Alternative Fuels.2 These checklists are tools for those stakeholders charged with determining a feasible alternative fuel or fuels for highway transportation systems of the future. The original had four major players whose needs had to be satisfied for a successful transition. The term “activist,” intended to encompass environmental and other special interests, was included in the “customers” category. Activists are customers of the government in the sense that they organize citizens to exert political pressure to regulate the design of vehicles, fuel infrastructure, and roadway networks. Many who evaluate alternative fuels view activists, particularly environmental activists, as a separate category. Further, “activist” has become a pejorative term to many people. Therefore, we have used the word “advocate” or “activist/advocate” instead. Thus, in this update we recognize that environmental and other activists/advocates have been--and will continue to be--a powerful force promoting change in the nature of the fuels that are used in transportation.

  1. Vehicle Fuel-Efficiency Choices, Emission Externalities, and Urban Sprawl

    DEFF Research Database (Denmark)

    Kim, Jinwon

    by the city residents. We first establish the well-known result that congestion externality is the source of market failure associated with excessive urban sprawl. We then claim that vehicle emissions are an additional source of market failure, which also leads to excessive urban sprawl. The source......This paper shows that the city where both congestion externalities and externalities from greenhouse gas emissions are corrected by efficient policies is more compact than the laissez-faire equilibrium city. Motivated by recent empirical studies showing a positive relationship between population...... of excessive sprawl arising from emission externalities is the uses of larger and less-fuel efficient vehicles by suburban residents, which is different from that of congestion externalities. We also analyze the effect of the Corporate Average Fuel Efficiency (CAFE) regulation on the urban spatial structure....

  2. Evaluation of Cetane Improver Additive in Alternative Jet Fuel Blends

    Science.gov (United States)

    2016-07-01

    Tank Automotive Research, Development and Engineering Center Warren, Michigan 48397-5000 Evaluation of Cetane Improver Additive in Alternative Jet...Registration No. -Technical Report- U.S. Army Tank Automotive Research, Development, and Engineering Center Detroit Arsenal Warren, Michigan 48397...5000 Distribution Statement A: Approved for public release: distribution unlimited. Evaluation of Cetane Improver Additive in Alternative Jet Fuel

  3. The USAF and Alternative Jet Fuel: How to Fuel the Future of Airpower

    Science.gov (United States)

    2009-02-01

    four alternative biofuels being explored: biodiesel , biobutanol, ethanol, and algae-produced oils. 5 The prospects for all of these fuels will be...biofuels are the most common and include ethanol, biomass fuels and biodiesel . These fuels are developed from any crop with a high sugar or starch content...Fuel is measured for both gravimetric (mass or specific energy) and volumetric energy content, and it is desirable to have a low mass/volume compared

  4. Development of alternative fuel for pressurized water reactors

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferreira, R.A.N.; Ferraz, W.B.; Lameiras, F.S.; Santos, A.; Assis, G. de; Doerr, W.O.; Wehner, E.L.

    1984-01-01

    The utilization of alternative fuel cycles in Pressurized Water Reactors (PWR) such as Th/U and Th/Pu cycles can permit a better utilization of uranium reserves without the necessity of developing new power reactor concepts. The development of the technology of alternative fuels for PWR is one of the objectives of the 'Program on Thorium Utilization in Pressurized Water Reactors' carried out jointly by Empresas Nucleares Brasileiras S.A. (NUCLEBRAS), through its Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) and by German institutions, the Julich Nuclear Research Center (KFA), the Kraftwerk Union A.G. (KWU) and NUKEM GmbH. This paper summarizes the results so far obtained in the fuel technology. The development of a fabrication process for PWR fuel pellets from gel-microspheres is reported as well as the design, the specification, and the fabrication of prototype fuel rods for irradiation tests. (Author) [pt

  5. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  6. The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Component Analysis and Cluster Analysis

    OpenAIRE

    Ren, Jing-Zheng; Tan, Shi-yu; Dong, Li-chun

    2012-01-01

    Hydrogen energy which has been recognized as an alternative instead of fossil fuel has been developed rapidly in fuel cell vehicles. Different hydrogen energy systems have different performances on environmental, economic, and energy aspects. A methodology for the quantitative evaluation and analysis of the hydrogen systems is meaningful for decision makers to select the best scenario. principal component analysis (PCA) has been used to evaluate the integrated performance of different hydroge...

  7. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  8. Process alternatives for HTGR fuel reprocessing wastes: an engineering evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K. H.

    1977-05-01

    An evaluation has been made of numerous process alternatives for different types of radioactive wastes resulting from reprocessing of HTGR fuels. Discussion of pertinent waste characteristics is followed by a description and an assessment of selected process alternatives. The final phase of the discussion is concerned with identification of research and development needs for specific alternatives. High-level solid wastes from the head-end system, which are unique to HTGR fuel reprocessing, require major process development efforts. Most other types of wastes can reasonably be expected to make use of technologies being developed for LWR wastes, and will require minor to moderate modifications.

  9. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    Kaul, Sanjay; Edinger, Raphael

    2004-01-01

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  10. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  11. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  12. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    Science.gov (United States)

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  13. Fuels Selection Alternatives for Army Facilities

    Science.gov (United States)

    1986-12-01

    feeding and a less expensive boiler; however, both sulfur capture and carbon burnup may be less with this design than with an underfeed system...Ash-handling equipment costs were calculated by scaling according to ash mass flowrate. About nine employees were included in estimating direct... calculate the modified present-worth factors needed to rank fuel options. In developing an actual project, current policy must be determined, as explained

  14. Alternative Fuel Sources for Military Aviation

    Science.gov (United States)

    2009-04-01

    shown that using a different separation process, 100%, second-generation biofuel can reach a lower freezing temperature. Further research has also...Research & Technology Europe (BR&TE) and industry partners from around the world with a Proton Exchange Membrane (PEM) fuel cell/lithium battery hybrid...eliminate or reduce the risk to the environment. Biofuels On August 15, 2007, hnperium Renewable cut the ribbon on a biodiesel plant that will have the

  15. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    Science.gov (United States)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  16. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    Engine oil and filter change • Transmission fluid and filter change • Front and rear axle/differential fluid change • Air and fuel filter change...Prior to commencing with testing the following preparations were made to the vehicles. 1. All wheels were aligned. 2. The engine air filters and...fuel filters were replaced. 3. The engine , transmission, and transfer case fluids were changed. 4. A separate weigh tank was connected to each

  17. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    International Nuclear Information System (INIS)

    Reynolds, C; Kandlikar, M

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km

  18. Exploring Alternative Fuels in Middle Schools

    Science.gov (United States)

    Donley, John F.; Stewardson, Gary A.

    2010-01-01

    Alternative energy sources have become increasingly important as the production of domestic oil has declined and dependence on foreign oil has increased. Historically, there have been four time periods during which the United States was in fact crippled by oil shortages. These time periods include: (1) the early 1900s; (2) World War II; (3) the…

  19. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  20. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  1. User's guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    Science.gov (United States)

    Marr, W. W.

    1995-01-01

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  2. Drop-In Alternative Jet Fuels: Status of DoDs RDT and E, Interagency Initiatives, and Policies

    Science.gov (United States)

    2015-08-25

    CAPABILITY) Installations & Environment Region: Permanent  bases  (mostly domestic) End‐use: Mainly fleet vehicles Alternative  fuel  choices: Mostly ethanol...Installations follow GSA Definition of Alternative  Fuel • The (updated) Energy Policy Act of 1992 defined these  fuels   as alternative  fuels : – Methanol , ethanol...and other alcohols – Blends of 85% or more of alcohol with gasoline – Natural gas and  liquid   fuels  domestically produced from natural  gas

  3. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  4. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  5. 77 FR 62623 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-15

    ... Manufacturer Compliance Flexibilities 1. Air Conditioning Related Credits 2. Incentives for Electric Vehicles, Plug-in Hybrid Electric Vehicles, Fuel Cell Vehicles, and Dedicated and Dual Fuel Compressed Natural... Trucks 4. Treatment of Plug-in Hybrid Electric Vehicles, Dual Fuel Compressed Natural Gas Vehicles, and...

  6. Fleet Conversion in Local Government: Determinants of Driver Fuel Choice for Bi-Fuel Vehicles

    Science.gov (United States)

    Johns, Kimberly D.; Khovanova, Kseniya M.; Welch, Eric W.

    2009-01-01

    This study evaluates the conversion of one local government's fleet from gasoline to bi-fuel E-85, compressed natural gas, and liquid propane gas powered vehicles at the midpoint of a 10-year conversion plan. This study employs a behavioral model based on the theory of reasoned action to explore factors that influence an individual's perceived and…

  7. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...

  8. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  9. Additive Effectiveness Investigations in Alternative Fuels

    Science.gov (United States)

    2014-05-01

    Proprietary chemistry marketed by Innospec as Stadis 450. The CI/LI and FSII were added to the SPKs in bulk before additizing to the test plan. Since...275 275 275 ASTM Code ɚ ɚ ɚ. ɚ 4AP > 4P ɚ ɚ ɚ >4AP > 4P Ellipsometry Depth, 2.5mm2 nm 8.9 9.7 10.9 12.2 219.4 181.9 4.3 7.3 9.0 >250 >250 Maximum...23.0 23.0 D3241 Jet Fuel Thermal Stability Test Temperature °C 275 275 275 275 275 275 275 275 275 275 275 ASTM Code ɚ ɚ ɚ. ɚ 4AP > 4P ɚ ɚ ɚ >4AP

  10. Impact of the use of alternative fuels on clinker reactivity

    International Nuclear Information System (INIS)

    Serrano-González, K.; Reyes-Valdez, A.; Chowaniec, O.

    2017-01-01

    The use of alternative fuels in the cement industry has increased its relevance in the past decades due to their ecological and economic benefits. In concert with the efforts to increase its use, several studies have focused on their potential impact with respect to clinker reactivity and how they could affect the expected physical and mechanical properties. This work studied the effects of five alternative fuels on the reactivity of eight industrial clinker samples, considering several analytical techniques. Differences were identified among the clinker samples after replacing the alternative fuels, mainly with simultaneous eliminations, as in samples S4, S5 and S8. The modifications were related to the polymorph, size and reactivity of tricalcium silicate and to the clinker profile during the hydration process, due to the SO3 consumption rate. These changes were expressed in the higher compressive strengths in comparison with the original reference clinker. [es

  11. Biomass - alternative renewable energy source to the fossil fuels

    OpenAIRE

    Koruba Dorota; Piotrowski Jerzy Zbigniew; Latosińska Jolanta

    2017-01-01

    The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a...

  12. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  13. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  14. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  15. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using the...

  16. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    Science.gov (United States)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  17. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  18. Examination of physical properties of fuels and mixtures with alternative fuels

    Science.gov (United States)

    Lown, Anne Lauren

    ABSTRACT. EXAMINATION OF PHYSICAL PROPERTIES OF FUELS AND MIXTURES WITH ALTERNATIVE FUELS. By. Anne Lauren Lown. The diversity of alternative fuels is increasing due to new second generation biofuels. By modeling alternative fuels and fuel mixtures, types of fuels can be selected based on their properties, without producing and testing large batches. A number of potential alternative fuels have been tested and modeled to determine their impact when blended with traditional diesel and jet fuels. The properties evaluated include cloud point and pour point temperature, cetane number, distillation curve, and speed of sound. This work represents a novel approach to evaluating the properties of alternative fuels and their mixtures with petroleum fuels. Low temperature properties were evaluated for twelve potential biofuel compounds in mixtures with three diesel fuels and one jet fuel. Functional groups tested included diesters, esters, ketones, and ethers, and alkanes were used for comparison. Alkanes, ethers, esters, and ketones with a low melting point temperature were found to decrease the fuel cloud point temperature. Diesters added to fuels display an upper critical solution temperature, and multiple methods were used to confirm the presence of liquid-liquid immiscibility. These behaviors are independent of chain length and branching, as long as the melting point temperature of the additive is not significantly higher than the cloud point temperature of the fuel. Physical properties were estimated for several potential fuel additive molecules using group contribution methods. Quantum chemical calculations were used for ideal gas heat capacities. Fuel surrogates for three petroleum based fuels and six alternative fuels were developed. The cloud point temperature, distillation curve, cetane number, and average molecular weight for different fuel surrogates were simultaneously represented. The proposed surrogates use the experimental mass fractions of paraffins, and

  19. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel...

  20. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Science.gov (United States)

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  1. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the reporting requirements for refiners and importers of motor vehicle diesel fuel subject to...

  2. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.520 What are the standards and dye requirements for motor vehicle diesel...

  3. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  4. Utilization of waste tires as alternative fuel in cement plant

    OpenAIRE

    Pezdirc, Andrej

    2016-01-01

    Cement industry is regulated by legislation in which various measures are specified for prevention and reduction of air pollution as well as protection of human health, due to atmospheric emissions, which occur during cement production. Legislation also holds emission limit values for co-incineration of wastes i.e. alternative fuels. Waste tires as an alternative fuel can be co-incinerated i.e. co-processed in cement plants, where the high calorific value of the rubber is used to substitute f...

  5. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  6. 40 CFR 600.006-86 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-86 Section 600.006-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-86 Data and...

  7. 40 CFR 600.006-08 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-08 Section 600.006-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-08 Data and...

  8. 40 CFR 600.006-89 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-89 Section 600.006-89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-89 Data and...

  9. 40 CFR 600.006-87 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-87 Section 600.006-87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-87 Data and...

  10. Test Operations Procedure (TOP) 02-2-603A Vehicle Fuel Consumption

    Science.gov (United States)

    2012-05-10

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 02-2-603A Vehicle Fuel Consumption 5a. CONTRACT...test methods used to measure and present the fuel consumption characteristics for wheeled and tracked vehicles. Specific facilities, instrumentation...test controls, and analysis techniques are presented. 15. SUBJECT TERMS fuel consumption traction battery hybrid

  11. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  12. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  13. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-01-31

    ... producing gasoline are required to test Reformulated Gasoline (RFG), and conventional gasoline (CG) for... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This proposed rule will provide flexibility to the regulated community by allowing an additional...

  14. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-10-21

    ... blenders producing gasoline are required to test Reformulated Gasoline (RFG), and conventional gasoline (CG... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional...

  15. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and..., including multi-fuel vehicles, vehicles fueled with alternative fuels, hybrid electric vehicles, plug-in hybrid electric vehicles, electric vehicles, and fuel cell vehicles. Unless otherwise specified, multi...

  16. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport......The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...

  17. Safety Issues with Hydrogen as a Vehicle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; J. S. Herring

    1999-09-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  18. Safety Issues with Hydrogen as a Vehicle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  19. Alternative Sources of Energy - An Introduction to Fuel Cells

    Science.gov (United States)

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  20. Tiger Teams Technical Assistance: Reliable, Universal Open Architecture for Card Access to Dispense Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    Report discusses the dilemma of incorporating consistent, convenient, universal card access (or ''pay-at-the-pump'') systems into alternative fueling stations across the country. The state of California continues to be in the forefront of implementing alternative fuels for transportation applications. Aggressive efforts to deploy alternative fuel vehicles (AFVs) in California have highlighted the need to provide adequate fueling stations and develop appropriate, user-friendly means to purchase fuel at the pump. Since these fuels are not typically provided by petroleum companies at conventional fueling stations, and acceptance of cash is often not an option, a payment method must be developed that is consistent with the way individual AFV operators are accustomed to purchasing automotive fuels--with a credit card. At the same time, large fleets like the California Department of General Services must be able to use a single fuel card that offers comprehensive fleet management services. The Gas Technology Institute's Infrastructure Working Group (IWG) and its stakeholders have identified the lack of a common card reader system as a hurdle to wider deployment of AFVs in California and the United States. In conjunction with the U.S. Department of Energy's (DOE) National Clean Cities Program, the IWG has outlined a multi-phased strategy to systematically address the barriers to develop a more ''open'' architecture that's similar to the way gasoline and diesel are currently dispensed. Under the auspices of the IWG, survey results were gathered (circa 1999) from certain fuel providers, as a means to more carefully study card reader issues and their potential solutions. Pilot programs featuring card reader systems capable of accepting wider payment options have been attempted in several regions of the United States with mixed success. In early 2001, DOE joined the National Renewable Energy Laboratory (NREL), the

  1. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Science.gov (United States)

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are harmonically...

  2. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  3. Development of a methanol reformer for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Baard

    2003-03-01

    Vehicles powered by fuel cells are from an environmental aspect superior to the traditional automobile using internal combustion of gasoline. Power systems which are based upon fuel cell technology require hydrogen for operation. The ideal fuel cell vehicle would operate on pure hydrogen stored on-board. However, storing hydrogen on-board the vehicle is currently not feasible for technical reasons. The hydrogen can be generated on-board using a liquid hydrogen carrier such as methanol and gasoline. The objective of the work presented in this thesis was to develop a catalytic hydrogen generator for automotive applications using methanol as the hydrogen carrier. The first part of this work gives an introduction to the field of methanol reforming and the properties of a fuel cell based power system. Paper I reviews the catalytic materials and processes available for producing hydrogen from methanol. The second part of this thesis consists of an experimental investigation of the influence of the catalyst composition, materials and process parameters on the activity and selectivity for the production of hydrogen from methanol. In Papers II-IV the influence of the support, carrier and operational parameters is studied. In Paper V an investigation of the catalytic properties is performed in an attempt to correlate material properties with performance of different catalysts. In the third part of the thesis an investigation is performed to elucidate whether it is possible to utilize oxidation of liquid methanol as a heat source for an automotive reformer. In the study which is presented in Paper VI a large series of catalytic materials are tested and we were able to minimize the noble metal content making the system more cost efficient. In the final part of this thesis the reformer prototype developed in the project is evaluated. The reformer which was constructed for serving a 5 k W{sub e} fuel cell had a high performance with near 100 % methanol conversion and CO

  4. Eco-driving : strategic, tactical, and operational decisions of the driver that improve vehicle fuel economy.

    Science.gov (United States)

    2011-08-01

    "This report presents information about the effects of decisions that a driver can make to : influence on-road fuel economy of light-duty vehicles. These include strategic decisions : (vehicle selection and maintenance), tactical decisions (route sel...

  5. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  6. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Science.gov (United States)

    2010-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.527 Under what conditions may motor vehicle diesel fuel subject to the 15...

  7. Are We There Yet? Alternative Fuels for School Buses

    Science.gov (United States)

    Lea, Dennis; Carter, Deborah

    2009-01-01

    America's annual oil consumption continues to increase and is projected to continue the upward spiral into the foreseeable future. Alternative-fuel options are available that are not only cheaper in some cases on an energy-equivalent basis but are also more environmentally friendly. Education leaders need to be concerned with both these facts.…

  8. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    Energy Technology Data Exchange (ETDEWEB)

    Sjöberg, Carl-Magnus G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  9. Global warming and urban smog: The cost effectiveness of CAFE standards and alternative fuels

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Walls, M.A.; Collins, C.T.

    1992-01-01

    This paper evaluates alternative transportation policies for reducing greenhouse gas emissions and ozone precursors. The net cost-effectiveness -- i.e., the cost per ton of greenhouse gas reduced, adjusted for ozone reduction benefits -- of substituting methanol, compressed natural gas (CNG), and reformulated gasoline for conventional gasoline is assessed and compared with the cost-effectiveness of raising the corporate average fuel economy (CAFE) standard to 38 miles per gallon. Computing this open-quotes netclose quotes cost-effectiveness is one way of measuring the joint environmental benefits that these alternatives provide. Greenhouse gas emissions are assessed over the entire fuel cycle and include not only carbon dioxide emissions, but also methane, carbon monoxide, and nitrous oxide emissions. In computing cost-effectiveness, we account for the so-called open-quotes rebound effectclose quotes -- the impact on vehicle-miles traveled of higher or lower fuel costs. CNG is found to be the most cost-effective of these alternatives, followed by increasing the CAFE standard, substituting methanol for gasoline, and substituting reformulated for conventional gasoline. Including the ozone reduction benefits does not change the rankings of the alternatives, but does make the alternative fuels look better relative to increasing the CAFE standard. Incorporating the rebound effect greatly changes the magnitude of the estimates but does not change the rankings of the alternatives. None of the alternatives look cost-effective should a carbon tax of $35 per ton be passes (the proposal in the Stark bill, H.R. 1086), and only CNG under optimistic assumptions looks cost-effective if a tax of $100 per ton of carbon is passed

  10. Systems Integration, Modeling, and Validation of a Fuel Cell Hybrid Electric Vehicle

    OpenAIRE

    Ogburn, Michael James

    2000-01-01

    The goals of the research documented in this thesis were the design, construction, modeling, and validation of a fuel cell hybrid electric vehicle based a conversion of a five-passenger production sedan. Over 60 engineering students working together as the Hybrid Electric Vehicle Team of Virginia Tech (HEVT), integrated a proton exchange membrane fuel cell system into a series hybrid electric vehicle. This design produced an efficient and truly zero-emission vehicle. This 1997 Chevrolet Lum...

  11. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  12. 76 FR 54932 - Revisions and Additions to Motor Vehicle Fuel Economy Label; Correction

    Science.gov (United States)

    2011-09-06

    ...-AK73 Revisions and Additions to Motor Vehicle Fuel Economy Label; Correction AGENCY: Environmental... regarding labeling of cars and trucks with fuel economy and environmental information in the Federal...

  13. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  14. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    NARCIS (Netherlands)

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R.E.E.; Conijn, J.G.; Rutgers, B.; Valot, L.; Joubert, E.; Perelgritz, J.F.; Filogonio, A.; Roetger, T.; Prieur, A.; Starck, L.; Jeuland, N.; Bogers, P.; Midgley, R.; Bauldreay, J.; Rollin, G.; Rye, L.; Wilson, C.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in

  15. Obtaining accurate utilization and fuel use data for vehicle maintenance reporting systems. SAE Paper 780276

    Energy Technology Data Exchange (ETDEWEB)

    Nation, R.T.

    1978-01-01

    A new fuel control system has been developed which records vehicle utilization and fuel and oil use automatically at the fueling installation. The system provides security against unauthorized fuel use, is free from any manual input, and is very practical and economical to install and operate.

  16. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  17. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  18. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  19. Increasing the Fuel Economy and Safety of New Light-DutyVehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom; Ross, Marc

    2006-09-18

    One impediment to increasing the fuel economy standards forlight-duty vehicles is the long-standing argument that reducing vehiclemass to improve fuel economy will inherently make vehicles less safe.This technical paper summarizes and examines the research that is citedin support of this argument, and presents more recent research thatchallenges it. We conclude that the research claiming that lightervehicles are inherently less safe than heavier vehicles is flawed, andthat other aspects of vehicle design are more important to the on-roadsafety record of vehicles. This paper was prepared for a workshop onexperts in vehicle safety and fuel economy, organized by the William andFlora Hewlett Foundation, to discuss technologies and designs that can betaken to simultaneously improve vehicle safety and fuel economy; theworkshop was held in Washington DC on October 3, 2006.

  20. The California Multimedia Risk Assessment Protocol for Alternative Fuels

    Science.gov (United States)

    Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.

    2013-12-01

    Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment

  1. Vehicle type choice under the influence of a tax reform and rising fuel prices

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2014-01-01

    change in new vehicle purchases toward more diesel vehicles and more fuel-efficient vehicles. The paper analyses to what extent a vehicle tax reform similar to the Danish 2007 reform may explain changes in purchasing behaviour. The paper investigates the effects of a tax reform, fuel price changes......, and technological development on vehicle type choice using a mixed logit model. The model allows a simulation of the effect of car price changes that resemble those induced by the tax reform. This effect is compared to the effects of fuel price changes and technology improvements. The simulations show...... that the effect of the tax reform on fuel efficiency is similar to the effect of rising fuel prices while the effect of technological development is much larger. The conclusion is that while the tax reform appeared in the same year as a large increase in fuel efficiency, it seems likely that it only explains...

  2. Ethanol fuel modification for highway vehicle use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

  3. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Timothy [Research Engineer; Motupally, Sathya [Research Engineer

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  4. The demand for clean-fuel vehicles by Dutch local authorities. A stated choice analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, P.

    2012-08-15

    Previous research showed that the era of cheap fossil fuels is over. Also, 23% of the worldwide emission of CO2 is produced by road transport. These problems demand a change in the propulsion of vehicles. Because the diffusion of clean-fuel vehicles is not happening at this moment, something has to change. Rogers' diffusion of innovation theory is used to state that a critical mass of vehicles is needed to stimulate the diffusion of these vehicles. Due to public procurement Dutch local authorities (DLA's) can help stimulating this diffusion. Unfortunately these DLA's are not purchasing clean-fuel vehicles yet. To gain insight in what is hampering the diffusion of these vehicles by DLA's, a discrete choice experiment was created about the preferences by these DLA's. Six vehicle attributes were used to describe each vehicle. The results showed that the initial purchase price and the amount of local emission were experienced as the most important attributes by DLA's, where initial purchase price has a negative influence and local emission a positive influence in the choice for a new vehicle. Next, fuel price, range and availability of the fuel were found evenly important. Fuel price had a negative influence and both range and availability of fuel had a positive influence on the choice for a new vehicle. Finally, time to refuel/recharge was found least important and also negatively influencing the choice.

  5. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    Science.gov (United States)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal

  6. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    Science.gov (United States)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  7. Sweet Sorghum Alternative Fuel and Feed Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Slack, Donald C. [Univ. of Arizona, Tucson, AZ (United States). Agricultural and Biosystems Engineering Dept.; Kaltenbach, C. Colin [Univ. of Arizona, Tucson, AZ (United States)

    2013-07-30

    The University of Arizona undertook a “pilot” project to grow sweet sorghum on a field scale (rather than a plot scale), produce juice from the sweet sorghum, deliver the juice to a bio-refinery and process it to fuel-grade ethanol. We also evaluated the bagasse for suitability as a livestock feed and as a fuel. In addition to these objectives we evaluated methods of juice preservation, ligno-cellulosic conversion of the bagasse to fermentable sugars and alternative methods of juice extraction.

  8. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  9. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  10. 76 FR 74853 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2011-12-01

    ... Flexibilities 1. Air Conditioning Related Credits 2. Incentive for Electric Vehicles, Plug-in Hybrid Electric... Electric Vehicles, Dual Fuel Compressed Natural Gas Vehicles, and Ethanol Flexible Fuel Vehicles for GHG... vehicle air conditioners will continue to improve by becoming more efficient and by increasing the use of...

  11. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels

    Directory of Open Access Journals (Sweden)

    M.I. Lamas

    2015-12-01

    Full Text Available The current restrictions on emissions from marine engines, particularly sulphur oxides (SOx , nitrogen oxides (NOx and carbon dioxide (CO2 , are compelling the shipping industry to a change of tendency. In the recent years, many primary and secondary reduction techniques have been proposed and employed in marine engines. Nevertheless, the increasingly restrictive legislation makes it very difficult to continue developing efficient reduction procedures at competitive prices. According to this, the paper presents the possibility to employ alternative fuels. A numerical model was developed to analyze the combustion process and emissions using oil fuel, natural gas and hydrogen. A commercial marine engine was studied, the Wärtsilä 6L 46. It was found, that hydrogen is the cleanest fuel regarding CO2 , hydrocarbons (HC and carbon monoxide (CO. Nevertheless, it is very expensive for marine applications. Natural gas is cheaper and cleaner than fuel oil regarding CO2 and CO emissions. Still, natural gas emits more NOx and HC than oil fuel. SOx depends basically on the sulphur content of each particular fuel.

  12. Integration Workshop on Alternative Fuels in the EU Energy System, Petten, 22-23 November 2004. Summary Report

    International Nuclear Information System (INIS)

    Tzimas, E.; Peteves, S.D.

    2005-01-01

    The aim of the title Workshop was to: (a) provide information on the related Commission actions and policies, (b) assess key technological developments and describe the state of the art of alternative fuel technologies, and, (c) identify the techno-economic barriers associated with the introduction of alternative fuels in the EU energy system and more specifically, in its new Member States and Candidate Countries. The Workshop attracted a specialised audience of delegates from most of the New Member States and the Candidate Countries, who are directly involved with the preparation, development, implementation and monitoring of policies relevant to alternative fuels, as well as with related applied research and development. The Workshop facilitated the exchange of experiences and views among the participants on the optimal approaches that could lead to the successful introduction of alternative fuels in the energy system of each country. To this end, short informal presentations were solicited from each participating country about the prospective introduction of alternative fuels in their national energy system. These presentations were coupled by longer presentations made by experts on the following topics: The European Commission perspective on alternative fuels; A well-to-wheels assessment of alternative fuels; The European biomass potential, the prospects for biogas, and a review of advanced production methods for biofuels; An assessment of the European natural gas market, and a description of the state-of-the-art of natural gas vehicle technology. This report summarises the main points made by the participants, the outcome of the discussions and some thoughts on future actions that may be implemented by the JRC in support of initiatives taken by the New Member States and Candidate Countries concerning alternative fuels

  13. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  14. Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission

    Science.gov (United States)

    Leong, Shing Tet; Muttamara, S.; Laortanakul, Preecha

    Emission rates of benzene, toluene, m-xylene, formaldehyde and acetaldehyde were measured in a fleet of 16 in-use vehicles. The test was performed on a chassis dynamometer incorporated with Bangkok Driving Cycle test mode. Three different test fuels: unleaded gasoline, gasoline blended with 10% ethanol (E10) and gasoline blended with 15% ethanol (E15) were used to determine the different compositions of exhaust emissions from various vehicles. The effects of ethanol content fuels on emissions were tested by three types of vehicles: cars with no catalytic converter installation, cars with three-way catalytic converter and cars with dual-bed catalytic converter. The test result showed wide variations in the average emission rates with different mileages, fuel types and catalytic converters (benzene: 3.33-56.48 mg/km, toluene: 8.62-124.66 mg/km, m-xylene: 2.97-51.65 mg/km, formaldehyde: 20.82-477.57 mg/km and acetaldehyde: 9.46-219.86 mg/km). There was a modest reduction in emission rate of benzene, toluene and m-xylene in cars using E10 and E15 fuels. Use of ethanol fuels, however, leads to increased formaldehyde and acetaldehyde emission rates. Our analysis revealed that alternative fuels and technologies give significant reduction in toxic VOC pollutants from automobile emission—particularly car with dual-bed catalytic converter using E10 fuel.

  15. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  16. Some alternatives to the mixed oxide fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel

  17. Some alternatives to the mixed oxide fuel cycle

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel fabrication operations

  18. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Chang Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  19. Alternative fuel buses currently in use in China. Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources. (author)

  20. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  1. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Tan, Kah Ni; McDonald, Tanya S; Borges, Karin

    2017-06-01

    This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.

  2. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  3. Calibrating the social value of prospective new goods: The case of hydrogen fuel cell electric Vehicles

    Science.gov (United States)

    Topel, Robert H.

    2018-01-01

    Economic studies of the value of a new good or product innovation are typically retrospective: after a new good has been developed and marketed to consumers, data on prices and consumer choices can be used to estimate welfare gains. This paper calibrates the prospective welfare gains in the United States from a nascent vehicle platform, fuel cell electric vehicles (FCVs), that may or may not succeed in competition with existing vehicle platforms. Prospective gains are due to three main sources: (1) possibly reduced carbon emissions compared to existing vehicle alternatives; (2) the monopsony benefit to the U.S. from reducing world oil demand and hence the price of oil; (3) national security benefits due to reduced "oil dependence", mitigating the impact of oil price shocks on national income. I find that the benefits of reduced carbon emissions are likely to be quite small because reduced oil demand in the U.S. as only a small impact on world oil consumption and carbon emissions. Net monopsony benefits to U.S. consumers are much larger.

  4. Eco-runner team Delft; the most fuel efficient vehicle in the world

    NARCIS (Netherlands)

    Rijks, F.

    2014-01-01

    The slogan, ‘Eco-Runner: the most fuel efficient vehicle in the world’ of the Eco-Runner Team Delft says it all: designing and building the most fuel efficient vehicle in the world. The Eco-Runner Team is a ‘D:DREAM Team’ where students from various faculties work together to design and build

  5. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...

  6. ESTIMATION OF THE MAIN CHARACTERISTICS OF THE TRACTION BLDC MOTOR ON THE BASIS OF VEHICLE ALTERNATOR

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2014-10-01

    Full Text Available A method of estimation of basic parameters of the BLDC motor based on the vehicle powerful alternator to convert an ordinary vehicle into a hybrid one is offered. The results of estimation of basic characteristics of the electric motor on the basis of the automobile alternator G290 are presented.

  7. Development of alternate extractant systems for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-01-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO 2 ) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  8. Heavy Vehicle and Engine Resource Guide

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

  9. Energy system aspects of hydrogen as an alternative fuel in transport

    International Nuclear Information System (INIS)

    Ramesohl, Stephan; Merten, Frank

    2006-01-01

    Considering the enormous ecological and economic importance of the transport sector the introduction of alternative fuels-together with drastic energy efficiency gains-will be a key to sustainable mobility, nationally as well as globally. However, the future role of alternative fuels cannot be examined from the isolated perspective of the transport sector. Interactions with the energy system as a whole have to be taken into account. This holds both for the issue of availability of energy sources as well as for allocation effects, resulting from the shift of renewable energy from the stationary sector to mobile applications. With emphasis on hydrogen as a transport fuel for private passenger cars, this paper discusses the energy systems impacts of various scenarios introducing hydrogen fueled vehicles in Germany. It identifies clear restrictions to an enhanced growth of clean hydrogen production from renewable energy sources (RES). Furthermore, it points at systems interdependencies that call for a priority use of RES electricity in stationary applications. Whereas hydrogen can play an increasing role in transport after 2030 the most important challenge is to exploit short-mid-term potentials of boosting car efficiency

  10. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gonder, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chen, Yuche [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lin, Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gohlke, D. [US Dept. of Energy, Washington, DC (United States)

    2016-11-01

    This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAV technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.

  11. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  12. Fuel taxes, motor vehicle emission standards and patents related to the fuel-efficiency and emissions of motor vehicles. Joint Meetings of Tax and Environment Experts

    Energy Technology Data Exchange (ETDEWEB)

    Vollebergh, H. [Netherlands Environmental Assessment Agency MNP, Den Haag (Netherlands)

    2010-01-21

    Contribution to the project on Taxation, Innovation and the Environment of OECD's Joint Meetings of Tax and Environment Experts. It studies the impacts of motor vehicle fuel taxes and mandatory fuel efficiency standards on relevant car-related innovation activity in selected car-producing countries.

  13. 48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle fleet... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel..., insert the following clause in contracts providing for Contractor management of the motor vehicle fleet...

  14. CALGRID Photochemical Modeling of Air Quality Impacts of Alternative Transportation Fuel Use in Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G. E.; Londergan, R. J.; Fernau, M. E.

    1998-11-19

    The National Renewable Energy Laboratory has been conducting a comprehensive program to quantify and assess the air quality impacts of the emissions of ozone precursors, air toxins, and greenhouse gases from alternative fuel vehicles. This program includes both an emissions estimation component and a photochemical modeling component to study three fuels: reformulated gasoline, compressed natural gas, and 85% methanol (M85). This report describes the use of the CALGRID model in the Los Angeles modeling domain using the State-Wide Air Pollution Research Center (SAPRC90) chemical mechanism and an early version of the SAPRC93 mechanism. A variety of conclusions can be drawn from the results of this study, including results from chemical mechanism testing; development of meteorological inputs; model evaluation and comparison; and the analyses of the impacts of the emissions scenarios. The report summarizes the study's major findings in these areas.

  15. Market Analysis and Consumer Impacts Source Document. Part III. Consumer Behavior and Attitudes Toward Fuel Efficient Vehicles

    Science.gov (United States)

    1980-12-01

    This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...

  16. Estimation of fuel loss due to idling of vehicles at a signalized intersection in Chennai, India

    Science.gov (United States)

    Vasantha Kumar, S.; Gulati, Himanshu; Arora, Shivam

    2017-11-01

    The vehicles while waiting at signalized intersections are generally found to be in idling condition, i.e., not switching off their vehicles during red times. This phenomenon of idling of vehicles during red times at signalized intersections may lead to huge economic loss as lot of fuel is consumed by vehicles when they are in idling condition. The situation may even be worse in countries like India as different vehicle types consume varying amount of fuel. Only limited studies have been reported on estimation of fuel loss due to idling of vehicles in India. In the present study, one of the busy intersections in Chennai, namely, Tidel Park Junction in Rajiv Gandhi salai was considered. Data collection was carried out in one approach road of the intersection during morning and evening peak hours on a typical working day by manually noting down the red timings of each cycle and the corresponding number of two-wheelers, three-wheelers, passenger cars, light commercial vehicles (LCV) and heavy motorized vehicles (HMV) that were in idling mode. Using the fuel consumption values of various vehicles types suggested by Central Road Research Institute (CRRI), the total fuel loss during the study period was found to be Rs. 4,93,849/-. The installation of red timers, synchronization of signals, use of non-motorized transport for short trips and public awareness are some of the measures which government need to focus to save the fuel wasted at signalized intersections in major cities of India.

  17. 77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Science.gov (United States)

    2012-03-12

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption... for a statutorily-required reduction in petroleum consumption and increase in alternative fuel... petroleum consumption and mandatory increases in annual alternative fuel consumption for Federal fleets and...

  18. DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles

    Science.gov (United States)

    2014-04-10

    85 $21,927 Electric $171 Hydrogen $3 Liquefied Natural Gas (LNG) $4 Liquefied Petroleum Gas ( LPG ) $14 Total $25,053 Data source: GSA’s FAST Data...919 407 5,802 GAS PH 13 77 94 10 10 204 HYD DE 5 5 LNG BI 1 1 LPG BI 47 47 LPG DE 1 1 Conventional DSL DE 867 16,174 16,028 5,698 2,508 41,275...of the Assistant Secretary of Defense for Operational Energy Plans and Programs (OEPP) energy.defense.gov Date: April 10, 2014 DISTRIBUTION

  19. Test experiences with the DaimlerChrysler: Fuel cell electric vehicle NECAR

    Directory of Open Access Journals (Sweden)

    Friedlmeier Gerardo

    2002-01-01

    Full Text Available The DalmlerChrysler fuel cell electric vehicle NECAR 4, a hydrogen-fueled zero-emission compact car based on the A-Class of Mercedes-Benz, is described. Test results obtained on the road and on the dynamometer are presented. These and other results show the high technological maturity reliability and durability already achieved with fuel cell technology.

  20. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.