WorldWideScience

Sample records for alternative epigenetic chromatin

  1. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  2. Chromatin, epigenetics and stem cells.

    Science.gov (United States)

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  3. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  4. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  5. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology

    OpenAIRE

    Cieślik, Marcin; Bekiranov, Stefan

    2014-01-01

    Background Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore functionally relevant interactions between histone modifications. Computational discovery of "chromatin states" defined by such combinatorial interactions enabled desc...

  6. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin.

    Science.gov (United States)

    Puri, Deepika; Dhawan, Jyotsna; Mishra, Rakesh K

    2010-07-01

    Epigenetic modifications play a crucial role in developmental gene regulation. These modifications, being reversible, provide a layer of information over and above the DNA sequence, that has plasticity and leads to the generation of cell type-specific epigenomes during cellular differentiation. In almost all higher eukaryotes, the oocyte provides not only its cytoplasm, mitochondria, maternally deposited RNA and proteins but also an epigenetic component in the form of DNA and histone-modifications. During spermeiogenesis however, most of the histones are replaced by protamines, leading to a loss of the epigenetic component. The sperm is, therefore, viewed as a passive carrier of the paternal genome with a disproportionate, lower epigenetic contribution except for DNA methylation, to the next generation. A recent study overturns this view by demonstrating a locus-specific retention of histones, with specific modifications in the sperm chromatin at the promoters of developmentally important genes. This programmed retention of epigenetic marks with a role in embryonic development is suggested to offset, in some measure, the dominant maternal effect. This new finding helps in addressing the question of epigenetic transmission of environmental and 'lifestyle' experiences across generations and raises the question of 'parental conflict' at the loci that may be differentially marked. PMID:20448473

  7. The functional modulation of epigenetic regulators by alternative splicing

    Directory of Open Access Journals (Sweden)

    Martínez-Balbás Marian

    2007-07-01

    Full Text Available Abstract Background Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. Results To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform or creating isoforms with new functions. Conclusion We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing.

  8. Chromatin and epigenetics in all their states: Meeting report of the first conference on Epigenetic and Chromatin Regulation of Plant Traits - January 14 - 15, 2016 - Strasbourg, France.

    Science.gov (United States)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Le Gall, Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-08-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meeting to remember. In this article we summarize some of the new insights into chromatin, epigenetics, and epigenomics research and highlight nascent ideas and emerging concepts in this exciting area of research. PMID:27184433

  9. Assembly of telomeric chromatin to create ALTernative endings.

    Science.gov (United States)

    O'Sullivan, Roderick J; Almouzni, Genevieve

    2014-11-01

    Circumvention of the telomere length-dependent mechanisms that control the upper boundaries of cellular proliferation is necessary for the unlimited growth of cancer. Most cancer cells achieve cellular immortality by up-regulating the expression of telomerase to extend and maintain their telomere length. However, a small but significant number of cancers do so via the exchange of telomeric DNA between chromosomes in a pathway termed alternative lengthening of telomeres, or ALT. Although it remains to be clarified why a cell chooses the ALT pathway and how ALT is initiated, recently identified mutations in factors that shape the chromatin and epigenetic landscape of ALT telomeres are shedding light on these mechanisms. In this review, we examine these recent findings and integrate them into the current models of the ALT mechanism. PMID:25172551

  10. Chromatin resetting mechanisms preventing transgenerational inheritance of epigenetic states

    OpenAIRE

    Iwasaki, Mayumi

    2015-01-01

    Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences...

  11. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  12. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  13. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics.

    Science.gov (United States)

    Bhattacharjee, Dipanjan; Shenoy, Smita; Bairy, Kurady Laxminarayana

    2016-01-01

    Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person's individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid) methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind's fight against cancer. PMID:27119045

  14. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  15. Chromatin structure and epigenetics of tumour cells: A review

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Krejčí, Jana; Hájek, R.; Harničarová, Andrea; Kozubek, Stanislav

    2009-01-01

    Roč. 9, č. 1 (2009), s. 51-61. ISSN 1871-529X R&D Projects: GA AV ČR(CZ) 1QS500040508; GA ČR(CZ) GA204/06/0978 Grant ostatní: GA MŠk(CZ) LC06027; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : tumour cells * chromatin * radiation Subject RIV: BO - Biophysics

  16. Chromatin-based epigenetics of adult subventricular zone neural stem cells

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Roybal

    2013-10-01

    Full Text Available In specific regions of the adult mammalian brain, neural stem cells (NSCs generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a youthful ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long noncoding RNAs (lncRNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.

  17. The epigenetics of tumour initiation: cancer stem cells and their chromatin.

    Science.gov (United States)

    Avgustinova, Alexandra; Benitah, Salvador Aznar

    2016-02-01

    Cancer stem cells (CSCs) have been identified in various tumours and are defined by their potential to initiate tumours upon transplantation, self-renew and reconstitute tumour heterogeneity. Modifications of the epigenome can favour tumour initiation by affecting genome integrity, DNA repair and tumour cell plasticity. Importantly, an in-depth understanding of the epigenomic alterations underlying neoplastic transformation may open new avenues for chromatin-targeted cancer treatment, as these epigenetic changes could be inherently more amenable to inhibition and reversal than hard-wired genomic alterations. Here we discuss how CSC function is affected by chromatin state and epigenomic instability. PMID:26874045

  18. Identification of alternative topological domains in chromatin

    OpenAIRE

    Filippova, Darya; Patro, Rob; Duggal, Geet; Kingsford, Carl

    2014-01-01

    Chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types and conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across various r...

  19. Breaking an Epigenetic Chromatin Switch: Curious Features of Hysteresis in Saccharomyces cerevisiae Telomeric Silencing

    Science.gov (United States)

    Nagaraj, Vijayalakshmi H.; Mukhopadhyay, Swagatam; Dayarian, Adel; Sengupta, Anirvan M.

    2014-01-01

    In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the ‘off’ state merges with the ‘on’ state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the ‘off’ to the ‘on’ state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond. PMID:25536038

  20. Breaking an epigenetic chromatin switch: curious features of hysteresis in Saccharomyces cerevisiae telomeric silencing.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi H Nagaraj

    Full Text Available In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the 'off' state merges with the 'on' state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the 'off' to the 'on' state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond.

  1. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  2. A Polymer Model with Epigenetic Recolouring Reveals a Pathway for the de novo Establishment and 3D Organisation of Chromatin Domains

    CERN Document Server

    Michieletto, Davide; Marenduzzo, Davide

    2016-01-01

    One of the most important problems in development is how epigenetic domains can be first established, and then maintained, within cells. To address this question, we propose a framework which couples 3D chromatin folding dynamics, to a "recolouring" process modelling the writing of epigenetic marks. Because many intra-chromatin interactions are mediated by bridging proteins, we consider a "two-state" model with self-attractive interactions between two epigenetic marks which are alike (either active or inactive). This model displays a first-order-like transition between a swollen, epigenetically disordered, phase, and a compact, epigenetically coherent, chromatin globule. If the self-attraction strength exceeds a threshold, the chromatin dynamics becomes glassy, and the corresponding interaction network freezes. By modifying the epigenetic read-write process according to more biologically-inspired assumptions, our polymer model with recolouring recapitulates the ultrasensitive response of epigenetic switches t...

  3. Roles of Mis18α in epigenetic regulation of centromeric chromatin and CENP-A loading.

    Science.gov (United States)

    Kim, Ik Soo; Lee, Minkyoung; Park, Koog Chan; Jeon, Yoon; Park, Joo Hyeon; Hwang, Eun Ju; Jeon, Tae Im; Ko, Seoyoung; Lee, Ho; Baek, Sung Hee; Kim, Keun Il

    2012-05-11

    The Mis18 complex has been identified as a critical factor for the centromeric localization of a histone H3 variant, centromeric protein A (CENP-A), which is responsible for the specification of centromere identity in the chromosome. However, the functional role of Mis18 complex is largely unknown. Here, we generated Mis18α conditional knockout mice and found that Mis18α deficiency resulted in lethality at early embryonic stage with severe defects in chromosome segregation caused by mislocalization of CENP-A. Further, we demonstrate Mis18α's crucial role for epigenetic regulation of centromeric chromatin by reinforcing centromeric localization of DNMT3A/3B. Mis18α interacts with DNMT3A/3B, and this interaction is critical for maintaining DNA methylation and hence regulating epigenetic states of centromeric chromatin. Mis18α deficiency led to reduced DNA methylation, altered histone modifications, and uncontrolled noncoding transcripts in centromere region by decreased DNMT3A/3B enrichment. Together, our findings uncover the functional mechanism of Mis18α and its pivotal role in mammalian cell cycle. PMID:22516971

  4. Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development.

    Science.gov (United States)

    Nguyen, Huong; Sokpor, Godwin; Pham, Linh; Rosenbusch, Joachim; Stoykova, Anastassia; Staiger, Jochen F; Tuoc, Tran

    2016-05-18

    The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes. Importantly, we recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 core subunits in mice abolished the presence of the other BAF subunits in the developing cortex. The generated dcKO mutant provides a novel and powerful tool for investigating how entire BAF complexes affect cortical development. Using this model, we found that BAF complexes globally control the key heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains the stability of BAF complexes in the forebrain and throughout the embryo during development. Furthermore, we show that the loss of BAF complexes in the above-described model up-regulates H3K27me3 and impairs forebrain development and embryogenesis. These findings improve our understanding of epigenetic mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes that control embryonic development. PMID:26986003

  5. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  6. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP–Chip

    Directory of Open Access Journals (Sweden)

    Weishaupt Holger

    2010-01-01

    Full Text Available Abstract Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip, we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions. Additional file 1 Click here for file

  7. The epigenetic regulation of cell cycle and chromatin dynamic by sirtuins

    OpenAIRE

    Martínez Redondo, Paloma

    2014-01-01

    Tesi realitzada a l'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) The chromatin consists of a hierarchical and dynamical structure that is modulated during the different cell cycle stages in order to maintain genome integrity and preserve the genetic information coded in the DNA. The dynamic structure of the chromatin depends on the coordination of the different chromatin remodeling processes: histone modifications, chromatin remodeling enzymes/complexes, DNA methylation and chr...

  8. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

    International Nuclear Information System (INIS)

    Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages

  9. Epigenetic regulation of memory by acetylation and methylation of chromatin: implications in neurological disorders, aging, and addiction.

    Science.gov (United States)

    Sen, Nilkantha

    2015-06-01

    Synaptic plasticity is one of the most fundamental properties of neurons that underlie the formation of the memory in brain. In recent years, epigenetic modification of both DNA and histones such as DNA methylation and histone acetylation and methylation emerges as a potential regulatory mechanism that governs the transcription of several genes responsible for memory formation and behavior. Furthermore, the recent identification of nitrosylation of proteins has shown to either activate or repress gene transcription by modulating histone methylation or acetylation status in mature neuron. Recent studies suggest that the use of major substrates of abuse, e.g., cocaine, induces alterations in molecular and cellular mechanisms of epigenetics that underlie long-term memories in the striatum and prefrontal cortex. Moreover, downregulation of genes due to alterations in epigenetics leads to cognitive deficiencies associated with neurological disorders such as Alzheimer's disease, Huntington's disease, psychiatric disorder such as Rett's syndrome and aging. In this review, I will discuss the evidence for several epigenetic mechanisms in the coordination of complex memory formation and storage. In addition, I will address the current literature highlighting the role of acetylation and methylation of chromatin in memory impairment associated with several neurological disorders, aging, and addiction. PMID:24777294

  10. Alternative Lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin.

    OpenAIRE

    Episkopou, Charikleia; Draskovic, Irena; Van Beneden, Amandine; Tilman, Gaëlle; Mattiussi, Marina; Gobin, Matthieu; Arnoult, Nausica; Londoño-Vallejo, Arturo; Decottignies, Anabelle

    2014-01-01

    International audience Proper telomeric chromatin configuration is thought to be essential for telomere homeostasis and stability. Previous studies in mouse suggested that loss of heterochromatin marks at telomeres might favor onset of Alternative Lengthening of Telomeres (ALT) pathway, by promoting homologous recombination. However, analysis of chromatin status at human ALT telomeres has never been reported. Here, using isogenic human cell lines and cellular hybrids, which rely either on ...

  11. Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Mlynarska, Olga; Nielsen, John E;

    2012-01-01

    series of 36 SS samples. We assessed by immunohistochemistry tumor DNA methylation levels, the expression of methyltransferases DNMT3A, DNMT3B and DNMT3L as well as levels of histone modifications H3K9me2, H3K27me3, H3K4me1, H3K4me2/3, H3K9ac, and H2A.Z. We did not identify any epigenetic marks that...

  12. Brd2 gene disruption causes ‘metabolically healthy’ obesity: Epigenetic and chromatin-based mechanisms that uncouple obesity from Type 2 diabetes

    OpenAIRE

    Wang, Fangnian; Deeney, Jude T.; Denis, Gerald V.

    2013-01-01

    Disturbed body energy balance can lead to obesity and obesity-driven diseases such as Type 2 diabetes, which have reached an epidemic level. Evidence indicates that obesity induced inflammation is a major cause of insulin resistance and Type 2 diabetes. Environmental factors, such as nutrients, affect body energy balance through epigenetic or chromatin-based mechanisms. As a bromodomain and external domain family transcription regulator, Brd2 regulates expression of many genes through interpr...

  13. CTCF-dependent chromatin bias constitutes transient epigenetic memory of the mother at the H19-Igf2 imprinting control region in prospermatogonia.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Lee

    2010-11-01

    Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.

  14. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts.

    Science.gov (United States)

    Han, Pei; Li, Wei; Yang, Jin; Shang, Ching; Lin, Chiou-Hong; Cheng, Wei; Hang, Calvin T; Cheng, Hsiu-Ling; Chen, Chen-Hao; Wong, Johnson; Xiong, Yiqin; Zhao, Mingming; Drakos, Stavros G; Ghetti, Andrea; Li, Dean Y; Bernstein, Daniel; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-07-01

    Chromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin-marked by H3K9 and CpG methylation-on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1-G9a/GLP-DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1-G9a-Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26952936

  15. Chromatin “pre-pattern” and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm

    OpenAIRE

    Xu, Cheng-Ran; Zaret, Kenneth S.

    2012-01-01

    Understanding the basis for multipotency, whereby stem cells and other progenitors can differentiate into certain tissues and not others, provides insights into the mechanism of cell programming in development, homeostasis, and disease. We recently reported a screen of diverse chromatin marks to obtain clues about chromatin states in the multipotent embryonic endoderm. Genetic and pharmacologic tests of certain marks’ function demonstrated that the relevant chromatin modifying factors modulat...

  16. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R; Gibbons, Richard J

    2015-01-01

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers. PMID:26143912

  17. Expanding the druggable space of the LSD1/CoREST epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin.

    Directory of Open Access Journals (Sweden)

    James C Robertson

    Full Text Available Lysine specific demethylase-1 (LSD1/KDM1A in complex with its corepressor protein CoREST is a promising target for epigenetic drugs. No therapeutic that targets LSD1/CoREST, however, has been reported to date. Recently, extended molecular dynamics (MD simulations indicated that LSD1/CoREST nanoscale clamp dynamics is regulated by substrate binding and highlighted key hinge points of this large-scale motion as well as the relevance of local residue dynamics. Prompted by the urgent need for new molecular probes and inhibitors to understand LSD1/CoREST interactions with small-molecules, peptides, protein partners, and chromatin, we undertake here a configurational ensemble approach to expand LSD1/CoREST druggability. The independent algorithms FTMap and SiteMap and our newly developed Druggable Site Visualizer (DSV software tool were used to predict and inspect favorable binding sites. We find that the hinge points revealed by MD simulations at the SANT2/Tower interface, at the SWIRM/AOD interface, and at the AOD/Tower interface are new targets for the discovery of molecular probes to block association of LSD1/CoREST with chromatin or protein partners. A fourth region was also predicted from simulated configurational ensembles and was experimentally validated to have strong binding propensity. The observation that this prediction would be prevented when using only the X-ray structures available (including the X-ray structure bound to the same peptide underscores the relevance of protein dynamics in protein interactions. A fifth region was highlighted corresponding to a small pocket on the AOD domain. This study sets the basis for future virtual screening campaigns targeting the five novel regions reported herein and for the design of LSD1/CoREST mutants to probe LSD1/CoREST binding with chromatin and various protein partners.

  18. Chromatin deregulation in disease.

    Science.gov (United States)

    Mirabella, Anne C; Foster, Benjamin M; Bartke, Till

    2016-03-01

    The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies. PMID:26188466

  19. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    OpenAIRE

    Christopher Ian Cazzonelli; Nazia eNisar; Roberts, Andrea C.; Kevin eMurray; Borevitz, Justin O; Barry James Pogson

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzy...

  20. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  1. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    Energy Technology Data Exchange (ETDEWEB)

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  2. Valproic acid modulates brain plasticity through epigenetic chromatin remodeling in the blind rat: implications for human sight recovery.

    Science.gov (United States)

    Fetter-Pruneda, I; Martínez-Méndez, R; Olivos-Cisneros, L; Diaz, D; Padilla-Cortés, P; Báez-Saldaña, A; Gutiérrez-Ospina, G

    2011-01-01

    Blindness is a pervasive sensory condition that imposes diverse difficulties to carry on with activities of daily living. In blind individuals, the brain is subjected to a large scale reorganization characterized by expanded cortical territories associated with somatosensory and auditory functions and the recruitment of the former visual areas to perform bimodal somatosensory and auditory integration. This poses obstacles to efforts aimed at reassigning visual functions to the recruited visual cortex in the blind, especially after the end of the ontogentic sensitive period. Devising pharmacological measures to modulate the magnitude of brain plasticity could improve our chances of recovering visual functions in the blind. Here, by using the primary somatosensory cortex (S1) in the rat as a working model, we showed that valproic acid administered through the mother's milk prevents cortical reorganization in blinded rats by delaying neuronal histone de-acetylation. These results suggest that in the future, we might be able to devise epigenetic pharmacological measures that could improve our chances of reassigning visual functions to the once deprived former visual cortex in the blind, by modulating the magnitude of brain plasticity during critical times of development. PMID:22423589

  3. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  4. Maintenance of Epigenetic Information.

    Science.gov (United States)

    Almouzni, Geneviève; Cedar, Howard

    2016-01-01

    SUMMARYThe genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks. PMID:27141050

  5. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  6. Epigenetic Mechanisms of Depression

    OpenAIRE

    Nestler, Eric J.

    2014-01-01

    Growing evidence supports the hypothesis that epigenetics is a key mechanism through which environmental exposures interact with an individual’s genetic constitution to determine risk for depression throughout life.1 Epigenetics, in its broadest meaning, refers to stable changes in gene expression that are mediated via altered chromatin structure without modification of DNA sequence. According to this hypothesis, severe stress triggers changes—in vulnerable individuals—in chromatin structure ...

  7. Brain Function and Chromatin Plasticity

    OpenAIRE

    Dulac, Catherine

    2010-01-01

    The characteristics of epigenetic control, including the potential for long-lasting, stable effects on gene expression that outlive an initial transient signal, could be of singular importance for post-mitotic neurons, which are subject to changes with short- to long-lasting influence on their activity and connectivity. Persistent changes in chromatin structure are thought to contribute to mechanisms of epigenetic inheritance. Recent advances in chromatin biology offer new avenues to investig...

  8. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  9. Epigenetic marks in zebrafish sperm: insights into chromatin compaction, maintenance of pluripotency, and the role of the paternal genome after fertilization

    Institute of Scientific and Technical Information of China (English)

    Douglas T Carrell

    2011-01-01

    @@ Human sperm chromatin, and the sperm of most mammals, undergoes extensive remodeling during spermiogenesis during which 85%-95% of the histones are removed and replaced with protamines.The replacement of most histones with protamines facilitates a tighter packaging of the chromatin that is necessary for normal sperm function, and may help protect sperm DNA from damage during transport.1 An intriguing question has been why the replacement of histones with protamines is not complete,and if the histones that remain in human sperm chromatin could have a programmatic role in regulating gene expression post-fertilization?

  10. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq

    OpenAIRE

    Gan, Qiang; Chepelev, Iouri; Wei, Gang; Tarayrah, Lama; Cui, Kairong; Zhao, Keji; Chen, Xin

    2010-01-01

    Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understandings of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously.

  11. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  12. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation

    OpenAIRE

    Melcer, Shai; Hezroni, Hadas; Rand, Eyal; Nissim-Rafinia, Malka; Skoultchi, Arthur; Stewart, Colin L.; Bustin, Michael; Meshorer, Eran

    2012-01-01

    Embryonic stem cells are characterized by unique epigenetic features including decondensed chromatin and hyperdynamic association of chromatin proteins with chromatin. Here we investigate the potential mechanisms that regulate chromatin plasticity in embryonic stem cells. Using epigenetic drugs and mutant embryonic stem cells lacking various chromatin proteins, we find that histone acetylation, G9a-mediated histone H3 lysine 9 (H3K9) methylation and lamin A expression, all affect chromatin pr...

  13. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX

    OpenAIRE

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R.; Gibbons, Richard J.

    2015-01-01

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replica...

  14. Epigenetic Regulation of Telomere Maintenance

    Czech Academy of Sciences Publication Activity Database

    Fojtová, M.; Fajkus, Jiří

    2014-01-01

    Roč. 143, 1-3 (2014), s. 125-135. ISSN 1424-8581 Institutional support: RVO:68081707 Keywords : Chromatin * DNA methylation * Epigenetics Subject RIV: BO - Biophysics Impact factor: 1.561, year: 2014

  15. Epigenetics in the hematologic malignancies

    OpenAIRE

    Fong, Chun Yew; Morison, Jessica; Dawson, Mark A.

    2014-01-01

    A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies...

  16. An operational definition of epigenetics

    OpenAIRE

    Berger, Shelley L.; Kouzarides, Tony; Shiekhattar, Ramin; Shilatifard, Ali

    2009-01-01

    A recent meeting (December 2008) regarding chromatin-based epigenetics was hosted by the Banbury Conference Center and Cold Spring Harbor Laboratory. The intent was to discuss aspects of epigenetic control of genomic function, and to arrive at a consensus definition of “epigenetics” to be considered by the broader community. It was evident that multiple mechanistic steps lead to the stable heritance of the epigenetic phenotype. Below we provide our view and interpretation of the proceedings a...

  17. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet the...... challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  18. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a ...

  19. [Epigenetics and cancer].

    Science.gov (United States)

    Deltour, Sophie; Chopin, Valérie; Leprince, Dominique

    2005-04-01

    Epigenetics is defined as "the study of mitotically and/or meiotically heritable changes in gene expression that cannot be explained by changes in the DNA sequence". Setting up the epigenetic program is crucial for correct development and its stable inheritance throughout its lifespan is essential for the maintenance of the tissue- and cell-specific functions of the organism. For many years, the genetic causes of cancer have hold centre stage. However, the recent wealth of information about the molecular mechanisms which, by modulating the chromatin structure, can regulate gene expression has high-lighted the predominant role of epigenetic modifications in the initiation and progression of numerous pathologies, including cancer. The nucleosome is the major target of these epigenetic regulation mechanisms. They include a series of tightly interconnected steps which starting with the setting ("writing") of the epigenetic mark till its "reading" and interpretation will result in long-term gene regulation. The major epigenetic changes associated with tumorigenesis are aberrant DNA methylation of CpG islands located in the promoter region of tumor suppressor gene, global genomic hypomethylation and covalent modifications of histone N-terminal tails which are protruding out from the nucleosome core. In sharp contrast with genetic modifications, epigenetic modifications are highly dynamic and reversible. The characterization of specific inhibitors directed against some key epigenetic players has opened a new and promising therapeutic avenue, the epigenetic therapy, since some inhibitors are already used in clinical trials. PMID:15811306

  20. Epigenetics: heterochromatin meets RNAi

    Institute of Scientific and Technical Information of China (English)

    Ingela Djupedal; Karl Ekwall

    2009-01-01

    The term epigenetics refers to heritable changes not encoded by DNA. The organization of DNA into chromatin fibers affects gene expression in a heritable manner and is therefore one mechanism of epigenetic inheritance. Large parts of eukaryotic genomes consist of constitutively highly condensed heterochromatin, important for maintaining genome integrity but also for silencing of genes within. Small RNA, together with factors typically associated with RNA interference (RNAi) targets homologous DNA sequences and recruits factors that modify the chromatin, com-monly resulting in formation of heterochromatin and silencing of target genes. The scope of this review is to provide an overview of the roles of small RNA and the RNAi components, Dicer, Argonaute and RNA dependent polymeras-es in epigenetic inheritance via heterochromatin formation, exemplified with pathways from unicellular eukaryotes, plants and animals.

  1. Stemming Epigenetics in Marine Stramenopiles

    OpenAIRE

    Maumus, Florian; Rabinowicz, Pablo; Bowler, Chris; Rivarola, Maximo

    2011-01-01

    Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ...

  2. Where splicing joins chromatin

    Czech Academy of Sciences Publication Activity Database

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    Roč. 2, č. 3 (2011), s. 182-188. ISSN 1949-1034 R&D Projects: GA ČR GAP305/10/0424; GA AV ČR KAN200520801 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromatin * exon * alternative splicing * transcription * snRNP Subject RIV: EB - Genetics ; Molecular Biology

  3. The Structural Determinants behind the Epigenetic Role of Histone Variants

    OpenAIRE

    Manjinder S. Cheema; Juan Ausió

    2015-01-01

    Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone v...

  4. Epigenetics and nutritional environmental signals.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2014-07-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses. PMID:24861811

  5. Epigenetic mechanisms of nutrient-induced modulation of gene expression and cellular functions

    Science.gov (United States)

    Utilizing next-generation sequencing technology in combination with chromatin immunoprecipitation (ChIP) technology, our study provides systematic and novel insights into the relationships between nutrition and epigenetics. One paradigmatic example of nutrient-epigenetic-phenotype relationship is th...

  6. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.

    Science.gov (United States)

    Sowd, Gregory A; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J; Poeschla, Eric M; Engelman, Alan N

    2016-02-23

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies. PMID:26858452

  7. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  8. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  9. Single-epitope recognition imaging of native chromatin

    OpenAIRE

    Wang Hongda; Dalal Yamini; Henikoff Steven; Lindsay Stuart

    2008-01-01

    Abstract Background Direct visualization of chromatin has the potential to provide important insights into epigenetic processes. In particular, atomic force microscopy (AFM) can visualize single nucleosomes under physiological ionic conditions. However, AFM has mostly been applied to chromatin that has been reconstituted in vitro, and its potential as a tool for the dissection of native nucleosomes has not been explored. Recently we applied AFM to native Drosophila chromatin containing the ce...

  10. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    Chromatin-modifying proteins mold the genome into areas that are accessible for transcriptional activity and areas that are transcriptionally silent. This epigenetic gene regulation allows for different transcriptional programs to be conducted in different cell types at different timepoints-despi...

  11. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  12. Is Glioblastoma an Epigenetic Malignancy?

    Energy Technology Data Exchange (ETDEWEB)

    Maleszewska, Marta; Kaminska, Bozena, E-mail: B.Kaminska@nencki.gov.pl [Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw 02-093 (Poland)

    2013-09-03

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens.

  13. Computational strategies to address chromatin structure problems.

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-01-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin's dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber's structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure. PMID:27345617

  14. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  15. Exposure to Hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    David eRoquis

    2014-07-01

    Full Text Available Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharziasis, a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the 20th century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited. Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modification were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.

  16. Epigenetics in preimplantation mammalian development.

    Science.gov (United States)

    Canovas, Sebastian; Ross, Pablo Juan

    2016-07-01

    Fertilization is a very dynamic period of comprehensive chromatin remodeling, from which two specialized cells result in a totipotent zygote. The formation of a totipotent cell requires extensive epigenetic remodeling that, although independent of modifications in the DNA sequence, still entails a profound cell-fate change, supported by transcriptional profile modifications. As a result of finely tuned interactions between numerous mechanisms, the goal of fertilization is to form a full healthy new individual. To avoid the persistence of alterations in epigenetic marks, the epigenetic information contained in each gamete is reset during early embryogenesis. Covalent modification of DNA by methylation, as well as posttranslational modifications of histone proteins and noncoding RNAs, appears to be the main epigenetic mechanisms that control gene expression. These allow different cells in an organism to express different transcription profiles, despite each cell containing the same DNA sequence. In the context of replacement of spermatic protamine with histones from the oocyte, active cell division, and specification of different lineages, active and passive mechanisms of epigenetic remodeling have been revealed as critical for editing the epigenetic profile of the early embryo. Importantly, redundant factors and mechanisms are likely in place, and only a few have been reported as critical for fertilization or embryo survival by the use of knockout models. The aim of this review is to highlight the main mechanisms of epigenetic remodeling that ensue after fertilization in mammals. PMID:27165992

  17. The contribution of mass spectrometry-based proteomics to understanding epigenetics.

    Science.gov (United States)

    Noberini, Roberta; Sigismondo, Gianluca; Bonaldi, Tiziana

    2016-03-01

    Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology. PMID:26606673

  18. Computational strategies to address chromatin structure problems

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  19. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned. PMID:26492160

  20. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms.......Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...

  1. Epigenetic memory of PTGS-induced epialelles of tobacco transgenes

    Czech Academy of Sciences Publication Activity Database

    Lunerová Bedřichová, Jana; Bleys, A.; Fojtová, Miloslava; Crhák Khaitová, Lucie; Depicker, A.; Kovařík, Aleš

    Heidelberg, 2007. s. 155-155. [EMBO Conference on Chromatin and Epigenetics. 03.05.2007-06.05.2007, Heidelberg] R&D Projects: GA MŠk(CZ) LC06004; GA AV ČR(CZ) IAA600040611 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA methylation * epigenetic inheritance * silencing Subject RIV: BO - Biophysics

  2. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    Science.gov (United States)

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  3. The epigenetic landscape of mammary gland development and functional differentiation

    Science.gov (United States)

    Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conf...

  4. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  5. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome

    Science.gov (United States)

    Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in ...

  6. Chromatin regulation in drug addiction and depression

    OpenAIRE

    Renthal, William; Nestler, Eric J.

    2009-01-01

    Alterations in gene expression are implicated in the pathogenesis of several neuropsychiatrie disorders, including drug addiction and depression, increasing evidence indicates that changes in gene expression in neurons, in the context of animal models of addiction and depression, are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular, and bioinformatic approaches that are being u...

  7. Epigenetics: What it is about?

    Directory of Open Access Journals (Sweden)

    Saade E.

    2014-01-01

    Full Text Available Epigenetics has captured the attention of scientists in the past decades, yet its scope has been continuously changing. In this paper, we give an overview on how and why its definition has evolved and suggest several clarification on the concepts used in this field. Waddington coined the term in 1942 to describe genes interaction with each other and with their environment and insisted on dissociating these events from development. Then, Holliday and others argued that epigenetic phenomena are characterized by their heritability. However, differentiated cells can maintain their phenotypes for decades without undergoing division, which points out the limitation of the «heritability» criterion for a particular phenomenon to qualify as epigenetic. «Epigenetic stability» encompasses traits preservation in both dividing and non dividing cells. Likewise, the use of the term «epigenetic regulation» has been misleading as it overlaps with «regulation of gene expression», whereas «epigenetic information» clearly distinguishes epigenetic from genetic phenomena. Consequently, how could epigenetic information be transmitted and perpetuated? The term «epigenetic templating» has been proposed to refer to a general mechanism of perpetuation of epigenetic information that is based on the preferential activity of enzymes that deposit a particular epigenetic mark on macromolecular complexes already containing the same mark. Another issue that we address is the role of epigenetic information. Not only it is important in allowing alternative interpretations of genetic information, but it appears to be important in protecting the genome, as can be illustrated by bacterial endonucleases that targets non methylated DNA – i. e. foreign DNA – and not the endogenous methylated DNA.

  8. Epigenetics of inflammation, maternal infection and nutrition

    Science.gov (United States)

    Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk for chronic disease development. A few studies have begun to investigate whether dietary nutrients play...

  9. Replication stress, a source of epigenetic aberrations in cancer?

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    . Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono......-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source...... of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis....

  10. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Directory of Open Access Journals (Sweden)

    Zhu Hong Chen

    2014-09-01

    Full Text Available Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.

  11. Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4

    OpenAIRE

    Castillo, Araceli G.; Mellone, Barbara G; Partridge, Janet F; William Richardson; Hamilton, Georgina L.; Allshire, Robin C.; Pidoux, Alison L.

    2007-01-01

    The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1) chromatin is confined to specific sequences or whether histone...

  12. Epigenetic mechanisms in penile carcinoma

    DEFF Research Database (Denmark)

    Kuasne, Hellen; Marchi, Fabio Albuquerque; Rogatto, Silvia Regina;

    2013-01-01

    Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in diffe......Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity...... in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including...... cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations...

  13. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  14. Epigenetic regulation in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Pranoti Mandrekar

    2011-01-01

    Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.

  15. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  16. MGMT expression: insights into its regulation. 1. Epigenetic factors

    Directory of Open Access Journals (Sweden)

    Iatsyshyna A. P.

    2013-03-01

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA methylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post- translational modifications, and other.

  17. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  18. Epigenetic Changes in Diabetes and Cardiovascular Risk.

    Science.gov (United States)

    Keating, Samuel T; Plutzky, Jorge; El-Osta, Assam

    2016-05-27

    Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease. PMID:27230637

  19. Epigenetics, Behaviour, and Health

    Directory of Open Access Journals (Sweden)

    Szyf Moshe

    2008-03-01

    Full Text Available The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.

  20. Genetic syndromes caused by mutations in epigenetic genes.

    Science.gov (United States)

    Berdasco, María; Esteller, Manel

    2013-04-01

    The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders. PMID:23370504

  1. Lifestyle, pregnancy and epigenetic effects.

    Science.gov (United States)

    Barua, Subit; Junaid, Mohammed A

    2015-01-01

    Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts. PMID:25687469

  2. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  3. Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5

    DEFF Research Database (Denmark)

    Fork, Christian; Gu, Lunda; Hitzel, Juliane;

    2015-01-01

    OBJECTIVE: Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS...

  4. Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway

    OpenAIRE

    Lovejoy, Courtney A.; Wendi Li; Steven Reisenweber; Supawat Thongthip; Joanne Bruno; Titia de Lange; Saurav; Petrini, John H.J.; Sung, Patricia A.; Maria Jasin; Joseph Rosenbluh; Yaara Zwang; Weir, Barbara A.; Charlie Hatton; Elena Ivanova

    2012-01-01

    The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ...

  5. Where splicing joins chromatin

    OpenAIRE

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    There are numerous data suggesting that two key steps in gene expression—transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and...

  6. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  7. [The alchemy--epigenetic regulation of pluripotency].

    Science.gov (United States)

    Bem, Joanna; Grabowska, Iwona

    2013-01-01

    Embryonic stem cells (ESCs) self renew their population, also they are pluripotent which means they can differentiate into any given cell type. In specific culture conditions they remain undifferentiated. On the cellular level pluripotency is determined by many transcription factors, e.g. Sox2, Nanog, Klf4, Oct4. Epigenetic regulation is also crucial for both self renewal and pluripotency. This review focuses on epigenetic mechanisms, among them DNA methylation, posttranslational histone modifications, ATP dependent chromatin remodeling and miRNAs interactions. These mechanisms affect embryonic stem cells functions keeping them poised for differentiation. PMID:24044279

  8. Epigenetic Aspects of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Ulrike Schmidt

    2011-01-01

    Full Text Available Development of psychiatric diseases such as posttraumatic stress disorder (PTSD invokes, as with most complex diseases, both genetic and environmental factors. The era of genome-wide high throughput technologies has sparked the initiation of genotype screenings in large cohorts of diseased and control individuals, but had limited success in identification of disease causing genetic variants. It has become evident that these efforts at the genomic level need to be complemented with endeavours in elucidating the proteome, transcriptome and epigenetic profiles. Epigenetics is attractive in particular because there is accumulating evidence that the lasting impact of adverse life events is reflected in certain covalent modifications of the chromatin.

  9. Long Noncoding RNAs, Chromatin, and Development

    Directory of Open Access Journals (Sweden)

    Daniel P. Caley

    2010-01-01

    Full Text Available The way in which the genome of a multicellular organism can orchestrate the differentiation of trillions of cells and many organs, all from a single fertilized egg, is the subject of intense study. Different cell types can be defined by the networks of genes they express. This differential expression is regulated at the epigenetic level by chromatin modifications, such as DNA and histone methylation, which interact with structural and enzymatic proteins, resulting in the activation or silencing of any given gene. While detailed mechanisms are emerging on the role of different chromatin modifications and how these functions are effected at the molecular level, it is still unclear how their deposition across the epigenomic landscape is regulated in different cells. A raft of recent evidence is accumulating that implicates long noncoding RNAs (lncRNAs in these processes. Most genomes studied to date undergo widespread transcription, the majority of which is not translated into proteins. In this review, we will describe recent work suggesting that lncRNAs are more than transcriptional "noise", but instead play a functional role by acting as tethers and guides to bind proteins responsible for modifying chromatin and mediating their deposition at specific genomic locations. We suggest that lncRNAs are at the heart of developmental regulation, determining the epigenetic status and transcriptional network in any given cell type, and that they provide a means to integrate external differentiation cues with dynamic nuclear responses through the regulation of a metastable epigenome. Better characterization of the lncRNA-protein "interactome" may eventually lead to a new molecular toolkit, allowing researchers and clinicians to modulate the genome at the epigenetic level to treat conditions such as cancer.

  10. Molecular targets of epigenetic regulation and effectors of environmental influences

    International Nuclear Information System (INIS)

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  11. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  12. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders

    OpenAIRE

    Abel, Ted; Zukin, R. Suzanne

    2008-01-01

    Epigenetic chromatin remodeling and modifications of DNA represent central mechanisms for regulation of gene expression during brain development and in memory formation. Emerging evidence implicates epigenetic modifications in disorders of synaptic plasticity and cognition. This review focuses on recent findings that HDAC inhibitors can ameliorate deficits in synaptic plasticity, cognition and stress-related behaviors in a wide range of neurologic and psychiatric disorders including Huntingto...

  13. Generation of bivalent chromatin domains during cell fate decisions

    Directory of Open Access Journals (Sweden)

    De Gobbi Marco

    2011-06-01

    Full Text Available Abstract Background In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3 lineage control genes while 'poising' (H3K4me3 them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. Results Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. Conclusions While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

  14. Epigenetics and etiology of neurodegenerative diseases

    OpenAIRE

    Beata M. Gruber

    2011-01-01

    Determination of specific gene profile expression is essential for morphological and functional differentiation of cells in the human organism. The human genome consists of 25–30 thousands genes but only some of them are expressed in each cell. Epigenetic modifications such as DNA methylation, histone and chromatin modifications or non-coding RNA functions are also responsible for the unique gene expression patterns. It is suggested that transcriptional gene activation is related to hypomethy...

  15. Epigenetic Regulation of EBV Persistence and Oncogenesis

    OpenAIRE

    Tempera, Italo; Lieberman, Paul M

    2014-01-01

    Epigenetic mechanisms play a fundamental role in generating diverse and heritable patterns of viral and cellular gene expression. Epstein-Barr Virus (EBV) can adopt a variety of gene expression programs that are necessary for long-term viral persistence and latency in multiple host-cell types and conditions. The latent viral genomes assemble into chromatin structures with different histone and DNA modifications patterns that control viral gene expression. Variations in nucleosome organization...

  16. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers

    DEFF Research Database (Denmark)

    Vermeulen, Michiel; Eberl, H Christian; Matarese, Filomena;

    2010-01-01

    Trimethyl-lysine (me3) modifications on histones are the most stable epigenetic marks and they control chromatin-mediated regulation of gene expression. Here, we determine proteins that bind these marks by high-accuracy, quantitative mass spectrometry. These chromatin "readers" are assigned...

  17. Epigenetics and etiology of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Beata M. Gruber

    2011-08-01

    Full Text Available Determination of specific gene profile expression is essential for morphological and functional differentiation of cells in the human organism. The human genome consists of 25–30 thousands genes but only some of them are expressed in each cell. Epigenetic modifications such as DNA methylation, histone and chromatin modifications or non-coding RNA functions are also responsible for the unique gene expression patterns. It is suggested that transcriptional gene activation is related to hypomethylation and the transcriptionally non-active sequences are hypermethylated. Covalent histone modifications and DNA methylation are correlated and interacting. Chromatin modeling is regulated not only by specific enzymes but also by protein kinases or phosphatases and coactivators, such as CBP. Such interaction makes the “histone code” which with the chromatin proteins determines gene expression patterns as the response to external agents. Evidence of a major role for epigenetic modifications in neurological disease has come from three converging lines of enquiry: high conservation throughout evolution of the histone residues that are the target for epigenetic modifications; association between mutations in epigenetic components and multisystem disease syndrome in the nervous system; and broad efficacy of small-molecule epigenetic modulators, e.g. histone deacetylase inhibitors, in models of neurological diseases incurable up to now, such as Huntington’s disease, (HD, Parkinson’s disease (PD and Alzheimer’s disease (AD. This article is a survey of the literature concerning the characterization of gene expression patterns correlated with some neurodegenerative diseases. The processes of DNA hypomethylation and histone acetylation are emphasized. The histone deacetylases are indicated as the basis for design of potential drugs.

  18. Transgenerational epigenetic inheritance in mammals: how good is the evidence?

    Science.gov (United States)

    van Otterdijk, Sanne D; Michels, Karin B

    2016-07-01

    Epigenetics plays an important role in orchestrating key biologic processes. Epigenetic marks, including DNA methylation, histones, chromatin structure, and noncoding RNAs, are modified throughout life in response to environmental and behavioral influences. With each new generation, DNA methylation patterns are erased in gametes and reset after fertilization, probably to prevent these epigenetic marks from being transferred from parents to their offspring. However, some recent animal studies suggest an apparent resistance to complete erasure of epigenetic marks during early development, enabling transgenerational epigenetic inheritance. Whether there are similar mechanisms in humans remains unclear, with the exception of epigenetic imprinting. Nevertheless, a distinctly different mechanism-namely, intrauterine exposure to environmental stressors that may affect establishment of the newly composing epigenetic patterns after fertilization-is often confused with transgenerational epigenetic inheritance. In this review, we delineate the definition of and requirement for transgenerational epigenetic inheritance, differentiate it from the consequences of intrauterine exposure, and discuss the available evidence in both animal models and humans.-Van Otterdijk, S. D., Michels, K. B. Transgenerational epigenetic inheritance in mammals: how good is the evidence? PMID:27037350

  19. CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells

    Science.gov (United States)

    Handoko, Lusy; Xu, Han; Li, Guoliang; Ngan, Chew Yee; Chew, Elaine; Schnapp, Marie; Lee, Charlie Wah Heng; Ye, Chaopeng; Ping, Joanne Lim Hui; Mulawadi, Fabianus; Wong, Eleanor; Sheng, Jianpeng; Zhang, Yubo; Poh, Thompson; Chan, Chee Seng; Kunarso, Galih; Shahab, Atif; Bourque, Guillaume; Cacheux-Rataboul, Valere; Sung, Wing-Kin; Ruan, Yijun; Wei, Chia-Lin

    2011-01-01

    Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. Yet, little is known about CTCF-associated higher order chromatin structures at a global scale. Here, we applied Chromatin Interaction Analysis by Paired-End-Tag sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, 1,480 cis and 336 trans interacting loci were identified with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive crosstalk between promoters and regulatory elements. This highly complex nuclear organization offers insights towards the unifying principles governing genome plasticity and function. PMID:21685913

  20. Epigenetics protocols

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-06-01

    Full Text Available Thanks to the creative effort of Prof. Trygve O. Tollefsbol (Dept. of Biology, University of Alabama at Birmingham, USA we can handle the second edition in just seven years of this must needed volume devoted to the study of the epigenome. In the very same window-time the field of epigenetics is dramatically changed as for the technical tools employed by the pupils of this pervasive discipline: actually there is no one hot topics in biology (e.g., development, differentiation, genomic toxicity and medicine .....

  1. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  2. Special issue on epigenetic inheritance by histone modifications, histone variants and non-coding RNAs

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng CAO

    2011-01-01

    @@ Keeping in view the ever-growing importance of understanding the epigenetic phenomena shaping the behavior of life, our team decided to embark on the idea to organize this special issue of Frontiers in Biology on Epigenetics.Epigenetics refers to the study of heritable changes in gene expression without changes in DNA sequence, which is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and non-coding RNAs.

  3. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes

    OpenAIRE

    Mar, Daniel; Gharib, Sina A; Zager, Richard A.; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-01-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). Since epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study twenty key permissive and repressive epigenetic hi...

  4. Divergent evolution of CHD3 proteins resulted in MOM1 refining epigenetic control in vascular plants

    OpenAIRE

    Marian Caikovski; Chotika Yokthongwattana; Yoshiki Habu; Taisuke Nishimura; Olivier Mathieu; Jerzy Paszkowski

    2008-01-01

    Author Summary Epigenetic regulation of transcription usually involves changes in histone modifications, as well as DNA methylation changes in plants and mammals. Previously, we found an exceptional epigenetic regulator in Arabidopsis, MOM1, acting independently of these epigenetic marks. Interestingly, MOM1 controls loci associated with bivalent chromatin marks, intermediate to active euchromatin and silent heterochromatin. Such bivalent marks are often associated with newly inserted and/or ...

  5. Epigenetics: an emerging player in gastric cancer.

    Science.gov (United States)

    Kang, Changwon; Song, Ji-Joon; Lee, Jaeok; Kim, Mi Young

    2014-06-01

    Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer. PMID:24914365

  6. Epigenetics, cellular memory and gene regulation.

    Science.gov (United States)

    Henikoff, Steven; Greally, John M

    2016-07-25

    The field described as 'epigenetics' has captured the imagination of scientists and the lay public. Advances in our understanding of chromatin and gene regulatory mechanisms have had impact on drug development, fueling excitement in the lay public about the prospects of applying this knowledge to address health issues. However, when describing these scientific advances as 'epigenetic', we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press. To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes. PMID:27458904

  7. [Epigenetics: a novel tool for early diagnosis and tumor therapy].

    Science.gov (United States)

    Filetici, Patrizia

    2015-01-01

    Epigenetics, first described by Conrad Waddington, defines how pathways setting a specific phenotype and heritable cellular functions are activated in a DNA independent way. Epigenetics concerns the study of genome structure and accessibility that regulates patterns of gene expression through the dynamic compaction and opening the chromatin structure. Vincent Allfrey profetically declared in 1964 that histone modifications could influence gene expression. In cancer very often cells show a profound modification of DNA methylation and mutations in chromatin regulators. These evidences provided therefore a clear link between epigenetics and neoplasia. Advanced molecular technology such as Deep-sequencing and ChIP-Seq revealed the frequent relocalization in cancer of many PTM readers such the Ac-Lys binding bromodomain. These results were important for the development of novel classes of epigenetic drugs some of which are inhibitors of histone modifyers or molecule interacting with reader domains. Since cancer imply profound changes in the epigenetic profile and in gene transcription a future challenge of molecular and chemical biology will be to develop novel epigenetic compounds able to correct the epigenetic disfunction and, possibly, coadiuvate canonical therapy in the cure of cancer. PMID:25621778

  8. Epigenetic programming and risk: the birthplace of cardiovascular disease?

    Science.gov (United States)

    Vinci, Maria Cristina; Polvani, Gianluca; Pesce, Maurizio

    2013-06-01

    Epigenetics, through control of gene expression circuitries, plays important roles in various physiological processes such as stem cell differentiation and self renewal. This occurs during embryonic development, in different tissues, and in response to environmental stimuli. The language of epigenetic program is based on specific covalent modifications of DNA and chromatin. Thus, in addition to the individual identity, encoded by sequence of the four bases of the DNA, there is a cell type identity characterized by its positioning in the epigenetic "landscape". Aberrant changes in epigenetic marks induced by environmental cues may contribute to the development of abnormal phenotypes associated with different human diseases such as cancer, neurological disorders and inflammation. Most of the epigenetic studies have focused on embryonic development and cancer biology, while little has been done to explore the role of epigenetic mechanisms in the pathogenesis of cardiovascular disease. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodeling and histone modifications play key roles in the pathogenesis of cardiovascular disease through (re)programming of cardiovascular (stem) cells commitment, identity and function. PMID:22773406

  9. Gene Expression and Chromatin Modifications Associated with Maize Centromeres

    Directory of Open Access Journals (Sweden)

    Hainan Zhao

    2016-01-01

    Full Text Available Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize.

  10. Gene Expression and Chromatin Modifications Associated with Maize Centromeres.

    Science.gov (United States)

    Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming

    2016-01-01

    Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. PMID:26564952

  11. A model for transmission of the H3K27me3 epigenetic mark

    DEFF Research Database (Denmark)

    Hansen, Klaus H; Bracken, Adrian P; Pasini, Diego;

    2008-01-01

    Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division...... during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure...

  12. Prenucleosomes and Active Chromatin

    Science.gov (United States)

    Khuong, Mai T.; Fei, Jia; Ishii, Haruhiko; Kadonaga, James T.

    2016-01-01

    Chromatin consists of nucleosomes as well as nonnucleosomal histone-containing particles. Here we describe the prenucleosome, which is a stable conformational isomer of the nucleosome that associates with ~80 bp DNA. Prenucleosomes are formed rapidly upon the deposition of histones onto DNA and can be converted into canonical nucleosomes by an ATP-driven chromatin assembly factor such as ACF. Different lines of evidence reveal that there are prenucleosome-sized DNA-containing particles with histones in the upstream region of active promoters. Moreover, p300 acetylates histone H3K56 in prenucleosomes but not in nucleosomes, and H3K56 acetylation is found at active promoters and enhancers. These findings therefore suggest that there may be prenucleosomes or prenucleosome-like particles in the upstream region of active promoters. More generally, we postulate that prenucleosomes or prenucleosome-like particles are present at dynamic chromatin, whereas canonical nucleosomes are at static chromatin. PMID:26767995

  13. The Structural Determinants behind the Epigenetic Role of Histone Variants.

    Science.gov (United States)

    Cheema, Manjinder S; Ausió, Juan

    2015-01-01

    Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone variant. Linker histone variants (histone H1 family) haven't often been studied for their role in epigenetics. However, the micro-heterogeneity of the somatic canonical forms of linker histones appears to play an important role in maintaining the cell-differentiated states, while the cell cycle independent linker histone variants are involved in development. A picture starts to emerge in which histone H2A variants, in addition to their individual specific contributions to the nucleosome structure and dynamics, globally impair the accessibility of linker histones to defined chromatin locations and may have important consequences for determining different states of chromatin metabolism. PMID:26213973

  14. The Structural Determinants behind the Epigenetic Role of Histone Variants

    Directory of Open Access Journals (Sweden)

    Manjinder S. Cheema

    2015-07-01

    Full Text Available Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone variant. Linker histone variants (histone H1 family haven’t often been studied for their role in epigenetics. However, the micro-heterogeneity of the somatic canonical forms of linker histones appears to play an important role in maintaining the cell-differentiated states, while the cell cycle independent linker histone variants are involved in development. A picture starts to emerge in which histone H2A variants, in addition to their individual specific contributions to the nucleosome structure and dynamics, globally impair the accessibility of linker histones to defined chromatin locations and may have important consequences for determining different states of chromatin metabolism.

  15. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  16. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  17. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    Science.gov (United States)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  18. Epigenetic Memory in Mammals

    OpenAIRE

    Migicovsky, Zoë; Kovalchuk, Igor

    2011-01-01

    Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications, and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur ...

  19. Linking DNA replication to heterochromatin silencing and epigenetic inheritance

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Zhiguo Zhang

    2012-01-01

    Chromatin is organized into distinct functional domains.During mitotic cell division,both genetic information encoded in DNA sequence and epigenetic information embedded in chromatin structure must be faithfully duplicated.The inheritance of epigenetic states is critical in maintaining the genome integrity and gene expression state.In this review,we will discuss recent progress on how proteins known to be involved in DNA replication and DNA replication-coupled nucleosome assembly impact on the inheritance and maintenance of heterochromatin,a tightly compact chromatin structure that silences gene transcription.As heterochromatin is important in regulating gene expression and maintaining genome stability,understanding how heterochromatin states are inherited during S phase of the cell cycle is of fundamental importance.

  20. Sequential chromatin immunoprecipitation protocol for global analysis through massive parallel sequencing (reChIP-seq)

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Marco Antonio Mendoza-Parra, Shankaranarayanan Pattabhiraman & Hinrich Gronemeyer ### Abstract Chromatin immunoprecipitation combined with massive parallel sequencing (ChIP-seq) is increasingly used to study protein-chromatin interactions or local epigenetic modifications at genome-wide scale. ChIP-seq can be performed directly with several ng of immunoprecipitated DNA, which is generally obtained from a several million cells, depending on the quality of the antibody. ChI...

  1. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  2. Nucleosome dynamics during chromatin remodeling in vivo.

    Science.gov (United States)

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  3. A special issue on ‘epigenetics'

    Institute of Scientific and Technical Information of China (English)

    Wenlin Xu; Minghua Xu

    2012-01-01

    The term epigenetics was coined by Waddington CH in 1940s as a portmanteau of the words genetics and epigenesis to describe the differentiation of cells from their initial totipotent state in embryonic development.With the explosion of knowledge in this field in the recent 10 years,epigenetics is now typically defined as the study of heritable changes in gene expression that are not due to changes in the nucleotide sequence of DNA.The field of epigenetics is revolutionizing our understanding of biology and medicine.Recent studies have been focusing on the mechanisms of epigenetic regulation,including DNA methylation, histone modification,chromatin remodeling,etc.,and on their contributions to development and diseases.In this special issue,nine review articles written by prominent experts in this field are put together,trying to give our readers a broad picture of epigenetics and a summary of most recent research progress in this field.Here is a preview of what you will find in this issue.

  4. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li-Li Li; Xing-Sheng Shu; Zhao-Hui Wang; Ya Cao; Qian Tao

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable ethnic and geographic distribution in southern China and Southeast Asia. Alternative to genetic changes, aberrant epigenetic events disrupt multiple genes involved in cell signaling pathways through DNA methylation of promoter CpG islands and/ or histone modifications. These epigenetic alterations grant cell growth advantage and contribute to the initiation and progression of NPC. In this review, we summariye the epigenetic deregulation of cell signaling in NPC tumorigenesis and highlight the importance of identifying epigenetic cell signaling regulators in NPC research. Developing pharmacologic strategies to reverse the epigenetic-silencing of cell signaling regulators might thus be useful to NPC prevention and therapy.

  5. Epigenetic therapy in gastrointestinal cancer: the right combination.

    Science.gov (United States)

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-07-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  6. Nutritional Epigenetics

    Directory of Open Access Journals (Sweden)

    L. Preston Mercer

    2013-12-01

    Full Text Available Questions concerning the fundamental effects of nutrition on gene function are now being elucidated as the human genome project has been completed. Nutritional genomics seeks to expand the use of foods to achieve human genetic potential, while reducing the risk of diseases. As issues such as nutrigenomics (dietary influence on gene function and nutrigenetics (genomic reaction to diet are unraveled, thepotential for personalized nutrition becomes attainable. It has been stated that “genomics is to the 21st century what infectious disease was to the 20th century”. The nucleotide sequence of DNA was once seen as the only mechanism by which genetic information could be transmitted between generations. Phenotypic variation resulted from recombination and, occasionally, genetic mutation. This widely accepted concept is now undergoing modification as evidence builds to support the idea that reversible, heritable changes in gene function - termed “epigenetics”- can occur without a change in the sequence of nuclear DNA (i.e., non-Mendelian inheritance. The word epigenetics is of Greek origin and literallymeans over and above (epi the genome. The terminology“same genome, different epigenome” has been demonstrated in several experiments. As research and understanding advances, dietary advice based on the human genome will become more prevalent and new pharmacological interventions may be developed.

  7. [How to localize epigenetics in the landscape of biological research?].

    Science.gov (United States)

    Morange, Michel

    2005-04-01

    Today, epigenetics is a very fashionable field of research. Modification of DNA by methylation, and of chromatin by histone modification or substitution represents a major fraction of the studies; but this special issue shows that epigenetic studies are very diverse, and not limited to the study of chromatin. What is common behind these different uses of the word epigenetics? A brief historical survey shows that epigenetics was invented twice, with different meanings: in the 1940s, by Conrad Waddington, as the study of the relations between the genotype and the phenotype; in the 1960s, as the global mechanisms of gene regulation involved in differentiation and development; what is common is that an approach distinct from genetics was in both cases considered as necessary because genetic models were incapable to address these problems. A good way to appreciate the relations between genetics and epigenetics is to realize that the main aim of organisms is to reproduce, and to consider the way organisms perform this task. Genetics is the precise means organisms have invented to reproduce the structure of their macromolecular components; the genome is also used to control the level and place of this reproduction. All the other means organisms have used to reproduce were more or less the result of tinkering, and constitute the field of epigenetics, with its diversity and richness. PMID:15811300

  8. Epigenetic aspects of HP1 exchange kinetics in apoptotic chromatin

    Czech Academy of Sciences Publication Activity Database

    Legartová, Soňa; Jugová, Alžbeta; Stixová, Lenka; Kozubek, Stanislav; Fojtová, Miloslava; Zdráhal, Z.; Lochmanová, G.; Bártová, Eva

    2013-01-01

    Roč. 95, č. 2 (2013), s. 167-179. ISSN 0300-9084 R&D Projects: GA ČR(CZ) GAP302/10/1022; GA ČR(CZ) GBP302/12/G157; GA MŠk(CZ) LD11020; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : Apoptosis * Histones * HP1 Subject RIV: BO - Biophysics Impact factor: 3.123, year: 2013

  9. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sneppen, Kim; Dodd, Ian B

    2015-01-01

    How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation. PMID:25830651

  10. Chromatin chemistry goes cellular.

    OpenAIRE

    W. Fischle; D. Schwarzer; Mootz, H.

    2015-01-01

    Analysing post-translational modifications of histone proteins as they occur within chromatin is challenging due to their large number and chemical diversity. A major step forward has now been achieved by using split intein chemistry to engineer functionalized histones within cells.

  11. Analysis of Chromatin Organisation

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…

  12. Epigenetics in the Placenta

    OpenAIRE

    Maccani, Matthew A; Marsit, Carmen J.

    2009-01-01

    Epigenetics is focused on understanding the control of gene expression beyond what is encoded in the sequence of DNA. Central to growing interest in the field is the hope that more can be learned about the epigenetic regulatory mechanisms underlying processes of human development and disease. Researchers have begun to examine epigenetic alterations – such as changes in promoter DNA methylation, genomic imprinting, and expression of miRNA – to learn more about epigenetic regulation in the plac...

  13. Epigenetics changes associated to environmental triggers in autoimmunity.

    Science.gov (United States)

    Cañas, Carlos A; Cañas, Felipe; Bonilla-Abadía, Fabio; Ospina, Fabio E; Tobón, Gabriel J

    2016-02-01

    Autoimmune diseases (AIDs) are chronic conditions initiated by the loss of immunological tolerance to self-antigens and represent a heterogeneous group of disorders that affect specific target organs or multiple organs in different systems. While the pathogenesis of AID remains unclear, its aetiology is multifunctional and includes a combination of genetic, epigenetic, immunological and environmental factors. In AIDs, several epigenetic mechanisms are defective including DNA demethylation, abnormal chromatin positioning associated with autoantibody production and abnormalities in the expression of RNA interference (RNAi). It is known that environmental factors may interfere with DNA methylation and histone modifications, however, little is known about epigenetic changes derived of regulation of RNAi. An approach to the known environmental factors and the mechanisms that alter the epigenetic regulation in AIDs (with emphasis in systemic lupus erythematosus, the prototype of systemic AID) are showed in this review. PMID:26369426

  14. Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-A(Cnp1) in fission yeast.

    OpenAIRE

    Eun Shik Choi; Annelie Strålfors; Sandra Catania; Castillo, Araceli G.; J Peter Svensson; Pidoux, Alison L.; Karl Ekwall; Allshire, Robin C.

    2012-01-01

    Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcriptio...

  15. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2015-02-01

    Full Text Available The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS´s regulation and neurological disorders are mediated via modulation of chromatin structure.Epigenetics, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA, nicotinamide adenine dinucleotide (NAD+ and beta hydroxybutyrate (β-HB, regulates some of these epigenetic modifications, linking in a precise way environment with gene expression.This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of

  16. Epigenetic Risk Factors in PTSD and Depression

    Directory of Open Access Journals (Sweden)

    Florian Joachim Raabe

    2013-08-01

    Full Text Available Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders and PTSD. A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA axis integrates cognitive, behavioural and emotional responses to early-life stress and can be epigenetically programmed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programming can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention and timely therapeutic interventions, thus reducing long-term social and health costs.

  17. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  18. Noncoding Elements: Evolution and Epigenetic Regulation

    KAUST Repository

    Seridi, Loqmane

    2016-03-09

    When the human genome project was completed, it revealed a surprising result. 98% of the genome did not code for protein of which more than 50% are repeats— later known as ”Junk DNA”. However, comparative genomics unveiled that many noncoding elements are evolutionarily constrained; thus luckily to have a role in genome stability and regulation. Though, their exact functions remained largely unknown. Several large international consortia such as the Functional Annotation of Mammalian Genomes (FANTOM) and the Encyclopedia of DNA Elements (ENCODE) were set to understand the structure and the regulation of the genome. Specifically, these endeavors aim to measure and reveal the transcribed components and functional elements of the genome. One of the most the striking findings of these efforts is that most of the genome is transcribed, including non-conserved noncoding elements and repeat elements. Specifically, we investigated the evolution and epigenetic properties of noncoding elements. 1. We compared genomes of evolutionarily distant species and showed the ubiquity of constrained noncoding elements in metazoa. 2. By integrating multi-omic data (such as transcriptome, nucleosome profiling, histone modifications), I conducted a comprehensive analysis of epigenetic properties (chromatin states) of conserved noncoding elements in insects. We showed that those elements have distinct and protective sequence features, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. 3. I focused on the relationship between enhancers and repetitive elements. Using Cap Analysis of Gene Expression (CAGE) and RNASeq, I compiled a full catalog of active enhancers (a class of noncoding elements) during myogenesis of human primary cells of healthy donors and donors affected by Duchenne muscular dystrophy (DMD). Comparing the two time-courses, a significant change in the epigenetic

  19. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation.

    Science.gov (United States)

    Chen, Kelan; Hu, Jiang; Moore, Darcy L; Liu, Ruijie; Kessans, Sarah A; Breslin, Kelsey; Lucet, Isabelle S; Keniry, Andrew; Leong, Huei San; Parish, Clare L; Hilton, Douglas J; Lemmers, Richard J L F; van der Maarel, Silvère M; Czabotar, Peter E; Dobson, Renwick C J; Ritchie, Matthew E; Kay, Graham F; Murphy, James M; Blewitt, Marnie E

    2015-07-01

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control. PMID:26091879

  20. The epigenetics of nuclear envelope organization and disease

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, Eric C. [Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Michael Swann Building, Room 5.22, Edinburgh EH9 3JR (United Kingdom)], E-mail: e.schirmer@ed.ac.uk

    2008-12-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.

  1. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  2. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  3. Insights into newly discovered marks and readers of epigenetic information.

    Science.gov (United States)

    Andrews, Forest H; Strahl, Brian D; Kutateladze, Tatiana G

    2016-08-18

    The field of chromatin biology has been advancing at an accelerated pace. Recent discoveries of previously uncharacterized sites and types of post-translational modifications (PTMs) and the identification of new sets of proteins responsible for the deposition, removal, and reading of these marks continue raising the complexity of an already exceedingly complicated biological phenomenon. In this Perspective article we examine the biological importance of new types and sites of histone PTMs and summarize the molecular mechanisms of chromatin engagement by newly discovered epigenetic readers. We also highlight the imperative role of structural insights in understanding PTM-reader interactions and discuss future directions to enhance the knowledge of PTM readout. PMID:27538025

  4. Sperm is epigenetically programmed to regulate gene transcription in embryos.

    Science.gov (United States)

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M; Zegerman, Philip; Bradshaw, Charles R; Peters, Antoine H F M; Gurdon, John B; Jullien, Jerome

    2016-08-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  5. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  6. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.

    Science.gov (United States)

    Feinberg, Andrew P; Koldobskiy, Michael A; Göndör, Anita

    2016-05-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  7. Rapid clearance of epigenetic protein reporters from wound edge cells in Drosophila larvae does not depend on the JNK or PDGFR/VEGFR signaling pathways

    OpenAIRE

    Anderson, Aimee E.; Galko, Michael J.

    2014-01-01

    The drastic cellular changes required for epidermal cells to dedifferentiate and become motile during wound closure are accompanied by changes in gene transcription, suggesting corresponding alterations in chromatin. However, the epigenetic changes that underlie wound-induced transcriptional programs remain poorly understood partly because a comprehensive study of epigenetic factor expression during wound healing has not been practical. To determine which chromatin modifying factors might con...

  8. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells.

    Science.gov (United States)

    Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; Martin, Eric W; Krietsch, Jana; Sanchez, Gabriela; Inman, Margaux; Tsang, Herman; Warr, Matthew; Passegué, Emmanuelle; Larabell, Carolyn A; Forsberg, E Camilla

    2015-11-10

    Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation. PMID:26489895

  9. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Fernando Ugarte

    2015-11-01

    Full Text Available Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs, multipotent hematopoietic stem cells (HSCs, and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.

  10. The Chromatin-Modifying Enzyme Ezh2 Is Critical for the Maintenance of Regulatory T Cell Identity after Activation

    OpenAIRE

    DuPage, Michel; Chopra, Gaurav; Quiros, Jason; Rosenthal, Wendy L.; Morar, Malika M.; Holohan, Dan; Zhang, Ruan; Turka, Laurence; Marson, Alexander; Bluestone, Jeffrey A.

    2015-01-01

    Regulatory T cells (Treg cells) are required for immune homeostasis. Chromatin remodeling is essential for establishing diverse cellular identities, but how the epigenetic program in Treg cells is maintained throughout the dynamic activation process remains unclear. Here we have shown that CD28 co-stimulation, an extracellular cue intrinsically required for Treg cell maintenance, induced the chromatin-modifying enzyme, Ezh2. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity ...

  11. Involvement of epigenetic modifiers in the pathogenesis of testicular dysgenesis and germ cell cancer

    DEFF Research Database (Denmark)

    Lawaetz, Andreas C.; Almstrup, Kristian

    2015-01-01

    cell is a fetal germ cell that has been arrested during development due to testicular dysgenesis. CIS cells retain a fetal and open chromatin structure, and recently several epigenetic modifiers have been suggested to be involved in testicular dysgenesis in mice. We here review the possible involvement...... of epigenetic modifiers with a focus on jumonji C enzymes in the development of testicular dysgenesis and germ cell cancer in men....

  12. The Role for Epigenetic Modifications in Pain and Analgesia Response

    Directory of Open Access Journals (Sweden)

    Sherrie Lessans

    2013-01-01

    Full Text Available Pain remains a poorly understood and managed symptom. A limited mechanistic understanding of interindividual differences in pain and analgesia response shapes current approaches to assessment and treatment. Opportunities exist to improve pain care through increased understanding of how dynamic epigenomic remodeling shapes injury, illness, pain, and treatment response. Tightly regulated alterations of the DNA-histone chromatin complex enable cells to control transcription, replication, gene expression, and protein production. Pathological alterations to chromatin shape the ability of the cell to respond to physiologic and environmental cues leading to disease and reduced treatment effectiveness. This review provides an overview of critical epigenetic processes shaping pathology and pain, highlights current research support for the role of epigenomic modification in the development of chronic pain, and summarizes the therapeutic potential to alter epigenetic processes to improve health outcomes.

  13. Cas9 Functionally Opens Chromatin

    OpenAIRE

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  14. Cas9 Functionally Opens Chromatin

    OpenAIRE

    Barkal, Amira A.; Srinivasan, Sharanya; Gifford, David K.; Sherwood, Richard I.; Hashimoto, Tatsunori Benjamin

    2015-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  15. Cas9 Functionally Opens Chromatin.

    Directory of Open Access Journals (Sweden)

    Amira A Barkal

    Full Text Available Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  16. Cas9 Functionally Opens Chromatin

    Science.gov (United States)

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  17. Prospects for Epigenetic Epidemiology

    OpenAIRE

    Debra L Foley; Craig, Jeffrey M; Morley, Ruth; Olsson, Craig J.; Dwyer, Terence; Smith, Katherine; Saffery, Richard

    2009-01-01

    Epigenetic modification can mediate environmental influences on gene expression and can modulate the disease risk associated with genetic variation. Epigenetic analysis therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. The spatial and temporal variance in epigenetic profile is of particular relevance for developmental epidemiology and the study of aging, including the variable age at onset for man...

  18. Epigenetics in liver disease

    OpenAIRE

    Mann, Derek A.

    2014-01-01

    Epigenetics is a term that encompasses a variety of regulatory processes that are able to crosstalk in order to influence gene expression and cell phenotype in response to environmental cues. A deep understanding of epigenetics offers the potential for fresh insights into the basis for complex chronic diseases and improved diagnostic and prognostic tools. Moreover, as epigenetic modifications are highly plastic and responsive to the environment, there is much excitement around the theme of ep...

  19. Characteristics of thymine dimer excision from xeroderma pigmentosum chromatin

    International Nuclear Information System (INIS)

    We investigated thymine dimer excision from xeroderma pigmentosum (XP) chromatin in the cell-free reconstruction system. The normal-cell extract performed specific dimer excision from native chromatin and DNA isolated from 100 J/m2-irradiated cells. Such an excision in vitro was rapid and required high concentrations of extract. The extracts of XP group A, C and G cells were unable to excise from their own native-chromatin, but capable of excising from chromatin deprived of loosely bound nonhistone proteins with 0.35 M NaCl, as were from purified DNA. Thus, group A, C and G cells are most likely to be defective in the specific XP factors facilitating the excising activity under multicomponent regulation at the chromatin level. Further, either of group A, C and G extracts successfully complemented the native chromatin of the alternative groups. Uniquely, the XP group D extract excised dimers from native chromatin in the normal fashion under the condition. These results suggest that XP group A, C, D and G cells examined may not be defective in the dimer specific endonuclease and exonuclease per se. 19 references, 3 figures, 2 tables

  20. Epigenetics and aging

    Science.gov (United States)

    Pal, Sangita; Tyler, Jessica K.

    2016-01-01

    Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer. PMID:27482540

  1. Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

    OpenAIRE

    Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.

    2012-01-01

    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We fur...

  2. Single-epitope recognition imaging of native chromatin

    Directory of Open Access Journals (Sweden)

    Wang Hongda

    2008-12-01

    Full Text Available Abstract Background Direct visualization of chromatin has the potential to provide important insights into epigenetic processes. In particular, atomic force microscopy (AFM can visualize single nucleosomes under physiological ionic conditions. However, AFM has mostly been applied to chromatin that has been reconstituted in vitro, and its potential as a tool for the dissection of native nucleosomes has not been explored. Recently we applied AFM to native Drosophila chromatin containing the centromere-specific histone 3 (CenH3, showing that it is greatly enriched in smaller particles. Taken together with biochemical analyses of CenH3 nucleosomes, we propose that centromeric nucleosomes are hemisomes, with one turn of DNA wrapped around a particle consisting of one molecule each of centromere-specific CenH3, H4, H2A and H2B. Results Here we apply a recognition mode of AFM imaging to directly identify CenH3 within histone core particles released from native centromeric chromatin. More than 90% of these particles were found to be tetrameric in height. The specificity of recognition was confirmed by blocking with a CenH3 peptide, and the strength of the interaction was quantified by force measurements. These results imply that the particles imaged by AFM are indeed mature CenH3-containing hemisomes. Conclusion Efficient and highly specific recognition of CenH3 in histone core particles isolated from native centromeric chromatin demonstrates that tetramers are the predominant form of centromeric nucleosomes in mature tetramers. Our findings provide proof of principle that this approach can yield insights into chromatin biology using direct and rapid detection of native nucleosomes in physiological salt concentrations.

  3. Epigenetic mechanisms and gastrointestinal development

    Science.gov (United States)

    This review considers the hypothesis that nutrition during infancy affects developmental epigenetics in the gut, causing metabolic imprinting of gastrointestinal (GI) structure and function. Fundamentals of epigenetic gene regulation are reviewed, with an emphasis on the epigenetic mechanism of DNA ...

  4. Mutations in chromatin machinery and pediatric high-grade glioma.

    Science.gov (United States)

    Lulla, Rishi R; Saratsis, Amanda Muhs; Hashizume, Rintaro

    2016-03-01

    Pediatric central nervous system tumors are the most common solid tumor of childhood. Of these, approximately one-third are gliomas that exhibit diverse biological behaviors in the unique context of the developing nervous system. Although low-grade gliomas predominate and have favorable outcomes, up to 20% of pediatric gliomas are high-grade. These tumors are a major contributor to cancer-related morbidity and mortality in infants, children, and adolescents, with long-term survival rates of only 10 to 15%. The recent discovery of somatic oncogenic mutations affecting chromatin regulation in pediatric high-grade glioma has markedly improved our understanding of disease pathogenesis, and these findings have stimulated the development of novel therapeutic approaches targeting epigenetic regulators for disease treatment. We review the current perspective on pediatric high-grade glioma genetics and epigenetics, and discuss the emerging and experimental therapeutics targeting the unique molecular abnormalities present in these deadly childhood brain tumors. PMID:27034984

  5. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres.

    Science.gov (United States)

    Choi, Eun Shik; Strålfors, Annelie; Castillo, Araceli G; Durand-Dubief, Mickaël; Ekwall, Karl; Allshire, Robin C

    2011-07-01

    The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1). PMID:21531710

  6. Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals.

    Science.gov (United States)

    Klosin, Adam; Lehner, Ben

    2016-02-01

    Development never starts from a blank slate of DNA. Therefore, in principle, plenty beyond DNA could transmit phenotypic information from one generation to the next. However, the extent to which epigenetic information is actually transmitted between generations and whether this information is modulated by the environment are questions that have only recently started to be investigated at the molecular level. Here we review molecular work on inter-generation epigenetic effects in animals and highlight some principles of epigenetic transmission. We argue that the need to stably repress repetitive DNA facilitated the evolution of mechanisms conferring long-term epigenetic memory, that individual effectors such as small RNAs can provide short-term epigenetic memory, and that feedback between different epigenetic mechanisms - for example between chromatin and small RNAs - could contribute to more stable long-term inheritance. Environmentally-triggered epigenetic 'wounds' in heterochromatin that take one or more generations to 'heal' may also represent quite a generic mechanism for the transmission of acquired traits. Whether and how somatic cells alter epigenetic information in the germline, and whether and how long-term epigenetic memory can be transmitted without establishing permanent epigenetic states are key questions for future research. PMID:27140512

  7. Epigenetics: A possible answer to the undeciphered etiopathogenesis and behavior of oral lesions.

    Science.gov (United States)

    Singh, Narendra Nath; Peer, Aakanksha; Nair, Sherin; Chaturvedi, Rupesh K

    2016-01-01

    Much controversy has existed over the etiopathogenesis and management of oral lesions, especially oral malignancies. The knowledge of genetic basis is proving to be inadequate in the light of emerging new mechanisms termed epigenetic phenomena. The present review article aims to understand the role of epigenetic mechanisms in oral lesions. Epigenetics is the study of acquired changes in chromatin structure that arise independently of a change in the underlying deoxyribonucleic acid (DNA) nucleotide sequence. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNA). Epigenetics is a reversible system that can be affected by various environmental factors such as diet, drugs, mental stress, physical activity and addictive substances such as tobacco, nicotine and alcohol. Epigenetics may also play a role in explaining the etiopathogenesis of developmental anomalies, genetic defects, cancer as well as substance addiction (tobacco, cigarette and alcohol). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies. The literature in English language was searched and a structured scientific review and meta-analysis of scientific publications from the year 2000 to year 2015 was carried out from various journals. It was observed that epigenetic marks can prove to be novel markers for early diagnosis, prognosis and treatment of oral cancers as well as other oral diseases. PMID:27194874

  8. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs.

    Science.gov (United States)

    Ibeagha-Awemu, Eveline M; Zhao, Xin

    2015-01-01

    Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity. PMID:26442116

  9. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  10. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  11. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  12. Epigenetics: new concepts of old phenomena in vascular physiology.

    Science.gov (United States)

    Krause, Bernardo; Sobrevia, Luis; Casanello, Paola

    2009-10-01

    The hypothesis of 'Developmental Origins of Health and Disease' (DOHaD) relies on the presence of mechanisms sensing and signalling a diversity of stimuli during fetal development. The mechanisms that have been broadly suggested to be involved in these processes are the epigenetic modifications that could 'record' perinatal stimuli. Since the definition of epigenetic and the associated mechanisms are conflictive, in this review epigenetic was defined as 'chromosome-based mechanisms that can change the phenotypic plasticity in a cell or organism'. The most understood epigenetic mechanisms (i.e. DNA methylation, histone post-translational modifications (PTM), ATP-dependent chromatin modifications and non-coding RNAs) and reported evidence for their role in fetal programming were briefly reviewed. The development of the vascular system is strongly influenced by epigenetic mechanisms. For that reason vascular cells are good candidates to be explored regarding epigenetic programming since its proved susceptibility to be imprinted. This has been described in pregnancy diseases such as intra-uterine growth restriction, gestational diabetes and pre-eclampsia, where changes in vascular function are preserved in vitro. PMID:19485890

  13. An epigenetic hypothesis of aging-related cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Tania L Roth

    2010-03-01

    Full Text Available This brief review will focus on a new hypothesis for the role of epigenetic mechanisms in aging-related disruptions of synaptic plasticity and memory. Epigenetics refers to a set of potentially self-perpetuating, covalent modifications of DNA and post-translational modifications of nuclear proteins that produce lasting alterations in chromatin structure. These mechanisms, in turn, result in alterations in specific patterns of gene expression. Aging-related memory decline is manifest prominently in declarative/episodic memory and working memory, memory modalities anatomically based largely in the hippocampus and prefrontal cortex, respectively. The neurobiological underpinnings of age-related memory deficits include aberrant changes in gene transcription that ultimately affect the ability of the aged brain to be “plastic”. The molecular mechanisms underlying these changes in gene transcription are not currently known, but recent work points toward a potential novel mechanism, dysregulation of epigenetic mechanisms. This has led us to hypothesize that dysregulation of epigenetic control mechanisms and aberrant epigenetic “marks” drive aging-related cognitive dysfunction. Here we focus on this theme, reviewing current knowledge concerning epigenetic molecular mechanisms, as well as recent results suggesting disruption of plasticity and memory formation during aging. Finally, several open questions will be discussed that we believe will fuel experimental discovery.

  14. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  15. Small molecule modulators of epigenetic modifications: implications in therapeutics

    International Nuclear Information System (INIS)

    The eukaryotic genome is organized into chromatin, a nucleoprotein complex and a dynamic entity that regulates the spatio-temporal expression of genes in response to the intracellular and extracellular signals. This dynamicity is maintained by several factors, including the chromatin modifying Machineries. Chromatin modifying enzymes (for example, lysine (K) acetyl transferases for acetylation, lysine and arginine (R) methyltransferases for methylation, etc.) by virtue of their modifying abilities of both histones and the non histone components, are vital regulatory factors for gene expression both in physiological as well as pathophysiological conditions. Hence the modulators (inhibitors/activators) of these enzymes, which are capable of altering the gene expression globally, could also be useful in understanding the epigenetic mechanism of gene expression as well as for therapeutic purposes. We have found that acetylation of histone chaperone NPM1 and histones is essential for chromatin-mediated transcriptional activation. Remarkably, NPM1 as well as histones get hyperacetylated predominantly in oral cancer patient samples. We identified NPM1 as a positive regulator of the KAT, p300 autoacetylation, the possible causal mechanism of hyperacetylation. Targeting the acetylation by a water-soluble KAT inhibitor, CTK7A in oral tumour xenografted mice, we could demonstrate that the tumour growth could indeed be retarded upon the inhibition of KAT autoacetylation. Presently, we are studying the histone modification language in oral cancer, especially in the context of acetylation and methylation which could be potential targets for combinatorial epigenetic therapeutics. (author)

  16. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin.

    Science.gov (United States)

    Vicent, Guillermo P; Nacht, A Silvina; Zaurín, Roser; Ballaré, Cecilia; Clausell, Jaime; Beato, Miguel

    2010-11-01

    Steroid hormones regulate gene expression by interaction of their receptors with hormone-responsive elements on DNA or with other transcription factors, but they can also activate cytoplasmic signaling cascades. Rapid activation of Erk by progestins via an interaction of the progesterone receptor (PR) with the estrogen receptor is critical for transcriptional activation of the mouse mammary tumor virus (MMTV) promoter and other progesterone target genes. Erk activation leads to the phosphorylation of PR, activation of mitogen- and stress-activated protein kinase 1, and the recruitment of a complex of the three activated proteins and of P300/CBP-associated factor (PCAF) to a single nucleosome, resulting in the phosphoacetylation of histone H3 and the displacement of heterochromatin protein 1γ. Hormone-dependent gene expression requires ATP-dependent chromatin remodeling complexes. Two switch/sucrose nonfermentable-like complexes, Brahma-related gene 1-associated factor (BAF) and polybromo-BAF are present in breast cancer cells, but only BAF is recruited to the MMTV promoter and cooperates with PCAF during activation of hormone-responsive promoters. PCAF acetylates histone H3 at K14, an epigenetic mark recognized by BAF subunits, thus anchoring the complex to chromatin. BAF catalyzes localized displacement of histones H2A and H2B, facilitating access of nuclear factor 1 and additional PR complexes to the hidden hormone-responsive elements on the MMTV promoter. The linker histone H1 is a structural component of chromatin generally regarded as a general repressor of transcription. However, it contributes to a better regulation of the MMTV promoter by favoring a more homogeneous nucleosome positioning, thus reducing basal transcription and actually enhancing hormone induced transcription. During transcriptional activation, H1 is phosphorylated and displaced from the promoter. The kinase cyclin-dependent kinase 2 is activated after progesterone treatment and could

  17. Research highlights: microfluidic-enabled single-cell epigenetics.

    Science.gov (United States)

    Dhar, Manjima; Khojah, Reem; Tay, Andy; Di Carlo, Dino

    2015-11-01

    Individual cells are the fundamental unit of life with diverse functions from metabolism to motility. In multicellular organisms, a single genome can give rise to tremendous variability across tissues at the single-cell level due to epigenetic differences in the genes that are expressed. Signals from the local environment or a history of signals can drive these variations, and tissues have many cell types that play separate roles. This epigenetic heterogeneity is of biological importance in normal functions such as tissue morphogenesis and can contribute to development or resistance of cancer, or other disease states. Therefore, an improved understanding of variations at the single cell level are fundamental to understanding biology and developing new approaches to combating disease. Traditional approaches to characterize epigenetic modifications of chromatin or the transcriptome of cells have often focused on blended responses of many cells in a tissue; however, such bulk measures lose spatial and temporal differences that occur from cell to cell, and cannot uncover novel or rare populations of cells. Here we highlight a flurry of recent activity to identify the mRNA profiles from thousands of single-cells as well as chromatin accessibility and histone marks on single to few hundreds of cells. Microfluidics and microfabrication have played a central role in the range of new techniques, and will likely continue to impact their further development towards routine single-cell epigenetic analysis. PMID:26405849

  18. Epigenetic approaches towards radiation countermeasure

    International Nuclear Information System (INIS)

    In the recent years, histone deacetylase inhibitors (HDACi) have gained tremendous attention for their anticancer, tumor radiosensitising and chemosensitising properties. HDACi enhance the acetylation status of histone proteins of the chromatin besides other non-histone target proteins, an effect that is regulated by the HDACs (histone deacetylases) and HATs (histone acetyltransferases) in the cells. HDACi affect the cell cycle progression, differentiation, DNA damage and repair processes and cell death which contributes to their anticancer properties. One of the main reasons for HDACi gaining attention as potential anticancer therapeutics is their profound action on cancer cells with minimal or no effect on normal cells. However, in recent years, the possible non-oncological applications of HDACi are being explored extensively viz, in neurodegenerative diseases. Ionizing radiation exposure leads to significant alterations in signal transduction processes, changes gene expression patterns, affects DNA damage and repair processes, cell cycle progression and the underlying epigenetic changes (acetylation of histones and methylation of DNA and histones in particular) are now emerging. Some recent literatures suggest that HDACi can render cytoprotective properties in normal tissues. We at INMAS evaluated certain weak HDACi molecules of dietary origin for their ability to modulate cellular radiation in normal cells and animals. As per our expectations, post irradiation treatment with selected HDACi molecules rendered significant reduction in radiation induced damages. The possible mechanisms of action of HDACi in reducing radiation injuries with be discussed based on our won results and recent reports. (author)

  19. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  20. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  1. Scrutinizing the epigenetics revolution.

    Science.gov (United States)

    Meloni, Maurizio; Testa, Giuseppe

    2014-11-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as 'epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  2. Effect of replication on epigenetic memory and consequences on gene transcription.

    Science.gov (United States)

    Zerihun, Mehari B; Vaillant, Cédric; Jost, Daniel

    2015-04-01

    Gene activity in eukaryotes is in part regulated at the level of chromatin through the assembly of local chromatin states that are more or less permissive to transcription. How do these chromatin states achieve their functions and whether or not they contribute to the epigenetic inheritance of the transcriptional program remain to be elucidated. In cycling cells, stability is indeed strongly challenged by the periodic occurrence of replication and cell division. To address this question, we perform simulations of the stochastic dynamics of chromatin states when driven out-of-equilibrium by periodic perturbations. We show how epigenetic memory is significantly affected by the cell cycle length. In addition, we develop a simple model to connect the epigenetic state to the transcriptional state and gene activity. In particular, it suggests that replication may induce transcriptional bursting at repressive loci. Finally, we discuss how our findings-effect of replication and link to gene transcription-have original and deep implications to various biological contexts of epigenetic memory. PMID:25884278

  3. Epigenetic modifications in 3D: Nuclear organization of the differentiating mammary epithelial cell

    Science.gov (United States)

    During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as, histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. ...

  4. Models of epigenetics

    DEFF Research Database (Denmark)

    Alsing, Anne

    genomic material can show quiet diverse phenotypes characterized by organ speci c gene expression patterns. The mechanisms responsible for this phenotypic plasticity are characterized as epigenetic, as they in ict their e ect \\epi-" (Greek for \\above" or \\on top") of the genetic code. For a gene...... regulatory mechanism to be classi ed as epigenetic, it is required that it is self-sustainable in the sense that the governed gene expression or repression should prevail for the lifetime of the cell and must be inherited by possible daughter cells. An example of epigenetic di erentiation is the bistable...

  5. Chromatin Assembly at Kinetochores Is Uncoupled from DNA Replication

    Science.gov (United States)

    Shelby, Richard D.; Monier, Karine; Sullivan, Kevin F.

    2000-01-01

    The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric “state” on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [3H]thymidine we demonstrate that CENP-A–associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation. PMID:11086012

  6. Towards an understanding of the epigenetics of schistosomes: a comparative epigenomic study

    Directory of Open Access Journals (Sweden)

    Julie Mireille Joé Lepesant

    2011-11-01

    Full Text Available As in perhaps all eukaryotes, schistosomes use a supplementary information transmitting system, the epigenetic inheritance system, to shape genetic information and to produce different phenotypes. In contrast to other important parasites, the study of epigenetic phenomena in schistosomes is still in its infancy. Nevertheless, we are beginning to grasp what goes on behind the epigenetic scene in this parasite. We have developed techniques of native chromatin immunoprecipitation (N-ChIP and associated the necessary bioinformatics tools that allow us to run genome-wide comparative chromatin studies on Schistosoma mansoni at different stages of its life cycle, on different strains and on different sexes. We present here an application of such an approach to study the genetic and epigenetic basis for a phenotypic trait, the compatibility of S. mansoni with its invertebrate host Biomphalaria glabrata. We have applied the ChIP procedure to two strains that are either compatible or incompatible with their intermediate host. The precipitated DNA was sequenced and aligned to a reference genome and this information was used to determine regions in which both strands differ in their genomic sequence and/or chromatin structure. This procedure allowed us to identify candidate genes that display either genetic or epigenetic difference between the two strains.

  7. [The meaning of epigenetics].

    Science.gov (United States)

    Hu, Kai

    2002-11-01

    Epigenetics, the term was introduced by Conrad H.Waddington, in 1942,he said that to compare genetics with epigenetics, the study of the processes by which genotype gives rise to phenotype. In 1987, Robin Holliday redefined epigenetic as "Nuclear inheritance which is not based on differences in DNA sequence". The author of this paper introduced that in Science,10 August 2001,there was a special collection of review articles focused on the topic of epigenetics. The new "histone code" hypothesis states that the highly modifiable amino termini could carry their own combinatorial codes to help control phenotype,and that part of this code is heritable. And in light of this hypothesis,researchers are approaching further possibilities in human biology and types of cancer and other diseases. PMID:15979980

  8. [Epigenetics in Parkinson's Disease].

    Science.gov (United States)

    Wüllner, U

    2016-07-01

    The genetic information encoded in the DNA sequence provides a blueprint of the entire organism. The epigenetic modifications, in particular DNA methylation and histone modifications, determine how and when this information is made available and define the specific gene transcription pattern of a given cell. Epigenetic modifications determine the functional differences of genetically identical cells in multicellular organisms and are important factors in various processes from embryonic development to learning and memory consolidation. DNA methylation patterns are altered by environmental conditions and some alterations are preserved through mitosis and meiosis. Thus, DNA methylation can mediate environmental impact on health and disease, contributes to the severity of diseases and probably contributes to the effects and side effects of drugs. In addition to the classical monogenic epigenetic diseases such as Prader-Willi syndrome and Rett syndrome, recent data point to an epigenetic component also in sporadic neuro-psychiatric disorders. PMID:27299943

  9. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  10. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  11. Painting a Clearer Picture of Chromatin.

    Science.gov (United States)

    Finn, Elizabeth H; Misteli, Tom; Shachar, Sigal

    2016-02-22

    Elucidating chromatin's 3D shape is critical to understanding its function, but the fine structure of chromatin domains remains poorly resolved. In a recent report in Nature, Boettiger et al. (2016) visualize chromatin in super-resolution, gaining unprecedented insight into chromatin architecture. PMID:26906730

  12. Epigenetics and addiction.

    Science.gov (United States)

    Cadet, J L; McCoy, M T; Jayanthi, S

    2016-05-01

    Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction. PMID:26841306

  13. Fatty acids and epigenetics

    OpenAIRE

    Burdge, Graham C; Lillycrop, Karen A.

    2014-01-01

    Purpose of review The purpose of this review is to assess the findings of recent studies on the effects of fatty acids on epigenetic process and the role of epigenetics in regulating fatty acid metabolism. Recent findings The DNA methylation status of the Fads2 promoter was increased in the liver of the offspring of mice fed an ?-linolenic acid-enriched diet during pregnancy. In rats, increasing total maternal fat intake during pregnancy and lactation induced persistent hypermethyl...

  14. Epigenetics of Lung Cancer

    OpenAIRE

    Langevin, Scott M; Kratzke, Robert A.; Kelsey, Karl T.

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and non-coding RNA expression, have widely been reported in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and provide an overview of the potential translational applications of these ...

  15. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  16. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    OpenAIRE

    Johannes, Frank; Wardenaar, Rene; Colomé Tatché, Maria; Mousson, Florence; de Graaf, Petra; Mokry, Michal; Guryev, Victor; Timmers, H. Th. Marc; Cuppen, Edwin; Ritsert C Jansen; Bateman, Alex

    2010-01-01

    Motivation: ChIP-chip and ChIP-seq technologies provide genomewide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/ or individuals, we can now begin to characterize stochastic or systematic changes in epigenetic patterns during development (intra-individual) or at the population level (inter-individual). This requires statistical methods that permit a simultaneous comparison of multiple ChIP samples o...

  17. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin

    OpenAIRE

    Dambacher, Silvia; Deng, Wen; Hahn, Matthias; Sadic, Dennis; Fröhlich, Jonathan; Nuber, Alexander; Hoischen, Christian; Diekmann, Stephan; Leonhardt, Heinrich; Schotta, Gunnar

    2012-01-01

    Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding platform for the other centromeric...

  18. Epigenetic processes and cancer risk assessment

    International Nuclear Information System (INIS)

    The U.S. Environmental Protection Agency's Guidelines for Carcinogen Risk Assessment encourages the use of mechanistic data in the assessment of human cancer risk at low (environmental) exposure levels. The key events that define a particular mode of action for tumor formation have been concentrated to date more on mutational responses that are broadly the result of induced DNA damage and enhanced cell proliferation. While it is clear that these processes are important in terms of tumor induction, other modes that fall under the umbrella of epigenetic responses are increasingly being considered to play an important role in susceptibility to tumor induction by environmental chemicals and as significant modifiers of tumor responses. Alterations in gene expression, DNA repair, cell cycle control, genome stability and genome reprogramming could be the result of modification of DNA methylation and chromatin remodeling patterns as a consequence of exposure to environmental chemicals. These concepts are described and discussed

  19. [Advances in epigenetic researches of Toxoplasma gondii].

    Science.gov (United States)

    Yang, Pei-Liang; Chen, Xiao-Guang

    2012-06-30

    Toxoplasma gondii undergoes a complex life cycle that involves multiple development stages, hosts and environments. The ability to transform from one stage to another and adapt to changing environments demands precise regulation of gene expression. Bioinformatic surveys of the sequenced genomes of T. gondii revealed a peculiar absence of DNA-binding transcription factors that are well-conserved from yeast through humans, but a wealth of epigenetic machinery present in T. gondii. Evidence from reports demonstrates that remodeling of the chromatin structure particularly through post-translational modifications of histones, such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, is potentially a major process that coordinates regulation of its gene expression. In addition, no-coding RNAs may play an important role in modulating gene expression of T. gondii. These results provide reliable foundations for prevention of toxoplasmosis by revealing its pathogenic mechanism. PMID:23072142

  20. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  1. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  2. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane

    2014-10-07

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  3. Epigenetics and cancer: implications for drug discovery and safety assessment

    International Nuclear Information System (INIS)

    It is necessary to determine whether chemicals or drugs have the potential to pose a threat to human health. Research conducted over the last two decades has led to the paradigm that chemicals can cause cancer either by damaging DNA or by altering cellular growth, probably via receptor-mediated changes in gene expression. However, recent evidence suggests that gene expression can be altered markedly via several diverse epigenetic mechanisms that can lead to permanent or reversible changes in cellular behavior. Key molecular events underlying these mechanisms include the alteration of DNA methylation and chromatin, and changes in the function of cell surface molecules. Thus, for example, DNA methyltransferase enzymes together with chromatin-associated proteins such as histone modifying enzymes and remodelling factors can modify the genetic code and contribute to the establishment and maintenance of altered epigenetic states. This is relevant to many types of toxicity including but not limited to cancer. In this paper, we describe the potential for interplay between genetic alteration and epigenetic changes in cell growth regulation and discuss the implications for drug discovery and safety assessment

  4. Chromatin structure and DNA damage

    International Nuclear Information System (INIS)

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' → 5' exonuclease activity of T4 DNA polymerase

  5. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  6. Epigenetics in neonatal diseases

    Institute of Scientific and Technical Information of China (English)

    XU Xue-feng; DU Li-zhong

    2010-01-01

    Objective To review the role of epigenetic regulation in neonatal diseases and better understand Barker's "fetal origins of adult disease hypothesis".Data sources The data cited in this review were mainly obtained from the articles published in Medline/PubMed between January 1953 and December 2009.Study selection Articles associated with epigenetics and neonatal diseases were selected.Results There is a wealth of epidemiological evidence that lower birth weight is strongly correlated with an increased risk of adult diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular disease. This phenomenon of fetal origins of adult disease is strongly associated with fetal insults to epigenetic modifications of genes. A potential role of epigenetic modifications in congenital disorders, transient neonatal diabetes mellitus (TNDM), intrauterine growth retardation (IUGR), and persistent pulmonary hypertension of the newborn (PPHN) have been studied.Conclusions Acknowledgment of the role of these epigenetic modifications in neonatal diseases would be conducive to better understanding the pathogenesis of these diseases, and provide new insight for improved treatment and prevention of later adult diseases.

  7. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  8. Chromatin remodelers and their roles in chromatin organization

    OpenAIRE

    Strålfors, Annelie

    2012-01-01

    The DNA in the eukaryotic nucleus is organized into a complex DNA-protein structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of 147 bp of DNA wrapped around a histone protein octamer. The nucleosomes form a “beads on a string” structure, which can be folded into higherorder structures that allow an extensive degree of DNA compaction. This compaction is so effective that 2 meters of DNA can fit into the human cell nucleus with a ...

  9. Involvement of genetic and epigenetic steps in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Radiation carcinogenic risk prediction requires fundamental mechanistic assumptions about relationships between dose, DNA damage in certain regions leukemogenesis in the mouse may be viewed as specific chromosome aberration. Model of transformation by radiation induced chromosome aberrations is analyzed. Model is able to fit dose-response data for cell neoplastic transformation and cancer incidence in rodents. Alternative model is studied in which an induction of neoplastic phenotype is considered as delayed indirect effects of radiation. Initiating event is triggered by an epigenetic genomic modifications and represents a change in the program of cell senescence due to in part functional inactivation of senescence gene(s). The following possibilities are modeled. Radiation induces an unstable cell phenotype which reverses to normal one after many cell generations. Induction of highly unstable phenotype. Altered cells are assumed to acquire ability to generate new phenotype. Induction of stable alterations of cell phenotype following irradiation. Model suggests an essential role for selection of cells resistant to growth inhibition signals during promotion in vivo or sub culturing in vitro for development of cancer cell clones. Appearance the damage at specific sequences during the oncogenic transformation are predicted. The model fits data on dynamics of X-ray transformation of rodent cells in culture. Results are in qualitative agreement with data on radiation induced mouse mammary cancer and delayed expression of p53 mutations. The changes in hetero-chromating may cause significant changes in the control of gene expression during oncogeny. Chromatin structural alterations which are observed for chemical and viral transformation are expected to be an earliest and general phenomenon for radiation carcinogenesis. (authors)

  10. Overexpression of cancer-associated genes via epigenetic derepression mechanisms in gynecologic cancer

    Directory of Open Access Journals (Sweden)

    Hae MinJeong

    2014-02-01

    Full Text Available Like other cancers, most gynecologic cancers caused by aberrant expression of cancer-related genes. Epigenetics is one of important gene expression mechanisms which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study inheritable changes in gene expression that do not alter DNA sequence, is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, microRNAs and alternative splicing have recently been identified as important regulators of epigenetic changes. These epigenetic mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and requires that all epigenetic mechanisms be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes (TSGs expression. But recently it is arising that some oncogenes or cancer-promoting genes (CPGs are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA demethylation, histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms are actively interact each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and the accumulation of these abnormal epigenetic changes makes cancer more aggressive and resistant to treatment. This review discusses epigenetic mechanisms involved

  11. Drosophila PIWI associates with chromatin and interacts directly with HP1a.

    Science.gov (United States)

    Brower-Toland, Brent; Findley, Seth D; Jiang, Ling; Liu, Li; Yin, Hang; Dus, Monica; Zhou, Pei; Elgin, Sarah C R; Lin, Haifan

    2007-09-15

    The interface between cellular systems involving small noncoding RNAs and epigenetic change remains largely unexplored in metazoans. RNA-induced silencing systems have the potential to target particular regions of the genome for epigenetic change by locating specific sequences and recruiting chromatin modifiers. Noting that several genes encoding RNA silencing components have been implicated in epigenetic regulation in Drosophila, we sought a direct link between the RNA silencing system and heterochromatin components. Here we show that PIWI, an ARGONAUTE/PIWI protein family member that binds to Piwi-interacting RNAs (piRNAs), strongly and specifically interacts with heterochromatin protein 1a (HP1a), a central player in heterochromatic gene silencing. The HP1a dimer binds a PxVxL-type motif in the N-terminal domain of PIWI. This motif is required in fruit flies for normal silencing of transgenes embedded in heterochromatin. We also demonstrate that PIWI, like HP1a, is itself a chromatin-associated protein whose distribution in polytene chromosomes overlaps with HP1a and appears to be RNA dependent. These findings implicate a direct interaction between the PIWI-mediated small RNA mechanism and heterochromatin-forming pathways in determining the epigenetic state of the fly genome. PMID:17875665

  12. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  13. The physics of epigenetics

    CERN Document Server

    Cortini, Ruggero; Caré, Bertrand R; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2015-01-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multi-scale physical mechanisms that govern the biological processes behind the initiation, spreading and inheritance of epigenetic states. These include not only the change in the molecular properties associated with the chemical modifications of DNA and histone proteins - such as methylation and acetylation - but also less conventional ones, such as the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of m...

  14. Epigenetic Silencing of DKK3 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    André Oberthuer

    2013-04-01

    Full Text Available Medulloblastoma (MB is a malignant pediatric brain tumor arising in the cerebellum consisting of four distinct subgroups: WNT, SHH, Group 3 and Group 4, which exhibit different molecular phenotypes. We studied the expression of Dickkopf (DKK 1–4 family genes, inhibitors of the Wnt signaling cascade, in MB by screening 355 expression profiles derived from four independent datasets. Upregulation of DKK1, DKK2 and DKK4 mRNA was observed in the WNT subgroup, whereas DKK3 was downregulated in 80% MBs across subgroups with respect to the normal cerebellum (p < 0.001. Since copy number aberrations targeting the DKK3 locus (11p15.3 are rare events, we hypothesized that epigenetic factors could play a role in DKK3 regulation. Accordingly, we studied 77 miRNAs predicting to repress DKK3; however, no significant inverse correlation between miRNA/mRNA expression was observed. Moreover, the low methylation levels in the DKK3 promoters (median: 3%, 5% and 5% for promoter 1, 2 and 3, respectively excluded the downregulation of gene expression by methylation. On the other hand, the treatment of MB cells with Trichostatin A (TSA, a potent inhibitor of histone deacetylases (HDAC, was able to restore both DKK3 mRNA and protein. In conclusion, DKK3 downregulation across all MB subgroups may be due to epigenetic mechanisms, in particular, through chromatin condensation.

  15. Epigenetic Therapy for Breast Cancer

    OpenAIRE

    Xiao-Yan Zhong; Feng-Feng Cai; Corina Kohler; Wei-Jie Chen; Bei Zhang; Ming-Hong Wang

    2011-01-01

    Both genetic and epigenetic alterations can control the progression of cancer. Genetic alterations are impossible to reverse, while epigenetic alterations are reversible. This advantage suggests that epigenetic modifications should be preferred in therapy applications. DNA methyltransferases and histone deacetylases have become the primary targets for studies in epigenetic therapy. Some DNA methylation inhibitors and histone deacetylation inhibitors are approved by the US Food and Drug Admini...

  16. Epigenetic Therapy in Lung Cancer

    OpenAIRE

    Liu, Stephen V.; Fabbri, Muller; Gitlitz, Barbara J.; Laird-Offringa, Ite A.

    2013-01-01

    Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  17. Theoretical analysis of epigenetic cell memory by nucleosome modification

    DEFF Research Database (Denmark)

    Dodd, Ian B; Micheelsen, Mille A; Sneppen, Kim;

    2007-01-01

    Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Such epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of the states are thought...

  18. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  19. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  20. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  1. Epigenetics and Future Generations.

    Science.gov (United States)

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. PMID:25644664

  2. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription

    Directory of Open Access Journals (Sweden)

    Statham Aaron L

    2011-01-01

    Full Text Available Abstract Background Cancer is commonly associated with widespread disruption of DNA methylation, chromatin modification and miRNA expression. In this study, we established a robust discovery pipeline to identify epigenetically deregulated miRNAs in cancer. Results Using an integrative approach that combines primary transcription, genome-wide DNA methylation and H3K9Ac marks with microRNA (miRNA expression, we identified miRNA genes that were epigenetically modified in cancer. We find miR-205, miR-21, and miR-196b to be epigenetically repressed, and miR-615 epigenetically activated in prostate cancer cells. Conclusions We show that detecting changes in primary miRNA transcription levels is a valuable method for detection of local epigenetic modifications that are associated with changes in mature miRNA expression.

  3. Coming to terms with chromatin structure.

    Science.gov (United States)

    Even-Faitelson, Liron; Hassan-Zadeh, Vahideh; Baghestani, Zahra; Bazett-Jones, David P

    2016-03-01

    Chromatin, once thought to serve only as a means to package DNA, is now recognized as a major regulator of gene activity. As a result of the wide range of methods used to describe the numerous levels of chromatin organization, the terminology that has emerged to describe these organizational states is often imprecise and sometimes misleading. In this review, we discuss our current understanding of chromatin architecture and propose terms to describe the various biochemical and structural states of chromatin. PMID:26223534

  4. Chromatin state dynamics during blood formation

    OpenAIRE

    Lara-Astiaso, David; Weiner, Assaf; Lorenzo-Vivas, Erika; Zaretsky, Irina; Jaitin, Diego Adhemar; David, Eyal; Keren-Shaul, Hadas; Mildner, Alexander; Winter, Deborah; Jung, Steffen; Friedman, Nir; Amit, Ido

    2014-01-01

    Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics, however technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high sensitivity indexing-first chromatin immunoprecipitation approach (iChIP) to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We ide...

  5. Predicting chromatin organization using histone marks

    OpenAIRE

    Huang, Jialiang; Marco, Eugenio; Pinello, Luca; Yuan, Guo-Cheng

    2015-01-01

    Genome-wide mapping of three dimensional chromatin organization is an important yet technically challenging task. To aid experimental effort and to understand the determinants of long-range chromatin interactions, we have developed a computational model integrating Hi-C and histone mark ChIP-seq data to predict two important features of chromatin organization: chromatin interaction hubs and topologically associated domain (TAD) boundaries. Our model accurately and robustly predicts these feat...

  6. Molecular Epigenetic Switches in Neurodevelopment in Health and Disease

    Directory of Open Access Journals (Sweden)

    Dietmar Spengler

    2015-05-01

    Full Text Available Epigenetic mechanisms encode information above and beyond DNA sequence and play a critical role in brain development and the long-lived effects of environmental cues on the pre- and postnatal brain. Switch-like, rather than graded changes, illustrate par excellence how epigenetic events perpetuate altered activity states in the absence of the initial cue. They occur from early neural development to maturation and can give rise to distinct diseases upon deregulation. Many neurodevelopmental genes harbor bivalently marked chromatin domains, states of balanced inhibition, which guide dynamic ‘ON or OFF’ decisions once the balance is tilted in response to developmental or environmental cues. Examples discussed in this review include neuronal differentiation of embryonic stem cells into progenitors and beyond, activation of Kiss1 at puberty onset, and early experience-dependent programming of Avp, a major stress gene. At the genome-scale, genomic imprinting can be epigenetically switched on or off at select genes in a tightly controlled temporospatial manner and provides a versatile mechanism for dosage regulation of genes with important roles in stem cell quiescence or differentiation. Moreover, retrotransposition in neural progenitors provides an intriguing example of an epigenetic-like switch, which is stimulated by bivalently marked neurodevelopmental genes and possibly results in increased genomic flexibility regarding unprecedented challenge. Overall, we propose that epigenetic switches illuminate the catalyzing function of epigenetic mechanisms in guiding dynamic changes in gene expression underpinning robust transitions in cellular and organismal phenotypes as well as in the mediation between dynamically changing environments and the static genetic blueprint.

  7. Epigenetic regulation of LSD1 during mammary carcinogenesis

    Science.gov (United States)

    Wu, Yadi; Zhou, Binhua P

    2014-01-01

    Inheritable epigenetic regulation is integral to the dynamic control of gene expression under different stimuli for cellular homeostasis and disease progression. Histone methylation is a common and important type of chromatin modification. LSD1, the first known histone lysine-specific demethylase, operates as a key component of several corepressor complexes during development and in disease states. In this review, we focus on the regulation of LSD1 in mammary carcinogenesis. LSD1 plays a role in promoting mammary tumor metastasis and proliferation and in maintaining mammary cancer stem cells. Therefore, LSD1 represents a viable therapeutic target for effective treatment of mammary carcinogenesis. PMID:27308339

  8. HIV-Induced Epigenetic Alterations in Host Cells.

    Science.gov (United States)

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  9. Epigenetic phenomena and the evolution of plant allopolyploids

    Institute of Scientific and Technical Information of China (English)

    BaoLiu; JonathanF.Wendel

    2005-01-01

    Allopolyploid speciation is widespread in plants, yet the molecular requirements for successful orchestration of coordinated gene expression for two divergent and reunited genomes are poorly understood. Recent studies in several plant systems have revealed that allopolyploid genesis under both synthetic and natural conditions often is accompanied by rapid and sometimes evolutionarily conserved epigeuetic changes, including alteration in cytosine methylation patterns, rapid silencing in ribosomal RNA and proteincoding genes, and de-repression of dormant transposable elements. These changes are inter-related and likely arise from chromatin remodeling and its effects on epigenetic codes during and subsequent to allopolyploid formation. Epigenetic modifications could produce adaptive epimutations and novel phenotypes, some of which may be evolutionarily stable for millions of years, thereby representing a vast reservoir of latent variation that may be episodically released and made visible to selection. This epigenetic variation may contribute to several important attributes of allopolyploidy, including functional diversification or subfunctionalization of duplicated genes, genetic and cytological diploidization, and quenching of incompatible inter-genomic interactions that are characteristic of allopolyploids. It is likely that the evolutionary success of allopolyploidy is in part attributatble to epigenetic phenomena that we are only just beginning to understand.

  10. Impact of Chromatin on HIV Replication

    OpenAIRE

    Agosto, Luis M.; Matthew Gagne; Henderson, Andrew J.

    2015-01-01

    Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.

  11. Epigenetic regulation of genes during development: A conserved theme from flies to mammals

    Institute of Scientific and Technical Information of China (English)

    Dasari Vasanthi; Rakesh K Mishra

    2008-01-01

    Eukaryotic genome is organized in form of chromatin within the nucleus. This organization is important for compaction of DNA as well as for the proper expression of the genes. During early embryonic development, genomic packaging receives variety of signals to eventually set up cell type specific expression patterns of genes. This process of regulated chromatinization leads to "cell type specific epigenomes". The expression states attained during differentiation process need to be maintained subsequently throughout the life of the organism. Epigenetie modifications are responsible for chromatin dependent regulatory mechanism and play a key role in maintenance of the expression state-a process referred to as cellular memory. Another key feature in the packaging of the genome is formation of chro- matin domains that are thought to be structural as well as functional units of the higher order chromatin organization. Boundary elements that function to define such domains set the limits of regulatory elements and that of epigenetie modifications. This connection of epige- netic modification, chromatin structure and genome organization has emerged from several studies. Hox genes are among the best studied in this context and have led to the significant understanding of the epigenetic regulation during development. Here we discuss the evolu- tionarily conserved features of epigenetic mechanisms emerged from studies on homeotic gene clusters.

  12. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  13. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  14. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: ► Change in the epigenetic landscape during myogenesis was optically investigated. ► Mobility of nuclear proteins was used to state the epigenetic status of the cell. ► Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. ► Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  15. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomonobu M. [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); World Premier Initiative, iFREC, Osaka University, Osaka 565-0871 (Japan); Higuchi, Sayaka [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); Kawauchi, Keiko [Mechanobiology Institute, National University of Singapore, Singapore 117411 (Singapore); Tsukasaki, Yoshikazu; Ichimura, Taro [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); Fujita, Hideaki, E-mail: hideaki.fujita@riken.jp [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage

  16. Don't worry; be informed about the epigenetics of anxiety.

    Science.gov (United States)

    Nieto, Steven J; Patriquin, Michelle A; Nielsen, David A; Kosten, Therese A

    2016-01-01

    Epigenetic processes regulate gene expression independent of the DNA sequence and are increasingly being investigated as contributors to the development of behavioral disorders. Environmental insults, such as stress, diet, or toxin exposure, can affect epigenetic mechanisms, including chromatin remodeling, DNA methylation, and non-coding RNAs that, in turn, alter the organism's phenotype. In this review, we examine the literature, derived at both the preclinical (animal) and clinical (human) levels, on epigenetic alterations associated with anxiety disorders. Using animal models of anxiety, researchers have identified epigenetic changes in several limbic and cortical brain regions known to be involved in stress and emotion responses. Environmental manipulations have been imposed prior to conception, during prenatal or early postnatal periods, and at juvenile and adult ages. Time of perturbation differentially affects the epigenome and many changes are brain region-specific. Although some sex-dependent effects are reported in animal studies, more research employing both sexes is needed particularly given that females exhibit a disproportionate number of anxiety disorders. The human literature is in its infancy but does reveal some epigenetic associations with anxiety behaviors and disorders. In particular, effects in monoaminergic systems are seen in line with evidence from etiological and treatment research. Further, there is evidence that epigenetic changes may be inherited to affect subsequent generations. We speculate on how epigenetic processes may interact with genetic contributions to inform prevention and treatment strategies for those who are at risk for or have anxiety disorders. PMID:27189589

  17. Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-A(Cnp1 in fission yeast.

    Directory of Open Access Journals (Sweden)

    Eun Shik Choi

    2012-09-01

    Full Text Available Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-A(Cnp1 deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-A(Cnp1 incorporation at non-centromeric sites. FACT has little or no effect on CENP-A(Cnp1 assembly at endogenous centromeres where CENP-A(Cnp1 is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-A(Cnp1 at specific loci, including subtelomeric regions, where CENP-A(Cnp1 is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-A(Cnp1 chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-A(Cnp1 to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-A(Cnp1 chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification.

  18. Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-A(Cnp1) in fission yeast.

    Science.gov (United States)

    Choi, Eun Shik; Strålfors, Annelie; Catania, Sandra; Castillo, Araceli G; Svensson, J Peter; Pidoux, Alison L; Ekwall, Karl; Allshire, Robin C

    2012-09-01

    Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-A(Cnp1) deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-A(Cnp1) incorporation at non-centromeric sites. FACT has little or no effect on CENP-A(Cnp1) assembly at endogenous centromeres where CENP-A(Cnp1) is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-A(Cnp1) at specific loci, including subtelomeric regions, where CENP-A(Cnp1) is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-A(Cnp1) chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-A(Cnp1) to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-A(Cnp1) chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification. PMID:23028377

  19. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  20. A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription.

    Science.gov (United States)

    Sammons, Morgan A; Zhu, Jiajun; Berger, Shelley L

    2016-01-01

    The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription. PMID:27334938

  1. The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes.

    Science.gov (United States)

    Urvalek, Alison; Laursen, Kristian Bruun; Gudas, Lorraine J

    2014-01-01

    Epigenetics is "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being" as defined by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentiation. More than seven decades later we know that these mechanisms include histone tail post-translational modifications, DNA methylation, ATP-dependent chromatin remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful drugs targets, and combined targeting of multiple pathways is expected to significantly advance cancer therapy. PMID:24962884

  2. [Stress reactivity and stress-resilience in the pathogenesis of depressive disorders: involvement of epigenetic mechanisms].

    Science.gov (United States)

    Grigoryan, G A; Gulyaeva, N V

    2015-01-01

    The data of epigenetic studies of stress reactivity and resilience in the pathogenesis of depression in experimental animals and humans subjected to stress at different periods of life are analyzed. Specific chromatin modifications, first of all histone acetylation and methylation, are controlling expression of definite genes in distinct brain structures. Epigenetic modulation of particular genes related to development of pro-depressive or antidepressive stress response are discussed (5HT transporter and receptors, corticotropin releasing hormone, glucocorticoid and their receptors, BDNF and other neurotrophic factors). PMID:25966571

  3. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans.

    Directory of Open Access Journals (Sweden)

    Jessica L Soyer

    2014-03-01

    Full Text Available Plant pathogens secrete an arsenal of small secreted proteins (SSPs acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus. Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3, in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin

  4. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans.

    Science.gov (United States)

    Soyer, Jessica L; El Ghalid, Mennat; Glaser, Nicolas; Ollivier, Bénédicte; Linglin, Juliette; Grandaubert, Jonathan; Balesdent, Marie-Hélène; Connolly, Lanelle R; Freitag, Michael; Rouxel, Thierry; Fudal, Isabelle

    2014-03-01

    Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin

  5. Spectroscopic study of laser irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Liliana, E-mail: liliana1radu@gmail.com [V. Babes National Institute, Department of Molecular Genetics and Radiobiology (Romania); Mihailescu, I. [National Institute for Lasers, Plasma and Radiation Physics, Department of Lasers (Romania); Gazdaru, Doina [Faculty of Physics, Bucharest University, Department of Biophysics (Romania); Preoteasa, V. [V. Babes National Institute, Department of Molecular Genetics and Radiobiology (Romania)

    2013-04-15

    The effects of three UV excimer laser radiations, with wavelengths of 193, 248 and 282 nm respectively, on the structure of chromatin (the complex of deoxyribonucleic acid with proteins that exists in eukaryotic cells nuclei) were investigated. The chromatin was extracted from livers of Winstar rats. The spectroscopic methods used are: fluorescence (Foerster) resonance energy transfer (FRET), time resolved fluorescence and steady-state fluorescence. A chromatin deoxyribonucleic acid radiolysis, a chromatin proteins damage and a change of the global chromatin structure on lasers action were indicated by this study. It exists some small differences between the actions of these three laser radiations.

  6. Epigenetics in an ecotoxicological context.

    Science.gov (United States)

    Vandegehuchte, Michiel B; Janssen, Colin R

    2014-04-01

    Epigenetics can play a role in interactions between chemicals and exposed species, between species and abiotic ecosystem components or between species of the same or another population in a community. Technological progress and advanced insights into epigenetic processes have led to the description of epigenetic features (mainly DNA methylation) in many ecologically relevant species: algae, plants, several invertebrates and fish. Epigenetic changes in plants, insects and cladocerans have been reported to be induced by various environmental stress factors including nutrition or water deficiency, grazing, light or temperature alterations, social environment, and dissolved organic matter concentrations. As regards chemicals, studies in rats and mice exposed to specific pesticides, hydrocarbons, dioxins, and endocrine disrupting chemicals demonstrated the induction of epigenetic changes, suggesting the need for further research with these substances in an ecotoxicological context. In fish and plants, exposure to polyaromatic hydrocarbons, metals, and soluble fractions of solid waste affected the epigenetic status. A novel concept in ecotoxicological epigenetics is the induction of transgenerational stress resistance upon chemical exposure, as demonstrated in rice exposed to metals. Evaluating epigenetics in ecotoxicological field studies is a second relatively new approach. A cryptic lineage of earthworms had developed arsenic tolerance in the field, concurrent with specific DNA methylation patterns. Flatfish caught in the framework of environmental monitoring had developed tumours, exhibiting specific DNA methylation patterns. Two main potential implications of epigenetics in an ecotoxicological context are (1) the possibility of transgenerationally inherited, chemical stress-induced epigenetic changes with associated phenotypes and (2) epigenetically induced adaptation to stress upon long-term chemical exposure. Key knowledge gaps are concerned with the causality of

  7. Epigenetics of the yeast galactose genetic switch

    Indian Academy of Sciences (India)

    Paike Jayadeva Bhat; Revathi S Iyer

    2009-10-01

    The transcriptional activation of enzymes involved in galactose utilization (GAL genes) in Saccharomyces cerevisiae is regulated by a complex interplay between three regulatory proteins encoded by GAL4 (transcriptional activator), GAL3 (signal transducer) and GAL80 (repressor). The relative concentrations of the signal transducer and the repressor are maintained by autoregulation. Cells disabled for autoregulation exhibit phenotypes distinctly different from that of the wild type cells, enabling us to explore the biological significance of autoregulation. The redundancy in signal transduction due to the presence of GAL1 (alternate signal transducer) also makes it a suitable model to understand the phenomenon of epigenetics. In this article we review some of the recent attempts made to understand the importance of epigenetics in the establishment of cellular and transcriptional memory.

  8. Principles of epigenetic inheritance

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris

    České Budějovice, 2008. s. 11-13. ISBN 80-85645-59-9. [XXIII Genetic Days. 10.09.2008-12.09.2008, České Budějovice] R&D Projects: GA MŠk(CZ) LC06004; GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : epigenetics * inheritance * gene Subject RIV: BO - Biophysics

  9. Chromatin Dynamics of Circadian Transcription

    OpenAIRE

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intrigui...

  10. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer......, and are thought to play essential roles in cancer etiology and progression. Here, we aimed to identify epigenetic miRNA deregulation in bladder and oral carcinoma, and to develop a robust approach to epigenetic miRNA prediction and detection. In addition, non-canonical epigenetic functions directed by a nuclear...... miRNA were investigated. In summary, we report that the miR-200 family and miR-205 are coordinately epigenetically regulated in a variety of cell lines, tumors and normal tissues. MiR-200c expression is correlated with bladder cancer disease progression, and miR-375 levels in oral rinse can...

  11. Epigenetic advances in clinical neuroscience

    OpenAIRE

    Abel, Ted; Poplawski, Shane

    2014-01-01

    Epigenetics, broadly defined as the regulation of gene expression without alteration of the genome, has become a field of tremendous interest in neuroscience, neurology, and psychiatry. This research has rapidly changed the way researchers think about brain function. Exciting epigenetic discoveries have been found in addiction, early life stress, neurodegeneration, post-traumatic stress disorder, and depression. As researchers more precisely define the epigenetic landscape that regulates dise...

  12. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    OpenAIRE

    Kristina Budimir; Gordana Kralik; Vladimir Margeta

    2013-01-01

    Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactiv...

  13. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4.

    Directory of Open Access Journals (Sweden)

    Araceli G Castillo

    2007-07-01

    Full Text Available The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-A(Cnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-A(Cnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-A(Cnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-A(Cnp1 for assembly into central domain chromatin, resulting in less CENP-A(Cnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-A(Cnp1 influence the extent of DNA at centromeres that is packaged in CENP-A(Cnp1 chromatin and the composition of this chromatin. Thus, CENP-A(Cnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-A(Cnp1 and other core histones.

  14. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4.

    Science.gov (United States)

    Castillo, Araceli G; Mellone, Barbara G; Partridge, Janet F; Richardson, William; Hamilton, Georgina L; Allshire, Robin C; Pidoux, Alison L

    2007-07-01

    The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1) chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-A(Cnp1) can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-A(Cnp1) chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-A(Cnp1) associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-A(Cnp1) for assembly into central domain chromatin, resulting in less CENP-A(Cnp1) and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-A(Cnp1) influence the extent of DNA at centromeres that is packaged in CENP-A(Cnp1) chromatin and the composition of this chromatin. Thus, CENP-A(Cnp1) chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-A(Cnp1) and other core histones. PMID:17677001

  15. The epigenetic landscape of clear-cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2015-05-01

    Full Text Available Clear cell renal cell carcinoma (ccRCC is the most common subtype of all kidney tumors. During the last few years, epigenetics has emerged as an important mechanism in ccRCC pathogenesis. Recent reports, involving large-scale methylation and sequencing analyses, have identified genes frequently inactivated by promoter methylation and recurrent mutations in genes encoding chromatin regulatory proteins. Interestingly, three of detected genes (PBRM1, SETD2 and BAP1 are located on chromosome 3p, near the VHL gene, inactivated in over 80% ccRCC cases. This suggests that 3p alterations are an essential part of ccRCC pathogenesis. Moreover, most of the proteins encoded by these genes cooperate in histone H3 modifications. The aim of this review is to summarize the latest discoveries shedding light on deregulation of chromatin machinery in ccRCC. Newly described ccRCC-specific epigenetic alterations could potentially serve as novel diagnostic and prognostic biomarkers and become an object of novel therapeutic strategies.

  16. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    Science.gov (United States)

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis. PMID:22941276

  17. The Influence of Early Life Nutrition on Epigenetic Regulatory Mechanisms of the Immune System

    OpenAIRE

    Lorella Paparo; Margherita di Costanzo; Carmen di Scala; Linda Cosenza; Ludovica Leone; Rita Nocerino; Roberto Berni Canani

    2014-01-01

    The immune system is exquisitely sensitive to environmental changes. Diet constitutes one of the major environmental factors that exerts a profound effect on immune system development and function. Epigenetics is the study of mitotically heritable, yet potentially reversible, molecular modifications to DNA and chromatin without alteration to the underlying DNA sequence. Nutriepigenomics is an emerging discipline examining the role of dietary influences on gene expression. There is increasing ...

  18. Epigenetics and Transcriptomics to Detect Adverse Drug Effects in Model Systems of Human Development

    OpenAIRE

    Balmer, Nina V.; Leist, Marcel

    2014-01-01

    Prenatal exposure to environmental chemicals or drugs has been associated with functional or structural deficits and the development of diseases in later life. For example, developmental neurotoxicity (DNT) is triggered by lead, and this compound may predispose to neurodegenerative diseases in later life. The molecular memory for such late consequences of early exposure is not known, but epigenetic mechanisms (modification of the chromatin structure) could take this role. Examples and underly...

  19. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

    Science.gov (United States)

    Yumerefendi, Hayretin; Lerner, Andrew Michael; Zimmerman, Seth Parker; Hahn, Klaus; Bear, James E; Strahl, Brian D; Kuhlman, Brian

    2016-06-01

    We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation. PMID:27089030

  20. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus

    Czech Academy of Sciences Publication Activity Database

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, P. S.; Soltis, D.E.; Kovařík, Aleš

    2016-01-01

    Roč. 85, č. 3 (2016), s. 362-377. ISSN 0960-7412 R&D Projects: GA ČR(CZ) GA14-34632S; GA ČR GBP501/12/G090; GA ČR(CZ) GA13-10057S Institutional support: RVO:68081707 Keywords : allopolyploid * chromatin modification * epigenetic variants Subject RIV: BO - Biophysics Impact factor: 5.972, year: 2014

  1. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a

    OpenAIRE

    Kramer, Jamie M.; Kochinke, Korinna; Oortveld, Merel A.W.; Marks, Hendrik; Kramer, Daniela; de Jong, Eiko K.; Asztalos, Zoltan; Westwood, J. Timothy; Stunnenberg, Hendrik G; Sokolowski, Marla B.; Keleman, Krystyna; Zhou, Huiqing; van Bokhoven, Hans; Schenck, Annette

    2011-01-01

    The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the “writers” of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9). EHMT is widely exp...

  2. Epigenetics modifications and therapeutic prospects in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Maria Graziella eCatalano

    2012-03-01

    Full Text Available At present no successful treatment is available for advanced thyroid cancer, which comprises poorly differentiated, anaplastic, and metastatic or recurrent differentiated thyroid cancer not responding to radioiodine. In the last few years, biologically targeted therapies for advanced thyroid carcinomas have been proposed on the basis of the recognition of key oncogenic mutations. Although the results of several phase II trials look promising, none of the patients treated had a complete response, and only a minority of them had a partial response, suggesting that the treatment is, at best, effective in stabilizing patients with progressive disease. Epigenetic refers to the study of heritable changes in gene expression that occur without any alteration in the primary DNA sequence. The epigenetic processes establish and maintain the global and local chroma¬tin states that determine gene expression. Epigenetic abnormalities are present in almost all cancers and, together with genetic changes, drive tumour progression. Various genes involved in the control of cell proliferation and invasion (p16INK4A, RASSF1A,PTEN, Rap1GAP, TIMP3, DAPK, RARβ2, E-cadherin, and CITED1 as well as genes specific of thyroid differentiation (Na+/I- symport, TSH receptor, pendrin, SL5A8, and TTF-1 present aberrant methylation in thyroid cancer.This review deals with the most frequent epigenetic alterations in thyroid cancer and focuses on epigenetic therapy, whose goal is to target the chromatin in rapidly dividing tumour cells and potentially restore normal cell functions. Experimental data and clinical trials, especially using deacetylase inhibitors and demethylating agents, are discussed.

  3. The Binding Sites for the Chromatin Insulator Protein CTCF Map to DNA Methylation-Free Domains Genome-Wide

    OpenAIRE

    Mukhopadhyay, Rituparna; Yu, Wenqiang; Whitehead, Joanne; Xu, Junwang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-01-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified...

  4. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  5. A repetitive elements perspective in Polycomb epigenetics.

    Directory of Open Access Journals (Sweden)

    Valentina eCasa

    2012-10-01

    Full Text Available Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome rearrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental.Polycomb group (PcG proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins.Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.

  6. Decoupling Epigenetic and Genetic Effects through Systematic Analysis of Gene Position

    Directory of Open Access Journals (Sweden)

    Menzies Chen

    2013-01-01

    Full Text Available Classic “position-effect” experiments repositioned genes near telomeres to demonstrate that the epigenetic landscape can dramatically alter gene expression. Here, we show that systematic gene knockout collections provide an exceptional resource for interrogating position effects, not only near telomeres but at every genetic locus. Because a single reporter gene replaces each deleted gene, interrogating this reporter provides a sensitive probe into different chromatin environments while controlling for genetic context. Using this approach, we find that, whereas systematic replacement of yeast genes with the kanMX marker does not perturb the chromatin landscape, chromatin differences associated with gene position account for 35% of kanMX activity. We observe distinct chromatin influences, including a Set2/Rpd3-mediated antagonistic interaction between histone H3 lysine 36 trimethylation and the Rap1 transcriptional activation site in kanMX. This interaction explains why some yeast genes have been resistant to deletion and allows successful generation of these deletion strains through the use of a modified transformation procedure. These findings demonstrate that chromatin regulation is not governed by a uniform “histone code” but by specific interactions between chromatin and genetic factors.

  7. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation

    Science.gov (United States)

    Chen, Kelan; Hu, Jiang; Moore, Darcy L.; Liu, Ruijie; Kessans, Sarah A.; Breslin, Kelsey; Lucet, Isabelle S.; Keniry, Andrew; Leong, Huei San; Parish, Clare L.; Hilton, Douglas J.; Lemmers, Richard J. L. F.; van der Maarel, Silvère M.; Czabotar, Peter E.; Dobson, Renwick C. J.; Ritchie, Matthew E.; Kay, Graham F.; Murphy, James M.; Blewitt, Marnie E.

    2015-01-01

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1–chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control. PMID:26091879

  8. Identification of DNA Methylation-Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Becket, Elinne; Chopra, Sameer; Duymich, Christopher E; Lin, Justin J; You, Jueng Soo; Pandiyan, Kurinji; Nichols, Peter W; Siegmund, Kimberly D; Charlet, Jessica; Weisenberger, Daniel J; Jones, Peter A; Liang, Gangning

    2016-04-01

    Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR. PMID:26759245

  9. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  10. Characterization of the RNA content of chromatin

    OpenAIRE

    Mondal, Tanmoy; Rasmussen, Markus; Pandey, Gaurav Kumar; Isaksson, Anders; Kanduri, Chandrasekhar

    2010-01-01

    Noncoding RNA (ncRNA) constitutes a significant portion of the mammalian transcriptome. Emerging evidence suggests that it regulates gene expression in cis or trans by modulating the chromatin structure. To uncover the functional role of ncRNA in chromatin organization, we deep sequenced chromatin-associated RNAs (CARs) from human fibroblast (HF) cells. This resulted in the identification of 141 intronic regions and 74 intergenic regions harboring CARs. The intronic and intergenic CARs show s...

  11. Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis.

    Science.gov (United States)

    Wu, William Kk; Yu, Jun; Chan, Matthew Tv; To, Ka F; Cheng, Alfred Sl

    2016-07-01

    Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodelling and microRNAs, convert environmental signals to transcriptional outputs but are commonly hijacked by pathogenic microorganisms. Recent advances in cancer epigenomics have shed new light on the importance of epigenetic deregulation in Helicobacter pylori- and Epstein-Barr virus (EBV)-driven gastric tumourigenesis. Moreover, it is becoming apparent that epigenetic mechanisms interact through crosstalk and feedback loops, which modify global gene expression patterns. The SWI/SNF remodelling complexes are commonly involved in gastric cancers associated with H. pylori or EBV through different mechanisms, including microRNA-mediated deregulation and genetic mutations. While H. pylori causes epigenetic silencing of tumour-suppressor genes to deregulate cellular pathways, EBV-positive tumours exhibit a widespread and distinctive DNA hypermethylation profile. Given the early successes of epigenetic drugs in haematological malignancies, further studies are mandated to enrich and translate our understanding of combinatorial epigenetic deregulation in gastric cancers into interventional strategies in the clinic. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27102722

  12. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes.

    Science.gov (United States)

    Mar, Daniel; Gharib, Sina A; Zager, Richard A; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-10-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  13. Interindividual variability in stress susceptibility: A role for epigenetic mechanisms in PTSD

    Directory of Open Access Journals (Sweden)

    J.DavidSweatt

    2013-06-01

    Full Text Available Post-traumatic stress disorder (PTSD is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.

  14. The changing concept of epigenetics.

    Science.gov (United States)

    Jablonka, Eva; Lamb, Marion J

    2002-12-01

    We discuss the changing use of epigenetics, a term coined by Conrad Waddington in the 1940s, and how the epigenetic approach to development differs from the genetic approach. Originally, epigenetics referred to the study of the way genes and their products bring the phenotype into being. Today, it is primarily concerned with the mechanisms through which cells become committed to a particular form or function and through which that functional or structural state is then transmitted in cell lineages. We argue that modern epigenetics is important not only because it has practical significance for medicine, agriculture, and species conservation, but also because it has implications for the way in which we should view heredity and evolution. In particular, recognizing that there are epigenetic inheritance systems through which non-DNA variations can be transmitted in cell and organismal lineages broadens the concept of heredity and challenges the widely accepted gene-centered neo-Darwinian version of Darwinism. PMID:12547675

  15. Natural Killer Cells—An Epigenetic Perspective of Development and Regulation

    Directory of Open Access Journals (Sweden)

    Alexander Schenk

    2016-03-01

    Full Text Available Based on their ability to recognize and eliminate various endo- and exogenous pathogens as well as pathological alterations, Natural Killer (NK cells represent an important part of the cellular innate immune system. Although the knowledge about their function is growing, little is known about their development and regulation on the molecular level. Research of the past decade suggests that modifications of the chromatin, which do not affect the base sequence of the DNA, also known as epigenetic alterations, are strongly involved in these processes. Here, the impact of epigenetic modifications on the development as well as the expression of important activating and inhibiting NK-cell receptors and their effector function is reviewed. Furthermore, external stimuli such as physical activity and their influence on the epigenetic level are discussed.

  16. Editoral: Molecular epigenetics: dawn of a new era of biomedical research

    Institute of Scientific and Technical Information of China (English)

    XU RuiMing

    2009-01-01

    @@ At about the same time in 1940s when Erwin Schrǒdinger published his famous little book What Is Life, which sparked the birth of molecular biology, the term epigenetics was coined by the English biologist Conrad Waddington.The concept of epi-inheritance can be traced back to French naturalist Jean-Baptiste Lamarck's idea of "inheritance of acquired traits". Nevertheless, epigenetics as an experimental science owes much credit to Barbara McCiintock's pio-neering work on transposable elements in maize. In early 1950s, she put forward a theory that alteration in chromatin structure is responsible for the peculiar non-Mendelian rules of inheritance - a concept nowadays widely accepted as the comer stone of modem epigenetics.

  17. Natural Killer Cells—An Epigenetic Perspective of Development and Regulation

    Science.gov (United States)

    Schenk, Alexander; Bloch, Wilhelm; Zimmer, Philipp

    2016-01-01

    Based on their ability to recognize and eliminate various endo- and exogenous pathogens as well as pathological alterations, Natural Killer (NK) cells represent an important part of the cellular innate immune system. Although the knowledge about their function is growing, little is known about their development and regulation on the molecular level. Research of the past decade suggests that modifications of the chromatin, which do not affect the base sequence of the DNA, also known as epigenetic alterations, are strongly involved in these processes. Here, the impact of epigenetic modifications on the development as well as the expression of important activating and inhibiting NK-cell receptors and their effector function is reviewed. Furthermore, external stimuli such as physical activity and their influence on the epigenetic level are discussed. PMID:26938533

  18. Epigenetic silencers are enriched in dormant desert frog muscle.

    Science.gov (United States)

    Hudson, Nicholas J; Lonhienne, T G A; Franklin, Craig E; Harper, Gregory S; Lehnert, S A

    2008-08-01

    Green-striped burrowing frogs, Cyclorana alboguttata, survive droughts by entering a metabolic depression called aestivation, characterised by a reduction in resting oxygen consumption by 80%. Aestivation in C. alboguttata is manifest by transcriptional silencing of skeletal muscle bioenergetic genes, such as NADH ubiquinone oxidoreductase 1, ATP synthase and superoxide dismutase 2. In this study, we hypothesised that aestivation is associated with epigenetic change in frog muscle. We assessed mRNA transcript abundance of seven genes that code for proteins with established roles in epigenetically-mediated gene silencing [transcriptional co-repressor SIN3A, DNA (cytosine-5-) methyltransferase 1, methyl CpG binding protein 2, chromodomain helicase DNA binding protein 4, histone binding protein rbbp4, histone deacetylase 1 and nuclear receptor co-repressor 2] using qRT-PCR. These seven genes showed a modest (1.1-3.5-fold) but coordinated upregulation in 6-month aestivating muscle. This reached significance for SIN3A and DNA cytosine-5-methyltransferase 1 in standard pair-wise comparisons (p < 0.05), and the candidates as a whole when analysed by Fisher's combined probability test (p < 0.01). These data are consistent with the hypothesis that the transcriptional silencing and metabolic depression that occurs during seasonal dormancy are associated with chromatin remodelling, and present a novel example of an environmentally induced epigenetic modification in an adult vertebrate. PMID:18369641

  19. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2015-08-01

    Full Text Available Sulfur mustard (SM, bis- (2-chloroethyl sulphide is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD and compared with mustard lung.

  20. Improving understanding of chromatin regulatory proteins and potential implications for drug discovery.

    Science.gov (United States)

    Rafehi, Haloom; Khan, Abdul Waheed; El-Osta, Assam

    2016-04-01

    Many epigenetic-based therapeutics, including drugs such as histone deacetylase inhibitors, are now used in the clinic or are undergoing advanced clinical trials. The study of chromatin-modifying proteins has benefited from the rapid advances in high-throughput sequencing methods, the organized efforts of major consortiums and by individual groups to profile human epigenomes in diverse tissues and cell types. However, while such initiatives have carefully characterized healthy human tissue, disease epigenomes and drug-epigenome interactions remain very poorly understood. Reviewed here is how high-throughput sequencing improves our understanding of chromatin regulator proteins and the potential implications for the study of human disease and drug development and discovery. PMID:26923902

  1. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers.

    Science.gov (United States)

    Stern, Josh Lewis; Theodorescu, Dan; Vogelstein, Bert; Papadopoulos, Nickolas; Cech, Thomas R

    2015-11-01

    Somatic mutations in the promoter of the gene for telomerase reverse transcriptase (TERT) are the most common noncoding mutations in cancer. They are thought to activate telomerase, contributing to proliferative immortality, but the molecular events driving TERT activation are largely unknown. We observed in multiple cancer cell lines that mutant TERT promoters exhibit the H3K4me2/3 mark of active chromatin and recruit the GABPA/B1 transcription factor, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing; only the mutant promoters are transcriptionally active. These results suggest how a single-base-pair mutation can cause a dramatic epigenetic switch and monoallelic expression. PMID:26515115

  2. Human postmeiotic sex chromatin and its impact on sex chromosome evolution.

    Science.gov (United States)

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H

    2012-05-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  3. Epigenetics in Intestinal Epithelial Cell Renewal.

    Science.gov (United States)

    Roostaee, Alireza; Benoit, Yannick D; Boudjadi, Salah; Beaulieu, Jean-François

    2016-11-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt-villus axis. One important check-point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361-2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  4. Theory for the stability and regulation of epigenetic landscapes

    International Nuclear Information System (INIS)

    Cells can often choose among several stably heritable phenotypes. Examples are the expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent and heritable silenced or active states that may be associated with positive feedback in dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability associated with valleys in an epigenetic landscape. A transfer matrix method was used to rigorously follow the system through the disruptive process of cell division. This combined treatment of noisy dynamics both between and during cell division provides an efficient way to calculate the stability of alternative states in a broad range of epigenetic systems

  5. Theory for the stability and regulation of epigenetic landscapes.

    Science.gov (United States)

    Micheelsen, Mille A; Mitarai, Namiko; Sneppen, Kim; Dodd, Ian B

    2010-01-01

    Cells can often choose among several stably heritable phenotypes. Examples are the expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent and heritable silenced or active states that may be associated with positive feedback in dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability associated with valleys in an epigenetic landscape. A transfer matrix method was used to rigorously follow the system through the disruptive process of cell division. This combined treatment of noisy dynamics both between and during cell division provides an efficient way to calculate the stability of alternative states in a broad range of epigenetic systems. PMID:20526030

  6. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome

  7. ATRX represses alternative lengthening of telomeres.

    Science.gov (United States)

    Napier, Christine E; Huschtscha, Lily I; Harvey, Adam; Bower, Kylie; Noble, Jane R; Hendrickson, Eric A; Reddel, Roger R

    2015-06-30

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that knockout or knockdown of ATRX in mortal cells or immortal telomerase-positive cells is insufficient to activate ALT. Notably, however, in SV40-transformed mortal fibroblasts ATRX loss results in either a significant increase in the proportion of cell lines activating ALT (instead of telomerase) or in a significant decrease in the time prior to ALT activation. These data indicate that loss of ATRX function cooperates with one or more as-yet unidentified genetic or epigenetic alterations to activate ALT. Moreover, transient ATRX expression in ALT-positive/ATRX-negative cells represses ALT activity. These data provide the first direct, functional evidence that ATRX represses ALT. PMID:26001292

  8. Complex disease, gender and epigenetics.

    Science.gov (United States)

    Kaminsky, Zachary; Wang, Sun-Chong; Petronis, Arturas

    2006-01-01

    Gender differences in susceptibility to complex disease such as asthma, diabetes, lupus, autism and major depression, among numerous other disorders, represent one of the hallmarks of non-Mendelian biology. It has been generally accepted that endocrinological differences are involved in the sexual dimorphism of complex disease; however, specific molecular mechanisms of such hormonal effects have not been elucidated yet. This paper will review evidence that sex hormone action may be mediated via gene-specific epigenetic modifications of DNA and histones. The epigenetic modifications can explain sex effects at DNA sequence polymorphisms and haplotypes identified in gender-stratified genetic linkage and association studies. Hormone-induced DNA methylation and histone modification changes at specific gene regulatory regions may increase or reduce the risk of a disease. The epigenetic interpretation of sexual dimorphism fits well into the epigenetic theory of complex disease, which argues for the primary pathogenic role of inherited and/or acquired epigenetic misregulation rather than DNA sequence variation. The new experimental strategies, especially the high throughput microarray-based epigenetic profiling, can be used for testing the epigenetic hypothesis of gender effects in complex diseases. PMID:17438668

  9. Chromatin domain boundaries: insulators and beyond

    Institute of Scientific and Technical Information of China (English)

    Gong Hong WEI; De Pei LIU; Chih Chuan LIANG

    2005-01-01

    The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory units for gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are the insulators or boundary elements, which are required in maintenance of the function of different domains. Some insulators need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationally modified histones. Recent studies show that these histone modifications are also involved in establishment of sharp chromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-order chromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation between insulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domain boundaries.

  10. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  11. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Patrick Bateson

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  12. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    Directory of Open Access Journals (Sweden)

    Kristina Budimir

    2013-06-01

    Full Text Available Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactivates. Its influence can be seen on productive and reproductive traits. Discovering new imprinted genes is important because of their conservation and understanding their function.

  13. Targeting Chromatin-Mediated Transcriptional Control of Gene Expression in Non-Small Cell Lung Cancer Therapy: Preclinical Rationale and Clinical Results.

    Science.gov (United States)

    Pasini, Alice; Delmonte, Angelo; Tesei, Anna; Calistri, Daniele; Giordano, Emanuele

    2015-10-01

    Targeting chromatin-mediated transcriptional control of gene expression is nowadays considered a promising new strategy, transcending conventional anticancer therapy. As a result, molecules acting as DNA demethylating agents or histone deacetylase inhibitors (HDACi) have entered the clinical arena in the last decade. Given the evidence suggesting that epigenetic regulation is significantly involved in lung cancer development and progression, the potential of epigenetically active compounds to modulate gene expression and reprogram cancer cells to a less aggressive phenotype is, at present, a promising strategy. Accordingly, a large number of compounds that interact with the epigenetic machinery of gene expression regulation are now being developed and tested as potential antitumor agents, either alone or in combination with standard therapy. The preclinical rationale and clinical data concerning the pharmacological modulation of chromatin organization in non-small cell lung cancer (NSCLC) is described in this review. Although preclinical data suggest that a pharmacological treatment targeting the epigenetic machinery has relevant activity over the neoplastic phenotype of NSCLC cells, clinical results are disappointing, leading only to short periods of disease stabilization in NSCLC patients. This evidence calls for a significant rethinking of strategies for an effective epigenetic therapy of NSCLC. The synergistic effect of concurrent epigenetic therapies, use at low doses, the priming of current treatments with previous epigenetic drugs, and the selection of clinical trial populations based on epigenetic biomarkers/signatures appear to be the cornerstones of a mature therapeutic strategy aiming to establish new regimens for reprogramming malignant cells and improving the clinical history of affected patients. PMID:26347133

  14. RegulatING chromatin regulators

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Nabbi, Arash; Riabowol, Karl

    2013-01-01

    The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on...... the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine...... stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes...

  15. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente;

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...... with cryopreserved/thawed embryos results in a higher risk of large-for-gestational age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human...... adolescents conceived by ART have altered lipid and glucose profiles and thereby a higher long-term risk of cardiovascular disease and diabetes. This commentary describes the basic concepts of epigenetics and gives a short overview of the existing literature on the association between imprinting disorders...

  16. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob;

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...... to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant...... for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic...

  17. Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjeet Kaur

    2012-12-01

    transcriptome and proteome’, thereby stalling the replacement of ‘dynamic’ histones with ‘inert’ protamines, and altering the epigenetic state of condensed sperm chromatin. The inappropriately condensed chromatin affected the sperm chromatin cytoarchitecture, evident from subtle ultrastructural changes in the nuclei of immature caput epididymal sperm of CPA- or FD-treated rats, incubated in vitro with dithiothreitol.

  18. Epigenetic Treatments for Cognitive Impairments

    OpenAIRE

    Day, Jeremy J.; Sweatt, J. David

    2011-01-01

    Epigenetic mechanisms integrate signals from diverse intracellular transduction cascades and in turn regulate genetic readout. Accumulating evidence has revealed that these mechanisms are critical components of ongoing physiology and function in the adult nervous system, and are essential for many cognitive processes, including learning and memory. Moreover, a number of psychiatric disorders and syndromes that involve cognitive impairments are associated with altered epigenetic function. In t...

  19. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms

    Science.gov (United States)

    Lewis, Kayla A.; Tollefsbol, Trygve O.

    2016-01-01

    Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with

  20. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  1. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  2. Nuclear envelope proteins and chromatin arrangement: a pathogenic mechanism for laminopathies

    Directory of Open Access Journals (Sweden)

    NM Maraldi

    2009-06-01

    Full Text Available The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. Laminopathies share in some instances their clinical features, but each of them is characterized by a phenotype that involves one or multiple tissues.We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Moreover, altered distribution and solubility properties of heterochromatin-associated proteins such as HP1 are observed. These findings indicate that defects of chromatin remodeling are involved in the cascade of epigenetic events leading to the laminopathic phenotypes. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnornal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of non-farnesylated pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains so that affected cells are unable to maintain the silenced chromatin state capable to allow/preserve terminal differentiation. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin

  3. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level.

    Science.gov (United States)

    Felisbino, Marina Barreto; Alves da Costa, Thiago; Gatti, Maria Silvia Viccari; Mello, Maria Luiza Silveira

    2016-10-01

    Diabetes is a complex multifactorial disorder characterized by chronic hyperglycemia due to impaired insulin secretion. Recent observations suggest that the complexity of the disease cannot be entirely accounted for genetic predisposition and a compelling argument for an epigenetic component is rapidly emerging. The use of histone deacetylase inhibitor (HDACi) in clinical setting is an emerging area of investigation. In this study, we have aimed to understand and compare the response of hepatocyte chromatin to valproic acid (VPA) and trichostatin A (TSA) treatments under normoglycemic or hyperglycemic conditions to expand our knowledge about the consequences of HDACi treatment in a diabetes cell model. Under normoglycemic conditions, these treatments promoted chromatin remodeling, as assessed by image analysis and H3K9ac and H3K9me2 abundance. Simultaneously, H3K9ac marks shifted to the nuclear periphery accompanied by HP1 dissociation from the heterochromatin and a G1 cell cycle arrest. More striking changes in the cell cycle progression and mitotic ratios required drastic treatment. Under hyperglycemic conditions, high glucose per se promoted chromatin changes similar to those promoted by VPA and TSA. Nonetheless, these results were not intensified in cells treated with HDACis under hyperglycemic conditions. Despite the absence of morphological changes being promoted, HDACi treatment seems to confer a physiological meaning, ameliorating the cellular hyperglycemic state through reduction of glucose production. These observations allow us to conclude that the glucose level to which the hepatocytes are subjected affects how chromatin responds to HDACi and their action under high-glucose environment might not reflect on chromatin remodeling. J. Cell. Physiol. 231: 2257-2265, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888775

  4. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. PMID:26822440

  5. Marek’s disease virus infection induces widespread differential chromatin marks in inbred chicken lines

    Directory of Open Access Journals (Sweden)

    Mitra Apratim

    2012-10-01

    Full Text Available Abstract Background Marek’s disease (MD is a neoplastic disease in chickens caused by the MD virus (MDV. Successful vaccine development against MD has resulted in increased virulence of MDV and the understanding of genetic resistance to the disease is, therefore, crucial to long-term control strategies. Also, epigenetic factors are believed to be one of the major determinants of disease response. Results Here, we carried out comprehensive analyses of the epigenetic landscape induced by MDV, utilizing genome-wide histone H3 lysine 4 and lysine 27 trimethylation maps from chicken lines with varying resistance to MD. Differential chromatin marks were observed on genes previously implicated in the disease such as MX1 and CTLA-4 and also on genes reported in other cancers including IGF2BP1 and GAL. We detected bivalent domains on immune-related transcriptional regulators BCL6, CITED2 and EGR1, which underwent dynamic changes in both lines as a result of MDV infection. In addition, putative roles for GAL in the mechanism of MD progression were revealed. Conclusion Our results confirm the presence of widespread epigenetic differences induced by MD in chicken lines with different levels of genetic resistance. A majority of observed epigenetic changes were indicative of increased levels of viral infection in the susceptible line symptomatic of lowered immunocompetence in these birds caused by early cytolytic infection. The GAL system that has known anti-proliferative effects in other cancers is also revealed to be potentially involved in MD progression. Our study provides further insight into the mechanisms of MD progression while revealing a complex landscape of epigenetic regulatory mechanisms that varies depending on host factors.

  6. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  7. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

    Science.gov (United States)

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-04-12

    Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  8. Insights into epigenetic landscape of recombination-free regions.

    Science.gov (United States)

    Termolino, Pasquale; Cremona, Gaetana; Consiglio, Maria Federica; Conicella, Clara

    2016-06-01

    Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution. PMID:26801812

  9. Epigenetic dysregulation and poorer prognosis in DAXX-deficient pancreatic neuroendocrine tumours

    OpenAIRE

    Pipinikas, C.; Dibra, H.; Karpathakis, A; Feber, A.; Novelli, M; Oukrif, D; Fusai, G.; Valente, R.; Caplin, M; Meyer, T.; Teschendorff, A.; Bell, C.; Morris, T; Salomoni, P.; Luong, T V

    2015-01-01

    Exome sequencing of sporadic pancreatic neuroendocrine tumours (PNETs) has identified mutually exclusive mutations in the chromatin regulators α- thalassaemia/mental retardation X-linked (ATRX) and death associated protein 6 (DAXX) genes in 43% of cases (18% and 23% of cases respectively in 68 cases studied) (Elsässer et al. 2011; Jiao et al. 2011). ATRX and DAXX are chromatin remodelers; their loss leads to alternative lengthening of telomeres (ALT) and chromosomal instability (CIN) (Heaphy ...

  10. Pulling chromatin apart: Unstacking or Unwrapping?

    Directory of Open Access Journals (Sweden)

    Victor Jean Marc

    2012-11-01

    Full Text Available Abstract Background Understanding the mechanical properties of chromatin is an essential step towards deciphering the physical rules of gene regulation. In the past ten years, many single molecule experiments have been carried out, and high resolution measurements of the chromatin fiber stiffness are now available. Simulations have been used in order to link those measurements with structural cues, but so far no clear agreement among different groups has been reached. Results We revisit here some of the most precise experimental results obtained with carefully reconstituted fibers. Conclusions We show that the mechanical properties of the chromatin fiber can be quantitatively accounted for by the stiffness of the DNA molecule and the 3D structure of the chromatin fiber.

  11. In vivo binding of retinol to chromatin

    International Nuclear Information System (INIS)

    The authors have previously shown that exposure of responding cells to vitamin A leads to profound modifications of chromatin structure as revealed by an increased susceptibility to DNase I digestion, modified patterns of histone acetylation, and impaired synthesis of a nonhistone chromosomal protein. The present results show that these effects are most probably due to the direct interaction between retinol and chromatin, and analysis of mononucleosomes and higher oligomers obtained from retinol-treated cells shows that retinol is indeed tightly bound to chromatin. Enzymatic digestions of vitamin A containing nucleosomes with proteinase K, phospholipase C, and phospholipase A2 support a model where the final binding of retinol to chromatin is mediated by a lipoprotein: the recognition of the binding sites on DNA being dictated by the proteic component while the hydrophobic retinol is solubilized in the fatty acid moiety

  12. Epigenetic influences on the developing brain: effects of hormones and nutrition

    Directory of Open Access Journals (Sweden)

    Nugent BM

    2015-05-01

    Full Text Available Bridget M Nugent,1 Margaret M McCarthy2 1Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA Abstract: The developing brain is subject to modifying influences, both in utero and early postnatally. Some of these are intrinsic, such as gonadal steroids, while others are externally imposed, such as maternal nutrition or stress. All of these variables can have enduring consequences by imposing epigenetic modifications on the genome that alter set points for activation in adulthood, thereby reflecting early-life programming. In this review, we provide an overview of the most well studied epigenetic processes that occur in the brain. Next, we summarize the studies to date that have implicated gonadal steroids, stress exposure, and nutritional deficits/excess in changes in neural epigenetic marks, which ultimately alter brain development, but we also note that this field is still in its infancy. Epigenetic regulators include DNA methylation, changes to the chromatin via acetylation and other chemical modifiers, and noncoding RNAs all of which impact the expression of specific genes. In this way gonadal steroids in the developing male fetus direct masculinization of adult brain and behavior, and similarly in utero exposure to a high-fat or calorie-restricted diet impacts glucose metabolism and body fat composition throughout life. Stress early in life changes the sensitivity of the hypothalamic–pituitary–adrenal (HPA axis to subsequent stressors and this too is mediated, at least in part, by epigenetic changes to key genes to alter the responsiveness threshold. Epigenetics is the integration of the environment and the genome, and hormones and nutrition provide the bridge that allows that integration to occur. Keywords: epigenetics, early-life programming, brain development, hormones, nutrition 

  13. Divergent Whole-Genome Methylation Maps of Human and Chimpanzee Brains Reveal Epigenetic Basis of Human Regulatory Evolution

    OpenAIRE

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G.; Preuss, Todd M.; Geschwind, Dan; Yi, Soojin V.

    2012-01-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylatio...

  14. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    OpenAIRE

    Saber Imani; Yunes Panahi; Jafar Salimian; Junjiang Fu; Mostafa Ghanei

    2015-01-01

    Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs express...

  15. The Chromatin Fiber: Multiscale Problems and Approaches

    OpenAIRE

    Ozer, Gungor; Luque, Antoni; Schlick, Tamar

    2015-01-01

    The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails of the nucleosomes to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modelin...

  16. Linker Histones Incorporation Maintains Chromatin Fiber Plasticity

    OpenAIRE

    Recouvreux, Pierre; Lavelle, Christophe; Barbi, Maria; Conde e Silva, Natalia; Le Cam, Eric; Victor, Jean-Marc; Viovy, Jean-Louis

    2011-01-01

    Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional const...

  17. Chromatin structure of Asparagales telomeres - old story with a new end?

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Eva; Skleničková, Marie; Lim, K. Y.; Leitch, A. R.; Fajkus, Jiří

    London: Biochemical Society, 2004. s. 17. [EMBO Workshop / Harden Conference /58./ - Telemeres and Genome Stability . 03.04.2004-07.04.2004, Cambridge] R&D Projects: GA ČR GA204/02/0027; GA ČR GP204/04/P105 Keywords : alternative telomeres in plants * chromatin * nucleosome Subject RIV: BO - Biophysics

  18. Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states.

    Science.gov (United States)

    Dodd, Ian B; Sneppen, Kim

    2011-12-01

    Positive feedback in nucleosome modification has been proposed to allow large chromatin regions to exist stably and heritably in distinct expression states. However, modeling has shown that such epigenetic bistability requires that modifying enzymes recruited by nucleosomes are active on distant nucleosomes, potentially allowing uncontrollable spreading of modification. By modeling the silencing of mating-type loci in Saccharomyces cerevisiae, we show that a modification reaction that combines a long-range component and a locally acting component can provide bistability and can be blocked by simple barriers that interrupt the nucleosome chain. We find that robust containment of the silenced region could be achieved by the presence of a number of weak simple barriers in the surrounding chromatin and a limited capacity of the positive feedback reaction. In addition, we show that the state of the silenced region can be regulated by silencer elements acting only on neighboring nucleosomes. Thus, a relatively simple set of nucleosome-modifying enzymes and recognition domains is all that is needed to make chromatin-based epigenetics useful and safe. PMID:22037584

  19. Etiology and Evaluation of Sperm Chromatin Anomalies

    Directory of Open Access Journals (Sweden)

    Marziyeh Tavalaee

    2008-01-01

    Full Text Available Evidence suggests that human sperm chromatin anomalies adversely affect reproductive outcomesand infertile men possess substantially amount of sperm with chromatin anomalies than fertilemen.Routine semen analysis evaluates parameters such as sperm motility and morphology, but doesnot examine the nuclear DNA integrity of spermatozoa. It has been suggested that altered nuclearchromatin structure or damaged DNA in spermatozoa could modify the special cellular functionsof human spermatozoa, and thereby affect the fertility potential. Intra-cytoplasmic sperm injection(ICSI bypass the barriers to fertilization for such a sperm, then the effect of chromatin anomalies onthe development remains a concern. Therefore, it is essential to develop and use accurate diagnostictests, which may provide better prognostic capabilities than the standard sperm assessments. Thisreview discusses our current understanding of the structure and organization of sperm DNA,the different procedures for assessment of sperm chromatin anomalies including comet assay,Chromomycin A3 (CMA3, sperm chromatin structure assay (SCSA, acridine orange test (AOT,terminal TdT-mediated dUTP-nick-end labelling (TUNEL assay, aniline blue and sperm chromatindispersion (SCD test and the impact of chromatin anomalies on reproductive outcome.

  20. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis.

    Science.gov (United States)

    Bao, Jianqiang; Bedford, Mark T

    2016-05-01

    In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals. PMID:26850883

  1. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations.

    Science.gov (United States)

    Taberlay, Phillippa C; Achinger-Kawecka, Joanna; Lun, Aaron T L; Buske, Fabian A; Sabir, Kenneth; Gould, Cathryn M; Zotenko, Elena; Bert, Saul A; Giles, Katherine A; Bauer, Denis C; Smyth, Gordon K; Stirzaker, Clare; O'Donoghue, Sean I; Clark, Susan J

    2016-06-01

    A three-dimensional chromatin state underpins the structural and functional basis of the genome by bringing regulatory elements and genes into close spatial proximity to ensure proper, cell-type-specific gene expression profiles. Here, we performed Hi-C chromosome conformation capture sequencing to investigate how three-dimensional chromatin organization is disrupted in the context of copy-number variation, long-range epigenetic remodeling, and atypical gene expression programs in prostate cancer. We find that cancer cells retain the ability to segment their genomes into megabase-sized topologically associated domains (TADs); however, these domains are generally smaller due to establishment of additional domain boundaries. Interestingly, a large proportion of the new cancer-specific domain boundaries occur at regions that display copy-number variation. Notably, a common deletion on 17p13.1 in prostate cancer spanning the TP53 tumor suppressor locus results in bifurcation of a single TAD into two distinct smaller TADs. Change in domain structure is also accompanied by novel cancer-specific chromatin interactions within the TADs that are enriched at regulatory elements such as enhancers, promoters, and insulators, and associated with alterations in gene expression. We also show that differential chromatin interactions across regulatory regions occur within long-range epigenetically activated or silenced regions of concordant gene activation or repression in prostate cancer. Finally, we present a novel visualization tool that enables integrated exploration of Hi-C interaction data, the transcriptome, and epigenome. This study provides new insights into the relationship between long-range epigenetic and genomic dysregulation and changes in higher-order chromatin interactions in cancer. PMID:27053337

  2. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore.

    Science.gov (United States)

    Barnhart, Meghan C; Kuich, P Henning J L; Stellfox, Madison E; Ward, Jared A; Bassett, Emily A; Black, Ben E; Foltz, Daniel R

    2011-07-25

    Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the constitutive centromere-associated network proteins, the microtubule-binding protein NDC80, and the formation of stable kinetochore-microtubule attachments. An amino-terminal fragment of HJURP was able to assemble CENP-A nucleosomes in vitro, demonstrating that HJURP is a chromatin assembly factor. Furthermore, HJURP recruitment to endogenous centromeres required the Mis18 complex. Together, these data suggest that the role of the Mis18 complex in CENP-A deposition is to recruit HJURP and that the CENP-A nucleosome assembly activity of HJURP is responsible for centromeric chromatin assembly to maintain the epigenetic mark. PMID:21768289

  3. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2011-12-01

    Full Text Available Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a and RNA polymerase II (polII. These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.

  4. Epigenetic Disregulation in Oral Cancer

    Directory of Open Access Journals (Sweden)

    Stefania Staibano

    2012-02-01

    Full Text Available Squamous cell carcinoma of the oral region (OSCC is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer.

  5. Epigenetics and assisted reproductive technologies.

    Science.gov (United States)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv B; Wennerholm, Ulla-Britt; Söderström-Anttila, Viveca; Bergh, Christina; Aittomäki, Kristiina

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development, coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been associated with ART techniques, but disentangling the influence of the ART procedures per se from the effect of the reproductive disease of the parents is a challenge. Epidemiological human studies have shown altered birthweight profiles in ART compared with spontaneously conceived singletons. Conception with cryopreserved/thawed embryos results in a higher risk of large-for-gestational-age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human adolescents conceived by ART have altered lipid and glucose profiles and thereby a higher long-term risk of cardiovascular disease and diabetes. This commentary describes the basic concepts of epigenetics and gives a short overview of the existing literature on the association between imprinting disorders, epigenetic modification and ART. PMID:26458360

  6. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    Directory of Open Access Journals (Sweden)

    Postberg Jan

    2010-08-01

    Full Text Available Abstract Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa. H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are

  7. Replicating centromeric chromatin: Spatial and temporal control of CENP-A assembly

    International Nuclear Information System (INIS)

    The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.

  8. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres.

    Science.gov (United States)

    Folco, Hernan Diego; Pidoux, Alison L; Urano, Takeshi; Allshire, Robin C

    2008-01-01

    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9 methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naïve templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified. PMID:18174443

  9. Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination.

    Science.gov (United States)

    Bolland, Daniel J; Koohy, Hashem; Wood, Andrew L; Matheson, Louise S; Krueger, Felix; Stubbington, Michael J T; Baizan-Edge, Amanda; Chovanec, Peter; Stubbs, Bryony A; Tabbada, Kristina; Andrews, Simon R; Spivakov, Mikhail; Corcoran, Anne E

    2016-06-14

    Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency. PMID:27264181

  10. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells.

    Science.gov (United States)

    Min, Hyehyun; Kong, Kyoung-Ah; Lee, Ji-Yeon; Hong, Chang-Pyo; Seo, Seong-Hye; Roh, Tae-Young; Bae, Sun Sik; Kim, Myoung Hee

    2016-06-01

    Modulation of chromatin structure has been proposed as a molecular mechanism underlying the spatiotemporal collinear expression of Hox genes during development. CCCTC-binding factor (CTCF)-mediated chromatin organization is now recognized as a crucial epigenetic mechanism for transcriptional regulation. Thus, we examined whether CTCF-mediated chromosomal conformation is involved in Hoxc gene expression by comparing wild-type mouse embryonic fibroblast (MEF) cells expressing anterior Hoxc genes with Akt1 null MEFs expressing anterior as well as posterior Hoxc genes. We found that CTCF binding between Hoxc11 and -c12 is important for CTCF-mediated chromosomal loop formation and concomitant posterior Hoxc gene expression. Hypomethylation at this site increased CTCF binding and recapitulated the chromosomal conformation and posterior Hoxc gene expression patterns observed in Akt1 null MEFs. From this work we found that CTCF at the C12|11 does not function as a barrier/boundary, instead let the posterior Hoxc genes switch their interaction from inactive centromeric to active telomeric genomic niche, and concomitant posterior Hoxc gene expression. Although it is not clear whether CTCF affects Hoxc gene expression solely through its looping activity, CTCF-mediated chromatin structural modulation could be an another tier of Hox gene regulation during development. © 2016 IUBMB Life, 68(6):436-444, 2016. PMID:27080371

  11. Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?

    Directory of Open Access Journals (Sweden)

    Duenas-Gonzalez Alfonso

    2006-07-01

    Full Text Available Abstract Background Transcriptome analysis shows that the chemotherapy innate resistance state of tumors is characterized by: poorly dividing tumor cells; an increased DNA repair; an increased drug efflux potential by ABC-transporters; and a dysfunctional ECM. Because chemotherapy resistance involves multiple genes, epigenetic-mediated changes could be the main force responsible of this phenotype. Our hypothesis deals with the potential role of epigenetic therapy for affecting the chemotherapy resistant phenotype of malignant tumors. Presentation of the hypothesis Recent studies reveal the involvement of DNA methylation and histone modifications in the reprogramming of the genome of mammalian cells in cancer. In this sense, it can be hypothesized that epigenetic reprogramming can participate in the establishment of an epigenetic mark associated with the chemotherapy resistant phenotype. If this were correct, then it could be expected that agents targeting DNA methylation and histone deacetylation would by reverting the epigenetic mark induce a global expression profile that mirror the observed in untreated resistant cells. Testing the hypothesis It is proposed to perform a detailed analysis using all the available databases where the gene expression of primary tumors was analyzed and data correlated with the therapeutic outcome to determine whether a transcriptome profiling of "resistance" is observed. Assuming an epigenetic programming determines at some level the intrinsic resistant phenotype, then a similar pattern of gene expression dictated by an epigenetic mark should also be found in cell acquiring drug resistance. If these expectations are meet, then it should be further investigated at the genomic level whether these phenotypes are associated to certain patterns of DNA methylation and chromatin modification. Once confirmed the existence of an epigenetic mark associated to either the intrinsic or acquired chemotherapy resistant phenotype

  12. Epigenetic changes in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yan Jia; Mingzhou Guo

    2013-01-01

    Epigenetic changes frequently occur in human colorectal cancer.Genomic global hypomethylation,gene promoter region hypermethylation,histone modifications,and alteration of miRNA patterns are major epigenetic changes in colorectal cancer.Loss of imprinting (LOI) is associated with colorectal neoplasia.Folate deficiency may cause colorectal carcinogenesis by inducing gene-specific hypermethylation and genomic global hypomethylation.HDAC inhibitors and demethylating agents have been approved by the FDA for myelodysplastic syndrome and leukemia treatment.Non-coding RNA is regarded as another kind of epigenetic marker in colorectal cancer.This review is mainly focused on DNA methylation,histone modification,and microRNA changes in colorectal cancer.

  13. Epigenetics in heart failure phenotypes.

    Science.gov (United States)

    Berezin, Alexander

    2016-12-01

    Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF. PMID:27335803

  14. Epigenetic alterations underlying autoimmune diseases.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Karami, Jafar; Jamshidi, Ahmad Reza; Malekshahi, Zahra; Nicknam, Mohammad Hossein

    2016-03-01

    Recent breakthroughs in genetic explorations have extended our understanding through discovery of genetic patterns subjected to autoimmune diseases (AID). Genetics, on the contrary, has not answered all the conundrums to describe a comprehensive explanation of causal mechanisms of disease etiopathology with regard to the function of environment, sex, or aging. The other side of the coin, epigenetics which is defined by gene manifestation modification without DNA sequence alteration, reportedly has come in to provide new insights towards disease apprehension through bridging the genetics and environmental factors. New investigations in genetic and environmental contributing factors for autoimmunity provide new explanation whereby the interactions between genetic elements and epigenetic modifications signed by environmental agents may be responsible for autoimmune disease initiation and perpetuation. It is aimed through this article to review recent progress attempting to reveal how epigenetics associates with the pathogenesis of autoimmune diseases. PMID:26761426

  15. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program.

    Science.gov (United States)

    Pataskar, Abhijeet; Jung, Johannes; Smialowski, Pawel; Noack, Florian; Calegari, Federico; Straub, Tobias; Tiwari, Vijay K

    2016-01-01

    Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms. PMID:26516211

  16. Genetic alterations and epigenetic changes in hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Luz Stella Hoyos Giraldo

    2007-02-01

    arms17p, 13q, 9p, 6q and 16p, LOH has been related to p53, RB1, p16, IGF2R and Axin1 inactivation. The b-catenin involved in intercellular interactions and signal transduction, this gene is mutated in 20-25% of HCCs at 3p. Cyclin gene has been shown to be amplified in 10-20% of HCC. LOH at the RB1 gene locus and RB1 mutations have been observed in about 15% of HCCs. Epigenetic changes in the expression of cancer- critical genes also play an important role in susceptibility to hepatocarcinogenesis induction. Changes in DNA methylation seems to be the most important mechanism for epigenetic change that could be involved in both the initiation and promotion stages of hepatocarcinogenesis. Methylation is inherited even after DNA replication by maintenance methylation. DNA methylation is often coupled with histone deacetylation and chromatin structure, and regulatory enzymes of DNA methylation (DNMT1. Exposure to environmental carcinogens may induce changes in methylation of the genes involved in hepatocarcinogenesis. Hypomethylation of promoter region leading to over expression of oncogens (c-myc. There is potentially an association between hypomethylation and CIN. Hypermethylation at CpG Island of promoter regions leads to inhibition of the binding of transcription factors directly and/or employment of the binding of protein that act to inhibit the binding of the transcription factors to cis elements. Promoter hypermethylation and loss of protein expression of TSG has been demonstrated in HCC at p16, E-cadherin (essential for adhesion functions and 14-3-. Hypermethylation in HCC has been reported in p14, p15, SOCS1, RIZ1. However, protein expression was not assessed. Epigenetic inactivation of TSG has been recognized as contributing to tumor progression. Hypermethylation leading to an increased incidence of deamination of 5-methylcytosine to thymine, leading to C to T point mutation in TSG and/or proto-oncogenes.

    Quantitative epigenetics through epigenomic perturbation of isogenic lines.

    Science.gov (United States)

    Johannes, Frank; Colomé-Tatché, Maria

    2011-05-01

    Interindividual differences in chromatin states at a locus (epialleles) can result in gene expression changes that are sometimes transmitted across generations. In this way, they can contribute to heritable phenotypic variation in natural and experimental populations independent of DNA sequence. Recent molecular evidence shows that epialleles often display high levels of transgenerational instability. This property gives rise to a dynamic dimension in phenotypic inheritance. To be able to incorporate these non-Mendelian features into quantitative genetic models, it is necessary to study the induction and the transgenerational behavior of epialleles in controlled settings. Here we outline a general experimental approach for achieving this using crosses of epigenomically perturbed isogenic lines in mammalian and plant species. We develop a theoretical description of such crosses and model the relationship between epiallelic instability, recombination, parent-of-origin effects, as well as transgressive segregation and their joint impact on phenotypic variation across generations. In the limiting case of fully stable epialleles our approach reduces to the classical theory of experimental line crosses and thus illustrates a fundamental continuity between genetic and epigenetic inheritance. We consider data from a panel of Arabidopsis epigenetic recombinant inbred lines and explore estimates of the number of quantitative trait loci for plant height that resulted from a manipulation of DNA methylation levels in one of the two isogenic founder strains. PMID:21385727

  17. Epigenetic Epidemiology: Promises for Public Health Research

    OpenAIRE

    Bakulski, Kelly M.; Fallin, M. Daniele

    2014-01-01

    Epigenetic changes underlie developmental and age related biology. Promising epidemiologic research implicates epigenetics in disease risk and progression, and suggests epigenetic status depends on environmental risks as well as genetic predisposition. Epigenetics may represent a mechanistic link between environmental exposures, or genetics, and many common diseases, or may simply provide a quantitative biomarker for exposure or disease for areas of epidemiology currently lacking such measure...

  18. The Mendelian disorders of the epigenetic machinery

    OpenAIRE

    Bjornsson, Hans Tomas

    2015-01-01

    The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a comm...

  19. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  1. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  2. Chromatin regulatory mechanisms of gene expression at mononucleosomal level: nucleosome occupancy and epigenetic modifications

    OpenAIRE

    Riffo Campos, Angela Leticia

    2015-01-01

    La cromatina es una compleja estructura compuesta por DNA, RNA y proteínas, que permite compactar el genoma en las células eucariotas. Siendo el cromosoma el nivel más alto de compactación y el nucleosoma la subunidad fundamental de la misma. El nucleosoma está compuesto por un octámero de histonas, siendo H2A, H2B, H3 y H4 las canónicas. Este octámero se encuentra envuelto por 147 pb de DNA doble cadena. Entre los nucleosomas se encuentra una zona de DNA flanqueante y la histona H1 (o H5 en a...

  3. Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Can Zhang; Bo Liu; Guangyao Li; Lei Zhou

    2011-01-01

    Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity.PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications,respectively,and thus maintaining the expression status of homeotic genes.Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers.Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis.Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer.It is anticipated that Drosophila melanogaster,the model organism that contributed significantly to our understanding of the functional role of histone regulation in development,could also provide unique insight for our understanding of how histone dysregulation can lead to cancer.In this review,we will discuss several recent advances in this regard.

  4. Epigenetic regulation of chromatin structure and gene function by biotin: are biotin requirements being met?

    OpenAIRE

    Zempleni, Janos; Chew, Yap Ching; Hassan, Yousef I.; Wijeratne, Subhashinee SK

    2008-01-01

    Histones H2A, H3, and H4 are modified by covalent binding of the vitamin biotin to distinct lysine residues. Binding of biotin to histones is mediated by holocarboxylase synthetase (HCS) and perhaps biotinidase. Biotinylation of lysine- 12 in histone H4 (K12BioH4) plays roles in gene repression, stability of repeat regions and transposable elements, and regulation of biotin transporter expression in eukaryotes. Decreased biotinylation of histones in biotin-deficient and HCS-deficient human ce...

  5. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis.

    Science.gov (United States)

    Amit, Ido; Winter, Deborah R; Jung, Steffen

    2016-01-01

    Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases. PMID:26681458

  6. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  7. Review: Epigenetic mechanisms in ocular disease

    OpenAIRE

    He, Shikun; Li, Xiaohua; Chan, Nymph; Hinton, David R.

    2013-01-01

    Epigenetics has become an increasingly important area of biomedical research. Increasing evidence shows that epigenetic alterations influence common pathologic responses including inflammation, ischemia, neoplasia, aging, and neurodegeneration. Importantly, epigenetic mechanisms may have a pathogenic role in many complex eye diseases such as corneal dystrophy, cataract, glaucoma, diabetic retinopathy, ocular neoplasia, uveitis, and age-related macular degeneration. The emerging emphasis on ep...

  8. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B;

    2016-01-01

    BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing on ...

  9. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    OpenAIRE

    Groote, De, T.; Verschure, P.J.; Rots, M G

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE)...

  10. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes

    OpenAIRE

    Groote, de, Robert; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE)...

  11. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin.

    Science.gov (United States)

    Lopez-Atalaya, Jose P; Valor, Luis M; Barco, Angel

    2014-01-01

    The number of genetic syndromes associated with intellectual disability that are caused by mutations in genes encoding chromatin-modifying enzymes has sharply risen in the last decade. We discuss here a neurodevelopmental disorder, the Rubinstein-Taybi syndrome (RSTS), originated by mutations in the genes encoding the lysine acetyltransferases CBP and p300. We first describe clinical and genetic aspects of the syndrome to later focus on the insight provided by the research in animal models of this disease. These studies have not only clarified the molecular etiology of RSTS and helped to dissect the developmental and adult components of the syndrome but also contributed to outline some important connections between epigenetics and cognition. We finally discuss how this body of research has opened new venues for the therapeutic intervention of this currently untreatable disease and present some of the outstanding questions in the field. We believe that the progress in the understanding of this rare disorder also has important implications for other intellectual disability disorders that share an epigenetic origin. PMID:25410544

  12. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  13. Neutron-scattering studies of chromatin

    International Nuclear Information System (INIS)

    It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H2O-D2O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above

  14. Ultrastructural organization of replicating chromatin in prematurely condensed chromosomes

    Directory of Open Access Journals (Sweden)

    Arifulin E. A.

    2015-08-01

    Full Text Available Aim. The ultrastructural aspect of replicating chromatin organization is a matter of dispute. Here, we have analyzed the ultrastructural organization of replication foci using prematurely condensed chromosomes (PCC. Methods. To investigate the ultrastructure of replicating chromatin, we have used correlative light and electron microscopy as well as immunogold staining. Results. Replication in PCC occurs in the gaps between condensed chromatin domains. Using correlative light and electron microscopy, we observed that the replication foci contain decondensed chromatin as well as 80 and 130 nm globules, those were also found in condensed non-replicating chromatin domains. Using immunogolding, we demonstrated that DNA replication in S-phase PCC occurs in loose chromatin on the periphery of dense chromatin domains. Conclusion. Replication in PCC occurred in the decondensed chromatin neighboring the condensed chromatin without formation of special structures.

  15. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    -based proteomics techniques to histone biology has gained new insight into the function of the nucleosome: Novel posttranslational modifications have been discovered at the lateral surface of the nucleosome. These modifications regulate histone-DNA interactions, adding a new dimension to the epigenetic regulation...

  16. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  17. Predicting response to epigenetic therapy

    DEFF Research Database (Denmark)

    Treppendahl, Marianne B; Sommer Kristensen, Lasse; Grønbæk, Kirsten

    2014-01-01

    Drugs targeting the epigenome are new promising cancer treatment modalities; however, not all patients receive the same benefit from these drugs. In contrast to conventional chemotherapy, responses may take several months after the initiation of treatment to occur. Accordingly, identification of ......-approved epigenetic drugs....

  18. Epigenetic Placental Programming of Preeclampsia

    Science.gov (United States)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  19. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  20. Epigenetics of Early Child Development

    Directory of Open Access Journals (Sweden)

    ChrisMurgatroyd

    2011-04-01

    To date, the study of gene-environment interactions in the human population has been dominated by epidemiology. However, recent research in the neuroscience field is now advancing clinical studies by addressing specifically the mechanisms by which gene-environment interactions can predispose individuals towards psychopathology. To this end, appropriate animal models are being developed in which early environmental factors can be manipulated in a controlled manner. Here we will review recent studies performed with the common aim of understanding the effects of the early environment in shaping brain development and discuss the newly developing role of epigenetic mechanisms in translating early life conditions into long-lasting changes in gene expression underpinning brain functions. Particularly, we argue that epigenetic mechanisms can mediate the gene-environment dialogue in early life and give rise to persistent epigenetic programming of adult physiology and dysfunction eventually resulting in disease. Understanding how early life experiences can give raise to lasting epigenetic memories conferring increased risk for mental disorders, how they are maintained and how they could be reversed, is increasingly becoming a focus of modern psychiatry and should pave new guidelines for timely therapeutic interventions.

  1. Epigenetics mechanisms in renal development.

    Science.gov (United States)

    Hilliard, Sylvia A; El-Dahr, Samir S

    2016-07-01

    Appreciation for the role of epigenetic modifications in the diagnosis and treatment of diseases is fast gaining attention. Treatment of chronic kidney disease stemming from diabetes or hypertension as well as Wilms tumor will all profit from knowledge of the changes in the epigenomic landscapes. To do so, it is essential to characterize the epigenomic modifiers and their modifications under normal physiological conditions. The transcription factor Pax2 was identified as a major epigenetic player in the early specification of the kidney. Notably, the progenitors of all nephrons that reside in the cap mesenchyme display a unique bivalent histone signature (expressing repressive epigenetic marks alongside activation marks) on lineage-specific genes. These cells are deemed poised for differentiation and commitment to the nephrogenic lineage. In response to the appropriate inducing signal, these genes lose their repressive histone marks, which allow for their expression in nascent nephron precursors. Such knowledge of the epigenetic landscape and the resultant cell fate or behavior in the developing kidney will greatly improve the overall success in designing regenerative strategies and tissue reprogramming methodologies from pluripotent cells. PMID:26493068

  2. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  3. Methods for identification of epigenetic elements in mammalian long multigenic genome sequences.

    Science.gov (United States)

    Akopov, S B; Chernov, I P; Bulanenkova, S S; Skvortsova, Yu V; Vetchinova, A S; Nikolaev, L G

    2007-06-01

    Epigenetic elements of the genome, i.e. elements that determine stably inherited changes in gene expression without changes in the genomic DNA sequence, are essential tools of genetic regulation in higher eukaryotes. The complete sequencing of the human and other genomes allowed studies to be started on positioning of these elements within long multigenic regions of the genome, which is a prerequisite for a comprehensive functional annotation of genomes. This mini-review considers some recent experimental approaches to the high-throughput identification and mapping of epigenetic elements of mammalian genomes, including the mapping of methylated CpG sites, open and closed chromatin regions, and DNase I hypersensitivity sites. PMID:17630903

  4. The Influence of Early Life Nutrition on Epigenetic Regulatory Mechanisms of the Immune System

    Directory of Open Access Journals (Sweden)

    Lorella Paparo

    2014-10-01

    Full Text Available The immune system is exquisitely sensitive to environmental changes. Diet constitutes one of the major environmental factors that exerts a profound effect on immune system development and function. Epigenetics is the study of mitotically heritable, yet potentially reversible, molecular modifications to DNA and chromatin without alteration to the underlying DNA sequence. Nutriepigenomics is an emerging discipline examining the role of dietary influences on gene expression. There is increasing evidence that the epigenetic mechanisms that regulate gene expression during immune differentiation are directly affected by dietary factors or indirectly through modifications in gut microbiota induced by different dietary habits. Short-chain fatty acids, in particular butyrate, produced by selected bacteria stains within gut microbiota, are crucial players in this network.

  5. [Epigenetics and drug addiction: a focus on MeCP2 and on histone acetylation].

    Science.gov (United States)

    Zwiller, Jean

    2015-04-01

    Chronic drug exposure alters gene expression in the brain, which is believed to underlie compulsive drug seeking and drug taking behavior. Recent evidence shows that drug-induced long-term neuroadaptations in the brain are mediated in part by epigenetic mechanisms. By remodeling chromatin, this type of regulation contributes to drug-induced synaptic plasticity that translates into behavioral modifications. How drug-induced alterations in DNA methylation regulate gene expression is reviewed here, with a focus on MeCP2, a protein binding methylated DNA. The importance of histone modifications, especially acetylation is also discussed, with an emphasis on the effects of inhibitors of histone deacetylases on drug-induced behavioral changes. The precise identification of the epigenetic mechanisms that are under the control of drugs of abuse may help to uncover novel targets for the treatment of drug seeking and relapse. PMID:25958763

  6. Epigenetics of hepatocellular carcinoma: a new horizon

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-ren; SHI Ying-hong; PENG Yuan-fei; FAN Jia

    2012-01-01

    Epigenetic changes refer to stable alterations in gene expression with no underlying modifications in the genetic sequence itself.It has become clear that not only gene variations but also epigenetic modifications may contribute to varied diseases,including cancer.This review will provide an overview of how epigenetic factors,including genomic DNA methylation,histone modifications,and miRNA regulation,contribute to hepatocellular carcinoma (HCC) dissemination,invasion,and metastasis.Additionally,the reversal of dysregulated epigenetic changes has emerged as a potential strategy for the treatment of HCC,and we will summarize the latest epigenetic therapies for HCC.

  7. Linker Histones Incorporation Maintains Chromatin Fiber Plasticity

    Science.gov (United States)

    Recouvreux, Pierre; Lavelle, Christophe; Barbi, Maria; Conde e Silva, Natalia; Le Cam, Eric; Victor, Jean-Marc; Viovy, Jean-Louis

    2011-01-01

    Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional constraints, nucleosomes can undergo a reversible chiral transition toward a state of positive topology. We demonstrate here that chromatin fibers comprising linker histones present a torsional plasticity similar to that of naked nucleosome arrays. Chromatosomes can undergo a reversible chiral transition toward a state of positive torsion (reverse chromatosome) without loss of linker histones. PMID:21641318

  8. Bacterial chromatin: converging views at different scales.

    Science.gov (United States)

    Dame, Remus T; Tark-Dame, Mariliis

    2016-06-01

    Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of three-dimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria. PMID:26942688

  9. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  10. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  11. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  12. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    Science.gov (United States)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  13. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction.

    Science.gov (United States)

    Ausió, Juan

    2016-01-01

    Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks. PMID:27213019

  14. Epigenetic mechanisms of drug addiction.

    Science.gov (United States)

    Nestler, Eric J

    2014-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain's reward regions in three major modes of epigenetic regulation-histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. PMID:23643695

  15. The ambiguous nature of epigenetic responsibility.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit

    2016-08-01

    Over the past decade, epigenetic studies have been providing further evidence of the molecular interplay between gene expression and its health outcomes on one hand, and the physical and social environments in which individuals are conceived, born and live on the other. As knowledge of epigenetic programming expands, a growing body of literature in social sciences and humanities is exploring the implications of this new field of study for contemporary societies. Epigenetics has been mobilised to support political claims, for instance, with regard to collective obligations to address socio-environmental determinants of health. The idea of a moral 'epigenetic responsibility' has been proposed, meaning that individuals and/or governments should be accountable for the epigenetic programming of children and/or citizens. However, these discussions have largely overlooked important biological nuances and ambiguities inherent in the field of epigenetics. In this paper, we argue that the identification and assignment of moral epigenetic responsibilities should reflect the rich diversity and complexity of epigenetic mechanisms, and not rely solely on a gross comparison between epigenetics and genetics. More specifically, we explore how further investigation of the ambiguous notions of epigenetic normality and epigenetic plasticity should play a role in shaping this emerging debate. PMID:27015741

  16. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  17. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    International Nuclear Information System (INIS)

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression

  18. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune.

    Science.gov (United States)

    van den Hurk, Karin; Niessen, Hanneke E C; Veeck, Jürgen; van den Oord, Joost J; van Steensel, Maurice A M; Zur Hausen, Axel; van Engeland, Manon; Winnepenninckx, Véronique J L

    2012-08-01

    Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM. PMID:22503822

  19. Epigenetic modulators of monocytic function: implication for steady state and disease in the CNS .

    Directory of Open Access Journals (Sweden)

    F. Nina Papavasiliou

    2016-01-01

    Full Text Available Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.

  20. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass.

    Science.gov (United States)

    Liu, Shuwei; Li, Fei; Kong, Lina; Sun, Yang; Qin, Lumin; Chen, Suiyun; Cui, Haifeng; Huang, Yinghua; Xia, Guangmin

    2015-04-01

    Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock. PMID:25670745

  1. Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.

    Science.gov (United States)

    Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender

    2016-03-01

    Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement. PMID:26829932

  2. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore

    OpenAIRE

    Barnhart, Meghan C.; Kuich, P. Henning J. L.; Stellfox, Madison E.; Ward, Jared A.; Bassett, Emily A.; Black, Ben E.; Foltz, Daniel R.

    2011-01-01

    Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the co...

  3. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq)

    OpenAIRE

    Lodhi, Niraj; Tulin, Alexei V.

    2011-01-01

    Poly(ADP-ribose) polymerase1 (PARP1) is a global regulator of different cellular mechanisms, ranging from DNA damage repair to control of gene expression. Since PARP1 protein and pADPr have been shown to persist in chromatin through cell cycle, they may both act as epigenetic markers. However, it is not known how many loci are occupied by PARP1 protein during mitosis genome-wide. To reveal the genome-wide PARP1 binding sites, we used the ChIP-seq approach, an emerging technique to study genom...

  4. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  5. Unique anti-glioblastoma activities of hypericin are at the crossroad of biochemical and epigenetic events and culminate in tumor cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naama Dror

    Full Text Available Failure of conventional therapies to alleviate glioblastoma (GBM fosters search for novel therapeutic strategies. These include epigenetic modulators as histone deacetylase inhibitors (HDACi, which relax abnormally compact tumor cell chromatin organization, enabling cells to overcome blockage in differentiation. However, in clinical settings, HDACi efficacy is confined to subsets of hematologic malignancies. We reasoned that molecules targeting multiple epigenetic mechanisms may exhibit superior anti-cancer activities. We focused on the redox perylene-quinone Hypericin (HYP and showed that HYP targets Hsp90 for polyubiquitination, degradation and inactivation. Hsp90 is implicated in mediating inheritable epigenetic modifications transferable to progeny. We therefore examined if HYP can induce epigenetic alterations in GBM cells and show here that HYP indeed, targets multiple mechanisms in human glioblastoma tumor cell lines via unique manners. These elicit major epigenetic signature changes in key developmentally regulated genes. HYP induces neuroglial tumor cell differentiation modulating the cytoarchitecture, neuroglial differentiation antigen expression and causes exit from cell proliferation cycles. Such activities characterize HDACi however HYP is not an HDAC inhibitor. Instead, HYP effectively down-regulates expression of Class-I HDACs, creating marked deficiencies in HDACs cellular contents, leading to histones H3 and H4 hyperacetylation. Expression of EZH2, the Polycomb repressor complex-2 catalytic subunit, which trimethylates histone H3K27 is also suppressed. The resulting histone hyperacetylation and diminished H3K27-trimethylation relax chromatin structure, activating gene transcription including differentiation-promoting genes. DNMT profiles are also modulated increasing global DNA methylation. HYP induces unique epigenetic down-regulations of HDACs, EZH2 and DNMTs, remodeling chromatin structure and culminating in tumor cell

  6. Epigenetic modifications as new targets for liver disease therapies.

    Science.gov (United States)

    Zeybel, Müjdat; Mann, Derek A; Mann, Jelena

    2013-12-01

    An important discovery from the human genome mapping project was that it is comprised of a surprisingly low number of genes,with recent estimates suggesting they are as few as 25,000 [1].This supported an alternative hypothesis that our complexity in comparison with lower order species is likely to be determined by regulatory mechanisms operating at levels above the fundamental DNA sequences of the genome [2]. One set of mechanisms that dictate tissue and cellular complexity can be described by the overarching term "epigenetics". In the 1940s, Conrad Waddington described epigenetics as "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being". Today we understand epigenetics as a gene regulatory system comprised of 3 major mechanisms including DNA modifications (e.g., methylation), use of histone variants and post-translational modifications of the amino acid tails of histones and non-coding RNAs of which microRNAs are the best characterized [3,4]. Together, these mechanisms orchestrate numerous sets of chemical reactions that switch parts of the genome on and off at specific times and locations.Epigenetic marks, or the epigenome, exhibit a high degree of cellular-specificity and developmental or environmentally driven dynamic plasticity. Due to being at the interface between genome and the environment, the epigenome evolves at a very high rate compared to genetic mutations. Indeed, the differences in the epigenome account for most of the phenotypic uniqueness between closely related species, especially primates. More interestingly,the epigenetic changes, or epimutations, within an individual are not only maintained over cellular generations, but may also be transmitted between generations, such that adaptive epimutations generated in response to a particular environmental cue can influence phenotypes in our children and grandchildren [5]. PMID:23747756

  7. Epigenetics in tumorigenesis:advances and clinical implications%肿瘤发生的表观遗传学:进展与临床意义

    Institute of Scientific and Technical Information of China (English)

    王先火; 赵秀娟; 邱立华; 王华庆; 王玺

    2012-01-01

    Cancer is a leading cause of death worldwide and the total number of cases globally keeps increasing. For many years, cancer has been thought to be caused by a series of DNA sequence alterations and thus is thought to be a "genetic" disease. However, studies in the last decade, including the large-scale cancer genomics projects, have highlighted the rising importance of epigenetic regulation in cancer. Here, we review recent advances in understanding how chromatin-based epigenetic regulation participates in tumorigenesis and discuss the growing implications of these advances for developing novel strategies to prevent, diagnose, as well as treat cancer.

  8. Painting by Numbers: Increasing the Parts List for Chromatin Domains

    Science.gov (United States)

    Chen, Hsiuyi V.; Rando, Oliver J.

    2014-01-01

    In this issue of Molecular Cell, van Bemmel and colleagues (2013) report the genome-wide mapping of 42 novel chromatin factors, systematically identifying new components of the various chromatin domains present in fly cells. PMID:23438859

  9. Single Chromatin Fibre Assembly Using Optical Tweezers

    NARCIS (Netherlands)

    Bennink, M.L.; Pope, L.H.; Leuba, S.H.; Grooth, de B.G.; Greve, J.

    2001-01-01

    Here we observe the formation of a single chromatin fibre using optical tweezers. A single -DNA molecule was suspended between two micron-sized beads, one held by a micropipette and the other in an optical trap. The constrained DNA molecule was incubated with Xenopus laevis egg extract in order to r

  10. CTCF Binding Polarity Determines Chromatin Looping

    NARCIS (Netherlands)

    de Wit, Elzo; Vos, Erica S M; Holwerda, Sjoerd J B; Valdes-Quezada, Christian; Verstegen, Marjon J A M; Teunissen, Hans; Splinter, Erik; Wijchers, Patrick J; Krijger, Peter H L; de Laat, Wouter

    2015-01-01

    CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that ch

  11. Impact of chromatin structure on PR signaling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Hager, Gordon L

    2012-01-01

    but also to the glucocorticoid receptor (GR), as these receptors share many similarities regarding interaction with, and remodeling of, chromatin. Both receptors can bind nucleosomal DNA and have accordingly been described as pioneering factors. However recent genomic approaches (ChIP-seq and DHS...

  12. Research Discovers Frequent Mutations of Chromatin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the support of National Natural Science Foundation of China, BGI, the largest genomics organization in the world, and Peking University Shenzhen Hospital, published online in Nature Geneticsics that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of thebladder on August 8th, 2011. Their study provides a valuable genetic basis for future studies on TCC,

  13. The epigenetic landscape of addiction

    OpenAIRE

    Maze, Ian; Nestler, Eric J.

    2011-01-01

    Drug-induced alterations in gene expression throughout the reward circuitry of the brain are likely components of the persistence of the drug-addicted state. Recent studies examining the molecular mechanisms controlling drug-induced transcriptional, behavioral and synaptic plasticity have indicated a direct role for chromatin remodeling in the regulation and stability of drug-mediated neuronal gene programs, and the subsequent promulgation of addictive behaviors. In this review, we discuss re...

  14. Factors affecting chromatin stability of bovine spermatozoa.

    Science.gov (United States)

    Khalifa, T A A; Rekkas, C A; Lymberopoulos, A G; Sioga, A; Dimitriadis, I; Papanikolaou, Th

    2008-03-01

    The structural stability of transcriptionally inert paternal chromatin is of vital importance for the fertilization process and early embryonic development. Accordingly, a series of eight experiments were conducted during a 7-month period to investigate: (1) effects of bull breed, individuality, successive ejaculations, semen quality characteristics (SQC), semen dilution rates and hypothermic storage of semen in a Tris-egg yolk extender on incidence of sperm nuclear chromatin instability (NCI), and (2) effects of the interaction between variation of NCI within a frozen ejaculate and variation of oocytes quality due to maturation time and/or season on the efficiency of in vitro embryo production (IVEP). Semen samples were collected once a week from six bulls using an AV and only ejaculates (n=220) of >0.30x10(9) sperm/ml and >or=60% motility were used. NCI was measured by: (1) detection of lysine-rich histones in sperm chromatin using aniline blue staining, (2) sperm susceptibility to acid-induced nuclear DNA denaturation in situ using acridine orange test, and (3) sperm susceptibility to nuclear chromatin decondensation (NCD). Bovine oocytes (n=695) were matured in vitro for 18 or 24 h, fertilized after sperm selection through a swim-up procedure and cultured for 72 h. The results showed that the 2nd ejaculates were superior to the 1st ones with respect to chromatin stability. Dilution of semen to 49.67+/-8.56x10(6) sperm/ml (1:19) decreased resistance of sperm to NCD. Cooling of semen had no significant effect on chromatin stability. Cryopreservation of semen augmented sperm vulnerability to DNA denaturation. Improvement of SQC (semen volume, sperm motility, velocity, viability and morphological normalcy) was generally concomitant with increase of sperm resistance to NCI. While Blonde d'Aquitaine bulls had a resistance to NCD higher than Limousine bulls in fresh semen, the former showed a greater susceptibility to DNA denaturation than the latter in cooled semen

  15. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  16. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  17. Longevity: epigenetic and biomolecular aspects.

    Science.gov (United States)

    Taormina, Giusi; Mirisola, Mario G

    2015-04-01

    Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity. PMID:25883209

  18. Diabetes Mellitus and Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Bekir Engin Eser

    2016-06-01

    Full Text Available Diabetes Mellitus (DM is an important disease caused by insulin deficiency or insulin receptor resistance and characterized by hyperglycemia. The prevalence rate of DM is increasing rapidly worldwide and its associated complications affect the quality of life of patients adverse­ly. In addition, high medical costs for its treatment bring significant economic load on countries. Epigenetics is the reversible modifications on the genome, which lead to changes in gene expression without any alteration in the DNA sequence. Epigenetic modifications can easily be affected by environmental factors and abnormalities in these modifications have been linked to many diseases including cancer and neurodegenerative disorders. In this review, we will summarize the relationship of DM and its complications with DNA and RNA methylation, which are among the most important modifications.

  19. Epigenetic Effects of Cannabis Exposure.

    Science.gov (United States)

    Szutorisz, Henrietta; Hurd, Yasmin L

    2016-04-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one's lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that has examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  20. Epigenetics and Nutritional Environmental Signals

    OpenAIRE

    Mazzio, Elizabeth A.; Soliman, Karam F. A.

    2014-01-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system...

  1. Epigenetic changes in tumor microenvironment

    Directory of Open Access Journals (Sweden)

    P Dey

    2011-01-01

    Full Text Available The drama of cancer is not the solo performance of the malignant cells. Microenvironment of the tumor has significant contribution in carcinogenesis. Recent evidences show distinct gene promoter methylation in stromal cells of various malignant and pre-malignant tumors. These changes probably create unique tumor microenvironment, which is responsible for initiation, proliferation, invasion, and metastasis of tumor cells. In this mini review the role of epigenetic changes of tumor microenvironment in carcinogenesis has been discussed.

  2. Chromocentre integrity and epigenetic marks

    Czech Academy of Sciences Publication Activity Database

    Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Legartová, Soňa; Kozubek, Stanislav; Matula, P.; Bártová, Eva

    2010-01-01

    Roč. 169, č. 1 (2010), s. 124-133. ISSN 1047-8477 R&D Projects: GA MŠk ME 919; GA MŠk(CZ) LC06027; GA MŠk(CZ) LC535 Grant ostatní: GA MŠk(CZ) ME919 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : SUV39h * histone methylation * epigenetics Subject RIV: BO - Biophysics Impact factor: 3.497, year: 2010

  3. Epigenetic mechanisms in drug addiction

    OpenAIRE

    Renthal, William; Nestler, Eric J.

    2008-01-01

    Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromati...

  4. Epigenetic Mechanisms of Drug Addiction

    OpenAIRE

    Nestler, Eric J.

    2013-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues,...

  5. Epigenetics of the antibody response

    OpenAIRE

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Epigenetic marks, such as DNA methylation, histone posttranslational modifications and microRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR) and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and microRNAs modulate t...

  6. Prediction of transposable element derived enhancers using chromatin modification profiles.

    Science.gov (United States)

    Huda, Ahsan; Tyagi, Eishita; Mariño-Ramírez, Leonardo; Bowen, Nathan J; Jjingo, Daudi; Jordan, I King

    2011-01-01

    Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used them to guide the search for novel enhancers derived from transposable element (TE) sequences. To do this, a computational approach was taken to analyze the genome-wide histone modification landscape characterized by the ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448 TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line. Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory mechanisms. PMID:22087331

  7. Prediction of transposable element derived enhancers using chromatin modification profiles.

    Directory of Open Access Journals (Sweden)

    Ahsan Huda

    Full Text Available Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used them to guide the search for novel enhancers derived from transposable element (TE sequences. To do this, a computational approach was taken to analyze the genome-wide histone modification landscape characterized by the ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448 TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line. Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory mechanisms.

  8. Targeting DNA Methylation for Epigenetic Therapy

    Science.gov (United States)

    Yang, Xiaojing; Lay, Fides; Han, Han; Jones, Peter A.

    2010-01-01

    DNA methylation patterns are established during embryonic development and faithfully copied through somatic cell divisions. Based on our understanding of DNA methylation and other interrelated epigenetic modifications, a comprehensive view of the epigenetic landscape and cancer epigenome is evolving. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. During the last few decades, an increasing number of drugs targeting DNA methylation have been developed in an effort to increase efficacy, stability and to decrease toxicity. The earliest and the most successful epigenetic drug to date, 5-Azacytidine, is currently recommended as the first-line treatment for high risk myelodysplastic syndromes (MDS) patients. Encouraging results from clinical trials have prompted further efforts to elucidate epigenetic alterations in cancer and subsequently develop new epigenetic therapies. This review delineates the latest cancer epigenetic models, recent discovery of hypomethylation agents and their application in the clinic. PMID:20846732

  9. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  10. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  11. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K.; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  12. Environmental epigenetics and allergic diseases: Recent advances

    OpenAIRE

    Kuriakose, Julie S; Miller, Rachel L.

    2010-01-01

    Significant strides in the understanding of the role of epigenetic regulation in asthma and allergy using both epidemiological approaches as well as experimental ones have been made. This review focuses on new research within the last two years. These include advances in determining how environmental agents implicated in airway disease can induce epigenetic changes, how epigenetic regulation can influence T helper cell (Th) differentiation and T regulatory (Treg) cell production, and new disc...

  13. Epigenetics and the power of art

    OpenAIRE

    Karlic, Heidrun; Baurek, Pia

    2011-01-01

    This review presents an epigenetic view on complex factors leading to development and perception of “genius.” There is increasing evidence which indicates that artistic creativity is influenced by epigenetic processes that act both as targets and mediators of neurotransmitters as well as steroid hormones. Thus, perception and production of art appear to be closely associated with epigenetic contributions to physical and mental health.

  14. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy.

    Science.gov (United States)

    Valiulienė, Giedrė; Treigytė, Gražina; Savickienė, Jūratė; Matuzevičius, Dalius; Alksnė, Milda; Jarašienė-Burinskaja, Rasa; Bukelskienė, Virginija; Navakauskas, Dalius; Navakauskienė, Rūta

    2016-04-01

    Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism. PMID:27044813

  15. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang G.; Song, Jikui; Wang, Zhanxin; Dormann, Holger L.; Casadio, Fabio; Li, Haitao; Luo, Jun-Li; Patel, Dinshaw J.; Allis, C. David; (MSKCC); (Scripps); (Rockefeller)

    2009-07-21

    Histone H3 lysine4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.

  16. Epigenetic regulatory mechanisms associated with infertility

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Madon, Prochi F; Parikh, Firuza R

    2010-01-01

    Infertility is a complex human condition and is known to be caused by numerous factors including genetic alterations and abnormalities. Increasing evidence from studies has associated perturbed epigenetic mechanisms with spermatogenesis and infertility. However, there has been no consensus...... on whether one or a collective of these altered states is responsible for the onset of infertility. Epigenetic alterations involve changes in factors that regulate gene expression without altering the physical sequence of DNA. Understanding these altered epigenetic states at the genomic level along...... with the phenotype could further determine what possible mechanisms are involved. This paper reviews certain mechanisms of epigenetic regulation with particular emphasis on their possible role in infertility....

  17. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    Science.gov (United States)

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the

  18. BPA-Induced Deregulation Of Epigenetic Patterns: Effects On Female Zebrafish Reproduction.

    Science.gov (United States)

    Santangeli, Stefania; Maradonna, Francesca; Gioacchini, Giorgia; Cobellis, Gilda; Piccinetti, Chiara Carla; Dalla Valle, Luisa; Carnevali, Oliana

    2016-01-01

    Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 μg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism. PMID:26911650

  19. The NF-κB Factor RelB and Histone H3 Lysine Methyltransferase G9a Directly Interact to Generate Epigenetic Silencing in Endotoxin Tolerance*

    OpenAIRE

    Chen, Xiaoping; El Gazzar, Mohamed; Yoza, Barbara K.; McCall, Charles E.

    2009-01-01

    The interplay of transcription factors, histone modifiers, and DNA modification can alter chromatin structure that epigenetically controls gene transcription. During severe systemic inflammatory (SSI), the generation of facultative heterochromatin from euchromatin reversibly silences transcription of a set of acute proinflammatory genes. This gene-specific silencing is a salient feature of the endotoxin tolerant phenotype that is found in blood leukocytes of SSI patients and in a human THP-1 ...

  20. The landscape of accessible chromatin in mammalian preimplantation embryos.

    Science.gov (United States)

    Wu, Jingyi; Huang, Bo; Chen, He; Yin, Qiangzong; Liu, Yang; Xiang, Yunlong; Zhang, Bingjie; Liu, Bofeng; Wang, Qiujun; Xia, Weikun; Li, Wenzhi; Li, Yuanyuan; Ma, Jing; Peng, Xu; Zheng, Hui; Ming, Jia; Zhang, Wenhao; Zhang, Jing; Tian, Geng; Xu, Feng; Chang, Zai; Na, Jie; Yang, Xuerui; Xie, Wei

    2016-06-30

    In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development. PMID:27309802

  1. The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide.

    Science.gov (United States)

    Mukhopadhyay, Rituparna; Yu, WenQiang; Whitehead, Joanne; Xu, JunWang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-08-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified more than 200 new CTCF target sites by generating DNA microarrays of clones derived from chromatin-immunopurified (ChIP) DNA followed by ChIP-on-chip hybridization analysis. Target sites include not only known loci involved in multiple cellular functions, such as metabolism, neurogenesis, growth, apoptosis, and signalling, but potentially also heterochromatic sequences. Using a novel insulator trapping assay, we also show that the majority of these targets manifest insulator functions with a continuous distribution of stringency. As these targets are generally DNA methylation-free as determined by antibodies against 5-methylcytidine and a methyl-binding protein (MBD2), a CTCF-based network correlates with genome-wide epigenetic states. PMID:15256511

  2. The Binding Sites for the Chromatin Insulator Protein CTCF Map to DNA Methylation-Free Domains Genome-Wide

    Science.gov (United States)

    Mukhopadhyay, Rituparna; Yu, WenQiang; Whitehead, Joanne; Xu, JunWang; Lezcano, Magda; Pack, Svetlana; Kanduri, Chandrasekhar; Kanduri, Meena; Ginjala, Vasudeva; Vostrov, Alexander; Quitschke, Wolfgang; Chernukhin, Igor; Klenova, Elena; Lobanenkov, Victor; Ohlsson, Rolf

    2004-01-01

    All known vertebrate chromatin insulators interact with the highly conserved, multivalent 11-zinc finger nuclear factor CTCF to demarcate expression domains by blocking enhancer or silencer signals in a position-dependent manner. Recent observations document that the properties of CTCF include reading and propagating the epigenetic state of the differentially methylated H19 imprinting control region. To assess whether these findings may reflect a universal role for CTCF targets, we identified more than 200 new CTCF target sites by generating DNA microarrays of clones derived from chromatin-immunopurified (ChIP) DNA followed by ChIP-on-chip hybridization analysis. Target sites include not only known loci involved in multiple cellular functions, such as metabolism, neurogenesis, growth, apoptosis, and signalling, but potentially also heterochromatic sequences. Using a novel insulator trapping assay, we also show that the majority of these targets manifest insulator functions with a continuous distribution of stringency. As these targets are generally DNA methylation-free as determined by antibodies against 5-methylcytidine and a methyl-binding protein (MBD2), a CTCF-based network correlates with genome-wide epigenetic states. PMID:15256511

  3. Diversity in the organization of centromeric chromatin.

    Science.gov (United States)

    Steiner, Florian A; Henikoff, Steven

    2015-04-01

    Centromeric chromatin is distinguished primarily by nucleosomes containing the histone variant cenH3, which organizes the kinetochore that links the chromosome to the spindle apparatus. Whereas budding yeast have simple 'point' centromeres with single cenH3 nucleosomes, and fission yeast have 'regional' centromeres without obvious sequence specificity, the centromeres of most organisms are embedded in highly repetitive 'satellite' DNA. Recent studies have revealed a remarkable diversity in centromere chromatin organization among different lineages, including some that have lost cenH3 altogether. We review recent progress in understanding point, regional and satellite centromeres, as well as less well-studied centromere types, such as holocentromeres. We also discuss the formation of neocentromeres, the role of pericentric heterochromatin, and the structure and composition of the cenH3 nucleosome. PMID:25956076

  4. On the topology of chromatin fibres

    Science.gov (United States)

    Barbi, Maria; Mozziconacci, Julien; Victor, Jean-Marc; Wong, Hua; Lavelle, Christophe

    2012-01-01

    The ability of cells to pack, use and duplicate DNA remains one of the most fascinating questions in biology. To understand DNA organization and dynamics, it is important to consider the physical and topological constraints acting on it. In the eukaryotic cell nucleus, DNA is organized by proteins acting as spools on which DNA can be wrapped. These proteins can subsequently interact and form a structure called the chromatin fibre. Using a simple geometric model, we propose a general method for computing topological properties (twist, writhe and linking number) of the DNA embedded in those fibres. The relevance of the method is reviewed through the analysis of magnetic tweezers single molecule experiments that revealed unexpected properties of the chromatin fibre. Possible biological implications of these results are discussed. PMID:24098838

  5. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  6. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    International Nuclear Information System (INIS)

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  7. On the topology of chromatin fibres

    OpenAIRE

    Barbi, Maria; Mozziconacci, Julien; Victor, Jean-Marc; Wong, Hua; Lavelle, Christophe

    2012-01-01

    The ability of cells to pack, use and duplicate DNA remains one of the most fascinating questions in biology. To understand DNA organization and dynamics, it is important to consider the physical and topological constraints acting on it. In the eukaryotic cell nucleus, DNA is organized by proteins acting as spools on which DNA can be wrapped. These proteins can subsequently interact and form a structure called the chromatin fibre. Using a simple geometric model, we propose a general method fo...

  8. Multiscale Identification of Topological Domains in Chromatin

    OpenAIRE

    Filippova, Darya; Patro, Rob; Duggal, Geet; Kingsford, Carl

    2013-01-01

    Recent chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types and conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across va...

  9. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  10. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas.

    Science.gov (United States)

    Yang, Hanseul; Schramek, Daniel; Adam, Rene C; Keyes, Brice E; Wang, Ping; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. PMID:26590320

  11. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin.

    Science.gov (United States)

    Dambacher, Silvia; Deng, Wen; Hahn, Matthias; Sadic, Dennis; Fröhlich, Jonathan; Nuber, Alexander; Hoischen, Christian; Diekmann, Stephan; Leonhardt, Heinrich; Schotta, Gunnar

    2012-01-01

    Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding platform for the other centromeric proteins. The Mis18 complex, and, in particular, its member M18BP1 was shown to be essential for both incorporation and maintenance of CENP-A. Here we show that M18BP1 displays a cell cycle-regulated association with centromeric chromatin in mouse embryonic stem cells. M18BP1 is highly enriched at centromeric regions from late anaphase through to G1 phase. An interaction screen against 16 core centromeric proteins revealed a novel interaction of M18BP1 with CENP-C. We mapped the interaction domain in M18BP1 to a central region containing a conserved SANT domain and in CENP-C to the C-terminus. Knock-down of CENP-C leads to reduced M18BP1 association and lower CENP-A levels at centromeres, suggesting that CENP-C works as an important factor for centromeric M18BP1 recruitment and thus for maintaining centromeric CENP-A. PMID:22540025

  12. Integrin α4β1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration.

    Science.gov (United States)

    Zhang, Xiaohong; Cook, Peter C; Zindy, Egor; Williams, Craig J; Jowitt, Thomas A; Streuli, Charles H; MacDonald, Andrew S; Redondo-Muñoz, Javier

    2016-04-20

    The mechanical properties of the cell nucleus change to allow cells to migrate, but how chromatin modifications contribute to nuclear deformability has not been defined. Here, we demonstrate that a major factor in this process involves epigenetic changes that underpin nuclear structure. We investigated the link between cell adhesion and epigenetic changes in T-cells, and demonstrate that T-cell adhesion to VCAM1viaα4β1 integrin drives histone H3 methylation (H3K9me2/3) through the methyltransferase G9a. In this process, active G9a is recruited to the nuclear envelope and interacts with lamin B1 during T-cell adhesion through α4β1 integrin. G9a activity not only reorganises the chromatin structure in T-cells, but also affects the stiffness and viscoelastic properties of the nucleus. Moreover, we further demonstrated that these epigenetic changes were linked to lymphocyte movement, as depletion or inhibition of G9a blocks T-cell migration in both 2D and 3D environments. Thus, our results identify a novel mechanism in T-cells by which α4β1 integrin signaling drives specific chromatin modifications, which alter the physical properties of the nucleus and thereby enable T-cell migration. PMID:26657637

  13. Heritable epigenetic variation among maize inbreds.

    Directory of Open Access Journals (Sweden)

    Steve R Eichten

    2011-11-01

    Full Text Available Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays, an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs. Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic

  14. Reader interactome of epigenetic histone marks in birds.

    Science.gov (United States)

    Bluhm, Alina; Casas-Vila, Nuria; Scheibe, Marion; Butter, Falk

    2016-02-01

    Lysine methylation is part of the posttranscriptional histone code employed to recruit modification specific readers to chromatin. Unbiased, quantitative mass spectrometry approaches combined with peptide pull-downs have been used to study histone methylation-dependent binders in mammalian cells. Here, we extend the study to birds by investigating the interaction partners for H3K4me3, H3K9me3, H3K27me3 and H3K36me3 in chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) using label-free quantitative proteomics. In general, we find very strong overlap in interaction partners for the trimethyl marks in birds compared to mammals, underscoring the known conserved function of these modifications. In agreement with their epigenetic role, we find binding of PHF2 and members of the TFIID, SAGA, SET1 and NURF complex to the activation mark H3K4me3. Our data furthermore supports the existence of a LID complex in vertebrates recruited to the H3K4me3 mark. The repressive marks are bound by the HP1 proteins and the EED subunit of the PRC2 complex as well as by WIZ. Like reported in the previous mammalian screens, we found ZNF462, ZNF828 and POGZ enriched at H3K9me3. However, we noted some unexpected differences. N-PAC (also known as GLYR1), an H3K36me3 interactor in mammals, is reproducible not enriched at this modification in our screen in birds. This initial finding suggests that despite strong conservation of the histone tail sequence, a few species-specific differences in epigenetic readers may have evolved between birds and mammals. All MS data have been deposited in the ProteomeXchange with identifier PXD002282 (http://proteomecentral.proteomexchange.org/dataset/PXD002282). PMID:26703087

  15. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity

    Directory of Open Access Journals (Sweden)

    Shivananda N Kalludi

    2011-01-01

    Full Text Available Aim: The present study evaluates the impact of controlled slow cooling and rapid freezing techniques on the sperm chromatin integrity in teratozoospermic and normozoospermic samples. Setting: The study was done in a university infertility clinic, which is a tertiary healthcare center serving the general population. Design: It was a prospective study designed in vitro. Materials and Methods: Semen samples from normozoospermic (N=16 and teratozoospermic (N=13 infertile men were cryopreserved using controlled cooling and rapid freezing techniques. The sperm chromatin integrity was analyzed in fresh and frozen-thawed samples. Statistical Analysis Used: Data were reported as mean and standard error (mean ± SEM of mean. The difference between two techniques was determined by a paired t-test. Results: The freeze-thaw induced chromatin denaturation was significantly (P<0.01 elevated in the post-thaw samples of normozoospermic and teratozoospermic groups. Compared to rapid freezing, there was no difference in the number of red sperms (with DNA damage by the controlled slow cooling method in both normozoospermic and teratozoospermic groups. Freeze-thaw induced sperm chromatin denaturation in teratozoospermic samples did not vary between controlled slow cooling and rapid freezing techniques. Conclusions: Since the controlled slow cooling technique involves the use of expensive instrument and is a time consuming protocol, rapid freezing can be a good alternative technique for teratozoospermic and normozoospermic samples when sperm DNA damage is a concern.

  16. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  17. Replication domains are self-interacting structural chromatin units of human chromosomes

    Science.gov (United States)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  18. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  19. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network.

    Directory of Open Access Journals (Sweden)

    Jean-Michel Gibert

    2007-02-01

    Full Text Available Phenotypic plasticity is the ability of a genotype to produce contrasting phenotypes in different environments. Although many examples have been described, the responsible mechanisms are poorly understood. In particular, it is not clear how phenotypic plasticity is related to buffering, the maintenance of a constant phenotype against genetic or environmental variation. We investigate here the genetic basis of a particularly well described plastic phenotype: the abdominal pigmentation in female Drosophila melanogaster. Cold temperature induces a dark pigmentation, in particular in posterior segments, while higher temperature has the opposite effect. We show that the homeotic gene Abdominal-B (Abd-B has a major role in the plasticity of pigmentation in the abdomen. Abd-B plays opposite roles on melanin production through the regulation of several pigmentation enzymes. This makes the control of pigmentation very unstable in the posterior abdomen, and we show that the relative spatio-temporal expression of limiting pigmentation enzymes in this region of the body is thermosensitive. Temperature acts on melanin production by modulating a chromatin regulator network, interacting genetically with the transcription factor bric-à-brac (bab, a target of Abd-B and Hsp83, encoding the chaperone Hsp90. Genetic disruption of this chromatin regulator network increases the effect of temperature and the instability of the pigmentation pattern in the posterior abdomen. Colocalizations on polytene chromosomes suggest that BAB and these chromatin regulators cooperate in the regulation of many targets, including several pigmentation enzymes. We show that they are also involved in sex comb development in males and that genetic destabilization of this network is also strongly modulated by temperature for this phenotype. Thus, we propose that phenotypic plasticity of pigmentation is a side effect reflecting a global impact of temperature on epigenetic mechanisms

  20. Epigenetic Therapy in Human Choriocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Noriyuki, E-mail: takai@oita-u.ac.jp [Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita (Japan); Narahara, Hisashi [Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593 (Japan)

    2010-09-10

    Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs) were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies.

  1. Epigenetic Therapy in Human Choriocarcinoma

    Directory of Open Access Journals (Sweden)

    Hisashi Narahara

    2010-09-01

    Full Text Available Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies.

  2. Epigenetic Therapy in Human Choriocarcinoma

    International Nuclear Information System (INIS)

    Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs) were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies

  3. On the origin of sperm epigenetic heterogeneity.

    Science.gov (United States)

    Laurentino, Sandra; Borgmann, Jennifer; Gromoll, Jörg

    2016-05-01

    The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future. PMID:26884419

  4. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  5. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  6. Orchestrating epigenetic roles targeting ocular tumors

    Directory of Open Access Journals (Sweden)

    Wen X

    2016-02-01

    Full Text Available Xuyang Wen*, Linna Lu*, He Zhang, Xianqun Fan Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized. Keywords: ocular tumors, epigenetics, retinoblastoma, uveal melanoma, epigenetic drugs

  7. Epigenetics, estradiol, and hippocampal memory consolidation

    OpenAIRE

    Frick, Karyn M.

    2013-01-01

    Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the etiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that regulation of these epigenetic processes by modulatory factors such as environmental enrichment, stress, and hormones substantially influences memory function. Recen...

  8. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    OpenAIRE

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H

    2015-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented ...

  9. A transcription-independent epigenetic mechanism is associated with antigenic switching in Trypanosoma brucei.

    Science.gov (United States)

    Aresta-Branco, Francisco; Pimenta, Silvia; Figueiredo, Luisa M

    2016-04-20

    Antigenic variation inTrypanosoma bruceirelies on periodic switching of variant surface glycoproteins (VSGs), which are transcribed monoallelically by RNA polymerase I from one of about 15 bloodstream expression sites (BES). Chromatin of the actively transcribed BES is depleted of nucleosomes, but it is unclear if this open conformation is a mere consequence of a high rate of transcription, or whether it is maintained by a transcription-independent mechanism. Using an inducible BES-silencing reporter strain, we observed that chromatin of the active BES remains open for at least 24 hours after blocking transcription. This conformation is independent of the cell-cycle stage, but dependent upon TDP1, a high mobility group box protein. For two days after BES silencing, we detected a transient and reversible derepression of several silent BESs within the population, suggesting that cells probe other BESs before commitment to one, which is complete by 48 hours. FACS sorting and subsequent subcloning confirmed that probing cells are switching intermediates capable of returning to the original BES, switch to the probed BES or to a different BES. We propose that regulation of BES chromatin structure is an epigenetic mechanism important for successful antigenic switching. PMID:26673706

  10. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  11. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  12. Epigenetic field cancerization in gastrointestinal cancers.

    Science.gov (United States)

    Baba, Yoshifumi; Ishimoto, Takatsugu; Kurashige, Junji; Iwatsuki, Masaaki; Sakamoto, Yasuo; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2016-06-01

    Epigenetic alterations, including aberrant DNA methylation, play an important role in human cancer development. Importantly, epigenetic alterations are reversible and can be targets for therapy or chemoprevention for various types of human cancers. A field for cancerization, or a field defect, is formed by the accumulation of genetic and/or epigenetic alterations in normal-appearing tissues and can correlate with risk of cancer development. Thus, a better understanding of epigenetic field cancerization may represent a useful translational opportunity for cancer risk assessment, including previous history and exposure to carcinogenic factors, and for cancer prevention. In this article, we summarize current knowledge regarding epigenetic field cancerization and its clinical implications in gastrointestinal cancers, including colorectal cancer, gastric cancer and esophageal cancer. PMID:26971491

  13. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.;

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  14. Epigenetic regulation of skeletal muscle metabolism.

    Science.gov (United States)

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  15. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaufman-Szymczyk

    2015-12-01

    Full Text Available Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i post-translation histone modification (i.e., deacetylation and methylation; (ii DNA global hypomethylation; (iii promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review.

  16. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review.

    Science.gov (United States)

    Matrisciano, Francesco; Panaccione, Isabella; Grayson, Danis R; Nicoletti, Ferdinando; Guidotti, Alessandro

    2016-01-01

    Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as "major psychosis"; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors. PMID:26813121

  17. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation.

    Science.gov (United States)

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  18. Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment.

    Science.gov (United States)

    Romano, Oriana; Peano, Clelia; Tagliazucchi, Guidantonio Malagoli; Petiti, Luca; Poletti, Valentina; Cocchiarella, Fabienne; Rizzi, Ermanno; Severgnini, Marco; Cavazza, Alessia; Rossi, Claudia; Pagliaro, Pasqualepaolo; Ambrosi, Alessandro; Ferrari, Giuliana; Bicciato, Silvio; De Bellis, Gianluca; Mavilio, Fulvio; Miccio, Annarita

    2016-01-01

    Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity. PMID:27095295

  19. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    Science.gov (United States)

    Tian, Yuan; Mok, Myth T.S.; Yang, Pengyuan; Cheng, Alfred S.L.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  20. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity

    Science.gov (United States)

    Mehta, Stuti; Jeffrey, Kate L

    2016-01-01

    The interaction of innate immune cells with pathogens leads to changes in gene expression that elicit our body’s first line of defense against infection. Although signaling pathways and transcription factors have a central role, it is becoming increasingly clear that epigenetic factors, in the form of DNA or histone modifications, as well as noncoding RNAs, are critical for generating the necessary cell lineage as well as context-specific gene expression in diverse innate immune cell types. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental triggers also induce changes in histone modifications that can either promote tolerance or ‘train’ innate immune cells for a more robust antigen-independent secondary response. Here we review the important contribution of epigenetic factors to the initiation, maintenance and training of innate immune responses. In addition, we explore how pathogens have hijacked these mechanisms for their benefit and the potential of small molecules targeting chromatin machinery as a way to boost or subdue the innate immune response in disease. PMID:25559622

  1. Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells

    Science.gov (United States)

    Soung, Young Hwa; Pruitt, Kevin; Chung, Jun

    2014-01-01

    Arrestin domain-containing 3 (ARRDC3) is a tumor suppressor whose expression is either lost or suppressed in basal-like breast cancer (BLBC). However, the mechanism by which BLBC suppresses ARRDC3 expression is not established. Here, we show that expression of ARRDC3 in BLBC cells is suppressed at the transcriptional level. Suppression of ARRDC3 expression in BLBC cells involves epigenetic silencing as inhibitors of class III histone deacetylases (HDACs) significantly restores ARRDC3 levels in BLBC cells. SIRT2, among class III HDACs, plays a major role in epigenetic silencing of ARRDC3 in MDA-MB-231 cells. Acetylation levels of the ARRDC3 promoter in BLBC cells is significantly lower than that of other sub-types of BC cells. Chromatin immunopreciptitation analysis established SIRT2 binding at ARRDC3 promoter in BLBC cells. Our studies indicate that SIRT2 dependent epigenetic silencing of ARRDC3 is one of the important events that may contribute to the aggressive nature of BLBC cells.

  2. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp

    Directory of Open Access Journals (Sweden)

    De-la-Peña Clelia

    2012-11-01

    Full Text Available Abstract Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M and temporary immersion in modular Bioreactors (B. No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition

  3. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  4. Prevalence of X-chromatin in Jordanian women

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the distribution of X-chromatin among Jordanian women at different age groups. Results will be compared with other studies for possible racial and environmental effects on X-chromatin distribution. Blood samples were drawn from all women subjected to this study by finger prick and stained with Wright's stain. X-chromatin positive polymorphonuclear cells were counted and corrected for percentage. Samples were taken during the late 2002 and early 2003 from healthy women attending routine checkup in health centers in Northern Jordan. The number of X-chromatin was highest in the 50 and above years age group. The number of X-chromatin was 14-18% in other age groups. These results were in accordance with other studies. It seems that racial and environmental factors are ineffective on distribution of X-chromatin in Jordanian women. These data could be used as as reference for further studies. (author)

  5. Role of histone modifications in defining chromatin structure and function.

    Science.gov (United States)

    Gelato, Kathy A; Fischle, Wolfgang

    2008-04-01

    Chromosomes in eukaryotic cell nuclei are not uniformly organized, but rather contain distinct chromatin elements, with each state having a defined biochemical structure and biological function. These are recognizable by their distinct architectures and molecular components, which can change in response to cellular stimuli or metabolic requirements. Chromatin elements are characterized by the fundamental histone and DNA components, as well as other associated non-histone proteins and factors. Post-translational modifications of histone proteins in particular often correlate with a specific chromatin structure and function. Patterns of histone modifications are implicated as having a role in directing the level of chromatin compaction, as well as playing roles in multiple functional pathways directing the readout of distinct regions of the genome. We review the properties of various chromatin elements and the apparent links of histone modifications with chromatin organization and functional output. PMID:18225984

  6. Cell density impacts epigenetic regulation of cytokine-induced E-selectin gene expression in vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Hamada

    Full Text Available Growing evidence suggests that the phenotype of endothelial cells during angiogenesis differs from that of quiescent endothelial cells, although little is known regarding the difference in the susceptibility to inflammation between both the conditions. Here, we assessed the inflammatory response in sparse and confluent endothelial cell monolayers. To obtain sparse and confluent monolayers, human umbilical vein endothelial cells were seeded at a density of 7.3 × 10(3 cells/cm(2 and 29.2 × 10(3 cells/cm(2, respectively, followed by culturing for 36 h and stimulation with tumor necrosis factor α. The levels of tumor necrosis factor α-induced E-selectin protein and mRNA expression were higher in the confluent monolayer than in the sparse monolayer. The phosphorylation of c-jun N-terminal kinase and p38 mitogen-activated protein kinase or nuclear factor-κB activation was not involved in this phenomenon. A chromatin immunoprecipitation assay of the E-selectin promoter using an anti-acetyl-histone H3 antibody showed that the E-selectin promoter was highly and specifically acetylated in the confluent monolayer after tumor necrosis factor α activation. Furthermore, chromatin accessibility real-time PCR showed that the chromatin accessibility at the E-selectin promoter was higher in the confluent monolayer than in the sparse monolayer. Our data suggest that the inflammatory response may change during blood vessel maturation via epigenetic mechanisms that affect the accessibility of chromatin.

  7. Ultrastructural organization of replicating chromatin in prematurely condensed chromosomes

    OpenAIRE

    Arifulin E. A.

    2015-01-01

    Aim. The ultrastructural aspect of replicating chromatin organization is a matter of dispute. Here, we have analyzed the ultrastructural organization of replication foci using prematurely condensed chromosomes (PCC). Methods. To investigate the ultrastructure of replicating chromatin, we have used correlative light and electron microscopy as well as immunogold staining. Results. Replication in PCC occurs in the gaps between condensed chromatin domains. Using correlative light and electron mic...

  8. Hydrogen peroxide mediates higher order chromatin degradation.

    Science.gov (United States)

    Bai, H; Konat, G W

    2003-01-01

    Although a large body of evidence supports a causative link between oxidative stress and neurodegeneration, the mechanisms are still elusive. We have recently demonstrated that hydrogen peroxide (H(2)O(2)), the major mediator of oxidative stress triggers higher order chromatin degradation (HOCD), i.e. excision of chromatin loops at the matrix attachment regions (MARs). The present study was designed to determine the specificity of H(2)O(2) in respect to HOCD induction. Rat glioma C6 cells were exposed to H(2)O(2) and other oxidants, and the fragmentation of genomic DNA was assessed by field inversion gel electrophoresis (FIGE). S1 digestion before FIGE was used to detect single strand fragmentation. The exposure of C6 cells to H(2)O(2) induced a rapid and extensive HOCD. Thus, within 30 min, total chromatin was single strandedly digested into 50 kb fragments. Evident HOCD was elicited by H(2)O(2) at concentrations as low as 5 micro M. HOCD was mostly reversible during 4-8h following the removal of H(2)O(2) from the medium indicating an efficient relegation of the chromatin fragments. No HOCD was induced by H(2)O(2) in isolated nuclei indicating that HOCD-endonuclease is activated indirectly by cytoplasmic signal pathways triggered by H(2)O(2). The exposure of cells to a synthetic peroxide, i.e. tert-butyrylhydroperoxide (tBH) also induced HOCD, but to a lesser extent than H(2)O(2). Contrary to the peroxides, the exposure of cells to equitoxic concentration of hypochlorite and spermine NONOate, a nitric oxide generator, failed to induce rapid HOCD. These results indicate that rapid HOCD is not a result of oxidative stress per se, but is rather triggered by signaling cascades initiated specifically by H(2)O(2). Furthermore, the rapid and extensive HOCD was observed in several rat and human cell lines challenged with H(2)O(2), indicating that the process is not restricted to glial cells, but rather represents a general response of cells to H(2)O(2). PMID:12421592

  9. Polycomb complexes and epigenetic states.

    Science.gov (United States)

    Schwartz, Yuri B; Pirrotta, Vincenzo

    2008-06-01

    Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms. PMID:18439810

  10. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  11. Prostate cancer epigenetics and its clinical implications.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125

  12. Cancer Control and Prevention by Nutrition and Epigenetic Approaches

    OpenAIRE

    Verma, Mukesh

    2012-01-01

    Significance: Epigenetics involves alterations in gene expression without changing the nucleotide sequence. Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for disease intervention and treatment. Recent Advances: After epigenetic components in cancer were characterized, genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological disorders. Observational, experimental, and clinical studies in diffe...

  13. Epigenetic Regulation of Cholesterol Homeostasis

    Directory of Open Access Journals (Sweden)

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  14. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    J. Zych

    2013-05-01

    Full Text Available Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (ADSCs using the chromatin-modifying agents trichostatin A (TSA, a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC, a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

  15. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  16. Epigenetic reprogramming in plant sexual reproduction.

    Science.gov (United States)

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation. PMID:25048170

  17. Epigenetic variation during the adult lifespan

    DEFF Research Database (Denmark)

    Talens, Rudolf P; Christensen, Kaare; Putter, Hein;

    2012-01-01

    The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass......-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ...

  18. Erwin Schroedinger, Francis Crick and epigenetic stability

    CERN Document Server

    Ogryzko, Vasily

    2007-01-01

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that lead Schroedinger to promote the idea of molecular code-script for explanation of stability of biological order.

  19. Epigenetic reprogramming in mammalian nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LI Shijie; DU Weihua; LI Ning

    2004-01-01

    Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

  20. Organization of higher-level chromatin structures (chromomere, chromonema and chromatin block) examined using visible light-induced chromatin photo-stabilization.

    Science.gov (United States)

    Sheval, E V; Prusov, A N; Kireev, I I; Fais, D; Polyakov, V Yu

    2002-01-01

    The method of chromatin photo-stabilization by the action of visible light in the presence of ethidium bromide was used for investigation of higher-level chromatin structures in isolated nuclei. As a model we used rat hepatocyte nuclei isolated in buffers which stabilized or destabilized nuclear matrix. Several higher-level chromatin structures were visualized: 100nm globules-chromomeres, chains of chromomeres-chromonemata, aggregates of chromomeres-blocks of condensed chromatin. All these structures were completely destroyed by 2M NaCl extraction independent of the matrix state, and DNA was extruded from the residual nuclei (nuclear matrices) into a halo. These results show that nuclear matrix proteins do not play the main role in the maintenance of higher-level chromatin structures. Preliminary irradiation led to the reduction of the halo width in the dose-dependent manner. In regions of condensed chromatin of irradiated nucleoids there were discrete complexes consisting of DNA fibers radiating from an electron-dense core and resembling the decondensed chromomeres or the rosette-like structures. As shown by the analysis of proteins bound to irradiated nuclei upon high-salt extraction, irradiation presumably stabilized the non-histone proteins. These results suggest that in interphase nuclei loop domains are folded into discrete higher-level chromatin complexes (chromomeres). These complexes are possibly maintained by putative non-histone proteins, which are extracted with high-salt buffers from non-irradiated nuclei. PMID:12127937