WorldWideScience

Sample records for alternative fossil fuel

  1. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  2. Alternative fossil-based transportation fuels

    Science.gov (United States)

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  3. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  4. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  5. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Cheng, S.Y.; Li, J.B.; Huang, Y.F. [Dalhousie University, Halifax, NS (Canada)

    2007-07-01

    In order to meet the rising global demand for energy, rapid development of conventional fossil fuels (i.e., coal, oil, and natural gas) have been experienced by many nations, bringing dramatic economic benefit and prosperity to fossil-fuel industries as well as well being of human society. However, various fossil-fuel related activities emit huge quantities of gaseous, liquid, and solid waste materials, posing a variety of impacts, risks, and liabilities to the environment. Therefore, on the one hand, control measures are desired for effectively managing pollution issues; on the other hand, it becomes extremely critical to invest efforts in finding promising alternative energy sources as solutions to the possible energy shortage crisis in future. This article focuses on both aspects through: (1) a discussion of waste materials generated from fossil-fuel industries and waste management measures; and (2) an exploration of some well-recognized alternative fuels in terms of their nature, availability, production, handling, environmental performances, and current and future applications. The conclusion restates the urgency of finding replaceable long-term alternatives to the conventional fuels.

  6. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  7. Fossil Fuels: Factors of Supply Reduction and Use of The Renewable Energy As A Suitable Alternative

    OpenAIRE

    Askari Mohammad Bagher,

    2015-01-01

    In this article we will review the consumption of fossil fuels in the world. According to the exhaustible resources of fossil fuels, and the damaging effects of these fuels on the environment and nature, we introduce renewable energy sources as perfect replacement for fossil fuels.

  8. Modern approach to the problem of fossil gas fuels replacement by alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Boris [Gas Institute, National Academy of Sciences, Kiev (Ukraine)

    2013-07-01

    New scientific and engineering fundamentals of fuels substitution have been developed instead of obsolete methodology “Interchangeability of Fuel Gases” developed in USA and existing from the middle of XX{sup th} century. To perform the complex prediction of total or partial substitution of given flow rate of natural gas NG for alternative gases AG the following parameters are to be predicted: plant utilization efficiencies – regarding fuel and energy utilization, the last in form of heat Ș{sub H} and exergy Ș{sub eff} efficiencies, saving or overexpenditure of the NG flow rate in the gas mixture with AG, specific fuel consumption b f and specific issue of harmful substances C{sub t} – pollutants in the combustion products (C{sub NO{sub x}} ) and greenhouse gases (C {sub CO{sub 2}} ). Certification of alternative gas fuels and fuel mixtures as a commodity products is carried out in frame of our approach with necessary set of characteristics, similar to those accepted in the world practice. Key words: alternative fuel, fuel replacement (substitution), natural gas, process gases, theoretical combustion temperature, thermodynamic equilibrium computations, total enthalpy.

  9. An overview of alternative fossil fuel price and carbon regulation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2

  10. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe

    International Nuclear Information System (INIS)

    Sobrino, Fernando Hernandez; Monroy, Carlos Rodriguez; Perez, Jose Luis Hernandez

    2010-01-01

    In recent times, the global debate on the environment has been centered on CO 2 emissions. This gas is the major cause of the ''greenhouse effect'' and people are more concerned with the idea that the emissions of this gas should be minimized. As a result of this concern, the Kyoto Protocol was enacted and subscribed to by many countries, setting the maximum gas emissions for them. Fossil fuels are a major source of CO 2 emissions. For some years now The European Union has been seeking to promote some years now the use of biofuels as substitutes for diesel or petrol for transport purposes. As a result of this policy, in 2003 the European Union (EU) Directive 2003/30/EC was developed with the aim of promoting the use of biofuels as a substitute for diesel or gasoline among European Union countries as well as to contribute to fulfilling the commitments acquired on climate change, security of supply in environmentally friendly conditions and the promotion of renewable energy sources. In order to achieve these goals, the directive forces all EU members to ensure that before December 31 of 2010 at least 5.75% of all gasoline and diesel fuels sold for transport purposes are biofuels. European Union countries have social and economic characteristics unique to themselves. The energy dependence on foreign sources, the features of the agricultural sector or the degree of industrialization varies greatly from one country to another. In this context, it is questionable whether the obligation imposed by this directive is actually achieving in its application uniform and/or identical goals in each of the countries involved and whether the actions of the various governments are also aligned with these goals. All these ideas were developed in a previous report (Sobrino and Monroy (2009)). This report examines the possibility of using hydrogen as an alternative to fossil fuels and biofuels from a technical, economic and environmental point of view in the specific case of a European

  11. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  13. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    Science.gov (United States)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  14. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  15. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  16. Renewables vs fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K. (Energy Research and Development Corporation (Australia))

    1992-01-01

    The paper examines some of the factors which will influence the future mix of energy from fossil fuels and renewable sources in Australia. Aspects covered include: the present energy situation; impact of environmental issues; potential for renewable energy; motivators for change; and research and development. It is concluded that the future for fossil fuels and renewable energy is dependent on a number of complex factors, many of which are currently unknown. The key factor is economic viability and that will be influenced by a range of factors such as policies of the Australian and overseas governments in relation to pollution and environment protection (reflected in the cost of meeting such requirements), exploration and production costs (also influenced by government policies), availability of supply, rate of technological development and the size of export markets. 8 refs., 2 figs., 1 tab.

  17. News technology utilization fossil fuel

    Directory of Open Access Journals (Sweden)

    Blišanová Monika

    2004-09-01

    Full Text Available Fossil fuel – “alternative energy“ is coal, petroleum, natural gas. Petroleum and natural gas are scarce resources, but they are delimited. Reserves petroleum will be depleted after 39 years and reserves natural gas after 60 years.World reserves coal are good for another 240 years. Coal is the most abundant fossil fuel. It is the least expensive energy source for generating electricity. Many environmental problems associated with use of coal:in coal production, mining creates environmental problems.On Slovakia representative coal only important internal fuel – power of source and coal is produced in 5 locality. Nowadays, oneself invest to new technology on utilization coal. Perspective solution onself shows UCG, IGCC.

  18. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  19. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  20. Fossil fuels in the 21st century.

    Science.gov (United States)

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  1. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  2. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  3. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union.

    Science.gov (United States)

    Littlewood, Jade; Guo, Miao; Boerjan, Wout; Murphy, Richard J

    2014-01-01

    The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotation coppice (SRC) poplar feedstocks under two leading processing technologies in five European countries. Our evaluation shows that the type of processing technology and varying national costs between countries results in a wide range of bioethanol production prices (€0.275 to 0.727/l). The lowest production prices for bioethanol were found in countries that had cheap feedstock costs and high prices for renewable electricity. Taxes and other costs had a significant influence on fuel prices at the petrol station, and therefore the presence and amount of government support for bioethanol was a major factor determining the competitiveness of bioethanol with conventional fuel. In a forward-looking scenario, genetically engineering poplar with a reduced lignin content showed potential to enhance the competitiveness of bioethanol with conventional fuel by reducing overall costs by approximately 41% in four out of the five countries modeled. However, the possible wider phenotypic traits of advanced poplars needs to be fully investigated to ensure that these do not unintentionally negate the cost savings indicated. Through these evaluations, we highlight the key bottlenecks within the bioethanol supply chain from the standpoint of various stakeholders. For producers, technologies that are best suited to the specific feedstock composition and national policies should be optimized. For policymakers, support schemes that benefit emerging bioethanol producers and allow renewable fuel to be

  4. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  5. Solar energy as a viable and sustainable alternative to fossil fuel

    International Nuclear Information System (INIS)

    Mohammed, F.L.; Ewansiha, K.; Enyeribe, E.

    2007-01-01

    A lot of human and natural resources have been put in the energy sector, but the quantity of supply to consumers is quite inadequate. To sustain industrial output and ensure rapid growth, there is a need for a reliable and efficient supply of energy. A survey was carried out to find out the knowledge of consumers on the use of solar energy as an alternative source of energy.The result indicated that although people are aware of existence, the product is not readily available for man

  6. Environmental damage caused by fossil fuels consumption

    International Nuclear Information System (INIS)

    Barbir, F.; Veziroglu, T.N.

    1991-01-01

    This paper reports that the objectives of this study is to identify the negative effects of the fossil fuels use and to evaluate their economic significance. An economic value of the damage for each of the analyzed effects has been estimated in US dollars per unit energy of the fuel used ($/GJ). This external costs of fossil fuel use should be added to their existing market price, and such real costs should be compared with the real costs of other, environmentally acceptable, energy alternatives, such as hydrogen

  7. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  8. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  9. Fossil fuels and Contamination

    International Nuclear Information System (INIS)

    Kin Torres, Pedro Julio

    1999-01-01

    At the present time the coal, the petroleum and the natural gas are the sources that, in their combustion, they give around 88% of the energy consumed by the world to satisfy the requirements of a society in pro of a better level of life. Because they are non-renewable sources, sooner or later they will be drained, opening the way to other energy forms (nuclear energy, solar energy, biomass, etc.), like an alternative for the humanity's sustainable development. Important aspects on the dear reservations, in global form, of coal, petroleum and natural gas to have an idea of the state of the same ones and their influence in the environment

  10. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  11. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  12. Diatoms: a fossil fuel of the future.

    Science.gov (United States)

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sanitary effects of fossil fuels

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2006-01-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  14. Production of alcohols and other oxygenates from fossil fuels and renewables : final report for IEA Alternative Motor Fuels Agreement Program of research and development on alternative motor fuels, Annex 4/Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Vancea, L. (comp.) [Natural Resources Canada, Ottawa, ON (Canada)

    1995-07-01

    The objective of the International Energy Agency's (IEA's) Alternative Motor Fuels Agreement Program was to exchange information on the production of alcohols and other oxygenates between 6 participating countries including Canada, Italy, Japan, New Zealand, Sweden and the United States. Various production methods were reviewed in an effort to identify potential areas of cooperative research programs. The original scope was to examine the production of alcohols and other oxygenates from fossil fuels only, but some participants examined their production from renewables. This report provided a brief description of the Annex and the list of participants. It presented the Operating Agent's Report and contained a summary of the contributions submitted by participating countries by topic. In Canada, Iogen of Ottawa, Ontario has conducted a study on the energy, carbon and economic budgets estimated for wheat grain, corn grain, wheat straw, and switchgrass. Iogen has developed a process for fermenting wheat straw and switchgrass into ethanol. Most research has focused on enzymatic hydrolysis processes because of the low yields inherent in dilute acid hydrolysis processes. Enzymes hydrolyze the cellulose to glucose without producing any degradation products, thereby yielding high quantity products with no toxicity. Future bioethanol production will probably be cellulosic-based rather than grain-based. refs., tabs., figs.

  15. Production of alcohols and other oxygenates from fossil fuels and renewables : final report for IEA Alternative Motor Fuels Agreement Program of research and development on alternative motor fuels, Annex 4/Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Vancea, L [Natural Resources Canada, Ottawa, ON (Canada)

    1995-07-01

    The objective of the International Energy Agency's (IEA's) Alternative Motor Fuels Agreement Program was to exchange information on the production of alcohols and other oxygenates between 6 participating countries including Canada, Italy, Japan, New Zealand, Sweden and the United States. Various production methods were reviewed in an effort to identify potential areas of cooperative research programs. The original scope was to examine the production of alcohols and other oxygenates from fossil fuels only, but some participants examined their production from renewables. This report provided a brief description of the Annex and the list of participants. It presented the Operating Agent's Report and contained a summary of the contributions submitted by participating countries by topic. In Canada, Iogen of Ottawa, Ontario has conducted a study on the energy, carbon and economic budgets estimated for wheat grain, corn grain, wheat straw, and switchgrass. Iogen has developed a process for fermenting wheat straw and switchgrass into ethanol. Most research has focused on enzymatic hydrolysis processes because of the low yields inherent in dilute acid hydrolysis processes. Enzymes hydrolyze the cellulose to glucose without producing any degradation products, thereby yielding high quantity products with no toxicity. Future bioethanol production will probably be cellulosic-based rather than grain-based. refs., tabs., figs.

  16. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  17. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  18. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Chang Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  19. Alternative fuel buses currently in use in China. Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources. (author)

  20. Retrofitting for fossil fuel flexibility

    International Nuclear Information System (INIS)

    Newell, J.; Trueblood, R.C.; Lukas, R.W.; Worster, C.M.; Marx, P.D.

    1991-01-01

    Described in this paper are two fossil plant retrofits recently completed by the Public Service Company of New Hampshire that demonstrate the type of planning and execution required for a successful project under the current regulatory and budget constraints. Merrimack Units 1 and 2 are 120 MW and 338 MW nominal cyclone-fired coal units in Bow, New Hampshire. The retrofits recently completed at these plants have resulted in improved particulate emissions compliance, and the fuel flexibility to allow switching to lower sulphur coals to meet current and future SO 2 emission limits. Included in this discussion are the features of each project including the unique precipitator procurement approach for the Unit 1 Retrofit, and methods used to accomplish both retrofits within existing scheduled maintenance outages through careful planning and scheduling, effective use of pre-outage construction, 3-D CADD modeling, modular construction and early procurement. Operating experience while firing various coals in the cyclone fired boilers is also discussed

  1. Fossil Fuels, Backstop Technologies, and Imperfect Substitution

    NARCIS (Netherlands)

    van der Meijden, G.C.; Pittel, Karen; van der Ploeg, Frederick; Withagen, Cees

    2014-01-01

    This chapter studies the transition from fossil fuels to backstop technologies in a general equilibrium model in which growth is driven by research and development. The analysis generalizes the existing literature by allowing for imperfect substitution between fossil fuels and the new energy

  2. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  3. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  4. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  5. Supply of fossil heating and motor fuels

    International Nuclear Information System (INIS)

    Kaegi, W.; Siegrist, S.; Schaefli, M.; Eichenberger, U.

    2003-01-01

    This comprehensive study made for the Swiss Federal Office of Energy (SFOE) within the framework of the Energy Economics Fundamentals research programme examines if it can be guaranteed that Swiss industry can be supplied with fossil fuels for heating and transport purposes over the next few decades. The results of a comprehensive survey of literature on the subject are presented, with a major focus being placed on oil. The study examines both pessimistic and optimistic views and also presents an overview of fossil energy carriers and the possibilities of substituting them. Scenarios and prognoses on the availability of fossil fuels and their reserves for the future are presented. Also, new technologies for exploration and the extraction of fossil fuels are discussed, as are international interdependencies that influence supply. Market and price scenarios are presented that take account of a possible increasing scarcity of fossil fuels. The implications for industry and investment planning are examined

  6. Dynamic model of a natural water circulation boiler suitable for on-line monitoring of fossil/alternative fuel plants

    International Nuclear Information System (INIS)

    Sedić, Almir; Katulić, Stjepko; Pavković, Danijel

    2014-01-01

    illustrate the model effectiveness, it has been employed in the analysis of the phenomena occurring in different parts of the particular boiler system for the case of realistic disturbance event, wherein the model inputs are based on the field data from the boiler on-board data collection system (DCS). It is anticipated that the proposed physical boiler model should also be easily adapted for the case of boiler systems utilizing alternative fuels, thus aiding in the optimization of the dedicated control and supervision systems

  7. Pollution and exhaustibility of fossil fuels

    NARCIS (Netherlands)

    Withagen, C.A.A.M.

    1994-01-01

    The use of fossil fuels causes environmental damage. This is modeled and the ‘optimal’ rate of depletion is derived. Also this trajectory is compared with the case where there occurs no environmental damage.

  8. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  9. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  10. Taxing fossil fuels under speculative storage

    International Nuclear Information System (INIS)

    Tumen, Semih; Unalmis, Deren; Unalmis, Ibrahim; Unsal, D. Filiz

    2016-01-01

    Long-term environmental consequences of taxing fossil fuel usage have been extensively studied in the literature. However, these taxes may also impose several short-run macroeconomic policy challenges, the nature of which remains underexplored. This paper investigates the mechanisms through which environmental taxes on fossil fuel usage can affect the main macroeconomic variables in the short-run. We concentrate on a particular mechanism: speculative storage. Formulating and using a dynamic stochastic general equilibrium (DSGE) model, calibrated for the United States, with an explicit storage facility and nominal rigidities, we show that in designing environmental tax policies it is crucial to account for the fact that fossil fuel prices are subject to speculation. The existence of forward-looking speculators in the model improves the effectiveness of tax policies in reducing fossil fuel usage. Improved policy effectiveness, however, is costly: it drives inflation and interest rates up, while impeding output. Based on this tradeoff, we seek an answer to the question how monetary policy should interact with environmental tax policies in our DSGE model of fossil fuel storage. We show that, in an environment with no speculative storers, monetary policy should respond to output along with CPI inflation in order to minimize the welfare losses brought by taxes. However, when the storage facility is activated, responding to output in the monetary policy rule becomes less desirable.

  11. When will fossil fuel reserves be diminished?

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2009-01-01

    Crude oil, coal and gas are the main resources for world energy supply. The size of fossil fuel reserves and the dilemma that 'when non-renewable energy will be diminished' is a fundamental and doubtful question that needs to be answered. This paper presents a new formula for calculating when fossil fuel reserves are likely to be depleted and develops an econometrics model to demonstrate the relationship between fossil fuel reserves and some main variables. The new formula is modified from the Klass model and thus assumes a continuous compound rate and computes fossil fuel reserve depletion times for oil, coal and gas of approximately 35, 107 and 37 years, respectively. This means that coal reserves are available up to 2112, and will be the only fossil fuel remaining after 2042. In the Econometrics model, the main exogenous variables affecting oil, coal and gas reserve trends are their consumption and respective prices between 1980 and 2006. The models for oil and gas reserves unexpectedly show a positive and significant relationship with consumption, while presenting a negative and significant relationship with price. The econometrics model for coal reserves, however, expectedly illustrates a negative and significant relationship with consumption and a positive and significant relationship with price. Consequently, huge reserves of coal and low-level coal prices in comparison to oil and gas make coal one of the main energy substitutions for oil and gas in the future, under the assumption of coal as a clean energy source

  12. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  13. Reducing DoD Fossil-Fuel Dependence

    Science.gov (United States)

    2006-09-01

    domestic market for demand and consumption of fossil fuel alternatives, or to drive fuel and transportation technology developments, in general. Barring...wholesale to the power market . IPPs own and operate their stations as non-utilities and do not own the transmission lines. Joule The (kinetic) energy acquired...maturiry for its seed. [Wikipedia, 13Aug06] TW Terawatt = 1012 Watts UAV Unmanned/Unpiloted Air Vehicle UCG Underground coal gasification USDA U.S

  14. Problems related to fossil fuels utilization

    International Nuclear Information System (INIS)

    Rota, R.

    1999-01-01

    Fossil fuels still present the main energy source in the world since about 90% of the energy produced comes from combustion. This paper, based on the lectures given at the conference of Energy and Environment hold at the Accademia dei Lincei in 1998, presents a short review of some of the problems related to the utilization of fossil fuels, such as their availability in the medium period, the effect of pollutant dispersion in the atmosphere as well as the available technologies to deal with such problems [it

  15. Sulphur release from alternative fuel firing

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter

    2014-01-01

    The cement industry has long been dependent on the use of fossil fuels, although a recent trend in replacing fossil fuels with alternative fuels has arisen. 1, 2 However, when unconverted or partly converted alternative fuels are admitted directly in the rotary kiln inlet, the volatiles released...... from the fuels may react with sulphates present in the hot meal to form SO 2 . Here Maria del Mar Cortada Mut and associates describe pilot and industrial scale experiments focusing on the factors that affect SO 2 release in the cement kiln inlet....

  16. Clean fuels from fossil sources

    International Nuclear Information System (INIS)

    Sanfilippo, D.

    2000-01-01

    Energy availability is determining to sustain the social development, but energy production involves environmental impacts at regional and global level. The central role of oil, natural gas, coal for energy supply will be kept for decades. The development of the engine-fuel combination to satisfy more stringent emissions limitations, is the challenge for an environmentally clean transportation system [it

  17. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  18. Carbon Risk and the Fossil Fuel Industry

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2015-04-01

    As calls for ambitious climate action intensify, questions arise concerning the resilience of the fossil fuel industry in a world ever more inclined to favour climate protection. This article will attempt to assess the extent of present risks and show how the strength of debate can affect practices and strategy employed by companies in this sector. (author)

  19. The global environment effects of fossil and nuclear fuels

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1981-01-01

    The relative risks and environmental impacts of coal and uranium fueled power plants are dicussed. Fossil-fuel power plants are associated with a build-up of carbon dioxide levels and consequent climatic changes, release of sulphur dioxide and resultant acid rains and radioactive emissions. In comparing the discharges per megawatt year of sulphur dioxide, nitrogen dioxide and radioactive Ra-226 and Ra-225 in fly ash from coal and other fossil plants with Kr-85 and I-131 from nuclear plants, the fossil plants have a much poorer performance. Estimates indicate that nuclear energy can be adopted on a large scale as an alternative to coal without any increase in hazards and with a probability of a substantial reduction

  20. Co-firing biomass and fossil fuels

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    In June 1989, the Alaska Energy Authority and the University of Alaska Anchorage published a monograph summarizing the technology of co-firing biomass and fossil fuels. The title of the 180 page monograph is 'Use of Mixed Fuels in Direct Combustion Systems'. Highlights from the monograph are presented in this paper with emphasis on the following areas: (1) Equipment design and operational experience co-firing fuels; (2) The impact of co-firing on efficiency; (3) Environmental considerations associated with co-firing; (4) Economic considerations in co-firing; and (5) Decision making criteria for co-firing

  1. IGT calculates world reserves of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Institute of Gas Technology has published the IGT World Reserves Survey, giving their latest tabulation of world reserves of fossil fuels and uranium. The report contains 120 Tables and 41 Figures. Estimates are provided for proved reserves, resources, current production, and life indexes of the non-renewable energy sources of the US and of the world as a whole. World regional data are also provided in many cases. The data are summarized here. 2 figures, 5 tables

  2. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  3. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  4. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  5. Microbial biocatalyst developments to upgrade fossil fuels.

    Science.gov (United States)

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  6. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years

  7. Alternative Fuel Guidelines for Alternative Transportation Systems.

    Science.gov (United States)

    2011-01-31

    The Volpe Center documented the increased use of alternative fuels on vehicles owned and operated by federal land management agencies. For each alternative fuel type, the Volpe Center documented the availability of vehicles, fueling mechanisms and pr...

  8. Environmental biotechnologies for the fossil fuel industry

    International Nuclear Information System (INIS)

    Lee, D. W.; Donald, G. M.

    1997-01-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry's concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs

  9. Environmental biotechnologies for the fossil fuel industry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D W; Donald, G M [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-09-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry`s concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs.

  10. Recent developments in biodesulfurization of fossil fuels.

    Science.gov (United States)

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  11. The environmental dilemma of fossil fuels

    International Nuclear Information System (INIS)

    MacCracken, M.C.

    1992-04-01

    The increasing atmospheric concentration of carbon dioxide poses an environmental dilemma for fossil fuel energy generation that, unlike other related emissions, cannot be resolved by control technologies alone. Although fossil fuels presently provide the most cost-effective global energy source, and model projections suggest that their use is initiating climatic changes which, while quite uncertain, may induce significant, counter-balancing impacts to water resources, coastal resources, ecological systems, and possibly agricultural production. The climate model indicate that the warming should have begun, and there is some evidence for this occurring, but at a less rapid and more uneven rate than projected. In addition, different climate models are not yet in agreement in their latitudinal or regional predictions, and it will likely require a decade or more for such agreement to develop as high performance computers become available for addressing this ''grand challenge'' problem. Thus, in addition to the prospect for climatic change, the uncertainties of the changes and associated impacts contribute to the dilemma of dealing with the issue. Further, the problem is pervasive and international scope, with different countries and peoples having differing perspectives of technology, development, and environmental responsibility. Dealing with this issue will thus require creativity, commitment, and flexibility

  12. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  13. Nuclear energy and the fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Folinsbee, R E

    1970-01-01

    The energy phenomenon of the first half of this century has been the increase in the use of petroleum and natural gas as fuels. World demand for petroleum energy has been increasing at the rate of 11% per yr. This demand is unsustainable, for the supply, as with any exhaustible resource, is limited. The continental energy policy is essentially one of integrating the North American supply and demand picture for the fossil fuels, using oil and gas from the interior of the continent to supply demand from the interior and using overseas supplies, up the limit of national security, for energy users farthest removed from these sources. The economics of expensive pipeline transportation as against cheap supertankers dictates this policy. Beyond any shadow of a doubt, the fuel of the future will be nuclear, and for this century almost entirely the energy of fission rather than of fusion. Recent estimates suggest that as much as 50% of the energy for the U.S. will be nuclear by the year 2,000, and for Canada the more modest National Energy Board estimate holds that in 1990, 35% of Canadian electric generation will be by nuclear power reactors concentrated in the fuel-starved province of Ontario. (17 refs.)

  14. The strategic value of fossil fuels: challenges and responses

    International Nuclear Information System (INIS)

    1996-01-01

    Several speeches of the conference concerning the strategic value of fossil fuels that was held on May 8 to 11, 1995 in Houston, Texas are presented. The current and future importance of fossil fuels in energy consumption throughout the world is highlighted. The role of developing countries in the fossil fuels market is increasing, and these countries need some assistance from developed countries to develop. International and regional cooperation seems to be a good way to ensure economic growth. The importance of fossil fuels is shown by the growth of international coal and natural gas trade. (TEC)

  15. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  16. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    Science.gov (United States)

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  17. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  18. Say no to fossil fuels and yes to nuclear energy

    International Nuclear Information System (INIS)

    Raghava Chari, S.

    2011-01-01

    Mistaken notion and wrongful fear of nuclear energy based on the horrors of the second world war bombing of Nagasaki and Hiroshima and accidents at Chernobyl and Three mile island and lately the Fukushima nuclear plant meltdown to earthquake and and tsunami have developed antagonism to nuclear energy (NE) and clouded its usefulness as a practical, clean, environment friendly and affordable alternate source of energy. Such antagonism has slowed down research on NE and its adoption on a much wider scale, the crying need of the day. There is a motivated disinformation campaign against nuclear energy in India as witnessed from the ongoing agitation at Kudankulam in Tamil Nadu and Jaitapur in Maharashtra. In fact nuclear energy is the only practical alternative energy source to meet the ever increasing energy needs of the world particularly the developing nations, and to save the world from the greenhouse ill effects of massive carbon dioxide and other emissions from burning fossil fuels like coal, oil and natural gas. Emissions from fossil fuel burning including radioactive emissions are hundreds of times more in weight and volume and far more hazardous than from an equal capacity nuclear plant. In fact there are no greenhouse gases (CO 2 ), acid rain gases (SO 2 ) or carcinogen emissions (NO x ) from nuclear plants. The accident rates and severity of accidents owing to nuclear plants is much lower as compared to fossil fuel power generation. Last but not the least NE offers economic freedom from the clutches of the few monopolistic oil producing countries, which charge exorbitant oil prices and cripple the finances of developing nations. (author)

  19. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  20. Security of supply: a neglected fossil fuel externality

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Various groups have attempted to set a monetary value on the externalities of fossil fuel usage based on damages caused by emissions of particulates, sulfur dioxide, and oxides of nitrogen and carbon. One externality that has been neglected in this type of analysis, however, is the cost of maintaining a secure supply of fossil fuels. Military expenditures for this purpose are relatively easy to quantify based on US Department of Defense and Office of Management and Budget figures, and amount to between $1 and more than $3 per million Btu, based on total fossil fuel consumption in the US. Open acknowledgment of such expenses would, at the very least, have a profound effect on the perceived competitiveness of all non-fossil fuel technologies. It should also provide a simple and easily comprehended rationale for an energy content (Btu) charge on all fossil fuels. (Author)

  1. Alternative Fuels Data Center: Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on

  2. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  3. Environmental effects of fossil fuel combustion

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO 2 and SO 3 ), nitrogen oxides (NO x NO + NO 2 ) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO 2 and NO x are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in environment. Wet flue gas

  4. Environmental effects of fossil fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1999-07-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO{sub 2} and SO{sub 3}), nitrogen oxides (NO{sub x} NO + NO{sub 2}) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO{sub 2} and NO{sub x} are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in

  5. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  6. Fossil fuels, uranium, and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Playford, P E

    1977-01-01

    Relevant data on the world energy picture are presented to indicate present energy sources and resources, especially fossil fuels and the role of uranium in energy production, with some predictions for the future. World energy is presently being derived from petroleum (some 62%), coal (31%), hydropower (6%), and nuclear (1%). The fundamental cause of the present world energy crisis is attributed to the increase in consumption of petroleum over the past 20 yr, compared with the relatively small size and unequal distribution of the world's remaining reserves. The reserves/production ratio for petroleum has fallen steadily from a general level of 60 to 80 yr from 1920 to 1955, to about 31 yr today. New oil is becoming harder and more expensive to find and produce, the size of discoveries is declining. There is no reason to believe that this trend will be substantially altered, and production is expected to begin to decline between 1985 and 1990. Gas resources also are expected to fall short after the mid-1980s. Coal reserves are enormous, but their full utilization is doubtful because of economic and environmental problems. Tar sands and oil shale resources are potentially major sources of oil, and they are expected to become more competitive with petroleum as higher oil prices occur.

  7. Reforming fossil fuel prices in India: Dilemma of a developing economy

    International Nuclear Information System (INIS)

    Anand, Mukesh Kumar

    2016-01-01

    Over the period between 1990–1 and 2012–3, fossil fuel use on farms has risen and its indirect use in farming, particularly for non-energy purposes, is also growing. Consequently, both energy intensity and fossil fuel intensity are rising for Indian agriculture. But, these are declining for the aggregate Indian economy. Thus, revision of fossil fuel prices acquires greater significance for Indian agriculture than for rest of the economy. There are significant differences across crops. The crop-level analysis is supplemented by an alternative approach that utilizes a three-sector input–output (I–O) model for the Indian economy representing farming, fossil fuels, and rest of economy. Fossil fuels sector is assessed to portray, in general, strong forward linkages. The increase in total cost of farming, for a given change in fossil fuel prices, is estimated as a multiple of increase in direct input cost of fossil fuels in farming. From the three-sector aggregated economy this multiple was estimated at 3.99 for 1998–9. But it grew to 6.7 in 2007–8. The findings have stronger ramifications than commonly recognized, for inflation and cost of implementing the policy on food security. - Highlights: •Fossil fuels’ contribution in primary energy supply has risen from 55 to 75 per cent. •Energy intensity halved for aggregate GDP, but doubled for agricultural GDP. •Impact of fossil fuel price increase on farming costs mimics a widening spiral. •Total cost of farming may increase 6.7 times the increase in direct fuel input cost.

  8. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  9. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5) Fossil

  10. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  11. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  12. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  13. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  14. Alternate fusion fuels workshop

    International Nuclear Information System (INIS)

    1981-06-01

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached

  15. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  16. Fossil fuel subsidies and the new EU Climate and Energy Governance Mechanism

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2016-07-01

    There is currently no dedicated process to track the extent of fossil fuel subsidies, nor to ensure that Member States phase them out. This situation is inconsistent with the European Union's stated decarbonization and energy efficiency dimensions under the Energy Union. The EU is therefore in need of an alternative process for tracking and ensuring the phase-out of fossil fuel subsidies by the Member States. The new Energy Union governance mechanism presents an opportunity for creating this alternative. Providing the right price signals is essential part of the policy mix that is needed to achieve Europe's climate policy goals. Phasing out fossil fuel subsidies in the EU is an important part of aligning energy prices with the EU's climate and energy goals. Depending on how they are measured, combined fossil fuel subsidies in the EU range from 39 to over euro 200 billion per annum (European Commission, 2014). They therefore constitute a significant source of incoherence between the EU's climate mitigation and fiscal policies for energy. However, there has recently been mixed progress in addressing fossil fuel subsidies in Europe. For instance, under the Europe 2020 Strategy, Member States had committed to begin developing plans for phasing out fossil fuel subsidies by 2020. Progress on implementing these plans was supposed to be monitored under the European Semester. However, the decision was taken to remove the focus on energy and fossil fuel subsidies from the European Semester in 2015. As yet, no new system for governing the phase-out of fossil fuel subsidies has been advanced, leaving the question of fossil fuel subsidy reform in limbo. The advent of the EU's Energy Union project creates an opportunity for putting the phase-out of fossil fuel subsidies back on track in Europe. This could be done by including requirements for national goal setting on specific kinds of fossil fuel subsidies in a dedicated sub-section of the National Climate and Energy Plans

  17. The financial impact of divestment from fossil fuels

    NARCIS (Netherlands)

    Plantinga, Auke; Scholtens, Bert

    2016-01-01

    Divesting from fossil companies has been put forward as a means to address climate change. We study the impact of such divesting on investment portfolio performance. To this extent, we systematically investigate the investment performance of portfolios with and without fossil fuel company stocks. We

  18. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  19. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    Science.gov (United States)

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  20. Fossil fuel produced radioactivities and their effect on foodchains

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1980-10-01

    The environmental impact of radioactivities produced from fossil fuel burning is not necessarily small compared with that of nuclear energy. The effect of these radioactivities on the foodchain through seafoods is discussed.

  1. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Approaches to bioremediation of fossil fuel contaminated soil: An overview. ... African Journal of Biotechnology ... neither generates waste nor pollutes the soil environment, the final products either through accidental or deliberate spillage can ...

  2. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  3. Commercial aviation alternative fuels initiative

    Science.gov (United States)

    2010-04-22

    This presentation looks at alternative fuels to enhance environmental stability, reduction of greenhouse gas emissions, air quality benefits (e.g., SOx and PM), fuel supply stability, and fuel price stability.

  4. A long-term view of worldwide fossil fuel prices

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2010-01-01

    This paper reviews a long-term trend of worldwide fossil fuel prices in the future by introducing a new method to forecast oil, natural gas and coal prices. The first section of this study analyses the global fossil fuel market and the historical trend of real and nominal fossil fuel prices from 1950 to 2008. Historical fossil fuel price analysis shows that coal prices are decreasing, while natural gas prices are increasing. The second section reviews previously available price modelling techniques and proposes a new comprehensive version of the long-term trend reverting jump and dip diffusion model. The third section uses the new model to forecast fossil fuel prices in nominal and real terms from 2009 to 2018. The new model follows the extrapolation of the historical sinusoidal trend of nominal and real fossil fuel prices. The historical trends show an increase in nominal/real oil and natural gas prices plus nominal coal prices, as well as a decrease in real coal prices. Furthermore, the new model forecasts that oil, natural gas and coal will stay in jump for the next couple of years and after that they will revert back to the long-term trend until 2018. (author)

  5. Fast neutron activation analysis of fossil fuels and liquefaction products

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.; Koppenaal, D.W.

    1982-01-01

    The problems associated with neutron absorption/thermalization, gamma-ray self-absorption, and variable irradiation and counting geometries associated with the composition, densities and physical states of the samples and standards of fossil fuels are considered. Two sets of liquid organic reagent primary standards and several solid standards are selected and evaluated for use in the determiation of oxygen and nitrogen in coals, coal conversion liquids, and residual solids. Analyses of a number of coals, conversion products and NBS reference standards are presented. Problems associated with selecting a reproducible pre-analysis drying procedure for oxygen determinations in coal and discussed. It is suggested that a brief freeze-drying procedure may result in minimal matrix alternation and yield reproducible values for bulk oxygen contents of coals

  6. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    Science.gov (United States)

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress. © The Author(s) 2015.

  7. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  8. Nuclear power as a substitute for fossil fuels

    International Nuclear Information System (INIS)

    Bahramabadi, G. A.; Shirzadi, C.

    2008-01-01

    The challenge in energy policy is to reduce CO 2 emissions and the worlds dependence on oil while satisfying a substantially increased demand for energy. Putting aside the still-speculative possibility of sequestering carbon dioxide, this challenge reduces to that of using energy more efficiently and finding substitutes for fossil fuels. Alternatives to fossil fuels fall into two broad categories: Renewable sources. Most of these sources-including hydroelectric power, wind power, direct solar heating, photovoltaic power, and biomass-derive their energy ultimately from the Sun and will not be exhausted during the next billion years. Geothermal energy and tidal energy are also renewable, in this sense, although they do not rely on the sun. However, there is almost an inverse correlation between the extent to which the source b now being used and the size of the potentially trap able resource. Thus, expansion of hydroelectric power (which is substantially used) is constricted by limited sites and environmental objections, whereas wind (for which the resource is large) is as yet less used and thus is not fully proven as a large-scale contributor. Nuclear sources. The two nuclear possibilities are fission and fusion. The latter would be inexhaustible for all practical purposes, but developing an effective fusion system remains an uncertain hope. Fission energy would also have an extremely long time span if breeder reactors arc employed, but with present-day reactors limits on uranium (or thorium) resources could be an eventual problem. At present, fission power faces problems of public acceptance and economic competitiveness. The broad alternatives of renewable energy and nuclear energy can be considered as being in competition, with one or the other to be the dominant choice, or complementary, with both being extensively employed

  9. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  10. Implicit CO_2 prices of fossil fuel use in Switzerland

    International Nuclear Information System (INIS)

    Schleiniger, Reto

    2016-01-01

    This study aims to assess the efficiency of the fossil fuel taxation scheme currently in effect in Switzerland. To this end, the concept of implicit CO_2 prices is introduced, based on which prices for different fossil fuel uses are derived. Implicit CO_2 prices are defined as the difference between actual prices paid by consumers and efficient domestic fuel prices. Efficient domestic fuel prices, in turn, consist of private production costs, a uniform value added tax and only local external costs, not including external costs due to CO_2 emissions and global climate change. The resulting prices differ substantially, which suggests that there is considerable cost-saving potential in reducing CO_2 emissions in Switzerland. For passenger cars and air traffic, the implicit prices are negative. For these uses, higher fuel charges would therefore be beneficial from a purely domestic perspective, i.e., without considering the negative repercussions of global warming. - Highlights: •Efficient fossil fuel policy must take into account local and global externalities. •Implicit CO_2 prices are applied as efficiency indicator of fossil energy policy. •Implicit CO_2 prices vary strongly for different fossil fuel uses in Switzerland. •There is a large cost-saving potential in terms of reducing CO_2 emissions.

  11. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  12. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  13. Constraints of fossil fuels depletion on global warming projections

    International Nuclear Information System (INIS)

    Chiari, Luca; Zecca, Antonio

    2011-01-01

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO 2 concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO 2 emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO 2 concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: → CO 2 and global temperature are projected under fossil fuels exhaustion scenarios. → Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. → Temperature projections are possibly lower than the IPCC ones. → Fossil fuels exhaustion will not avoid dangerous global warming.

  14. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  15. Exploration for fossil and nuclear fuels from orbital altitudes

    Science.gov (United States)

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  16. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  17. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  18. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  19. Can Geothermal Power Replace Fossil Fuels?

    Science.gov (United States)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    is scaled up to produce power in the MW range. Values needed for these systems are temperatures of 92+ °C and flow rates of 140-1000 gpm. In a detailed analysis of the North Dakota part of the Williston Basin, we used heat flow, bottom-hole temperatures, and measured temperature gradients to calculate the energy contained within specific formations having temperatures in the range of 100 °C to 150 °C. We find that at a 2% recovery factor, approximately 4500 MW/hr can be recovered at depths of 3-4 km. North Dakota currently produces approximately 3100 MW/hr from non-renewable sources such as coal and petroleum. We conclude that the geothermal resource in the Williston Basin could completely replace fossil fuels as an electrical power supply for North Dakota.

  20. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  1. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  2. One hundred and fifty years of combustion of fossil hydrocarbons: The emergent alternatives

    International Nuclear Information System (INIS)

    Laine, Jorge

    2009-01-01

    After one hundred fifty years of drilling first commercial petroleum wells that led to the intensive use of liquid fuels to move transport vehicles, we are arriving at the peak of the world-wide petroleum reserves. Yet, we still have a good portion for spending, with the hope that the consequences will be better than in the first part, which has implied several wars and deteriorations of the environment. This assay brings a review about the history of fossil fuels and with the prospective of the emergent energetic alternatives, placing emphasis on bioenergy as an alternative for the transition between the actual combustion age and the new age of clean energy.

  3. Fossil fuel power generation within the European Research Area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-10

    The report is the first in a series of three produced by the PowerClean Thematic Network that looks at and defines future requirements for research and development of fossil fuel power generation in the European Union. It makes the case for fossil fuel R & D with emphasis on the need for clean coal technologies (to increased efficiency and other CO{sub 2} capture and storage) For satisfying future energy demands of the enlarged European Union between now and 2030. The report concludes that affirmative R, D and D action is needed to support the EU power industry, working together on a Europe-wide basis, to establish the use of coal and other fossil fuels in near-zero emissions power plant. The role model would be the European Research Area, as in the Sixth Framework Programme (FP6), but with a more comprehensive range of technical objectives recognising the importance of fossil fuels. Section headings are: introduction; current energy use; future needs and requirements; the future for clean fossil fuel energy in Europe; comparison with approaches adopted elsewhere (USA Vision 21 and FutureGen programmes, Japan); and responsibilities for EU coal R, D & D. 14 refs., 9 figs., 4 tabs.

  4. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  5. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey

    International Nuclear Information System (INIS)

    Canyurt, Olcay Ersel; Ozturk, Harun Kemal

    2008-01-01

    The main objective is to investigate Turkey's fossil fuels demand, projection and supplies by using the structure of the Turkish industry and economic conditions. This study develops scenarios to analyze fossil fuels consumption and makes future projections based on a genetic algorithm (GA). The models developed in the nonlinear form are applied to the coal, oil and natural gas demand of Turkey. Genetic algorithm demand estimation models (GA-DEM) are developed to estimate the future coal, oil and natural gas demand values based on population, gross national product, import and export figures. It may be concluded that the proposed models can be used as alternative solutions and estimation techniques for the future fossil fuel utilization values of any country. In the study, coal, oil and natural gas consumption of Turkey are projected. Turkish fossil fuel demand is increased dramatically. Especially, coal, oil and natural gas consumption values are estimated to increase almost 2.82, 1.73 and 4.83 times between 2000 and 2020. In the figures GA-DEM results are compared with World Energy Council Turkish National Committee (WECTNC) projections. The observed results indicate that WECTNC overestimates the fossil fuel consumptions. (author)

  6. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  7. Fossil fuel combined cycle power system

    Science.gov (United States)

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  8. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  9. Alternative Fuels Data Center: Publications

    Science.gov (United States)

    Windstars; 14) and the use of alternative fuel vehicles at the Olympics. Alternative Fuels In Trucking, Vol and their economic and environmental benefits. This report is designed to share the experiences and National Academy of Engineering suggested that 'DOE might have its greatest impact by leading the private

  10. Economists and the end of fossil fuels (1865-1931)

    International Nuclear Information System (INIS)

    Missemer, Antoine

    2017-01-01

    From the 1860's to the 1930's, economists' views about the end of fossil fuels changed. Technological as well as theoretical developments were behind this. The challenge here is to disentangle this web in order to understand how economists (even today) deal with environmental topics

  11. Financial subsidies to the Australian fossil fuel industry

    International Nuclear Information System (INIS)

    Riedy, Chris; Diesendorf, Mark

    2003-01-01

    A common claim during international greenhouse gas reduction negotiations has been that domestic emissions cuts will harm national economies. This argument fails to consider the distorting effect of existing financial subsidies and associated incentives to fossil fuel production and consumption provided by governments in most developed countries. These subsidies support a fossil fuel energy sector that is the major contributor to global greenhouse gas emissions and conflict with attempts to expand the role of sustainable energy technologies. Reform of these types of subsidies has the potential to provide substantial gains in economic efficiency as well as reductions in carbon dioxide emissions--a 'no regrets' outcome for the economy and the environment. This paper examines financial subsidies to fossil fuel production and consumption in Australia and estimates the magnitude of the subsidies. Subsidies and associated incentives to fossil fuel production and consumption in Australia are similar to those in the United States and the other countries that have pushed for increased 'flexibility' during international negotiations

  12. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION .... The marginal faults favoured the accumulation of alluvial fan sandy ... sediments towards the western marginal areas of the basin. ...... subsiding East African continental margin initiated to deposit fluvio-lacustrine sediments. A.

  13. Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax

    NARCIS (Netherlands)

    van der Ploeg, F.; Rezai, A.

    2017-01-01

    A stylised analytical framework is used to show how the global carbon tax and the amount of untapped fossil fuel can be calculated from a simple rule given estimates of society's rate of time impatience and intergenerational inequality aversion, the extraction cost technology, the rate of technical

  14. Rationale of Early Adopters of Fossil Fuel Divestment

    Science.gov (United States)

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  15. Divesting Fossil Fuels : The Implications for Investment Portfolios

    NARCIS (Netherlands)

    Trinks, Arjan; Scholtens, Bert; Mulder, Machiel; Dam, Lammertjan

    2017-01-01

    Fossil fuel divestment campaigns urge investors to sell their stakes in companies that supply coal, oil, and gas. However, avoiding investments in such companies can be expected to impose a financial cost on the investor because of reduced opportunities for portfolio diversification. We compare the

  16. A world-wide strategy for conserving fossil fuels

    International Nuclear Information System (INIS)

    Ogisu, Y.

    1994-01-01

    This paper deals with the fact that fossil fuels are capable technologies for savings energy in order to prevent the global warning. It gives some general principles of energy saving such as: Improvement of energy conversion rate; Lowering of burden; Use of natural energy; Storage of heat. (TEC)

  17. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  18. The European carbon balance. Part 1: fossil fuel emissions

    NARCIS (Netherlands)

    Ciais, P.; Paris, J.D.; Marland, G.; Peylin, P.; Piao, S.L.; levin, I.; Pregger, T.; Scholz, Y.; Friedrich, R.; Rivier, L.; Houweling, S.; Schulze, E.D.

    2010-01-01

    We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in

  19. The preliminary study of urbanization, fossil fuels consumptions and ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... As a result the demand of more energy in form of fossil fuels increased for domestic, industrial and transportation purpose. ... During 1980 to 2007 the consumption of oil and petrol, natural gas and coal increased to ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Fossil fuel combined cycle power generation method

    Science.gov (United States)

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  1. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  2. Into the mire: A closer look at fossil fuel subsidies

    Directory of Open Access Journals (Sweden)

    Radoslaw (Radek Stefanski

    2016-03-01

    Full Text Available Threatened by climate change, governments the world over are attempting to nudge markets in the direction of less carbon-intensive energy. Perversely, many of these governments continue to subsidize fossil fuels, distorting markets and raising emissions. Determining how much money is involved is difficult, as neither the providers nor the recipients of those subsidies want to own up to them. This paper builds on a unique method to extract fossil fuel subsidies from patterns in countries’ carbon emission-to-GDP ratios. This approach is useful since it: 1 overcomes the problem of scarce data; 2 derives a wider and more comparable measure of subsidies than existing measures and 3 allows for the performance of counterfactuals which help measure the impact of subsidies on emissions and growth. The resultant 170-country, 30-year database finds that the financial and the environmental costs of such subsidies are enormous, especially in China and the U.S. The overwhelming majority of the world’s fossil fuel subsidies stem from China, the U.S. and the ex-USSR; as of 2010, this figure was $712 billion or nearly 80 per cent of the total world value of subsidies. For its part, Canada has been subsidizing rather than taxing fossil fuels since 1998. By 2010, Canadian subsidies sat at $13 billion, or 1.4 per cent of GDP. In that same year, the total global direct and indirect financial costs of all such subsidies amounted to $1.82 trillion, or 3.8 per cent of global GDP. Aside from the money saved, in 2010 a world without subsidies would have had carbon emissions 36 per cent lower than they actually were. Any government looking to ease strained budgets and make a significant (and cheap contribution to the fight against climate change must consider slashing fossil fuel subsidies. As the data show, this is a sound decision – fiscally and environmentally.

  3. Fossil fuel subsidy reform: lessons from the Indonesian case

    International Nuclear Information System (INIS)

    Savatic, Filip

    2016-10-01

    Global assessments of consumption and the Indonesian case show the relevance of non-household consumers of subsidized energy products. As shown in this study, understanding in more nuance how reforms affect them has the potential to improve the reforms that will be developed by policy-makers worldwide. Further study can reinforce the many benefits of successful reform for the countries and societies slowly turning away from these policies of the past. Estimates regarding the amount of public funds utilized to subsidize the production or consumption of fossil fuels are staggering. For 2011, they range from $83 billion in OECD member states, to nearly $4.1 trillion worldwide if environmental externalities are considered. Numerous studies have demonstrated that subsidies repress economic growth, undermine energy sector investment, increase public debt, benefit wealthy citizens over the poor, instigate a rise in illicit activities, and engender greater global and local pollution. The negative effects of fossil fuel subsidies have led numerous governments to reform their energy policies. There has also been a growing international consensus in favor of reform. While the components of successful reform programs have been identified through past case studies, the nature of reforms adopted by several governments that target non-households have not been systematically examined. Since the late 1990s, the Indonesian government has implemented numerous reforms of its fossil fuel subsidies, including measures targeting household as well as non-household energy consumption. In doing so, it has incurred significant fiscal savings. However, an innovative budgetary analysis reveals that households receive a minority, and a declining share, of fossil fuel subsidy funds. This is the case despite the fact that subsidies were implemented to ensure poor households have access to cheap energy. These findings demonstrate the need to consider non-household sectors in the design of fossil

  4. Origin and monitoring of pollutants in fossil-fuel flames

    International Nuclear Information System (INIS)

    Chigier, N.A.

    1976-01-01

    A review is given of the origin of pollutants in fossil-fuel flames. Burning of fossil fuels is the major cause of air pollution and significant reductions in levels of environmental pollution can be achieved by more effective control of combustion systems. The chemical kinetics of formation of unburned hydrocarbons, oxides of nitrogen, carbon monoxide and particulate matter are described, as well as the reactions which can lead to oxidation and destruction of these pollutants within the flame. The important influence of mixing and aerodynamics is discussed, together with methods of mathematical modelling and prediction methods. Practical problems arising in gas turbine engines, spark ignition engines and diesel engines are investigated in order to minimize the emission of pollutants while preserving fuel economy. (author)

  5. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  6. Alternative Fuels (Briefing Charts)

    Science.gov (United States)

    2009-06-19

    feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm , etc...Fuels Focus  Various conversion processes  Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...data and resources – Conduct gap analysis – synfuel efforts, expand to biofuels, ID potential joint efforts – Increase visibility outside SCP world

  7. Alternative transportation fuels: Financing issues

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-06-01

    A multitude of alternative fuels could reduce air pollution and the impact of oil price shocks. Only a few of these fuels are readily available and inexpensive enough to merit serious consideration over the coming five years. In New York City, safety regulations narrow the field still further by eliminating propane. As a result, this study focuses on the three alternative fuels readily available in New York City: compressed natural gas, methanol, and electricity. Each has significant environmental benefits and each has different cost characteristics. With the Clean Air Act and the National Energy Strategy highlighting the country's need to improve urban air quality and move away from dependence on imported fuels, fleets may soon have little choice but to convert to altemative fuels. Given the potential for large infrastructure and vehicle costs, these fleets may have difficulty finding the capital to make that conversion. Ultimately, then, it will be the involvement of the private sector that will determine the success of alternative fuels. Whether it be utilities, fuel distributors or suppliers, private financing partners or others, it is critical that altemative fuels programs be structured and planned to attract their involvement. This report examines financing methods that do not involve government subsidies. It also explores financing methods that are specific to alternative fuels. Bond issues and other mechanisms that are used for conventional vehicles are not touched upon in this report. This report explores ways to spread the high cost of alternative fuels among a number of parties within the private sector. The emphasis is on structuring partnerships that suit methanol, electric, or natural gas vehicle fleets. Through these partnerships, alternative fuels may ultimately compete effectively against conventional vehicle fuels

  8. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  9. Global exergetic dimension of hydrogen use in reducing fossil fuel consumption

    International Nuclear Information System (INIS)

    Adnan Midilli; Ibrahim Dincer

    2009-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for minimizing the fossil fuel based-global irreversibility coefficient of global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions such as global waste exergy factor, global irreversibility coefficient and hydrogen based-global exergetic indicator. In order to investigate the role of hydrogen use at minimizing the fossil fuel based global irreversibility, the actual fossil fuel consumption data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease. (author)

  10. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw...

  11. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  12. US fossil fuel technologies for Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  13. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  14. Technical considerations in repowering a nuclear plant for fossil fueled operation

    International Nuclear Information System (INIS)

    Patti, F.J.

    1996-01-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today's world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal

  15. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  16. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  17. Long-term climate policy implications of phasing out fossil fuel subsidies

    International Nuclear Information System (INIS)

    Schwanitz, Valeria Jana; Piontek, Franziska; Bertram, Christoph; Luderer, Gunnar

    2014-01-01

    It is often argued that fossil fuel subsidies hamper the transition towards a sustainable energy supply as they incentivize wasteful consumption. We assess implications of a subsidy phase-out for the mitigation of climate change and the low-carbon transformation of the energy system, using the global energy–economy model REMIND. We compare our results with those obtained by the International Energy Agency (based on the World Energy Model) and by the Organization for Economic Co-Operation and Development (OECD-Model ENV-Linkages), providing the long-term perspective of an intertemporal optimization model. The results are analyzed in the two dimensions of subsidy phase-out and climate policy scenarios. We confirm short-term benefits of phasing-out fossil fuel subsidies as found in prior studies. However, these benefits are only sustained to a small extent in the long term, if dedicated climate policies are weak or nonexistent. Most remarkably we find that a removal of fossil fuel subsidies, if not complemented by other policies, can slow down a global transition towards a renewable based energy system. The reason is that world market prices for fossil fuels may drop due to a removal of subsidies. Thus, low carbon alternatives would encounter comparative disadvantages. - Highlights: • We assess implications of phasing out fossil fuel subsidies on the mitigation of climate change. • The removal of subsidies leads to a net-reduction in the use of energy. • Emission reductions contribute little to stabilize greenhouse gases at 450 ppm if not combined with climate policies. • Low carbon alternatives may encounter comparative disadvantages due to relative price changes at world markets

  18. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  19. Alternative Fuel News, Vol. 6, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    2003-03-01

    Quarterly magazine with articles on Alternate Fuel Vehicles (AFVs) in India, alternative fuels for emergency preparedness, and testing of propane vehicles by UPS. Also an interview of author Jeremy Rifkin on how alternative fuels provide pathways to hydrogen.

  20. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  1. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  2. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  3. Fossil fuels: Kyoto initiatives and opportunities. Part 1

    International Nuclear Information System (INIS)

    Pinelli, G.; Zerlia, T.

    2008-01-01

    GHG emission in the upstream step of fossil fuel chains could give an environmental as well as economic opportunity for traditional sectors. This study deepens the matter showing an increasing number of initiative over the last few years taken both the involved sectors and by various stake holders (public and private subjects) within the Kyoto flexible mechanism (CDM and JI) or linked to voluntary national or at a global level actions. The above undertakings give evidence for an increased interest and an actual activity dealing with GHG reduction whose results play an evident and positive role for the environment too. Part 1. of this study deals with fossil fuel actions within the Kyoto protocol mechanism. Part 2. will show international and national voluntary initiative [it

  4. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Recognition of the Environmental Costs of Fossil Fuel Plants

    Directory of Open Access Journals (Sweden)

    Hakkı FINDIK

    2015-12-01

    Full Text Available Environment that is the natural residential area of live life is among the interests of the various sciences. Within the scope of accounting science, the concept of social awareness requires a social responsibility based approach and this causes some additional environmental costs emerged when interaction of business with their environment considered. In the Uniform Accounting Plan there exists a special account relating with monitoring, controlling and managing of environmental costs. This study deals with environmental accounting for enterprises and introduces determination and recognition of the environmental costs of fossil fuel plants that use coal as a fuel

  6. How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China

    International Nuclear Information System (INIS)

    Wen, Xiaoqian; Guo, Yanfeng; Wei, Yu; Huang, Dengshi

    2014-01-01

    This study documents the return and volatility spillover effect between the stock prices of Chinese new energy and fossil fuel companies using the asymmetric BEKK model. Based on daily samples taken from August 30, 2006 to September 11, 2012, the dynamics of new energy/fossil fuel stock spillover are found to be significant and asymmetric. Compared with positive news, negative news about new energy and fossil fuel stock returns leads to larger return changes in their counter assets. News about both new energy and fossil fuel stock returns spills over into variances of their counter assets, and the volatility spillovers depend complexly on the respective signs of the return shocks of each asset. The empirical results demonstrate that new energy and fossil fuel stocks are generally viewed as competing assets, that positive news about new energy stocks could affect the attractiveness of fossil fuel stocks and that new energy stock investment is more speculative and riskier than fossil fuel stock investment. These results have potential implications for asset allocation, financial risk management and energy policymaking. - Highlights: • The dynamics of Chinese new energy/fossil fuel stock spillover are significant and asymmetric. • New energy and fossil fuel stocks are generally viewed as competing assets. • Positive news about new energy stocks affects the attractiveness of fossil fuel stocks. • New energy stock investment is more speculative and riskier than fossil fuel stock investment

  7. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    DEFF Research Database (Denmark)

    Taeroe, Anders; Fayez Mustapha, Walid; Stupak, Inge

    2017-01-01

    fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest...... the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model...... assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE...

  8. Economic value of U.S. fossil fuel electricity health impacts.

    Science.gov (United States)

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.

  9. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  10. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  11. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov (United States)

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  12. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  13. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  14. Implications of alternative fuel cycles

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The United States is re-examining alternative fuel cycles and nuclear power strategies, and doubtful attempts are being made to justify the economics of the 'throw-away' fuel cycle. At an international forum on 'An acceptable nuclear energy future for the world' at Fort Lauderdale, Karl Cohen of General Electric and a leading authority on this topic put the implications into perspective. Extracts from his address are presented

  15. Advanced Technology and Alternative Fuel Vehicles

    International Nuclear Information System (INIS)

    Tuttle, J.

    2001-01-01

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains

  16. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  17. API focuses on cleanliness, economics of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Fossil fuels, consumed in free markets, are playing positive economic and environmental roles as the world economy becomes integrated, industry leader said last week. Environmental zealots threaten to force conversion from gasoline as a motor fuel in the U.S. and oppose the growing integration of the world economy. Fossil fuels, free markets, human creativity, and entrepreneurial spirit--not government intervention--are the keys to a clean environment, said API pres. Charles J. DiBona and outgoing Chairman C.J. (Pete) Silas, chairman and chief executive officer of Phillips Petroleum Co. DiBona said proponents of the BTU tax defeated earlier this year used erroneous assumptions to make a case against oil use in an effort to replace the efficiency of the marketplace with the inefficiency of bureaucracy. The government's role is to set tough standards and avoid dictating the way environmental standards are met, they said. Other speakers warned that voluntary measures put forward by the Clinton administration of address global climate change issues likely will fall short

  18. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  19. Carbon dioxide from fossil fuels. Adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    The world is likely to experience noticeable carbon dioxide induced global warming by the beginning of the next century if high annual growth rates of fossil fuel energy use continue. This article proposes some ideas about what can be done from a policy-making perspective if the CO$SUB$2 effects occur, and how, in addition, we can deal now with the uncertainties. It also considers questions concerning the potential for control of CO$SUB$2 emissions drawing up on current work in long range coal-based energy technology assessment. (70 refs.)

  20. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  1. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Science.gov (United States)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  2. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  3. Alternative Fuel for Marine Application

    Science.gov (United States)

    2012-02-29

    The U.S. Maritime Administration (MARAD) is participating in the U.S. Navy's ongoing efforts to test alternative fuels for marine use by demonstrating their applicability on commercial vessels. In support of this effort, the Navy provided neat hydrot...

  4. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  5. Depletion of fossil fuels and the impacts of global warming

    International Nuclear Information System (INIS)

    Hoel, M.; Kverndokk, S.

    1996-01-01

    This paper combines the theory of optimal extraction of exhaustible resources with the theory of greenhouse externalities, to analyze problems of global warming when the supply side is considered. The optimal carbon tax will initially rise but eventually fall when the externality is positively related to the stock of carbon in the atmosphere. It is shown that the tax will start falling before the stock of carbon in the atmosphere reaches its maximum. If there exists a non-polluting backstop technology, it will be optimal to extract and consume fossil fuels even when the price of fossil fuels is equal to the price of the backstop. The total extraction is the same as when the externality is ignored, but in the presence of the greenhouse effect, it will be optimal to slow the extraction and spread it over a longer period. If, on the other hand, the greenhouse externality depends on the rate of change in the atmospheric stock of carbon, the evolution of the optimal carbon tax is more complex. It can even be optimal to subsidize carbon emissions to avoid future rapid changes in the stock of carbon, and therefore future damages. 22 refs., 3 figs

  6. Could reducing fossil-fuel emissions cause global warming

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T M.L. [University of East Anglia, Norwich (UK). Climatic Research Unit

    1991-02-07

    When fossil fuel is burned, both carbon dioxide and sulphur dioxide are added to the atmosphere. The former should cause warming of the lower atmosphere by enhancing the greenhouse effect, whereas the latter, by producing sulphate aerosols, may cause a cooling effect. The possibility that these two processes could offset each other was suggested many years ago but during most of the intervening period, attention has focused on the greenhouse effect. Interest in tropospheric aerosols has, however, recently been rekindled by the realization that they may influence climate, not only through clear-sky radiative effects, but also by modifying cloud albedo. The author examines the sensitivity of the climate system to simultaneous changes in SO{sub 2} and CO{sub 2} emissions, as might occur if controls were imposed on fossil-fuel use. Over the next 10-30 years, it is conceivable that the increased radiative forcing due to SO{sub 2} concentration changes could more than offset reductions in radiative forcing due to reduced CO{sub 2} emissions. 16 refs., 3 figs., 1 tab.

  7. Does fossil fuel combustion lead to global warming?

    International Nuclear Information System (INIS)

    Schwartz, S.E.

    1993-01-01

    Tropospheric sulfate aerosols produced by atmospheric oxidation of SO 2 emitted from fossil fuel combustion scatter solar radiation and enhance the reflectivity of clouds. Both effects decrease the absorption of solar radiation by the earth-atmosphere system. This cooling influence tends to offset the warming influence resulting from increased absorption of terrestrial infrared radiation by increased atmospheric concentrations of CO 2 . The sulfate forcing is estimated to be offsetting 70% of the forcing by CO 2 derived from fossil fuel combustion, although the uncertainty of this estimate is quite large--range 28-140%, the latter figure indicating that the present combined forcing is net cooling. Because of the vastly different atmospheric residence times of sulfate aerosol (about a week) and CO 2 (about 100 years), the cooling influence of sulfate aerosol is exerted immediately, whereas most of the warming influence of CO 2 is exerted over more than 100 years. Consequently the total forcing integrated over the entire time the materials reside in the atmosphere is net warming, with the total CO 2 forcing estimate to exceed the sulfate forcing by a factor of 4. The present situation in which the forcing by sulfate is comparable to that by CO 2 is shown to be a consequence of the steeply increasing rates of emission over the industrial era. (author)

  8. Bolide impacts and their significance in fossil fuel geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Saxby, J.D. (CSIRO Division of Coal Technology (Australia))

    1989-01-01

    One of the most dramatic scientific theories of the past ten years has been that a collision between the earth and a large meteor or bolide about 10 km in diameter caused mass extinctions of most of the then-existing species (including dinosaurs) at the end of the Cretaceous, 65 million years ago. Controversy continues but, by and large, organic geochemists researching fossil fuels have not been active participants. Only recently has a relationship between kerogen and the all-important iridium anomaly been investigated (Schmitz et al., 1988). Sediment samples at the Cretaceous-Tertiary boundary contain anomalously high concentrations of iridium, an element whose abundance in the earth's crust is only one ten thousandth of that found in meteorites and presumably in other solar system debris. The purpose of this paper is to briefly raise some questions regarding the bolide impact theory as it affects coal and petroleum deposits. It may well be that organic geochemical evidence will be crucial in either supporting or refuting the impact hypothesis or one of its variations. Even if future research tends to favor widespread explosive volcanism, rather than bolide impacts, the significance of such catastrophic events to the formation and characteristics of fossil fuels needs to be assessed.

  9. Innovative fossil fuel fired vitrification technology for soil remediation

    International Nuclear Information System (INIS)

    1993-08-01

    Vortex has successfully completed Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant

  10. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  11. Bolide impacts and their significance in fossil fuel geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Saxby, J D [CSIRO Division of Coal Technology (Australia)

    1989-01-01

    One of the most dramatic scientific theories of the past ten years has been that a collision between the earth and a large meteor or bolide about 10 km in diameter caused mass extinctions of most of the then-existing species (including dinosaurs) at the end of the Cretaceous, 65 million years ago. Controversy continues but, by and large, organic geochemists researching fossil fuels have not been active participants. Only recently has a relationship between kerogen and the all-important iridium anomaly been investigated (Schmitz et al., 1988). Sediment samples at the Cretaceous-Tertiary boundary contain anomalously high concentrations of iridium, an element whose abundance in the earth's crust is only one ten thousandth of that found in meteorites and presumably in other solar system debris. The purpose of this paper is to briefly raise some questions regarding the bolide impact theory as it affects coal and petroleum deposits. It may well be that organic geochemical evidence will be crucial in either supporting or refuting the impact hypothesis or one of its variations. Even if future research tends to favor widespread explosive volcanism, rather than bolide impacts, the significance of such catastrophic events to the formation and characteristics of fossil fuels needs to be assessed.

  12. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  13. Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam

    NARCIS (Netherlands)

    Thanh, le L.; Ierland, van E.C.; Zhu, X.; Wesseler, J.H.H.; Ngo, G.

    2013-01-01

    Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a

  14. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and
    regional and global pollution) alternative feedstocks are gaining interest as possible solutions.
    Biomass, considered sustainable and renewable, is an option with the potential to replace a wide

  15. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  16. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  17. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels; 1. juillet 2007: les marches de l'electricite et du gaz sont ouverts a la concurrence. Oleoducs et gazoducs, arteres vitales de l'energie. Rechauffement des terres froides: quelles consequences? Le nucleaire, alternative aux hydrocarbures chers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years.

  18. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  19. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  20. Allocation of fossil and nuclear fuels. Heat production from chemically and physically bound energy

    International Nuclear Information System (INIS)

    Wagner, U.

    2008-01-01

    The first part of the book presents the broad field of allocation, transformation, transport and distribution of the most important energy carriers in the modern power industry. The following chapters cover solid fossil fuel, liquid fuel, gaseous fuel and nuclear fuel. The final chapters concern the heat production from chemically and physically bound energy, including elementary analysis, combustion calculations, energy balance considerations in fossil fuel fired systems, and fundamentals of nuclear physics

  1. An econometrics view of worldwide fossil fuel consumption and the role of US

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2008-01-01

    Crude oil, coal and gas, known as fossil fuels, play a crucial role in the global economy. This paper proposes new econometrics modelling to demonstrate the trend of fossil fuels consumption. The main variables affecting consumption trends are: world reserves, the price of fossil fuels, US production and US net imports. All variables have been analysed individually for more than half a century. The research found that while the consumption of fossil fuels worldwide has increased trends in the US production and net imports have been dependent on the type of fossil fuels. Most of the US coal and gas production has been for domestic use, which is why it does not have a strong influence on worldwide fossil fuel prices. Moreover, the reserves of fossil fuels have not shown any diminution during the last couple of decades and predictions that they were about to run out are not substantiated. The nominal and real price of fossil fuels was found to change depending on the type. Finally, estimates of three econometric models for the consumption of fossil fuels from 1949 to 2006 are presented which identify the effects of significant variables

  2. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  3. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  4. Alternative Fuel News, Vol. 3 No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-23

    This special issue of Alternative Fuel News highlights the Fifth National Clean Cities Conference held in Louisville, Kentucky. The momentum for the program is stronger than ever and the coalitions are working to propel the alternative fuel industry forward.

  5. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  6. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  7. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  8. Greenhouse effect and the fuel fossil burning in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.; Cecchi, J.C.

    1994-01-01

    In Brazil, the global energy consumption per inhabitant is low and the fraction of renewable energy is high, which represents an advantage in terms of gas released. On the other hand the burning in the Amazon Region releases more greenhouse gases than fossil fuel combustion. This article, considering trends in the energy consumption by different economic sectors, discusses the greenhouse effect and its repercussion in energy planning. As known the energy generation process is in great part responsible for the emission of CO 2 , the main anthropogenic gas which causes the greenhouse effect. A comparison of the brazilian case with other studies from developed countries was made to show the advantages and disadvantages of the adopted energetic solution. Carbon emissions were calculated in different scenarios leading to same interesting conclusions. (B.C.A.)

  9. Regulatory taxation of fossil fuels. Theory and policy

    International Nuclear Information System (INIS)

    Wolfson, Dirk J.; Koopmans, Carl C.

    1996-01-01

    Research on energy taxation is often based on purely theoretical deductions. This paper stays closer to the real world, using empirical data and interpreting results in a political-economic setting of risk and uncertainty. Economic growth in developing countries will boost energy demand, increasing the risk of shortages of oil and natural gas half-way through the next century, and of coal towards the year 2100. Furthermore, there is mounting evidence that emissions of CO 2 trigger harmful climate changes. A timely introduction of regulatory taxes will reduce demand for fossil fuels and accelerate the introduction of sustainable technology. The empirical results presented show, moreover, that such taxes may claim a substantial part of the rent on energy extraction for the energy-importing countries. It is argued that optimal control and the avoidance of displacement effects require a tax affecting marginal use, with exceptions to safeguard competitive positions. Exceptions may be scaled down as the jurisdiction is enlarged

  10. Foresight Study on Advanced Conversion Technologies of Fossil Fuels

    International Nuclear Information System (INIS)

    Claver, A.; Cabrera, J. A.

    2000-01-01

    The Observatorio de Prospectiva Tecnologica Industrial (OPTI) is a Foundation supported by the Ministry of Industry and Energy, (MINER) and has as main objective to provide a basic information and knowledge on technology evolution. This information will be accessible to the Administration and to the Companies and can be taking into account in planning and decision making of technology policies. Ciemat is member of OPTI and is the organism in charge of the actions in the Energy sector. CIEMAT has the responsibility on the realisation of the sector studies to get in three years (1998 to 2001) a foresight vision of the critical technology topics. The OPTI integrated strategic plan undertake the analysis of other seven technology sectors, with the same criteria on methodological aspects. Delphi method was used for the realization of the studies. It consisted of a survey conducted in two rounds using a questionnaire to check the experts opinion. The time frame of the studies was defined from 1999 to 2015. The study presented in this document has been performed by CIEMAT in the second stage of the OPTI activities. The main goal behind this study is to identify the advanced clean and efficient technologies for the conversion of fossil fuels to promote in our country. The questionnaire was addressed to 250 experts and the response rate was about the 37%, ratifying the final results. The spanish position and the barriers for the development of each technology has been determined and also the recommended measures to facilitate their performance in the future. This basic information is consider of main interest, taking in account the actual energetic situation with a foreseeable demand increase and fossil fuels dependence. (Author) 17 refs

  11. Comparative life cycle assessment (LCA) of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Spirinckx, C.; Xeuterick, D.

    1997-01-01

    Complementary to VlTO's demonstration project on the use of biodiesel as engine fuel (including on the road emission measurements) in Flanders, Belgium, a comparative life cycle assessment (LCA) has been carried out for rapeseed methyl ester (RME) and fossil diesel fuel. The primary concern of this study is the question as to whether or not the production of biodiesel is comparable to the production of fossil diesel fuel from an environmental point of view, taking into account all stages of the life cycle of these two products. The study covers: (1) a description of the LCA methodology used; (2) a definition of the goal and scope of the study: (3) an inventory of the consumption of energy and materials and the discharges to the environment, from the cradle to the grave, for both alternative fuels: (4) a comparative impact assessment; and (5) the interpretation of the results. The results of this comparative LCA can be used in the final decision making process next to the results of a social and economical assessment. 6 refs

  12. Alternative Fuels Data Center: Biodiesel Benefits

    Science.gov (United States)

    , and transport. Maps & Data U.S. Biodiesel Production, Exports, and Consumption U.S. Biodiesel Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data

  13. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  14. Ontario Select Committee on Alternative Fuel Sources : Final Report

    International Nuclear Information System (INIS)

    Galt, D.

    2002-06-01

    On June 28, 2001, the Ontario Legislative Assembly appointed the Select Committee an Alternative Fuel Sources, comprised of representatives of all parties, with a broad mandate to investigate, report and offer recommendations with regard to the various options to support the development and application of environmentally sustainable alternatives to the fossil fuel sources already existing. The members of the Committee elected to conduct extensive public hearings, conduct site visits, attend relevant conferences, do some background research to examine a vast number of alternative fuel and energy sources that could be of relevance to the province of Ontario. A discussion paper (interim report) was issued by the Committee in November 2001, and the present document represents the final report, containing 141 recommendations touching 20 topics. The information contained in the report is expected to assist in the development and outline of policy and programs designed to specifically support alternative fuels and energy sources and applicable technologies. Policy issues were discussed in Part A of the report, along with the appropriate recommendations. The recommendations on specific alternative fuels and energy sources were included in Part B of the report. It is believed that the dependence of Ontario on traditional petroleum-based fuels and energy sources can be reduced through aggressive action on alternative fuels and energy. The benefits of such action would be felt in the area of air quality, with social, and economic benefits as well. 3 tabs

  15. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  16. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  17. Alternative Fuels Data Center: Indiana Transportation Data for Alternative

    Science.gov (United States)

    (nameplate, MW) 1,430 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video Alternative Fuels Save Money in Indy April 1, 2012 More Case Studies Videos Text Version More Indiana Videos on YouTube Video thumbnail for Indiana Beverage Company Invests in Alternative Fuels Indiana Beverage

  18. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Akar, Sertac; Ugurlu, Berkin

    2006-01-01

    This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000

  19. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    Science.gov (United States)

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  20. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  1. Renewable and nuclear sources of energy reduce the share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources reduce the share of fossil fuels.

  2. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  3. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  4. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  5. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  6. Prevent the risk of climate change by taxing fossil fuels

    International Nuclear Information System (INIS)

    Martin, Y.

    1992-01-01

    Of all the greenhouse gases, it is emissions of CO 2 which most urgently require reduction. On the one hand, given the very long lifetime of this gas, its emissions are almost irreversible in character. On the other hand, the measures to be taken concern technological choices, and choices in matters of planning and land use, which are not easily reversible either. It would be very costly, later on, to go back on decisions we make in the coming years without taking into account the risk of climate change. We will only be able to stabilize the concentration of CO 2 in the atmosphere if we are able to reduce present emissions by 60 per cent. The challenge to humanity is considerable, since this reduction in emissions has to be achieved despite the forecast doubling of the world's population. We must organize ourselves both to stabilize the world's forests (reforestation in certain regions compensating for the inevitable deforestation elsewhere), and to reduce by 25 per cent the average consumption of fossil fuel per inhabitant. Such a radical reorientation of our habits in the consumption of fossil energy does not seem to me technically unreachable, and it will not cause widespread ruin if we manage to optimize its organization. Preventive work will only be effective if it is made on a planetary scale. It will only be undertaken if we are able to share the burden fairly between the various countries; and it will not be ruinous if we manage to decentralize necessary initiatives, so that the least costly methods are undertaken everywhere from the outset. (author)

  7. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  8. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  9. Depletion of fossil fuels and anthropogenic climate change—A review

    International Nuclear Information System (INIS)

    Höök, Mikael; Tang, Xu

    2013-01-01

    Future scenarios with significant anthropogenic climate change also display large increases in world production of fossil fuels, the principal CO 2 emission source. Meanwhile, fossil fuel depletion has also been identified as a future challenge. This chapter reviews the connection between these two issues and concludes that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate. However, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO 2 concentrations caused by fossil fuel limitations. It is concluded that the current set of emission scenarios used by the IPCC and others is perforated by optimistic expectations on future fossil fuel production that are improbable or even unrealistic. The current situation, where climate models largely rely on emission scenarios detached from the reality of supply and its inherent problems are problematic. In fact, it may even mislead planners and politicians into making decisions that mitigate one problem but make the other one worse. It is important to understand that the fossil energy problem and the anthropogenic climate change problem are tightly connected and need to be treated as two interwoven challenges necessitating a holistic solution. - Highlights: ► Review of the development of emission scenarios. ► Survey of future fossil fuel trajectories used by the IPCC emission scenarios. ► Discussions on energy transitions in the light of oil depletion. ► Review of earlier studies of future climate change and fossil fuel limitations.

  10. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    Science.gov (United States)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  11. Economic evaluation of methods to substitute consumption of fossil fuel for nuclear one in power generation

    International Nuclear Information System (INIS)

    Veretennikov, G.A.; Boldyrev, V.M.; Sigal, M.V.

    1986-01-01

    Technical-and-economic indices of separate and combind processes of thermal and electric power production are compared for different energy sources (heat-only nuclear stations power and heat nuclear stations condensation nuclear power plants, fossil-fuel condensation power plants, fossil-fuel power and heat nuclear stations and fossil-fuel boiler houses). The data on capital outlays, fuel expenses and total reduced costs are presented. The analysis has shown that all versions of nuclear energy development with the use of heat-only nuclear stations in different combinations prove to be less preferable than the version of cogeneration of heat and electric power at power and heat nuclear stations

  12. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E; Palazzi, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  13. Alternative fuels: a Brazilian outlook

    International Nuclear Information System (INIS)

    Moreira, J.R.; Serra, G.E.

    1990-01-01

    This paper focuses on studies and information related to the use of alternative fuels in Brazil. The first part of this paper deals with the economics of different biomass technologies. The analysis consists of a careful costing of all operations involved. The study deals with wood, sugar cane and cassava, since these crops are exploited for commercial purposes in Brazil. Corn, although a useful raw material for producing ethanol in the United States, is not used for this purpose in Brazil. The second part deals with the industrial technologies used to convert biomass into energy. We consider several forms of energy derived from biomass and evaluate the economics of the processes. When opportune, we compare costs with those of the North American market. Market analysis and displacement of conventional energy are the subject of the third part of the paper. While the cost of each product is evaluated in most cases; in others the current market price is used. Finally, we raise the issues of institutional problems and planning and offer some conclusions on the future of biomass as an alternative energy source. The technological discussion in this paper is based on the Brazilian experience in producing ethanol and other fuels from biomass. It is possible to extrapolate the Brazilian experience to other developing countries. The observations made in this chapter are based on the conditions prevalent in the Brazilian south-central agricultural region, specifically the state of Sao Paulo. (author). 91 refs., 16 figs., 11 tabs

  14. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    Science.gov (United States)

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  15. Using energy efficiency and alternative energy to extend fossil resources or what if tomorrow actually comes

    International Nuclear Information System (INIS)

    Moore, M.C.

    2003-01-01

    This PowerPoint presentation outlined the role of energy in maintaining and advancing society, and what happens if we run out of energy. The author provided a glimpse into the energy world through the display of a series of graphs depicting world energy consumption, world energy production, world population distribution, growth rates in Asia, coal use per capita, the United States energy consumption by source, percent of air emissions in the United States from fossil fuel use, and others. It was argued that alternative energy and energy efficiency diminish growth in demand and peak load, supports portfolio diversity, lowers cost, and diminishes environmental impacts. The advances in wind power and solar power were reviewed, as well as advances in bioenergy and hydrogen. The author also argued the case for energy efficiency and conservation. A discussion of various pricing schemes was offered. The first option examined was time of use price, defined as 3 time blocks published in advance for entire seasons. The second option was critical peak pricing, involving a high price imposed for a few days per year when system conditions are critical or near critical. The third option discussed was real-time prices, implying an hourly real-time marginal cost of a kilowatt hour. It was suggested that the system should be changed, since subsidizing energy consumption distorts demand. Energy efficiency and renewables extend fossil energy availability, helping in the transition to a more sustainable world. refs., tabs., figs

  16. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  17. Alternative Fuels Market and Policy Trends (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  18. Prospects of nuclear power in fossil fuel saving

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1984-01-01

    Economic aspects of the World energy situation are considered. The growth in the world prices for energy and energy resources has demanded to reconstruct the structure of both consumers and primary energy resources. The nuclear power development is one of the most important aspects of this reconstruction. In connection with its development the acceptability of nuclear power technology and possible spheres of its application in different fields of power engineering are considered. When discussing these problems one pays the main attention to the psychological effect and potential measures for its compensation. A forecast estimate is given of specific capital investments in and expenditures on electric energy production for NPPs and conventional power stations for the considered period of 30 years. The estimates are differentiated for the European and Asian parts of the country. The problems of developing nuclear central heating-and-power plants and nuclear thermal stations are discussed. It is pointed out that presently no sufficient experience has been gained in their commerical operation to discuss for sure the prospects of their wide-scale utilization. Results of calculations are presented showing that in the range of high-temperature processes the use of electric energy based on the nuclear power development is more efficient than direct combustion of fossil fuel as estimated with respect to its export at the world market prices

  19. Modules for estimating solid waste from fossil-fuel technologies

    International Nuclear Information System (INIS)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  20. Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam

    International Nuclear Information System (INIS)

    Le, Loan T.; Ierland, Ekko C. van; Zhu, Xueqin; Wesseler, Justus; Ngo, Giang

    2013-01-01

    Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a functional unit defined as 1 km of vehicle transportation. We base our empirical results on a case study in Vietnam and compare two biofuels and their alternative fossil fuels: ethanol and gasoline, and biodiesel and diesel with a focus on the blends of E5 and E10 for ethanol, and B5 and B10 for biodiesel. At the discount rate of 4%, ethanol substitution for gasoline in form of E5 or E10 saves 33% of the social cost of gasoline if the fuel consumption of E5 and E10 is the same as gasoline. The ethanol substitution will be cost-effective if the fuel consumption of E5 and E10, in terms of L km −1 , is not exceeding the consumption of gasoline by more than 1.7% and 3.5% for E5 and E10 respectively. The biodiesel substitution would be cost-effective if the fuel consumption of B5 and B10, in terms of L km −1 compared to diesel, would decrease by more than 1.4% and 2.8% for B5 and B10 respectively at the discount rate of 4%. -- Highlights: •We examine cost-effectiveness of biofuels under efficiency levels of blends. •Cassava-based ethanol used as E5 saves 33% of social cost compared to gasoline. •Ethanol is cost-effective if E5 consumption per km is less than 1.017 times gasoline consumption. •Jatropha-based biodiesel used as B5 or B10 is currently not cost-effective in comparison to diesel. •Biodiesel would be cost-effective if B5 consumption per km would be less than 0.986 times diesel consumption

  1. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    Science.gov (United States)

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  2. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  3. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  4. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    DEFF Research Database (Denmark)

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard...... gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1...... dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels....

  5. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    Science.gov (United States)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  6. The limits of bioenergy for mitigating global lifecycle greenhouse gas emissions from fossil fuels.

    OpenAIRE

    Staples, Mark; Malina, Robert; Barrett, Steven

    2017-01-01

    In this Article we quantify the optimal allocation and deployment of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce lifecycle emissions attributable to combustion-fired electricity and heat, and liquid transportation fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting fossil fuel-fired electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting fossil fuelderived ...

  7. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  8. Climate agreements: Optimal taxation of fossil fuels and the distribution of costs and benefits across countries

    Energy Technology Data Exchange (ETDEWEB)

    Holtsmark, Bjart

    1997-12-31

    This report analyses the response of governments to a climate agreement that commits them to reduce their CO{sub 2} emissions. It develops a formula for optimal taxation of fossil fuels in open economies subject both to an emission constraint and a public budget constraint. The theory captures how national governments` behaviours are sensitive to the size of the benefits from revenue recycling and how these benefits adjust the distribution of abatement costs. The empirical part of the report illustrates the significance of the participating countries` current and potential fossil fuel taxation schemes and their roles in the fossil fuel markets. 23 refs., 11 figs., 2 tabs.

  9. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  10. Alternative Fuels Data Center: Virginia Transportation Data for Alternative

    Science.gov (United States)

    /2018 Biodiesel and Green Diesel Definitions updated 4/9/2018 Data Download Fueling Stations 706 stations in Virginia with alternative fuels Fuel Public Private Biodiesel (B20 and above) 1 9 Compressed unit sold per GGE per unit sold per GGE Biodiesel (B20) $2.47/gallon $2.25/GGE $2.84/gallon $2.58/GGE

  11. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Science.gov (United States)

    Biodiesel-Blended Diesel Documentation Requirement Data Download Fueling Stations 149 stations in Maine with alternative fuels Fuel Public Private Biodiesel (B20 and above) 2 1 Compressed Natural Gas (CNG) 0 2 Electric ://www.youtube.com/embed/jHftlruFR40 Video thumbnail for Maine's Only Biodiesel Manufacturer Powers Fleets in the

  12. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  13. Alternative Fuels Data Center: Hydrogen Related Links

    Science.gov (United States)

    marketing zero-emission proton exchange membrane (PEM) fuel cells for transportation and power generation production and use. Energy Management Institute The Energy Management Institute publishes the Alternative

  14. Implications of fossil fuel constraints on economic growth and global warming

    International Nuclear Information System (INIS)

    Nel, Willem P.; Cooper, Christopher J.

    2009-01-01

    Energy Security and Global Warming are analysed as 21st century sustainability threats. Best estimates of future energy availability are derived as an Energy Reference Case (ERC). An explicit economic growth model is used to interpret the impact of the ERC on economic growth. The model predicts a divergence from 20th century equilibrium conditions in economic growth and socio-economic welfare is only stabilised under optimistic assumptions that demands a paradigm shift in contemporary economic thought and focused attention from policy makers. Fossil fuel depletion also constrains the maximum extent of Global Warming. Carbon emissions from the ERC comply nominally with the B1 scenario, which is the lowest emissions case considered by the IPCC. The IPCC predicts a temperature response within acceptance limits of the Global Warming debate for the B1 scenario. The carbon feedback cycle, used in the IPCC models, is shown as invalid for low-emissions scenarios and an alternative carbon cycle reduces the temperature response for the ERC considerably compared to the IPCC predictions. Our analysis proposes that the extent of Global Warming may be acceptable and preferable compared to the socio-economic consequences of not exploiting fossil fuel reserves to their full technical potential

  15. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  16. Alternative Fuel News, Volume 4, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, C.

    2000-11-14

    This issue of Alternative Fuel News focuses on transit buses and refuse haulers. Many transit agencies and waste management companies are investigating alternatives to traditional diesel buses and refuse haulers.

  17. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  18. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    Science.gov (United States)

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  19. Understanding Our Energy Footprint: Undergraduate Chemistry Laboratory Investigation of Environmental Impacts of Solid Fossil Fuel Wastes

    Science.gov (United States)

    Berger, Michael; Goldfarb, Jillian L.

    2017-01-01

    Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…

  20. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  1. Carbon dioxide emissions from fossil fuel use: Recent performance and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Michael

    1998-12-01

    This publication gives an overview and discusses carbon dioxide emissions from fossil fuel use worldwide. Main themes discussed in this connection cover recent performance and future prospects. Some proposals on the reduction of CO{sub 2} emissions are given

  2. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies

    International Nuclear Information System (INIS)

    Chen, Zhongfei; Barros, Carlos Pestana; Borges, Maria Rosa

    2015-01-01

    This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs

  3. Hydrogen movement and the next action: fossil fuels industry and sustainability economics

    International Nuclear Information System (INIS)

    Nejat Veziroglu, T.

    1997-01-01

    Since the hydrogen movement started in 1974, there has been progress in research, development, demonstration and commercialization activities, covering all aspects of the hydrogen energy system. In order to solve the interrelated problems of depletion of fossil fuels and the environmental impact of the combustion products of fossil fuels, it is desirable to speed up the conversion to the hydrogen energy system. Most established industries have joined the hydrogen movement. There is one exception: the fossil fuel industry. A call is made to the fossil fuel industry to join the hydrogen movement. It is also proposed to change the present economic system with a sustainability economics in order to account for environmental damage, recyclability and decommissioning, and thus, ensure a sustainable future. (Author)

  4. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions......, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...

  5. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per...

  6. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  7. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per year per one...

  8. Time-dependent climate benefits of using forest residues to substitute fossil fuels

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif

    2011-01-01

    In this study we analyze and compare the climate impacts from the recovery, transport and combustion of forest residues (harvest slash and stumps), versus the climate impacts that would have occurred if the residues were left in the forest and fossil fuels used instead. We use cumulative radiative forcing (CRF) as an indicator of climate impacts, and we explicitly consider the temporal dynamics of atmospheric carbon dioxide and biomass decomposition. Over a 240-year period, we find that CRF is significantly reduced when forest residues are used instead of fossil fuels. The type of fossil fuel replaced is important, with coal replacement giving the greatest CRF reduction. Replacing oil and fossil gas also gives long-term CRF reduction, although CRF is positive during the first 10-25 years when these fuels are replaced. Biomass productivity is also important, with more productive forests giving greater CRF reduction per hectare. The decay rate for biomass left in the forest is found to be less significant. Fossil energy inputs for biomass recovery and transport have very little impact on CRF. -- Highlights: → Cumulative radiative forcing (CRF) can measure climate impacts of dynamic systems. → Climate impact is reduced when forest slash and stumps are used to replace fossil fuels. → Forest biofuels may cause short-term climate impact, followed by long-term climate benefit. → Forest residues should replace coal to avoid short-term climate impact. → Fossil energy used for biofuel recovery and transport has very little climate impact.

  9. Impact on food productivity by fossil fuel independence - A case study of a Swedish small-scale integrated organic farm

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sheshti [Dept. of Energy and Technology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Belfrage, Kristina [Centre for Sustainable Agriculture, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Olsson, Mats [Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2013-02-15

    The large-scale industrial agriculture that provides the majority of food at present is dependent upon fossil fuels in the form of tractor fuel, mineral fertilizers, pesticides, and irrigation. Yet, the age of cheap and abundant fossil fuels will likely come to an end within the coming decades. In this case study, the productivity of a small-scale farm (8 ha arable land, 5.5 ha meadow, 3.5 ha pasture and 18 ha forest) independent on fossil fuels by using organic methods and draught horse power was investigated. The aim was to quantify its productivity when the animal composition and possible alternatives to tractive power were varied. After an analysis of possible solutions, three scenarios for tractive power were selected: draught horse power, diesel tractor, and combination of draught horse power and rapeseed oil fueled tractor. A model that calculates the amount of food available at the farm in terms of meat, milk egg, and crops, converts it into energy units and calculates how many people can be supplied from the farm was developed. The most reasonable of the scenarios studied was when draught horse power was combined with tractor (and combine harvester) driven on locally produced rapeseed oil. Then the farm will have access to all advantages with the tractor and harvester, e.g., timeliness in harvest and lifting heavy loads, and the renewability and efficiency of draught horse power on smaller fields, and lighter operations. This system was able to support between 66 and 82 persons depending on crop yields, milk yields, meat production, fuel demand for the tractor, and availability of forest grazing. Most likely the production capacity lands on ability to support approximately 68 - 70 persons, and the farm may require fossil fuels to support more than 80 persons. If all farmland globally was to be operated with the same productivity, this would be enough for supplying the global population with food at present.

  10. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  11. Alternate aircraft fuels prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  12. Comparison of alternate fuels for aircraft

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  13. Screening potential social impacts of fossil fuels and biofuels for vehicles

    International Nuclear Information System (INIS)

    Ekener-Petersen, Elisabeth; Höglund, Jonas; Finnveden, Göran

    2014-01-01

    The generic social and socioeconomic impacts of various biofuels and fossil fuels were screened by applying Social Life Cycle Assessment methodology. Data were taken from the Social Hotspots Database on all categories for all the related themes and all indicators available. To limit the amount of data, only high and very high risk indicators were considered for each combination. The risks identified per life cycle phase were listed for each fuel assessed and the results were then aggregated by counting the number of high and very high risk indicators for that fuel. All the fossil fuels and biofuels analysed were found to display high or very high risks of negative impacts. Country of origin seemed to be of greater importance for risks than fuel type, as the most risk-related and least risk-related product systems referred to the same type of fuel, fossil oil from Russia/Nigeria and fossil oil from Norway, respectively. These results suggest that in developing policy, strict procurement requirements on social performance should be set for both fossil fuel and biofuel. However, the results must be interpreted with care owing to some limitations in the assessment, such as simplifications to life cycles, method used and data collection. - Highlights: • Both fossil and biofuels displayed high or very high risks of negative social impacts. • Social procurement requirements should be applied on all vehicle fuels. • Applying social criteria only on biofuels may be unfairly benefiting fossil fuels. • Social LCA can identify severe social impacts and influence policies accordingly. • Schemes can be adapted to include relevant criteria for specific fuels and/or origins

  14. The roles of countries in the international fossil fuel trade: An emergy and network analysis

    International Nuclear Information System (INIS)

    Zhong, Weiqiong; An, Haizhong; Shen, Lei; Fang, Wei; Gao, Xiangyun; Dong, Di

    2017-01-01

    A better understanding of the roles of countries in the international fossil fuel trade is crucial for trade security and policy optimization. This study aims to provide a new way to quantitatively analyze the roles of countries in the international fossil fuel trade by complex network analysis and Emergy theory. We transform the trade quantity of coal, crude oil and natural gas into emergy and the sum of the three emergies is the emergy of fossil fuel. We build up network models of fossil fuel based on the value of fossil fuel emergy. Then, the top relationships, the central position, the intermediary ability of the countries, and the roles of countries in the trade groups were used to analyze the roles of countries in the international fossil fuel trade network. We choose four countries, the USA, China, Russia and Saudi Arabia, as examples to show the analysis of roles and policy implications. We suggest that the USA and Russia should try to improve their intermediary abilities by diversifying their trade orientations and pay more attention to building up relationships with countries in different communities. China should seek for more tight relationships with other countries to improve its central position, and more pipelines connecting China, Russia, and other Middle Asia countries are needed. As for Saudi Arabia, expanding its industrial chain of crude oil is a better way to deal with the more fierce competition in the market. - Highlights: • Trade amounts of coal, crude oil and natural gas are transformed into Emergy. • Integrated complex network model of international fossil fuel trade is constructed. • Geographical factor is reinforced due to the restriction of transportation cost. • The old pattern is breaking and the new pattern is forming. • Different countries play different roles in international fossil fuel trade network.

  15. A revisit of fossil-fuel subsidies in China: Challenges and opportunities for energy price reform

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • We measure fossil-fuel subsidies and effects of subsidy removal in a systematic fashion during 2006–2010. • Fossil-fuel subsidies scale of China was CNY 881.94 billion in 2010, equivalent to 2.59% of GDP. • Impacts of removing subsidies on macroeconomic variables are examined by the CGE model. • Future policy should focus on designing transparent, targeted and efficient energy subsidies. - Abstract: Fossil-fuel subsidies contribute to the extensive growth of energy demand and the related carbon dioxide emissions in China. However, the process of energy price reform is slow, even though China faces increasing problems of energy scarcity and environmental deterioration. This paper focuses on analyzing fossil fuel subsidies in China by estimating subsidies scale and the implications for future reform. We begin by measuring fossil-fuel subsidies and the effects of subsidy removal in a systematic fashion during 2006–2010 using a price-gap approach. Results indicate that the oil price reform in 2009 significantly reduced China’s fossil-fuel subsidies and modified the subsidy structure. Fossil-fuel subsidies scale in China was 881.94 billion CNY in 2010, which was lower than the amount in 2006, equivalent to 2.59% of the GDP. The macro-economic impacts of removing fossil-fuel subsidies are then evaluated by the computable general equilibrium (CGE) model. Results demonstrate that the economic growth and employment will be negatively affected as well as energy demand, carbon dioxide and sulfur dioxide emissions. Finally, policy implications are suggested: first, risks of government pricing of energy are far from negligible; second, an acceptable macroeconomic impact is a criterion for energy price reform in China; third, the future energy policy should focus on designing transparent, targeted and efficient energy subsidies

  16. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  17. Passive Solar Landscape Design: Its Impact on Fossil Fuel Consumption Through Landscape Design

    OpenAIRE

    Boelt, Robin Wiatt

    2006-01-01

    Gas, electricity, heating and cooling buildings - comfort â our lives revolve around fossil fuels. Technology and the demands of living in todayâ s society add to our gigantic fossil fuel appetite. With gas prices topping three dollars per gallon, changes must be made. This thesis project presents an analysis of passive solar landscape design (PSLD) principles used to create microclimates within the landscape, and thereby increasing human comfort both indoors and outdoors. The ...

  18. Alternatives to traditional transportation fuels 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  19. Alternative Fuel News, Vol. 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, K.; Riley, C.; Raye, M.

    1998-11-30

    This issue of Alternative Fuel News highlights the accomplishments of the Clean Cities coalitions during the past 5 years. Now Clean Cities advocates in city after city across the US are building stations and driving alternative fuel vehicles, in addition to enhancing public awareness.

  20. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Directory of Open Access Journals (Sweden)

    R. J. Andres

    2012-05-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  1. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses

    International Nuclear Information System (INIS)

    Foster, Edward; Contestabile, Marcello; Blazquez, Jorge; Manzano, Baltasar; Workman, Mark; Shah, Nilay

    2017-01-01

    Renewable energy policy focuses on supporting the deployment of renewable power generators so as to reduce their costs through scale economies and technological learning. It is expected that, once cost parity with fossil fuel generation is achieved, a transition towards renewable power should continue without the need for further renewable energy subsidies. However, this reasoning implicitly assumes that the cost of fossil fuel power generation does not respond to the large scale penetration of renewable power. In this paper we build a standard economic framework to test the validity of this assumption, particularly in the case of coal and gas fired power generation. We find that it is likely that the cost of fossil fuel power generation will respond to the large scale penetration of renewables, thus making the renewable energy transition slower or more costly than anticipated. More analysis is needed in order to be able to quantify this effect, the occurrence of which should be considered in the renewable energy discourse. - Highlights: • Renewables are increasingly competing with fossil fuel power generation. • This may have various effects on the fossil fuel generation value chain. • One such possible effect is a response of fossil fuel prices to renewables deployment. • We have tested this hypothesis using a supply-demand analytical framework. • We found that the effect is likely to occur and should be further investigated.

  2. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  3. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    Science.gov (United States)

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  4. Material flow analysis of fossil fuels in China during 2000-2010.

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  5. Army Alternative Ground Fuels Qualification

    Science.gov (United States)

    2012-05-31

    Jet Fuel-Like Product Lignocellulose corn stover forest waste switchgrass sugarcane Fermentation Genetically Engineered Microbes Jet...Fuel-Like Product Bio-Crude Pyrolysis Dehydration Hydroprocessing Synthetic Biology Pyrolysis Alcohol Oligomerization Conventional

  6. Alternative Fuel News, Vol. 2, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-05-20

    What's in store for alternative Fuels and advanced technology vehicles in the new millennium? The Clean Cities Coalitions now operate more than 240,000 alternative fuel vehicles in both public and private sectors and have access to more than 4,000 alternative refueling stations. DOE recently announced the selection of 15 proposals that will receive just under $1.7 million in financial assistance to help expand DOE's information dissemination and public outreach efforts for alternative fuels and advanced transportation technologies.

  7. Standardization of Alternative Fuels. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    There are different interpretations of the term 'alternative fuels', depending on the part of the world in which the definition is used. In this report, alternative fuels mainly stand for fuels that can replace gasoline and diesel oil and at the same time contribute to lowered emissions with impact on health, environment and climate. The use of alternative vehicle fuels has increased during the last 30 years. However, the increase has developed slowly and today the use is very limited, compared to the use of conventional fuels. Although, the use in some special applications, often in rather small geographical areas, can be somewhat larger. The main interest for alternative fuels has for a long time been driven by supply security issues and the possibility to reduce emissions with a negative impact on health and environment. However, the development of reformulated gasoline and low sulphur diesel oil has contributed to substantially decreased emissions from these fuels without using any alternative fuel. This has reduced the environmental impact driving force for the introduction of alternative fuels. In line with the increased interest for climate effects and the connections between these effects and the emission of greenhouse gases, and then primarily carbon dioxide, the interest for biomass based alternative fuels has increased during the 1990s. Even though one of the driving forces for alternative fuels is small today, alternative fuels are more commonly accepted than ever before. The European Commission has for example in May 2003 agreed on a directive for the promotion of the use of bio fuels. In the directive there are goals for the coming 7 years that will increase the use of alternative fuels in Europe rather dramatically, from below 1 percent now up to almost 6 percent of the total vehicle fuel consumption in 2010. The increased use of alternative fuels in Europe and the rest of the world will create a need for a common interpretation of what we

  8. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus...... imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy...

  9. Alternative Fuels Data Center: Vermont Transportation Data for Alternative

    Science.gov (United States)

    alternative fuels Fuel Public Private Biodiesel (B20 and above) 3 0 Compressed Natural Gas (CNG) 1 2 Electric Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in sold per GGE Biodiesel (B20) $2.79/gallon $2.54/GGE $2.84/gallon $2.58/GGE Biodiesel (B99-B100) $2.47

  10. Alternative Fuels Data Center: Missouri Transportation Data for Alternative

    Science.gov (United States)

    stations in Missouri with alternative fuels Fuel Public Private Biodiesel (B20 and above) 1 2 Compressed Students Get Hands-On Training With Biodiesel Missouri High School Students Get Hands-On Training With Biodiesel Feb. 5, 2016 https://youtube.com/embed/p4pVRgoWyZw Video thumbnail for AT&T Fleet Reaches

  11. Alternative Fuels for Military Applications

    Science.gov (United States)

    2011-01-01

    federal subsidies have promoted produc- tion and use of biodiesel, which is not a hydrocarbon but rather a fatty acid methyl ester ( FAME ) unsuitable for... methyl ester ( FAME ). FAME and blends of FAME with petroleum-derived fuels are currently banned from use in all deployable, tactical DoD military...fatty acid methyl ester FT Fischer-Tropsch FY fiscal year ISBL inside battery limit Navy Fuels Team Naval Fuels and Lubricants Cross-Functional Team

  12. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  13. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  14. Comparison of spent nuclear fuel management alternatives

    International Nuclear Information System (INIS)

    Beebe, C.L.; Caldwell, M.A.

    1996-01-01

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions

  15. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  16. Compatibility of elastomers in alternate jet fuels

    Science.gov (United States)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  17. Effect of Alternative Fuels on SCR Chemistry

    OpenAIRE

    Faramarzi, Simin

    2012-01-01

    In the time line of world industrial age, the most important era begins in the late 18th century when the use of fossil fuels was growing intensively. This approach has continued and developed up to the 20th century. Besides, this trend has had side effects like polluting environment. Air pollution is one of the critical issues nowadays that stems from using hydrocarbon fuels. One type of the problematic compounds in polluting air is nitrogen oxides that can be produced in combustion process ...

  18. Children Are Likely to Suffer Most from Our Fossil Fuel Addiction

    Science.gov (United States)

    Perera, Frederica P.

    2008-01-01

    Background The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. Objectives In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Discussion Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Conclusions Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster. PMID:18709169

  19. Prices versus policy: An analysis of the drivers of the primary fossil fuel mix

    International Nuclear Information System (INIS)

    Atalla, Tarek; Blazquez, Jorge; Hunt, Lester C.; Manzano, Baltasar

    2017-01-01

    Energy policymakers often attempt to shape their countries' energy mix, rather than leave it purely to market forces. By calibrating and simulating a Dynamic Stochastic General Equilibrium (DSGE) model, this paper analyzes the primary fossil fuel mix in the USA and compares it to Germany and the UK, given the different evolution of the mixes and the different roles played by relative prices and policy in North America and Europe. It is found that the model explains well the evolution of the primary fossil fuel mix in the USA for the period 1980–2014, suggesting that relative fossil fuel prices generally dominated in determining the mix during this time. However, this is not the case for Germany and the UK. For both countries, the model performs well only for the period after the market-oriented reforms in the 1990s. Additionally, the volatility of private consumption and output for the pre- and post-reform periods is evaluated for Germany and the UK and it is found that the liberalized energy markets brought about a transition from coal to natural gas, but with increased macroeconomic volatility. - Highlights: • Macroeconomic analysis of the importance of prices vs policy in driving the primary fossil fuel mix. • USA primary fossil fuel mix chiefly driven by relative prices since the early 1980s. • Germany and UK primary fossil fuel mix chiefly driven by policy until 1990s. • Germany and UK primary fossil fuel mix chiefly driven by relative prices since early to mid-1990s. • Transition from coal to natural gas in Germany and UK increased macroeconomic volatility.

  20. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  1. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  2. Children are likely to suffer most from our fossil fuel addiction.

    Science.gov (United States)

    Perera, Frederica P

    2008-08-01

    The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster.

  3. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  4. Alternative Fuel News, Vol. 3 No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Clean Cities Program at DOE

    1999-10-29

    The alternative fuel industry is heating up. It is a very exciting time to be in the energy business, especially when it comes to transportation. Celebrating of the milestone 75th Clean Cities coalition and kick off of the new Federal Alternative Fuel Vehicle (AFV) USER Program is occurring in cities across the country. Clean Energy for the 21st Century and the events that are happening during Energy Awareness Month are covered in this issue. Spotlighted are niche markets; several airports across the country are successfully incorporating alternative fuels into their daily routines.

  5. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Science.gov (United States)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  6. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.

  7. The role of nuclear energy in the more efficient exploitation of fossil fuel resources

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-01-01

    The energy theory of value, being a valuable addition to the debate on the rational exploitation of man's energy reserves, is applied in order to clarify the presently confused energy input/output relations for nuclear and solar systems as they interact with fossil fuel. It is shown on the basis of purely energetics considerations that the nuclear route - at present and in future - is a very efficient way to stretch out and finally to substitute for the limited fossil fuel resources. This is particularly true if one considers the transitory phase where the substituting process has to exhibit a rapid exponential growth rate. The energetical effectiveness of the production of a synthetic fuel, as for example hydrogen by water splitting processes, is addressed at the end and serves to give an idea how effectively the energy available in fossil fuels can be amplified by virtue of the coupling of nuclear energy into the process. (author)

  8. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  9. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  10. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  11. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  12. Alternative jet fuel scenario analysis report

    Science.gov (United States)

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  13. Alternative Fuel News, Vol. 7, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  14. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  15. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  16. The Seasonal and Spatial Distribution of Carbon Dioxide Emissions from Fossil Fuels in Asia

    Science.gov (United States)

    Gregg, J. S.; Andres, R. J.

    2006-12-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  17. Alternative motor fuels today and tomorrow

    International Nuclear Information System (INIS)

    Bensaid, B.

    2004-01-01

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  18. Alternative Fuel News, Vol. 2, No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-01-06

    In this issue of the Alternative Fuel News, the authors remember what happened just 25 years ago (the energy crisis of 1973) and reiterate that foreign oil dependence is still a national issue. Highlighted are some the successes in the Clean Cities Program and the alternative fuels industry. Also featured is the Natural Gas Vehicle Coalition (NGVC) and the United States Postal Service (USPS) delivers with AFVs.

  19. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  20. ELECTRICITY SUPPLY, FOSSIL FUEL CONSUMPTION, CO2 EMISSIONS AND ECONOMIC GROWTH: IMPLICATIONS AND POLICY OPTIONS FOR SUSTAINABLE DEVELOPMENT IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chibueze Eze Nnaji

    2013-01-01

    Full Text Available This paper investigates the causal relationship among electricity supply, fossil fuel consumption, CO2 emissions and economic growth in Nigeria for the period 1971-2009, in a multivariate framework.Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and statistically significant relationship between CO2 emissions and fossil fuel consumption. The findings also indicate that economic growth is associated with increased CO2 emissions while a positive relationship exists between electricity supply and CO2 emissions revealing the poor nature of electricity supply in Nigeria. Further, the Granger causality test results indicate that electricity supply has not impacted significantly on economic growth in Nigeria. The results also strongly imply that policies aimed at reducing carbon emissions in Nigeria will not impede economic growth. The paper therefore concludes that a holistic energy planning and investment in energy infrastructure is needed to drive economic growth. In the long-run however, it is possible to meet the energy needs of the country, ensure sustainable development and at the same time reduce CO2 emissions by developing alternatives to fossil fuel consumption, the main source of CO2 emissions.

  1. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  2. From fossil fuels to energies-of-light

    Energy Technology Data Exchange (ETDEWEB)

    Winter, C.J. [Stuttgart Univ. (Germany); Energon - Winter (C.J.) GmbH, Leonberg (Germany)

    2000-07-01

    Energies-of-light are the final result on the ongoing decarbonisation of carbonaceous fuels, their hydrogenation and, thus, dematerialization (coal -> petroleum -> natural gas -> hydrogen). Energies-of-light utilise all sorts of renewable energies and the chemical secondary energy carrier hydrogen for energy storage and transport, as well as a transportation fuel.

  3. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    J. Ray

    2014-09-01

    Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.

  4. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  5. The change from fossil fuel dependence to sustainable energy sources in Nigeria

    International Nuclear Information System (INIS)

    Chukwu, C.; Ajedegba, J.

    2006-01-01

    Nigeria faces a serious energy crisis due to declining electricity generation from domestic power plants. Although the country is highly dependent on fossil fuel resources, Nigeria has a range of unexploited biomass and hydro power resources, as well as extensive solar energy potential. This paper presented a current energy balance of Nigeria and examined ways of reaching an environmentally sustainable energy balance through the use of a mix of renewable resources. Supply and consumption details of domestic, industrial and transportation sectors as well as electricity production statistics were presented. Total hydropower potential based on the country's river system was estimated to be 10,000 MW. It was estimated that Nigeria has an average of 1.804 x 10 15 of incident solar energy annually, which is 27 times the nation's total conventional energy resources in energy units. It was noted that Nigeria also possesses a significant amount of biomass resources from several large forests that may be used to supply domestic cooking and heating needs as well as for ethanol production. It was noted that wind energy may not be a viable alternative for large scale electricity production in Nigeria. Recommendations to promote the use of renewable resources in the national energy mix included encouraging the decentralization of energy supplies; discouraging the use of wood as fuel; promoting efficient methods in the use of biomass energy resources; private sector participation; and global partnerships. 15 refs., 7 tabs

  6. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  11. Alternative Fuels Data Center: Publications

    Science.gov (United States)

    refueling infrastructure. Waste-to-Fuel: A Case Study of Converting Food Waste to Renewable Natural Gas as a 5,300 PEVs on the road by the end of 2019. This analysis finds that while consumer demand for fast vehicles), a minimum level of fast charging coverage across the city is required to ease consumer range

  12. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy...

  13. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  14. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  15. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    Science.gov (United States)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  16. Effect of subsidies to fossil fuel companies on United States crude oil production

    Science.gov (United States)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  17. Correlation between occurrence of leprosy and fossil fuels: role of fossil fuel bacteria in the origin and global epidemiology of leprosy.

    Science.gov (United States)

    Chakrabarty, A N; Dastidar, S G

    1989-06-01

    On the basis of correlative data on the global distribution of leprosy, its bacteria metabolizing fossil fuels (FF), and the FF themselves, the origin of leprosy in the world as a whole, and in the leprosy-free countries, in particular, as indigenous cases, appeared to be primarily due to a soil-to-man, and secondarily due to a man-to-man infection. These findings helped to elucidate similar problems of animal leprosies and nocardial diseases.

  18. Current status of U.S. coal utilization and non-fuel uses of fossil fuels

    International Nuclear Information System (INIS)

    Song, C.S.; Schobert, H.; Scaroni, A.W.

    1997-01-01

    An understanding of the current situation is important for projecting the future direction of coal utilization. The world's annual consumption of coal in 1995 was 5104.01 million short tons (MST, 1 short ton = 0.907 metric ton). Coal plays a very important role in the US energy supply; US coal production in 1995 totaled 1033 MST, including 611.1 MST of bituminous coal, 328.4 MST of subbituminous coal, 86.1 MST of lignite, and 4.1 MST of anthracite. US coal consumption totaled 940.6 MST, with 88.1% in electric utilities, 3.5% in coke plants, 7.8% for other industrial uses, and only 0.6% in the residential and commercial sectors. The amount of fossil resources used for non-fuel purposes accounted for 8.4% of the total annual consumption in 1995. Non-fuel uses of fossil fuels particularly coal may become more important in the future. The demonstrated coal reserves in the world are large enough for consumption for over 220 years at the 1995 level, while proven oil reserves are only about 40 times the world's 1995 consumption level. Coal has several positive attributes when considered as a feedstock for aromatic chemicals, specialty chemicals, and carbon-based materials. Existing nonfuel uses of coals include (1) high temperature carbonization of bituminous and subbituminous coals to make metallurgical coke; (2) gasification of coal to make synthesis gases and other chemicals; (3) use of coal in manufacturing other materials such as activated carbons, carbon molecular sieves (CMS) and production of phosphorus (phosphoric acid); (4) the use of coal tars from carbonization and gasification for making aromatic and phenolic chemicals; (5) the use of coal tar pitch for making carbon fibers and activated carbon fibers; and (6) other non-fuel products derived from coal including combustion by-products. Coal may become more important both as an energy source and as the source of chemical feedstocks in the 21st century

  19. Life cycle assessment of the use of alternative fuels in cement kilns: A case study.

    Science.gov (United States)

    Georgiopoulou, Martha; Lyberatos, Gerasimos

    2018-06-15

    The benefits of using alternative fuels (AFs) in the cement industry include reduction of the use of non-renewable fossil fuels and lower emissions of greenhouse gases, since fossil fuels are replaced with materials that would otherwise be degraded or incinerated with corresponding emissions and final residues. Furthermore, the use of alternative fuels maximizes the recovery of energy. Seven different scenaria were developed for the production of 1 ton of clinker in a rotary cement kiln. Each of these scenaria includes the use of alternative fuels such as RDF (Refuse derived fuel), TDF (Tire derived fuel) and BS (Biological sludge) or a mixture of them, in partial replacement of conventional fuels such as coal and pet coke. The purpose of this study is to evaluate the environmental impacts of the use of alternative fuels in relation to conventional fuels in the kiln operation. The Life Cycle Assessment (LCA) methodology is used to quantify the potential environmental impacts in each scenario. The interpretation of the results provides the conclusion that the most environmentally friendly prospect is the scenario based on RDF while the less preferable scenario is the scenario based on BS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  1. Carbon as Investment Risk—The Influence of Fossil Fuel Divestment on Decision Making at Germany’s Main Power Providers

    Directory of Open Access Journals (Sweden)

    Dagmar Kiyar

    2015-09-01

    Full Text Available German electricity giants have recently taken high-level decisions to remove selected fossil fuel operations from their company portfolio. This new corporate strategy could be seen as a direct response to the growing global influence of the fossil fuel divestment campaign. In this paper we ask whether the divestment movement currently exerts significant influence on decision-making at the top four German energy giants—E.On, RWE, Vattenfall and EnBW. We find that this is not yet the case. After describing the trajectory of the global fossil fuel divestment campaign, we outline four alternative influences on corporate strategy that, currently, are having a greater impact than the divestment movement on Germany’s power sector. In time, however, clear political decisions and strong civil support may increase the significance of climate change concerns in the strategic management of the German electricity giants.

  2. Net fossil energy savings for alternative mixes in various electric supply systems

    International Nuclear Information System (INIS)

    Essam, P.; Stocks, K.J.

    1978-11-01

    The actual and projected electric power station building programs of several countries and regions have been examined to determine what effect the introduction of nuclear power has on fossil fuel usage by the electricity system. It was found that (1) nuclear power leads directly to savings in fossil fuel usage, a larger nuclear component leading to larger savings; (2) individual nuclear stations rapidly wipe out the energy 'debt' incurred during building; and (3) the relatively short periods of consolidation in the early stages of a nation's building program usually prevent the nuclear component from going into energy 'debt'. Assessments of the energy requirements to build and run various types of power station have been made from the available literature

  3. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  4. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... particular, emphasis is placed on bacteria as biocatalysts of choice and their ability to degrade waste coal and ... petroleum and the non-volatile materials composed ...... reduction and rheology for pipeline transportation. Fuel ...

  5. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  6. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    OpenAIRE

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  7. The “keep in the ground future” of Arctic fossil fuel resources

    Directory of Open Access Journals (Sweden)

    Sandi Lansetti

    2016-12-01

    Full Text Available It is extremely important to understand which role Arctic fossil fuel resources will play in the development and geopolitics of the Arctic region. The article analyses the recent trends in the world energy supply with special focus on renewable energy and future demand for fossil fuels. Focusing on the Arctic LNG projects it comes to the conclusion that there is a growing possibility that the majority of Arctic oil and natural gas will be kept in the ground. Such an outcome would strongly influence the sustainable development and geopolitics of the region.

  8. Energy and the transport sector. [For countries with no fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, P E

    1979-01-01

    This article describes the current energy situation from both the global viewpoint and the viewpoint of countries with no indigenous sources of fossil fuels. The lack of fossil fuels necessitates a substitution with indigenous sources of energy, where feasible. Long-distance railway transport is a self-evident element in the expanding transport sector. In view of the proven high energy efficiency of electric railway systems, there is every incentive for a more active investment policy in railway electrification. This applies to both medium-distance transportation of freight and passengers and different electric mass transit systems.

  9. Social cost pricing of fossil fuels used in the production of electricity: implications to biomass feasibility

    International Nuclear Information System (INIS)

    Dillivan, K.D.; English, B.C.

    1997-01-01

    The primary objective of this study is to investigate full social pricing for fossil fuels and the subsequent effect on biomass quantities in the state of Tennessee. The first step is to estimate the full social costs and then to estimate the effects of their internalization. Other objectives are (1) investigate whether or not market imperfections exist, (2) if they exist, how should full social cost pricing be estimated, (3) what other barriers help fossil fuels stay economically attractive and prevent biomass from competing, (4) estimating the demand for biomass, and (5) given this demand for biomass, what are the implications for farmers and producers in Tennessee. (author)

  10. Safeguards aspects for future fuel management alternatives

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Gerstler, R.

    1987-01-01

    In the future, more flexible fuel management strategies will be realized in light-water reactor power stations. The incentives for this development are based on considerations related to safe and economic plant operation, e.g. improved fuel strategies can save fuel resources and waste management efforts. A further important aspect of the nuclear fuel cycle deals with recycling strategies. At the back-end of the fuel cycle, the direct final disposal of spent fuel will have to be assessed as an alternative to recycling strategies. These major development fields will also have consequences for international safeguards. In particular, reactor fuel strategies may involve higher burn-up, conditioning of spent fuel directly in the power plant, gadolinium-poisoned fuel and different levels of enrichment. These strategies will have an impact on inspection activities, especially on the applicability of NDA techniques. The inspection frequency could also be affected in recycling strategies using MOX fuel. There may be problems with NDA methods if reprocessed feed is used in enrichment plants. On the other hand, the direct final disposal of spent fuel will raise safeguards problems regarding design verification, long-term safeguarding and the very feasibility of inaccessible nuclear material

  11. CAP--a combined codes, alarms and paging system--effective in nuclear and fossil-fueled power plants

    International Nuclear Information System (INIS)

    Foster, W.M.; Anderson, M.E.

    1981-01-01

    The CAP system now employed in two TVA power generating facilities has proven to be effective in both operational and emergency alerting and voice communications. Alternatives to emergency signalling point to advantages of a distributed amplifier/speaker system providing multi-signal and voice capabilities. Inclusion of a CAP-type system in all nuclear and fossil-fueled power plants is recommended, particularly in view of new NCR emergency alerting guidelines recently published. Outdoor-area warning is also included. Paper No. 80 JPGC 803-7

  12. Alternatives to traditional transportation fuels 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  13. Aluminum-26 in the early solar system - Fossil or fuel

    Science.gov (United States)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  14. Alternative Fuels Data Center: James Madison University Teaches Alternative

    Science.gov (United States)

    Alternative Fuels Sept. 16, 2017 Photo of a truck Phoenix Utility Fleet Drives Smarter with Biodiesel Aug. 26 Cooking Oil Powers Biodiesel Vehicles in Rhode Island July 14, 2017 Photo of a truck Idaho Transports Mail Home Runs on Biodiesel in North Carolina June 9, 2017 Photo of a bus New Hampshire Cleans up with

  15. Market power in the market for greenhouse gas emission permits - the interplay with the fossil fuel markets

    International Nuclear Information System (INIS)

    Hagem, Cathrine; Maestad, Ottar

    2002-01-01

    Implementation of the Kyoto Protocol is likely to leave Russia and other Eastern European countries with market power in the market for emission permits. Ceteris paribus, this will raise the permit price above the competitive permit price. However, Russia is also a large exporter of fossil fuels. A high price on emission permits may lower the producer price on fossil fuels. Thus, if Russia co-ordinates its permit market and fossil fuel market policies, market power will not necessarily lead to a higher permit price. Fossil fuel producers may also exert market power in the permit market, provided they conceive the permit price to be influenced by their production volumes. If higher volumes drive up the permit price Russian fuel producers may become more aggressive relative to their competitors in the fuel markets. If the sale of fuels is co-ordinated with the sale of permits. The result is reversed if high fuel production drives the permit price down. (Author)

  16. Market power in the market for greenhouse gas emission permits - the interplay with the fossil fuel markets

    Energy Technology Data Exchange (ETDEWEB)

    Hagem, Cathrine; Maestad, Ottar

    2002-07-01

    Implementation of the Kyoto Protocol is likely to leave Russia and other Eastern European countries with market power in the market for emission permits. Ceteris paribus, this will raise the permit price above the competitive permit price. However, Russia is also a large exporter of fossil fuels. A high price on emission permits may lower the producer price on fossil fuels. Thus, if Russia co-ordinates its permit market and fossil fuel market policies, market power will not necessarily lead to a higher permit price. Fossil fuel producers may also exert market power in the permit market, provided they conceive the permit price to be influenced by their production volumes. If higher volumes drive up the permit price Russian fuel producers may become more aggressive relative to their competitors in the fuel markets. If the sale of fuels is co-ordinated with the sale of permits. The result is reversed if high fuel production drives the permit price down. (Author)

  17. Alternative fuels: how real? how soon?

    International Nuclear Information System (INIS)

    Tertzakian, P.

    2003-01-01

    Nations of the Organization for Economic Cooperation and Development (OECD) are looking for politically stable sources of oil in response to the ever growing demand for fuel. World oil consumption has reached 76.5 MMB/d and demand is expected to be 80 MMB/d by 2005. More restrictive environmental policies are resulting in improved conversion efficiency of oil dependent supply chains and the switching to alternative fuels. The adoption of new fuels however, depends on many factors such as the economic advantage, technological superiority, and convenience. The dominant electrical supply chains at the moment are nuclear, coal, hydropower, hydrocarbons, and renewable energy alternatives such as wind, solar and hydrogen fuels. The paper presented graphs illustrating adoption patterns for various fuels over the past century and presented a potential adoption pattern for fuel cell vehicles. Also included in this presentation were graphs depicting how price can drive supply chain demand and allow other fuels to gain market share. The impact of fuel substitution, efficiency and price effects was mentioned along with the impact of recent policy changes on vehicle fuel efficiency and carbon dioxide emissions. The role of government incentives to promote alternative fuel sales was also discussed along with a broad assessment of renewable supply chains. It was noted that most new fuels are linked to hydrocarbons. For example, hydrogen generation through water electrolysis requires petroleum generated electricity or the steam reforming of natural gas. Ethanol processes also require hydrocarbon consumption indirectly. It was noted that the average efficiencies of coal and natural gas plants has increased in the past decade and the incumbent price trends in electricity in the United States have decreased for fuels such as oil, gas, coal and nuclear energy. With ongoing innovation in the internal combustion engine in the past 30 years, the incumbents have also improved with

  18. Optimization of low sulfur jerusalem artichoke juice for fossil fuels biodesulfurization process

    OpenAIRE

    Silva, Tiago P.; Paixão, Susana M.; Roseiro, J. Carlos; Alves, Luís Manuel

    2013-01-01

    Most of the world’s energy is generated from the burning of fossil fuels such as oil and its derivatives. When burnt, these fuels release into the atmosphere volatile organic compounds, sulfur as sulfur dioxide (SO2) and the fine particulate matter of metal sulfates. These are pollutants which can be responsible for bronchial irritation, asthma attacks, cardio-pulmonary diseases and lung cancer mortality, and they also contribute for the occurrence of acid rains and the increase of the hole i...

  19. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov (United States)

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on

  20. Liquid alternative diesel fuels with high hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Hancsok, Jenoe; Varga, Zoltan; Eller, Zoltan; Poelczmann, Gyoergy [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon Processing; Kasza, Tamas [MOL Hungarian Oil and Gas Plc., Szazhalombatta (Hungary)

    2013-06-01

    Mobility is a keystone of the sustainable development. In the operation of the vehicles as the tools of mobility internal combustion engines, so thus Diesel engines will play a remarkable role in the next decades. Beside fossil fuels - used for power these engines - liquid alternative fuels have higher and higher importance, because of their known advantages. During the presentation the categorization possibilities based on the chronology of their development and application will be presented. The importance of fuels with high hydrogen content will be reviewed. Research and development activity in the field of such kind of fuels will be presented. During this developed catalytic systems and main performance properties of the product will be presented which were obtained in case of biogasoils produced by special hydrocracking of natural triglycerides and in case of necessity followed by isomerization; furthermore in case of synthetic biogasoils obtained by the isomerization hydrocracking of Fischer-Tropsch paraffins produced from biomass based synthesis gas. Excellent combustion properties (cetane number > 65-75), good cold flow properties and reduced harmful material emission due to the high hydrogen content (C{sub n}H{sub 2n+2}) are highlighted. Finally production possibilities of linear and branched paraffins based on lignocelluloses are briefly reviewed. Summarizing it was concluded that liquid hydrocarbons with high isoparaffin content are the most suitable fuels regarding availability, economical and environmental aspects, namely the sustainable development. (orig.)

  1. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Robert J. Andres

    2014-07-01

    Full Text Available Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ. Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ. In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world.

  2. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  3. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  4. Subsidy regulation in WTO Law : Some implications for fossil fuels and renewable energy

    NARCIS (Netherlands)

    Marhold, Anna

    2016-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  5. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    Science.gov (United States)

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  6. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    Science.gov (United States)

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  7. Subsidies in WTO Law and Energy Regulation : Some Implications for Fossil Fuels and Renewable Energy

    NARCIS (Netherlands)

    Marhold, Anna

    2018-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  8. Energy and fossil fuels as a topic in WTO accession protocols

    NARCIS (Netherlands)

    Marhold, Anna; Weiss, Friedl; Bungenberg, M; Krajewski, M; Tams, C; Terhechte, JP; Ziegler, AR

    2018-01-01

    This article seeks to analyse and compare WTO Accession Protocols, particularly the interpretations given relevant commitments made in them regarding energy and fossil fuels. Much has changed in global trade relations since the launch of the Doha Round of multilateral trade negotiations in November

  9. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    Science.gov (United States)

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  10. Environmental and Financial Performance of Fossil Fuel Firms : A Closer Inspection of their Interaction

    NARCIS (Netherlands)

    Gonenc, Halit; Scholtens, Bert

    We investigate the relationship between environmental and financial performance of fossil fuel firms. To this extent, we analyze a large international sample of firms in chemicals, oil, gas, and coal with respect to several environmental indicators in relation to financial performance for the period

  11. Fossil Fuel (CO2) Emission Verification Capability07-ERD-064Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cameron-Smith, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-04-26

    This work focused exclusively on designing a system for California as a test-bed. Fossil fuel CO2 emissions account for ~96% of the total California anthropogenic CO2 emissions (CEC GHG Inventory, 2006).

  12. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  13. Modeling CO2 emissions from fossil fuel combustion using the logistic equation

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2011-01-01

    CO 2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO 2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO 2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO 2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk. -- Highlights: → Figures of CO 2 emissions from fossil fuel combustion in most countries are S-shape curves. → Using the logistic function to model the S-shape curve. → Three algorithms are offered to estimate the parameters of the logistic function. → The empirical analysis from China shows that the logistic equation has satisfactory simulation results.

  14. Climate Policy and the Optimal Extraction of High- and Low-Carbon Fossil Fuels

    NARCIS (Netherlands)

    Smulders, J.A.; van der Werf, E.H.

    2005-01-01

    We study how restricting CO2 emissions affcts resource prices and depletion over time.We use a Hotelling-style model with two nonrenewable fossil fuels that differ in their carbon content (e.g. coal and natural gas) and that are imperfect substitutes in final good production.We study both an

  15. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  16. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays

  17. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  18. The influence of the switch from fossil fuels to solar and wind energy on the electricity prices in Germany

    NARCIS (Netherlands)

    A.B. Dorsman (Andre); A. Khoshrou (Abdolrahman); E.J. Pauwels (Eric)

    2016-01-01

    textabstractGermany is actively pursuing a switch from fossil fuel to renewables, the so-called Energiewende (energy transition). Due to the fact that the supply of wind and solar energy is less predictable than the supply of fossil fuel, stabilizing the grid has become more challenging. On sunny

  19. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  20. Review of alternative fuels data bases

    Science.gov (United States)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  1. Microbial fuel cells: a promising alternative for power generation and waste treatment

    International Nuclear Information System (INIS)

    Vazquez-Larios, A. L.; Solorza-Feria, O.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H. M.

    2009-01-01

    The current energy crisis has launched a renewed interest on alternative energy sources and non-fossil fuels. One promising technology is the direct production of electricity from organic matter or wastes in microbial fuel cells (MFC). A MFC can be envisioned as an bio-electrochemical reactor that converts the chemical energy stored in chemical bonds into electrical energy via the catalytic activity of microorganisms under anoxic conditions. (Author)

  2. Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006

    International Nuclear Information System (INIS)

    Papathanasopoulou, Eleni

    2010-01-01

    This paper explores how Greece's household consumption has changed between 1990 and 2006 and its environmental implications in terms of fossil fuel demand and carbon dioxide (CO 2 ) emissions. The results show that the 44% increase in Greece's household expenditure between 1990 and 2006 was accompanied by a 67% increase in fossil fuel demand. Of this total, indirect demand accounted for approximately 60% throughout the 16-year period, increasing by 56% overall, whereas direct fossil fuel demand grew by 80%. The results also show that associated CO 2 emissions increased by 60%, resulting in a 'relative decoupling' from energy demand. This relative decoupling is shown to be due to fossil fuel mix changes from the supply side rather than action from consumers. These insights highlight the opportunities for demand-side policies to further reduce fossil fuel demand and CO 2 emissions, allowing Greece to set more proactive and ambitious post-Kyoto targets.

  3. The role of college and university faculty in the fossil fuel divestment movement

    Directory of Open Access Journals (Sweden)

    Jennie C. Stephens

    2018-05-01

    Full Text Available Colleges and universities have played a critical role in the growing social movement to divest institutional endowments from fossil fuels. While campus activism on fossil fuel divestment has been driven largely by students and alumni, faculty are also advocating to their administrators for institutional divestment from fossil fuels. This article characterizes the role of faculty by reviewing signatories to publicly available letters that endorse fossil fuel divestment. Analysis of 30 letters to administrators signed by faculty at campuses throughout the United States and Canada reveals support for divestment from 4550 faculty across all major fields of inquiry and scholarship, and all types of faculty positions. Of these signers, more than 225 have specific expertise in climate change or energy. An in-depth analysis of 18 of these letters shows that a significantly greater proportion of tenured faculty sign open letters of support for divestment than do not-yet-tenured tenure-track faculty (15.4% versus 10.7%, perhaps reflecting concerns among not-yet-tenured faculty that such support might jeopardize their career advancement. This analysis suggests that faculty support for the divestment movement is more widespread than commonly recognized; this movement is more mainstream, and broader-based, than is often recognized. Revealing the scope and scale of faculty support for fossil fuel divestment may encourage additional faculty to engage, support and endorse this growing social movement that highlights the social impact of investment decisions, and calls upon colleges and universities to align their investment practices with their academic missions and values.

  4. Fossil fuel and biomass burning effect on climate - heating or cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO{sub 2} cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO{sub 2} molecules as SO{sub 2} molecules, each SO{sub 2} molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO{sub 2} molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO{sub 2} (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO{sub 2} concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs.

  5. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass

    International Nuclear Information System (INIS)

    Speirs, Jamie; McGlade, Christophe; Slade, Raphael

    2015-01-01

    Energy policies are strongly influenced by resource availability and recoverability estimates. Yet these estimates are often highly uncertain, frequently incommensurable, and regularly contested. This paper explores how the uncertainties surrounding estimates of the availability of fossil fuels, biomass and critical metals are conceptualised and communicated. The contention is that a better understanding of the uncertainties surrounding resource estimates for both conventional and renewable energy resources can contribute to more effective policy decision making in the long term. Two complementary approaches for framing uncertainty are considered in detail: a descriptive typology of uncertainties and a framework that conceptualises uncertainty as alternative states of incomplete knowledge. Both have the potential to be useful analytical and communication tools. For the three resource types considered here we find that data limitations, inconsistent definitions and the use of incommensurable methodologies present a pervasive problem that impedes comparison. Many aspects of resource uncertainty are also not commonly captured in the conventional resource classification schemes. This highlights the need for considerable care when developing and comparing aggregate resource estimates and when using these to inform strategic energy policy decisions. - Highlights: • Resource estimates are highly uncertain, frequently incommensurable, and regularly contested. • Data limitations need to be overcome, and methodologies harmonised and improved. • Sustainability and socio-political uncertainties are frequently neglected. • Uncertainties are dynamic, but reducing uncertainties inevitably involves trade-offs.

  6. The Tricky Art of Measuring Fossil Fuel Subsidies: A Critique of Existing Studies

    Directory of Open Access Journals (Sweden)

    Kenneth J. McKenzie

    2011-09-01

    Full Text Available Fossil fuel subsidies are of enormous import to policy-makers and public opinion, making it critical to properly define them. However, traditional methodologies tend to place subsidies in the realm of tax expenditure analysis, presenting a flawed picture. A recent report on government subsidies to the Canadian energy sector prepared for the International Institute for Sustainable Development exemplifies this flawed approach along several dimensions: it is not based on a robust underlying economic framework, it fails to account for complex interactions between tax and royalty systems in existing fiscal policy, and it uses a definition of subsidies that was created for a different purpose. The authors of this paper propose an alternative “economic view”, based on economic rents, which provides a neutral benchmark against which subsidies, royalties and other energy-focused fiscal measures can be measured. Using marginal effective tax rate (METR analysis, the authors show that it is possible to obtain a more accurate picture of energy subsidies and their impact on resource allocation and economic activity. This improved schema will ideally allow governments to better understand subsidies and devise sound policies, leading to less waste and distorted investment choices.

  7. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Gulyurtlu, Ibrahim; Abelha, Pedro; Teixeira, P.; Crujeira, Teresa; Boavida, Dulce; Marques, F.; Cabrita, Isabel [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The growing demand for energy and the requirements regarding CO{sub 2} emissions to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained.

  8. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; I. Gulyurtlu; P. Abelha; P. Teixeira; T. Crujeira; D. Boavida; F. Marques; I. Cabrita [INETI, Lisbon (Portugal)

    2006-07-01

    The growing demand for energy and the requirement regarding CO{sub 2} emissions, to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained. 19 refs., 5 figs., 7 tabs.

  9. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    Science.gov (United States)

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. © The Author(s) 2014.

  10. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors

    Science.gov (United States)

    Quilcaille, Y.; Gasser, T.; Ciais, P.; Lecocq, F.; Janssens-Maenhout, G.; Mohr, S.

    2018-04-01

    Emission inventories are widely used by the climate community, but their uncertainties are rarely accounted for. In this study, we evaluate the uncertainty in projected climate change induced by uncertainties in fossil-fuel emissions, accounting for non-CO2 species co-emitted with the combustion of fossil-fuels and their use in industrial processes. Using consistent historical reconstructions and three contrasted future projections of fossil-fuel extraction from Mohr et al we calculate CO2 emissions and their uncertainties stemming from estimates of fuel carbon content, net calorific value and oxidation fraction. Our historical reconstructions of fossil-fuel CO2 emissions are consistent with other inventories in terms of average and range. The uncertainties sum up to a ±15% relative uncertainty in cumulative CO2 emissions by 2300. Uncertainties in the emissions of non-CO2 species associated with the use of fossil fuels are estimated using co-emission ratios varying with time. Using these inputs, we use the compact Earth system model OSCAR v2.2 and a Monte Carlo setup, in order to attribute the uncertainty in projected global surface temperature change (ΔT) to three sources of uncertainty, namely on the Earth system’s response, on fossil-fuel CO2 emission and on non-CO2 co-emissions. Under the three future fuel extraction scenarios, we simulate the median ΔT to be 1.9, 2.7 or 4.0 °C in 2300, with an associated 90% confidence interval of about 65%, 52% and 42%. We show that virtually all of the total uncertainty is attributable to the uncertainty in the future Earth system’s response to the anthropogenic perturbation. We conclude that the uncertainty in emission estimates can be neglected for global temperature projections in the face of the large uncertainty in the Earth system response to the forcing of emissions. We show that this result does not hold for all variables of the climate system, such as the atmospheric partial pressure of CO2 and the

  11. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel

    International Nuclear Information System (INIS)

    Kavvadias, K.C.; Khamis, I.

    2014-01-01

    The reliable supply of water and energy is an important prerequisite for sustainable development. Desalination is a feasible option that can solve the problem of water scarcity in some areas, but it is a very energy intensive technology. Moreover, the rising cost of fossil fuel, its uncertain availability and associated environmental concerns have led to a need for future desalination plants to use other energy sources, such as renewables and nuclear. Nuclear desalination has thus the potential to be an important option for safe, economic and reliable supply of large amounts of fresh water to meet the ever-increasing worldwide water demand. Different approaches to use nuclear power for seawater desalination have been considered including utilisation of the waste heat from nuclear reactors to further reduce the cost of nuclear desalination. Various options to implement nuclear desalination relay mainly on policy making based on socio-economic and environmental impacts of available technologies. This paper examines nuclear desalination costs and proposes a methodology for exploring interactions between critical parameters. - Highlights: • The paper demonstrated desalination costs under uncertainty conditions. • Uncertainty for nuclear power prevails only during the construction period. • Nuclear desalination proved to be cheaper and with less uncertainty

  12. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  13. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    Science.gov (United States)

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  14. Alternative Fuel News: May 2000 Special Edition

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, A.; Ficker, C.

    2000-05-03

    In this special issue of Alternative Fuel News, the authors summarize DOE's current position on the local government and private fleet rulemaking that has been under consideration. The authors also look at the new area of focus, niche markets. Your participation and input are invited as the authors craft new directions for the nation's transportation future.

  15. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  16. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  17. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  18. Alternative transport fuels: supply, consumption and conservation

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1990-01-01

    Road-based passenger and freight transport almost exclusively uses petroleum/hydrocarbon fuels in the fluid form. These fuels will probably continue to be major transport fuels well into the 21st century. As such there is need to prolong their use which can be done through: (1) conservation of fuel by increasing efficiency of internal combustion engines, and (2) conversion of natural gas, coal and peat, and biomass into alternate fuels such as ethanol, methanol, CNG, LNG, LPG, low heat-content (producer) gas and vegetable oils. Research, development and demonstration (RD and D) priorities in supply, consumption and conservation of these alternate fuels are identified and ranked in the context of situation prevailing in Brazil. Author has assigned the highest priority for research in the impact of pricing, economic, fiscal and trade policies, capital allocation criteria and institutional and legislative framework. It has also been emphasised that an integrated or systems approach is mandatory to achieve net energy gains in transport sector. (M.G.B.). 33 refs., 11 tabs., 4 figs

  19. Economic analysis to compare fabrication of nuclear power and fossil fuel power plants at Iran

    International Nuclear Information System (INIS)

    Rasouliye Koohi, Mojtaba

    1997-01-01

    Electric power due to its many advantages over other forms of energies covers most of the world's energy demands.The electric power can be produced by various energy converting systems fed by different energy resources like fossil fuels, nuclear, hydro and renewable energies, each having their own appropriate technologies. The fossil fuel not only consumes the deplete and precious sources of non conventional energies but they add pollution to environment too. The nuclear power plants has its own share of radioactive pollutions which, of course can be controlled by taking precautionary measures. The investing cost of each generated unit (KWh) in the nuclear power plants, comparing with its equivalent production by fossil fuels is investigated. The various issues of economical analysis, technical, political and environmental are the different aspects, which individually can influence the decisions for kind of power plant to be installed. Finally, it is concluded that the fossil and nuclear power generations both has its own advantages and disadvantages. Hence, from a specializing point of view, it may not be proper to prefer one over the others

  20. Innovation in the energy sector – The role of fossil fuels and developing economies

    International Nuclear Information System (INIS)

    Brutschin, Elina; Fleig, Andreas

    2016-01-01

    This paper analyzes the effects of fossil fuel rents on R&D expenditures and patent grants in the field of energy-related technology. We argue that an increasing share of fossil fuel rents lessens the innovation of new energy technologies. We consider a sample of countries beyond the common selection of OECD members and investigate innovation efforts in the energy sector of 116 countries from 1980 to 2012. We observe the gradually growing influence of resource-abundant countries on global R&D expenditures and find that increasing fossil fuel rents have a negative effect on patent grants. This study contributes to the ongoing debate concerning the potential effects of resource abundance. More importantly, it increases our understanding of innovation activities within the energy sector and further underscores the need to extend future research to countries that have not been taken into account thus far. - Highlights: • We investigate a sample of 116 countries, a pool beyond the commonly considered OECD members. • We find that high oil prices induce increased R&D expenditures in developed countries. • Fossil rents are associated with decreasing patent grants when developing economies are included. • We use multiple imputation to handle the problem of missing data.

  1. Fossil fuel depletion and socio-economic scenarios: An integrated approach

    International Nuclear Information System (INIS)

    Capellán-Pérez, Iñigo; Mediavilla, Margarita; Castro, Carlos de; Carpintero, Óscar; Miguel, Luis Javier

    2014-01-01

    The progressive reduction of high-quality-easy-to-extract energy is a widely recognized and already ongoing process. Although depletion studies for individual fuels are relatively abundant, few of them offer a global perspective of all energy sources and their potential future developments, and even fewer include the demand of the socio-economic system. This paper presents an Economy-Energy-Environment model based on System Dynamics which integrates all those aspects: the physical restrictions (with peak estimations for oil, gas, coal and uranium), the techno-sustainable potential of renewable energy estimated by a novel top-down methodology, the socio-economic energy demands, the development of alternative technologies and the net CO 2 emissions. We confront our model with the basic assumptions of previous Global Environmental Assessment (GEA) studies. The results show that demand-driven evolution, as performed in the past, might be unfeasible: strong energy-supply scarcity is found in the next two decades, especially in the transportation sector before 2020. Electricity generation is unable to fulfill its demand in 2025–2040, and a large expansion of electric renewable energies move us close to their limits. In order to find achievable scenarios, we are obliged to set hypotheses which are hardly used in GEA scenarios, such as zero or negative economic growth. - Highlights: • The paper presents and describes a new Energy–Economy–Environment global model. • GEA scenario dynamics have the potential to lead us to energy resource scarcity in the next 2 decades. • Global forecasts of international agencies show inconsistency in energy constraints. • Renewable energies are only partially able to replace fossil fuels depletion. • Climate change still reaches dangerous dimensions

  2. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Energy Technology Data Exchange (ETDEWEB)

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  3. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    International Nuclear Information System (INIS)

    Chang, Ting-Huan; Su, Hsin-Mei

    2010-01-01

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  4. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ting-Huan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310 (China); Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China); Su, Hsin-Mei [Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China)

    2010-07-15

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  5. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    Coiante, D.

    1995-03-01

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  6. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  7. Projection of fossil fuels consumption in the Venezuelan electricity generation industry

    International Nuclear Information System (INIS)

    Vidoza, Jorge A.; Gallo, Waldyr L.R.

    2016-01-01

    This study presents a prospective analysis on the impacts of recent efficient energy policies application in Venezuela, integrating both oil production and electricity supply to assess energy resources balance in a quantitative manner. A special focus is given to main fossil fuels used in the electric power industry; natural gas, diesel oil and fuel oil. Four scenarios were proposed, ranging from a low-economy-growth/low-efficiency scenario to an optimist high-economy-growth/high-efficiency scenario. Efficiency effects are more notorious for high-economy-growth case, fuel consumption for electricity generation reduces 38% for natural gas, 12% for diesel and 29% for fuel oil, in the established time period. Deficits in oil and gas Venezuelan production were also determined, deficits are highly affected by economical forecasting, and by fuel smuggling in Venezuelan borders. Results showed the high importance of energy efficiency policies development for Venezuela, in order to reduce fossil fuel domestic consumption to allocate them in a more profitable market. - Highlights: • We made a prospective analysis on efficient energy policies impacts in Venezuela. • Reduced fuel consumption was obtained for efficient scenarios. • Current energy regulations are not enough to encourage energy efficiency. • Hydroelectricity projects need more promotion to have deeper impacts.

  8. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  9. Proceedings of the 1991 Windsor workshop on alternative fuels

    International Nuclear Information System (INIS)

    1991-01-01

    A workshop was held to exchange information among engine and vehicle manufacturers, fuel suppliers, research organizations, and academic and regulatory bodies on various aspects of alternative transportation fuels development. Papers were presented on alternative fuels policies and programs, zero-emission vehicles, emission control technologies, field evaluations of alternative fuel systems, and heavy duty alternate-fuel engines. Separate abstracts have been prepared for nine papers from this workshop

  10. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  11. A PESTLE Policy Mapping and Stakeholder Analysis of Indonesia’s Fossil Fuel Energy Industry

    Directory of Open Access Journals (Sweden)

    Satya Widya Yudha

    2018-05-01

    Full Text Available Indonesia has a long-standing history of reliance on fossil fuels, which reflects the country’s vast reserves of crude oil, natural gas, coal, and other resources. Consequently, the potential of Indonesia’s fossil energy industry is both complex and multi-layered. This paper aims to carry out a policy mapping and stakeholder analysis of Indonesia’s fossil energy industry, adopting a PESTLE (Political, Economic, Social, Technology, Legal, and Environmental approach, which allows identification of multidisciplinary stakeholders and underlying relationships across the sector. The outcomes from the analysis indicated the importance of strategically aligning the stakeholders’ policies to the needs of other relevant stakeholders. Furthermore, the central and regional governments need to work closely in order to better sense if there is a change in the policy, be receptive to anticipating the potential impacts, and to avoid policies being executed in an isolated manner.

  12. Systems impacts of spent fuel disassembly alternatives

    International Nuclear Information System (INIS)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  13. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    Science.gov (United States)

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  15. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  16. Panorama 2009 - aviation and alternative fuels

    International Nuclear Information System (INIS)

    2008-01-01

    Several key priorities have been targeted for development in the aviation industry: diversifying energy resources, keeping consumption levels under control and reducing polluting emissions to improve air quality. Like the road transport sector, the air transport sector is mounting a determined effort to reduce the level of its greenhouse gas emissions. Among the various solutions under consideration, alternative fuels are attracting particular attention. However, not all alternative solutions can be exploited, because of the constraints specific to the use of aircraft. A precise assessment should be made of all possible solutions to determine which ones should take preference

  17. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J.; Marland, G.; Boden, T.A.; Kumar, N.; Kearney, A.T. [University of Alaska, Fairbanks, AK (US). Inst. of Northern Engineering

    1999-09-01

    Newly compiled energy statistics allow the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present to be estimated. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonne C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 degree global distributions of the data have been calculated.

  18. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  19. A novel CO2 sequestration system for environmentally producing hydrogen from fossil-fuels

    International Nuclear Information System (INIS)

    Eucker IV, W.

    2007-01-01

    Aqueous monoethanolamine (MEA) scrubbers are currently used to capture carbon dioxide (CO 2 ) from industrial flue gases in various fossil-fuel based energy production systems. MEA is a highly volatile, corrosive, physiologically toxic, and foul-smelling chemical that requires replacement after 1000 operational hours. Room temperature ionic liquids (RTILs), a novel class of materials with negligible vapor pressures and potentiality as benign solvents, may be the ideal replacement for MEA. Ab initio computational modeling was used to investigate the molecular interactions of ILs with CO 2 . The energetic and thermodynamic parameters of the RTILs as CO 2 solvents are on par with MEA. As viable competitors to the present CO 2 separation technology, RTILs may economize the fossil-fuel decarbonization process with the ultimate aim of realizing a green hydrogen economy

  20. Climate Science and the Responsibilities of Fossil Fuel Companies for Climate Damages and Adaptation

    Science.gov (United States)

    Frumhoff, P. C.; Ekwurzel, B.

    2017-12-01

    Policymakers in several jurisdictions are now considering whether fossil fuel companies might bear some legal responsibility for climate damages and the costs of adaptation to climate change potentially traceable to the emissions from their marketed products. Here, we explore how scientific research, outreach and direct engagement with industry leaders and shareholders have informed and may continue to inform such developments. We present the results of new climate model research quantifying the contribution of carbon dioxide and methane emissions traced to individual fossil fuel companies to changes in global temperature and sea level; explore the impact of such research and outreach on both legal and broader societal consideration of company responsibility; and discuss the opportunities and challenges for scientists to engage in further work in this area.

  1. The role of natural gas in assessing environmental cost of fossil fuels

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1999-01-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages [it

  2. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    Science.gov (United States)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  3. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    Science.gov (United States)

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  4. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    Science.gov (United States)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  5. Alternative Fuel News: Vol. 3, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-01-10

    This final issue of the Alternative Fuel News (AFN) for the 20th century provides updates on specific Clean Cities Program progress and provide a glimpse of what is in store for the future. A national nonprofit organization has been part of the Clean Cities vision for some time, and now it is a reality as National Clean Cities, Inc. (NCC). While Clean Cities coalitions have had some success in securing local private foundation funds for alternative fuel vehicle (AFV) projects in their regions, now with the help of NCC, they can tap into the dollars available from large, national foundations. The Clean Cities Game Plan 2000, which is the highlight of the cover story, outlines the strategy for the next year.

  6. Nuclear fuel: the thinking man's alternative

    International Nuclear Information System (INIS)

    Chamberlain, N.

    1989-01-01

    'Nuclear Fuel ' The Thinking Man's Alternative' is the title of the 55th Melchett Lecture given by Neville Chamberlain, Chief Executive of British Nuclear Fuels plc. This article is based on the address, the essence of which is that the case for nuclear power should be based upon an appreciation of the totality and sophistication of man's handling of his energy needs - not on a glib catch-phase or on a simple political dogma or on an economic argument. Arguments in favour of nuclear power were discussed. The conclusion was that nuclear energy is the thinking man's alternative because only thinking man could have and can develop it; secondly, only thinking men should be authorized to exploit and control it; thirdly, a thinking person will appreciate that, properly thought out and controlled, it must be the most important source of future energy for the benefit of mankind. (author)

  7. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  8. Alternative Fuel News, Vol. 2, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-03-17

    The cover story in this issue of the Alternative Fuel News highlights the niche market principle; the places in which AFVs would best fit. This year's SEP funding is expected to be the springboard needed for the development of niche projects. The Clean Cities Program, by matching those needs and attributes in niches, can dramatically increase the attractiveness of AFVs and make an impact on those high-mileage, high-use fleets.

  9. Public money for fossil fuels in the EU and in three EU member states

    International Nuclear Information System (INIS)

    Van Gelder, J.W.; Herder, A.; Kroes, H.

    2009-04-01

    This research report aims to provide an overview of all forms of public money spent on the production and primary processing of fossil fuels (oil, gas and coal) in France, the Netherlands, United Kingdom and the European Union since early 2004. Public money includes R and D subsidies, investment and other subsidies; export credits and guarantees; tax rebates and reductions; bilateral development aid and other forms of financial incentives.

  10. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    Science.gov (United States)

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  11. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    Directory of Open Access Journals (Sweden)

    Sebastian Heger

    Full Text Available Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss. The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  12. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  13. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  14. Environmental impact of fossil fuel utilization in the thermal power plant

    International Nuclear Information System (INIS)

    Ghasem D Najafpour; Seyed Jafar Mehdizadeh; Abdul Rahman Mohamed

    2000-01-01

    Carbon dioxide causes green house effect, has been considered as a pollutant source of our safe environment. Since combustion of fossil fuel may create tremendous amount of carbon dioxide, detecting any pollutant sources would be important to eliminate the pollution sources. Evaluation of smoke dispersion that has been generated by a power plant utilizing fossil fuel is the objective of this paper. The concentration of NO, and SO, in the soil, have been analyzed from a distance of 3 to 4 km far from power plant. The experimental results shown. that the concentration of toxic gases was a little above the international standards. Replacement of fossil fuel by natural gas caused NO, concentration to be developed in the atmosphere, therefore usage of natural gas is limited by environmental protection agencies. Beside the nuclear power plant, the power generated by other sources. are limited. Electric power generated by water dam is not a major contribution of electric power demand. Therefore generation of electricity by any other energy sources, which are friendly to the environment, is recommended. Other sources of energy, such as wind power, solar energy, geothermal, ocean thennal and renewable source of energy can be considered safe for the environment. The goal of environmental management system would be to meet the minimum requirements were established and demanded by the local environmental protection agency or international standard organization (ISO-14000). (Author)

  15. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J. [Alaska Fairbanks Univ., Fairbanks AK (United States). Inst. of Northern Engineering; Marland, G.; Boden, T.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Kumar, N.; Kearney, A.T. [153 East 53rd Street, New York, NY (United States)

    1999-09-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonnes C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 deg global distributions of the data have been calculated 18 refs, 4 figs, 2 tabs

  16. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  17. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    Science.gov (United States)

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Ranking Renewable and Fossil Fuels on Global Warming Potential Using Respiratory Quotient Concept

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2018-01-01

    Full Text Available Carbon dioxide (CO2 is one of the greenhouse gases which cause global warming. The amount of fossil fuels consumed to meet the demands in the areas of power and transportation is projected to increase in the upcoming years. Depending on carbon content, each power plant fuel has its own potential to produce carbon dioxide. Similarly, the humans consume food containing carbohydrates (CH, fat, and protein which emit CO2 due to metabolism. The biology literature uses respiratory quotient (RQ, defined as the ratio of CO2 moles exhausted per mole of O2 consumed within the body, to estimate CO2 loading in the blood stream and CO2 in nasal exhaust. Here, we apply that principle in the field of combustion to relate the RQ to CO2 emitted in tons per GJ of energy released when a fuel is combusted. The RQ value of a fuel can be determined either from fuel chemical formulae (from ultimate analyses for most liquid and solid fuels of known composition or from exhaust gas analyses. RQ ranges from 0.5 for methane (CH4 to 1 for pure carbon. Based on the results obtained, the lesser the value of “RQ” of a fuel, the lower its global warming potential. This methodology can be further extended for an “online instantaneous measurement of CO2” in automobiles based on actual fuel use irrespective of fuel composition.

  19. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  20. Near-term feasibility of alternative jet fuels

    Science.gov (United States)

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  1. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  2. Tracking costs of alternatively fueled buses in Florida : [summary].

    Science.gov (United States)

    2011-01-01

    In an effort to address rising fuel costs and environmental concerns, many transit agencies across Florida have introduced alternative fuel technologies to their traditional diesel-powered fleets. Fuel types include biodiesel, compressed natural gas,...

  3. To break away from fossil fuels : a contribution to solve climatic change and energy security for Quebec; S'affranchir des carburants fossiles : une contribution a la lutte aux changements climatiques et a la securite energetique du Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, P.; Seguin, H.; Waridel, L.

    2006-06-15

    In response to growing energy demands, Quebec has proposed the construction of 3 deep water terminals to accommodate methane tankers which transport liquefied natural gas (LNG). This paper focused on the proposed Gros Cacouna Port project in the St. Lawrence Seaway which is currently under study and subject to approval. Equiterre, questioned the energy security aspect of the proposal and argued that increasing Quebec's reliance on increasingly expensive energy would decrease energy security. In addition, importation of LNG would bring a clear exit of capital outside the province. Equiterre also argued that reliance on fossil fuels should be decreased in order to mitigate greenhouse gas emissions which contribute to climate change. The organization questioned whether the economic and social need for the proposed project justifies a greater dependency on fossil fuels and the associated impact on the environment and fragile ecosystems of the St. Lawrence. It was suggested that alternative solutions such as renewable energy sources and energy efficiency should be explored in order to promote sustainable development, increase energy security and reduce greenhouse gases. Equiterre argued that Quebec can and must decrease, and even eliminate, its dependence on fossil fuels, including natural gas, for Quebec's economic, social and environmental well-being. For these reasons, Equiterre recommended that the proposed project be rejected, particularly since the project proponents failed to show the real impact that the project would have on Quebec markets. 72 refs., 10 tabs., 21 figs.

  4. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  5. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  6. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  7. Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-28

    The Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps report, published by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) provides an overview of the current state of alternative aviation fuels, based upon findings from recent peer-reviewed studies, scientific working groups, and BETO stakeholder input provided during the Alternative Aviation Fuel Workshop.

  8. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Part II Environmental Protection Agency 40 CFR Parts 85 and 86 Clean Alternative Fuel Vehicle and...-0299; FRL-9149-9] RIN 2060-AP64 Clean Alternative Fuel Vehicle and Engine Conversions AGENCY... streamline the process by which manufacturers of clean alternative fuel conversion systems may demonstrate...

  9. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for...

  10. Alternate-Fuel Vehicles and Their Application in Schools.

    Science.gov (United States)

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  11. Proceedings of the 1996 Windsor workshop on alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  12. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  13. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Science.gov (United States)

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels

  14. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  15. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel

    Science.gov (United States)

    Trucks Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels

  16. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  17. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  18. A numerical investigation on the influence of EGR in a supercharged SI engine fueled with gasoline and alternative fuels

    International Nuclear Information System (INIS)

    Mardi K, Mohsen; Khalilarya, Shahram; Nemati, Arash

    2014-01-01

    Highlights: • CFD modeling the combustion of different alternative fuels in SI engine. • 10% of EGR is the most desirable amount from the viewpoint of emissions and power. • EGR affects on methane fuel more than others. • Supercharging has the most noticeable effect on gasoline fuel and the least on hydrogen fuel. - Abstract: Alternative fuels are mostly extracted from renewable resources, and their emission levels can be lower than those of traditional fossil-based fuels. A computational fluid dynamics (CFD) method is utilized to investigate the effects of exhaust gas recirculation (EGR) and initial charge pressure on the emissions and performance of a SI engine. The engine is fueled separately by gasoline and some of potential alternative fuels including hydrogen, propane, methane, ethanol and methanol. The results of simulation are compared to the experimental data. In all validation cases, experimental and numerical results were observed to have good agreement with each other. The calculations are carried out for EGR ratios between 0% and 20% and four cases of initial pressure have been mentioned: P in = 1, 1.2, 1.4, 1.6 bar. The effect of EGR on NO x emission of methane is more than other fuels and its effect on IMEP of hydrogen is less than other fuels. From the viewpoints of emission and power, 10% of EGR seems to be the most desirable amount. The most noticeable effect of supercharging is on gasoline unlike hydrogen, which seems to be affected the least. The comparison of results shows that hydrogen due to its high heating value and burning without producing any carbon-based compounds such as HC, CO and CO 2 is an ideal alternative fuel compared to the other fuels

  19. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    Science.gov (United States)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  20. Climate change adaptation, damages and fossil fuel dependence. An RETD position paper on the costs of inaction

    Energy Technology Data Exchange (ETDEWEB)

    Katofsky, Ryan; Stanberry, Matt; Hagenstad, Marca; Frantzis, Lisa

    2011-07-15

    The Renewable Energy Technology Deployment (RETD) agreement initiated this project to advance the understanding of the ''Costs of Inaction'', i.e. the costs of climate change adaptation, damages and fossil fuel dependence. A quantitative estimate was developed as well as a better understanding of the knowledge gaps and research needs. The project also included some conceptual work on how to better integrate the analyses of mitigation, adaptation, damages and fossil fuel dependence in energy scenario modelling.

  1. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    Kaul, Sanjay; Edinger, Raphael

    2004-01-01

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  2. Long-term tradeoffs between nuclear- and fossil-fuel burning

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1996-01-01

    A global energy/economics/environmental (E 3 ) model has been adapted with a nuclear energy/materials model to understand better open-quotes top-levelclose quotes, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a open-quotes business-as-usualclose quotes (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year ∼2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations)

  3. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  4. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  5. Emission of greenhouse gases from the use of fossil fuels in Ibague, Tolima (Colombia

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2017-01-01

    Full Text Available Climate change is caused by the increase of concen-trations of greenhouse gases (ghg, especially CO2, caused by the proliferation of fossil fuels use. Forest systems can capture carbon in biomass and mitigate the climate change problem. The aim of this research was to estimate the emission of ghg from the sale of fossil fuels in the city of Ibague and propose options of mitigation with productive systems in Tolima. Throughout a review, the total number of service stations in the city urban area was determined. Carrying on interviews to employers that attend public, the sales of fossil fuels (gasoline, diesel and ResumoA mudança climática é causada pelo aumento das concentrações dos gases de efeito estufa (gei, especialmente, pelo CO2 produzido pela prolife-ração do uso de combustíveis fósseis. Os sistemas forestais podem absorver carbono na biomassa e mitigar o problema da mudança climática. O objetivo do estudo foi estimar a emissão de geide acordo com a venda de combustíveis fósseis em Ibagué e plantear opções de mitigação com sistemas de produção no Tolima. Mediante revisão de literatura, determinou-se o número de postos de gasolina no perímetro urbano de Ibagué. Através de enquetes a empregados que atendem ao público, natural gas vehicle-ngv, were determined and based on the total number of stations and emission factors, it was estimated the total emission from each fuel in the city. Some mitigation options, such as coffee, cocoa and teak plantations have been proposed. It was estimated an emission of 368 Gg CO2/year (1 Gg = 10⁹ g from sales of fuels, equivalent to 718 kg CO2/person/year. These ghgemissions should be mitigated with reduction in the use of fossil fuels or throughout establishment of agricultural and forestry production systems which allows fixating CO2

  6. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  7. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  8. Overview of alternate-fuel fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1980-01-01

    Alternate fuels (AFs) such as Cat-D, D- 3 He and p- 11 B offer the potential advantages of elimination of tritium breeding and reduced energy release in neutrons. An adequate energy balance appears exceedingly difficult to achieve with proton-based fuels such as p- 11 B. Thus Cat-D, which can ignite at temperatures in the range of 30 to 40 keV, represents the logical near-term candidate. An attractive variation which adds flexibility would be to develop semi-catalyzed-D plants for synfuel production with simultaneous generation of 3 He for use in D- 3 He satellite electrical power plants. These approaches and problems are discussed

  9. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  10. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  11. Statistical utility theory for comparison of nuclear versus fossil power plant alternatives

    International Nuclear Information System (INIS)

    Garribba, S.; Ovi, A.

    1977-01-01

    A statistical formulation of utility theory is developed for decision problems concerned with the choice among alternative strategies in electric energy production. Four alternatives are considered: nuclear power, fossil power, solar energy, and conservation policy. Attention is focused on a public electric utility thought of as a rational decision-maker. A framework for decisions is then suggested where the admissible strategies and their possible consequences represent the information available to the decision-maker. Once the objectives of the decision process are assessed, consequences can be quantified in terms of measures of effectiveness. Maximum expected utility is the criterion of choice among alternatives. Steps toward expected values are the evaluation of the multidimensional utility function and the assessment of subjective probabilities for consequences. In this respect, the multiplicative form of the utility function seems less restrictive than the additive form and almost as manageable to implement. Probabilities are expressed through subjective marginal probability density functions given at a discrete number of points. The final stage of the decision model is to establish the value of each strategy. To this scope, expected utilities are computed and scaled. The result is that nuclear power offers the best alternative. 8 figures, 9 tables, 32 references

  12. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  13. Quantification of fossil fuel CO2 at the building/street level for large US cities

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban

  14. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  15. Incidence and impact: The regional variation of poverty effects due to fossil fuel subsidy reform

    International Nuclear Information System (INIS)

    Rentschler, Jun

    2016-01-01

    Since fossil fuel subsidy reforms can induce significant distributional shifts and price shocks, effective compensation and social protection programs are crucial. Based on the statistical simulation model by Araar and Verme (2012), this study estimates the regional variability of direct welfare effects of removing fuel subsidies in Nigeria. Uncompensated subsidy removal is estimated to increase the national poverty rate by 3–4% on average. However, uniform cash compensation that appears effective at the national average, is found to fail to mitigate price shocks in 16 of 37 states – thus putting livelihoods (and public support for reforms) at risk. States that are estimated to incur the largest welfare shocks, coincide with hotspots of civil unrest following Nigeria's 2012 subsidy reform attempt. The study illustrates how regionally disaggregated compensation can be revenue neutral, and maintain or reduce pre-reform poverty rates in all states. Overall, it highlights the importance of understanding differences in vulnerability, and designing tailored social protection schemes which ensure public support for subsidy reforms. - Highlights: •Fossil fuel subsidy reforms can induce significant distributional shifts and price shocks. •There is significant regional variation of a reform's effects on poverty rates. •Compensation is key to protect livelihoods and win public support for reform. •Compensation schemes must be carefully tailored to account for regional variation.

  16. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  17. Fossil Fuel Industry Funding of Climate-Relevant Research at U.S. Universities

    Science.gov (United States)

    Franta, B.; Supran, G.

    2017-12-01

    Commercial producers of lead, tobacco, petroleum, and other products have funded extensive scholarly research in ways designed to confuse the public about the dangers of those products and thwart regulation [1-3]. For example, strategy documentation of the U.S. oil and gas industry from the late 1990s describes using selective support for scientists as a strategy for creating an atmosphere of debate and uncertainty, with the ultimate goal of delaying and defeating climate policies [4]. In this context, we systematically examine current funding from commercial fossil fuel interests of climate-relevant research - such as energy technology and climate policy research - in U.S. universities. We quantify such funding using charitable giving databases, university websites, and other publicly available records. We find that, especially among the most influential universities, climate-related research programs are frequently dominated by funding from fossil fuel interests. Moreover, these relationships sometimes afford funders privileges including formal control over research directions. This work represents an advance in mapping the presence of commercial fossil fuel interests in academia and may contribute to discussions of appropriate funding systems for climate-relevant research. 1. Markowitz, G. and D. Rosner, Lead Wars: The Politics of Science and the Fate of America's Children. 1st ed. 2013: University of California Press. 2. Brandt, A.M., Inventing Conflicts of Interest: A History of Tobacco Industry Tactics. American Journal of Public Health, 2012. 102(1): p. 63-71. 3. Oreskes, N. and E.M. Conway, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. 2011: Bloomsbury Press. 4. Walker, J., Global Climate Science Communications Action Plan. 1998. Workshop held at the headquarters of the American Petroleum Institute.

  18. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    Science.gov (United States)

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  19. Fossil fuel subsidies in Latin America: the challenge of a perverse incentives structure

    International Nuclear Information System (INIS)

    Carlino, Hernan; Carlino, Micaela

    2015-11-01

    Fossil fuel subsidies have considerable negative, environmental, economic, and social effects. The reform of the fossil fuel subsidy regime in Latin America and the Caribbean allows us to benefit from the favourable economic, fiscal, social and environmental impacts resulting from the removal of the existing subsidies. The change in the incentives structure for the energy system also facilitates the development of renewable energy, contributing to removing the investment barriers put in place by the current incentives and freeing up fiscal resources that can be re-routed into social policies and help fulfil sustainable development objectives. Despite the benefits of removing the subsidies, experiences in LAC demonstrate that there are substantial barriers standing in the way of subsidy reform, from a wide-reaching social base, that limit the room for the reforms, often causing delays or neutralising them completely. Although the drive for reform has gained impetus both in the region and on a global scale, it is necessary to define a careful reform strategy that protects the most vulnerable groups from potential negative impacts, and which clearly communicates the favourable effects of the various stages of the reforms, eliminating the price distortions that result from wasteful consumption and the inefficient allocation of resources. The reduction in greenhouse gas emissions due to the removal of fossil fuel subsidies is considerable, according to global and regional estimates. The 2015 agreement should promote and facilitate the reforms by recognising their importance, providing technical support for quantifying the impacts, and supplying funding for the transformation processes implied by these reforms. Implementing a work program on the reform of the subsidy regime within the framework of the Convention, with technical and methodological components, should facilitate reforms on a global scale

  20. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Battistoni, Michele; Grimaldi, Carlo Nazareno

    2012-01-01

    Highlights: ► Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ► Coupling of Eulerian and Lagrangian spray CFD simulations. ► Effects of hole shaping: conical versus cylindrical and edge rounding effects. ► Prediction of spray characteristics improved using inner nozzle flow data. ► Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  1. 77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2012-06-19

    ... delivered to the following address: Federal Trade Commission, Office of the Secretary, Room H-113 (Annex N... cell, advanced lean burn, and hybrid motor vehicles) that were added to the definition of ``alternative... legislation (i.e., lean burn, hybrid, and fuel cell vehicles). No comments opposed this approach. Edison...

  2. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... additional credits for the use of biodiesel in blends of 20 percent biodiesel or greater and have provided an... discussion in Part II.A), the original program based upon AFV acquisitions and biodiesel use became known as... example, B20 (a 20 percent blend of biodiesel with 80 percent petroleum diesel) is not an alternative fuel...

  3. Fossil fuels and air pollution in USA after the Clean Air Act

    International Nuclear Information System (INIS)

    Chuveliov, A.V.

    1990-01-01

    This paper addresses environmental issues in the USA after the Clean Air Act. Economic damage assessment to population and environment due to air pollution from stationary and mobile sources producing and utilizing fossil fuels in the USA for the period of 1970--1986 is determined and discussed. A comparison of environmental damage assessments for the USA and USSR is provided. The paper also addresses ecologo-economical aspects of hydrogen energy and technology. The effectiveness of hydrogen use in ferrous metallurgy and motor vehicles in the USA is determined and discussed

  4. Fossil fuel produced radioactivities and their effect on the food chain (II)

    International Nuclear Information System (INIS)

    Okamoto, K.

    1982-01-01

    The effects of radioactivities released from fossil fuel burning are examined. Main radioactivities are 210 Pb and 210 Po. Revised values of the dose due to the intake of leafy vegetables and seafoods are presented. The dose from natural gas from the Northern Sea is shown to be much lower than the dose from coal. This conclusion can probably apply to other natural gas except for that from the North American continent. The dose due to coal burning is found to be much higher than that due to marine disposal of nuclear waste

  5. Fossil fuel produced radioactivities and their effect on the food chain (II)

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1982-03-01

    The effects of radioactivities released from fossil fuel burning are examined. Main radioactivities are /sup 210/Pb and /sup 210/Po. Revised values of the dose due to the intake of leafy vegetables and seafoods are presented. The dose from natural gas from the Northern Sea is shown to be much lower than the dose from coal. This conclusion can probably apply to other natural gas except for that from the North American continent. The dose due to coal burning is found to be much higher than that due to marine disposal of nuclear waste.

  6. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  7. Discussion paper: direction for Canada's alternate fuels program

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    There is a growing need to accelerate the consideration of alternate fuels for use in Canadian vehicle transportation. At the present time various governments and corporations are initiating alternate fuel programs involving ethanol, methanol, CNG, propane, etc. There is a bewildering array of perspectives as to which fuel or fuels will best serve Canada's needs in the future. In response to the 'Discussion Paper on Liquid Fuels Options, 1980', by the Federal Dept. of Energy, Mines and Resources, Ford of Canada has prepared this perspective on each of the alternate fuels from the company's vantage point as a vehicle manufacturer.

  8. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  9. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  10. Alternate Strategies for Conversion of Waste Plastic to Fuels

    OpenAIRE

    Neha Patni; Pallav Shah; Shruti Agarwal; Piyush Singhal

    2013-01-01

    The present rate of economic growth is unsustainable without saving of fossil energy like crude oil, natural gas, or coal. There are many alternatives to fossil energy such as biomass, hydropower, and wind energy. Also, suitable waste management strategy is another important aspect. Development and modernization have brought about a huge increase in the production of all kinds of commodities, which indirectly generate waste. Plastics have been one of the materials because of their wide range ...

  11. Reducing global warming through the provision of hydrogen from non-fossil fuels

    International Nuclear Information System (INIS)

    1993-04-01

    Concern has increased in recent years regarding the rising atmospheric concentration of carbon dioxide and its potential effect on future global climate. One element of strategies for the reduction of CO 2 emissions would be to increase the proportion of energy derived from non-fossil energy sources. This option has led to renewed interest in the use of hydrogen as an energy vector which could facilitate the transfer of non-fossil energy into a wider range of end-use sectors. To assess, in this context, the potential role of non-fossil-fuel hydrogen (NFFH), published information on the costs and performance of technologies for the production, storage, distribution and utilisation of hydrogen has been reviewed in this study. These data have been used in a model of the UK energy system to investigate the potential contributions of the various hydrogen technologies, over a 50 year timeframe, and with different levels of constraint imposed on the rate of CO 2 release. Finally, to set these reduced CO 2 release rates in the context of the resultant reduction in global warming commitment, a further modelling study has been made to estimate the residual transient warming to 2050, assuming the world as a whole follows the same CO 2 emission profiles as modelled for the UK. This 259 page report of the study contains extensive tables of data and references, and a glossary of terms, units and conversion factors. (author)

  12. A technical and environmental comparison between hydrogen and some fossil fuels

    International Nuclear Information System (INIS)

    Nicoletti, Giovanni; Arcuri, Natale; Nicoletti, Gerardo; Bruno, Roberto

    2015-01-01

    Highlights: • Hydrogen as new non-conventional energy system. • Technical and environmental comparison between different type of fuels. • Combustion products analysis. • Technical and environmental quality indexes for investigated fuels. • Proposal of a suitable new energy scenario supplied by hydrogen. - Abstract: The exploitation of some fossil fuels such as oil, intended as gasoline or diesel fuel, natural gas and coal, currently satisfy the majority of the growing world energy demand, but they are destined to run out relatively quickly. Beyond this point, their combustion products are the main cause of some global problems such as the greenhouse effect, the hole in the ozone layer, acid rains and generalized environment pollution, so their impact is extremely harmful. Therefore, it is clear that a solution to the energy problem can be obtained only through the use of renewable sources and by means of the exploitation of new low-polluting fuels. In this scenario an important role might be played by hydrogen, which is able to define a new energy system that is more sustainable and cleaner than current systems. For the comparison of the different fuels investigated in this paper, a methodology, which defines appropriate technical and environmental quality indexes, has been developed. These indexes are connected to the pollution produced by combustion reactions and to their intrinsic characteristics of flammability and expansiveness linked to the use of the considered fuels. An appropriate combination of these indexes, in the specific sector of utilization, allows to evaluate a global environmental index for the investigated fuels, highlighting that hydrogen reaches the highest score. In the final part of the paper, a new hydrogen energy economy that would lead to solving the serious environmental problems that damages all the ecosystems of the planet earth, is presented

  13. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov (United States)

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  14. Decarbonization of fossil fuels as a strategy to control global warming

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, T.; Abbasi, S.A. [Pondicherry Central University, Pondicherry (India)

    2011-05-15

    With the world reaching near-total consensus on the seriousness of the global warming impacts, and on the urgency to halt further warming, R & D efforts have intensified many-fold to find ways and means of global warming control. One of the avenues being explored is 'decarbonization' of fossil fuel use by either decarbonizing the fuels before they are burnt or by capturing the CO{sub 2} they emit on combustion. In this paper the various available options are reviewed in the context of their economic and environmental viability. It emerges that even as the goal is very enchanting, the possibility of it's realization appears remote. It also follows that the only sure method of reducing greenhouse gas emissions presently available to humankind is by reducing consumption of energy and other resources.

  15. Present technologies and the next future in Mexico for the power generation starting from fossil fuels

    International Nuclear Information System (INIS)

    Gonzalez S, J.M.

    1999-01-01

    A brief analysis is done of the expected evolution of the world energy and electrical energy demand and a projection of the Mexican electrical demand is presented. Typical data for electric power generation technologies that currently in use or under development are presented and a discussion is made of the factors that influence technology selection, particularly for fossil fuel technologies. Taking into account the current expansion plans of the Mexican electrical sector, and proposing some reasonable hypotheses about the behavior of the factors that were identified, the evolution of the electrical demand in Mexico up to the year 2020 is presented, showing the installed capacity expected for each fuel and for each technology. At the end the needs for research and development in the area of power generation, emphasizing the Mexican R and D Programs, are discussed. (Author)

  16. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  17. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  18. Fossil fuels: technical, economical and political challenges for 2030-2050

    International Nuclear Information System (INIS)

    2004-01-01

    This panorama takes stock on the international energy actuality in 2003 and discusses the instability of the geo-political context of the energy and the part of the fossil fuels for the future years 2030-2050. The following topics were presented: activities and market for the exploration-production, refining and petrochemistry, the world gas trade situation, the petroleum supply and demand, the Iraq, the diesel in the USA, the investments and the depletion, long-dated evolutions of motors and fuels, implementing of the european directive concerning the market of tradable permits of CO 2 , the carbon sequestration, hydrogen the energy of the future and the biofuels in Europe. (A.L.B.)

  19. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 4, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, C.

    2000-09-08

    This issue of Alternative Fuel News discusses Executive Order 13149 which is designed to not only increase the use of alternative fuel by federal agencies but also to increase the use of fuel efficient vehicles in the federal fleet. Also highlighted is the 6th National Clean Cities Conference and Expo held in San Diego, May 7-10, 2000, which attracted nearly 1,000 people for three action-packed days of alternative fuel activities. The work to develop a market for alternative fuels is more important than ever.

  20. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 5, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2001-11-01

    A quarterly magazine with articles on alternative fuel school buses, the market growth of biodiesel fuel, National AFV Day 2002, model year 2002 alternative fuel passenger cars and light trucks, the Michelin Challenge Bibendum road rally, and advanced technology vehicles at Robins Air Force Base, the Top Ten Clean Cities coalitions for 2000, and AFVs on college campuses.