WorldWideScience

Sample records for alternative energy technologies

  1. Promotional issues on alternative energy technologies in Nepal

    International Nuclear Information System (INIS)

    Alternative energy technologies are being disseminated in many countries with an objective to reduce the uses of traditional and commercial energy sources. These technologies convert local resources to usable energy forms. Since the scale of these technologies is small, their implementation is targeted mainly to individual households or small communities. However, due to various constraints, these implementation programmes have not been very successful. In this paper, the author introduces the main characteristics of alternative energy technologies used in Nepal and discusses promotional barriers for their implementation. It is hoped that this paper would help energy policy makers to devise better alternative energy programmes

  2. Metal oxide electrocatalysts for alternative energy technologies

    Science.gov (United States)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  3. Surface technologies 2006 - Alternative energies and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Vancouver (Canada). Department of Materials Engineering

    2007-12-15

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector. (author)

  4. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  5. Alternative energy technologies: their application in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    de Carmona, L.S.

    1980-08-01

    This paper was presented at the Fourth Annual Conference of INTA, in Cairo, Egypt, in October 1980. It deals with the possibilities of using alternative energy technologies in planned urban areas in the developing countries. The case of Mexico is used to analyze use, energy balance, inventories of energy resources, and forecasts of energy supply by the year 2000. Described is the relationship between urban structures and energy requirements, providing data and commentary with respect to Mexican national urban plans, and with its programs in the energy area. Data in charts, maps, and statistics are included.

  6. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  7. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  8. Energy and global warming impacts of CFC alternative technologies

    International Nuclear Information System (INIS)

    The primary objective of this study is to develop representative indications of the relative energy use, associated CO2 emissions, and total equivalent warming impact (TEWI) of viable options to replace CFCs in their major energy-related application areas. It was motivated, in part, by a concern that most attention to date has focused on the DIRECT global warming effect of CFC's and their alternatives, with adequate attention being paid to the INDIRECT effect of the CO2 emissions arising from the differences in energy consumption by systems using different alternatives. The DIRECT and INDIRECT contributions are combined in this analysis to determine the TEWI of the various technical options. The study is international in scope and takes into account significant differences in present CFC end-use practices, sources of energy, and other societal factors between Europe, Japan, and North America. This study should be considered an overview of key issues. The analysis addressed CFCs as well as alternative chemicals and technology alternatives in uses such as refrigeration, foam insulation, and metal and electronic cleaning and drying processes

  9. 1991-92 Canadian directory of efficiency and alternative energy technologies

    International Nuclear Information System (INIS)

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided

  10. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  11. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  12. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  13. Market Structure and the Penetration of Alternative Energy Technologies

    OpenAIRE

    Tsur, Yacov; Zemel, Amos

    2009-01-01

    Energy market prices ignore external effects, hence miss-allocate energy generation between (polluting) fossil fuels and (clean) solar technologies. Correcting the failure requires understanding the market allocation forces at hand. An important feature of solar energy is that its cost of supply is predominantly due to upfront investments in capital infrastructure (rather than to the actual supply rate) and this feature has far reaching implications for the market allocation outcome. Studying...

  14. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  15. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  16. Health and safety implications of alternative energy technologies. II. Solar

    Science.gov (United States)

    Etnier, E. L.; Watson, A. P.

    1981-09-01

    No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released

  17. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  18. Environmental and economic comparisons of the satellite power system and six alternative energy technologies

    Science.gov (United States)

    Whitfield, R. G.; Habegger, L. J.; Levine, E. P.; Tanzman, E.

    1981-04-01

    The satellite power system (SPS) was compared with alternative systems on life cycle cost and environmental impacts. Environmental and economic effects are evaluated and subdivided into the following issue areas: human health and safety, environmental welfare, resources (land, materials, energy, water, labor), macroeconomics, socioeconomics, and institutional. These evaluations are based on technology characterization data and alternative futures scenarios, developed as part of CDEP. The technologies and the scenarios are described. The cost and performance of the SPS and the alternative technologies provide the basis of the macroeconomic analyses.

  19. Renewable energy alternatives - a growing opportunity for engineering & technology education

    Science.gov (United States)

    A hallmark of the United States’ economic growth is an ever-increasing demand for energy, which has traditionally been met primarily by combusting the hydrocarbons found in fossil fuels. As national security and environmental concerns grow, renewable energy resources are gaining increased attention...

  20. Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems

    Science.gov (United States)

    Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.

  1. Alternative Energies

    Energy Technology Data Exchange (ETDEWEB)

    Planting, A.; De saint Jacob, Y.; Verwijs, H.; Belin, H.; Preesman, L.

    2009-03-15

    In two articles, one interview and one column attention is paid to alternative energies. The article 'A new light on saving energy' discusses the option to save energy by modernising lighting systems in urban areas. The column 'View from Paris' focuses on investment decisions in France with regard to renewable energy and energy savings. The article 'Europe turns a blind eye to big battery' discusses developments in batteries to store energy. The interview concerns fuel cell expert and formerly President of UTC Power Jan van Dokkum. The last article gives a brief overview of the European Energy Research Alliance (EERA) and the challenges this alliance will have to face with regard to climate change and energy security.

  2. Energy efficiency of alternative coke-free metallurgical technologies

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Lisienko; A.V. Lapteva; A.E. Paren' kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

    2009-02-15

    Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

  3. The role of utilities in enabling technology innovation: The BC hydro alternative & emerging energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Alex; Leclair, Donna; Morrison, Allison

    2010-09-15

    In order for renewable energy to play a dominant role in the global electricity supply mix, emerging renewable energy technologies - such as wave, tidal, enhanced geothermal, and 3rd generation photovoltaic technologies - must prove their technical merits and achieve cost parity with conventional sources of supply. BC Hydro, a government-owned electric utility, launched an Alternative and Emerging Energy Strategy that describes its role as an enabler of technology innovation. This paper describes BC Hydro's goal, objectives and actions to accelerate the commercialization that will yield a diversity of supply options and a growing, local clean-tech cluster.

  4. Energy alternatives

    International Nuclear Information System (INIS)

    English. A special committe of the Canadian House of Commons was established on 23 May 1980 to investigate the use of alternative energy sources such as 'gasohol', liquified coal, solar energy, methanol, wind and tidal power, biomass, and propane. In its final report, the committee envisions an energy system for Canada based on hydrogen and electricity, using solar and geothermal energy for low-grade heat. The committe was not able to say which method of generating electricty would dominate in the next century, although it recommends that fossil fuels should not be used. The fission process is not specifically discussed, but the outlook for fusion was investigated, and continued governmental support of fusion research is recommended. The report proposes some improvements in governmental energy organizations and programs

  5. Energy alternative

    International Nuclear Information System (INIS)

    The present work is about primary sources the conventional fossil fuels (petroleum, coal and natural gas) and not conventional (nuclear fuels), as well as the solar light that reaches the floor, the winds, the rivers, the oceanic currents including the seas, and the biomass, among others. In the present technological era the primary sources are used for the most part to transform their energy into electric power.

  6. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  7. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  8. Box Energy: rental of energy-storage systems and alternative fuel technologies for vehicles; Box-energy. Rental of energy. Storage systems and alternative-fuel. Technologies for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bautz, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of study on the rental of energy-storage systems and alternative fuel technologies for vehicles. Experience gained in the area of battery-rental is discussed. The aims of the 'Box Energy' project are described, as is its market environment. The 'Box Energy' concept is described and possible customers and partners listed. Logistics aspects are discussed. The organisation of 'Box Energy' is described and the concept's chances and weaknesses are discussed. The launching of a pilot project in Switzerland is discussed. Recommendations on further work to be done are made.

  9. Energy and global warming impacts of CFC alternative technologies for foam building insulations

    International Nuclear Information System (INIS)

    Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C02 emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use

  10. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  11. Domestic energy alternatives

    International Nuclear Information System (INIS)

    These alternatives include biomass, clean coal, geothermal, hydropower, natural gas, nuclear, solar and photovoltaic, and wind. With the current, volatile situation in the Middle East, this nation's political leaders appear to be left scratching their heads in their attempts to come up with new, sound, energy policies to reduce our dependence on foreign oil. Therefore, the FORTNIGHTLY's editorial staff thought that this might be an opportune time to briefly examine some home-grown and environmentally responsible fuel alternatives to black gold. While some of these electricity-producing technologies are still on the horizon, others are available now

  12. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  13. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  14. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    Science.gov (United States)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  15. Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis

    OpenAIRE

    Andreas R. Ziegler

    2010-01-01

    This paper empirically examines the determinants of the demand for alternative energy sources and propulsion technologies in vehicles. The data stem from a stated preference discrete choice experiment with 598 potential car buyers. In order to simulate a realistic automobile purchase situation, seven alternatives were incorporated in each of the six choice sets, i.e. hybrid, gas, biofuel, hydrogen, and electric as well as the common fuels gasoline and diesel. The vehicle types were additional...

  16. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    Science.gov (United States)

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. PMID:26951719

  17. Alternative energy in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, H.B.; Bhandari, K.P.

    2011-05-15

    Renewable energy Technology (RET) becomes the mainstream option for rural Nepal to access modern source of energy. It focuses on the trend of RET applications consisting of biogas technology, solar thermal, micro and Pico hydropower, biomass technology bio fuel technology, wind power technology etc. The RET's which provide both electricity based as well as non electricity based services, have been shown to most immediately meet the needs of a cleaner indoor environment, better quality lightning for education and income generating, activities, alternative cooking fuels and agro processing as well as rural industries. Improved cooking stoves and much more beneficial than other technologies. Wind energy utilization is still not popular. Solar thermal to generate thermal energy to cook, warm and dry, biogas for lighting and cooking services. Micro hydropower for electric as well as mechanical use and solar PV mainly for domestic lighting may become choice. The most important Renewable Energy Technology (RET's) in Nepal are related to Pico hydropower and micro-hydropower, biomass energy (biogas, briquettes, gasifies, improved cooking stoves, bio-fuels etc.) solar photovoltaic energy, solar PV water pumping, solar thermal energy (solar heater, solar dryers, solar cookers etc.) and wind energy (such as wind generators, wind mills etc.). One renowned Non-governmental organization has been established in the Jhapa and Mornag Bhutanese refugee camp. Two families from all the seven camps in Nepal received one solar cooker, one hay box and two cooking posts to each family. Under this programme, a total of 6,850 solar cookers, 12600 hay boxes and 25,200 cooking pots have been distributed 2009. The number of beneficiaries from this program has reached 85,000. Before the distribution of the cookers and the utensils, the instruction and orientation training for the maintenance and repair and operation method was improved. The refugees were divided in 315 groups of 40

  18. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    Science.gov (United States)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  19. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  20. Alternative nuclear technologies

    Science.gov (United States)

    Schubert, E.

    1981-10-01

    The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.

  1. Alternative Fuels for Transportation : A Sustainability Assessment of Technologies within an International Energy Agency Scenario

    OpenAIRE

    Ahmed, Shehzad; Conradt, Marcos H. K.; Pereira, Valeria De Fusco

    2009-01-01

    Transport sector is an essential driver of economic development and growth, and at the same time, one of the biggest contributors to climate change, responsible for almost a quarter of the global carbon dioxide emissions. The sector is 95 percent dependent on fossil fuels. International Energy Agency (IEA) scenarios present different mixes of fuels to decrease both dependence on fossil fuels and emissions, leading to a more sustainable future. The main alternative fuels proposed in the Blue m...

  2. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  3. Alternative energies. Updates on progress

    International Nuclear Information System (INIS)

    Presents fundamental and applied research of alternative energies. Address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress. Includes the life cycle assessment and thermoeconomic analysis as tools for evaluating and optimising environmental and cost subjects. This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.

  4. Alternative energies. Updates on progress

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, German (ed.) [CIRCE - Centre of Research for Energy Resources and Consumption, Zaragoza (Spain)

    2013-07-01

    Presents fundamental and applied research of alternative energies. Address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress. Includes the life cycle assessment and thermoeconomic analysis as tools for evaluating and optimising environmental and cost subjects. This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.

  5. Experiences in mainstreaming alternative energy

    Energy Technology Data Exchange (ETDEWEB)

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  6. System analysis and assessment of technological alternatives for Nordic H{sub 2} energy foresight

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Pursiheimo, E. [VTT, Espoo (Finland); Gether, K. [NTNU, Trondheim (Norway); Joergensen, K. [Risoe National Lab. (Denmark)

    2004-12-01

    The hydrogen scenarios developed during the Nordic Hydrogen Foresight project was analysed using a energy system model, which was developed during the project. The aim of the systems analysis was to analyse the technical and economical potential of hydrogen society in the Nordic countries in quantitative terms as well as the competitiveness of the selected hydrogen based systems. Visions and scenarios of the future energy systems in the Nordic area were defined in the workshops of the project. As a result of these workshops three scenarios were selected to outline the future of Nordic energy. The scenarios included different energy policies; scenarios for fossil fuel prices; and hydrogen energy demands, which varied from 6% to 18% of the total energy demand in 2030 for transport sector, and from 3% to 9% in heat and power production. In the roadmap workshops, the most important hydrogen based systems were selected, which were also included in the model. These include steam reforming of natural gas, electrolysis with renewable electricity, and biomass gasification for hydrogen production. For stationary applications, fuel cells and gas engines were selected for power and heat production. In our scenario calculations, biomass gasification and steam reforming seem to be the most competitive technologies for hydrogen production. The competitiveness of biomass gasification is greatly affected by the biomass fuel price, which is a local energy source. Electrolysis seems to be most competitive in decentralized systems, if the electricity price is low enough. For stationary applications, CHP fuel cells seem to be the most competitive in the long term, if the technological development and the decrease in investment costs follow the assumed scenario. The approximated Nordic market sizes in 2030 for the base scenarios varied from 1000 ME to 3000 MEuro for hydrogen production, from 1000 to 4000 MEuro for stationary applications and 4000 MEuro to 12.000 MEuro for hydrogen

  7. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  8. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  9. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  10. Alternative food safety intervention technologies

    Science.gov (United States)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  11. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  12. Innovative and Alternative Technology Assessment Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  13. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume that t...

  14. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  15. Opportunities for Water Conservation in Georgia: Alternative Energy Technologies in Planned Generation Facilities

    OpenAIRE

    Hatzenbuhler, Heather

    2013-01-01

    Water scarcity is a problem of increasing concern for the state of Georgia. For the last three decades the state has experienced droughts that have reached extreme conditions on many occasions. Georgia released a comprehensive water plan in 2008 that outlined historical and projected water use for various sectors of the economy. Water use for energy generation has the largest by volume consumptive use of water in the state. The report outlined plans for future energy generating facilities in ...

  16. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  17. Alternative energy and environmental concerns

    International Nuclear Information System (INIS)

    The New Brunswick Market Design Committee will address environmental concerns within the context of the new energy policy and market rules for the newly restructured electric power industry. The new rules that come with power restructuring will in some ways facilitate environmental protection but they can also complicate it. With open access markets, it will be possible to coordinate evolving energy frameworks with current environmental objectives. Restructuring provides an opportunity to create incentives and guidelines to operate in an environmentally sustainable manner, as suggested in the New Brunswick Energy Policy, White Paper which outlines green pricing, the development of a provincial Climate Change Action Plan, and promotion of alternative energy. The Market Design Committee examined the environmental concerns listed within the White Paper that pertain to the generation and transmission of electricity. These include the integration of energy and environmental policy. Other issues addressed in this report were trans-boundary and global air emissions, the development of a provincial climate change action plan, and a federal-provincial climate change framework agreement. New Brunswick will encourage the development of pilot studies that demonstrate the benefits of renewable and alternative technologies and that help promote the market to manufacture, sell and maintain renewable and alternative technologies in small-scale on-site power generation. This report also discussed the 4 key air pollutants for which specific treatment has been defined, including sulphur dioxide, nitrogen oxides, mercury and carbon dioxide. Recommendations for reducing these emissions include the use of renewable energy sources, the use of lower carbon fuels, increased efficiency of power transmission/generation/distribution systems, reducing power demand by the industrial sector, and promoting energy efficient building codes. 34 refs., 1 tab

  18. Technological alternatives for the expansion of production and use of energy; Alternativas tecnologicas na expansao da producao e uso de energia

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Isaias de Carvalho [COPERSUCAR, Piracicaba, SP (Brazil); Albuquerque, Joao Carlos Ribeiro [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Varela, Irani Carlos [PETROBRAS, Rio de Janeiro, RJ (Brazil); Carneiro, Sandoval [Universidade Federal, Rio de Janeiro, RJ (Brazil); Vidal, J.W. Bautista [Brasilia Univ., DF (Brazil)

    1994-12-01

    This document transcribes open house discussions which took place in Rio de Janeiro State - Southeast Brazil - in 1994, concerning technological alternatives for the expansion of energy production and use in Brazil. The main topics discussed were the existing situation in Brazil in what concerns the above mentioned issues and future perspectives. Several experts were present

  19. Electric power supply 2. Energy industry and climate protection, electricity industry, deregulation, power plant technology and alternative power supply strategies, chemical energy storage. 3. rev. ed.; Elektrische Energieversorgung 2. Energiewirtschaft und Klimaschutz, Elektrizitaetswirtschaft, Liberalisierung, Kraftwerktechnik und alternative Stromversorgung, chemische Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Crastan, Valentin

    2012-07-01

    The third edition of this comprehensive textbook and reference manual for students and engineers of electrical energy engineering contains many enhancements and additional information, so that the former volume 2 was split up into volume 2 and 3. All three volumes combine theoretical fundamentals of electric power supply with direct practical information. They support understanding and training by means of exercises, examples, and simulations. The authors have long years of experience in energy supply and also in teaching as university professors. The third edition of volume 2 discusses energy industry and climate protection, electric power supply and deregulation aspects, power plant engineering, alternative power generation technologies, and chemical energy storage. [German] Der zweite Band dieses umfassenden Lehr- und Nachschlagewerkes fuer Studenten und Ingenieure in der elektrischen Energietechnik wurde in dieser dritten Auflage wegen der vielen Erweiterungen in zwei Teile aufgespalten, die fortan als Band 2 und 3 erscheinen. Die drei Baende der ''elektrischen Energieversorgung'' zeichnen sich durch die Synthese von theoretischer Fundierung und unmittelbarem Praxisbezug aus und unterstuetzen das Verstaendnis und den Lernerfolg mit Uebungsaufgaben, Modellbeispielen und Simulationen. Die Autoren schoepfen inhaltlich aus ihrer langjaehrigen Erfahrung auf dem Gebiet der Energieversorgung sowie didaktisch aus ihrer Lehrtaetigkeit als Professoren. Der vorliegende zweite Band behandelt in der dritten Auflage die Themen Energiewirtschaft und Klimaschutz, Elektrizitaetswirtschaft und damit verbundenen Liberalisierungsfragen, Kraftwerktechnik, alternative Stromerzeugung und chemische Energiespeicherung. (orig.)

  20. Community Energy: A Social Architecture for an Alternative Energy Future

    Science.gov (United States)

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  1. Alternative Energy Busing

    Science.gov (United States)

    LaFee, Scott

    2012-01-01

    In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…

  2. Treatment Technology and Alternative Water Resources

    Science.gov (United States)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  3. An Envoy for Alternative Energy

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ The United States stands poised to cash in on China's growing appetite for alternative energy.This message rang loud and clear during a recent visit to China by U.S.Secretary of Commerce Gary Locke.

  4. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    This book presents in-depth articles on the main issues affecting the use and usefulness of nuclear energy for peaceful domestic purposes. Topics considered include energy futures (a world study), energy demand-energy supplies, an energy-deficient society, energy shortages, the economics of light water reactors (LWRs), fast breeder reactor economics, international cooperation in the nuclear field, nuclear recycling (costs, savings, safeguards), alternative fuels, alternative fuel cycles, alternative reactors, the nuclear weapons proliferation issue, paths to a world with more reliable nuclear safeguards, the homemade bomb issue, LWR risk assessment, accident analysis and risk assessment, the waste disposal risk, radon problems, health effects of low-level radiation, routine releases of radioactivity, plutonium toxicity, and the Price-Anderson Act

  5. Alternative Energy for Higher Education

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cherney, PhD

    2012-02-22

    This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time dashboard and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.

  6. What's Next for Alternative Energy?

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal, B.; Paranikas, P.; Rose, J.

    2010-11-15

    Conventional energy sources will remain the bulk of the world's energy mix for at least the next few decades. Yet there are several alternative-energy technologies that are approaching inflection points in their development and could have an impact on the global energy landscape far sooner than commonly assumed. Other alternative-energy technologies, meanwhile, will remain largely vision and promise for the foreseeable future. This report looks at the prospects for a range of alternative-energy technologies, including wind and solar.

  7. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  8. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  9. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...... complexity of the fermentation vessel. The airlift reactor was identified as a potential high energy efficiency technology for enzyme production with excellent chances for success. Two different pilot plant configurations of the airlift reactor technology were tested in nine fermentations. The headspace...

  10. Oil prices and the stock prices of alternative energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Irene; Sadorsky, Perry [Schulich School of Business, 4700 Keele Street, Toronto, Ontario (Canada)

    2008-05-15

    Energy security issues coupled with increased concern over the natural environment are driving factors behind oil price movements. While it is widely accepted that rising oil prices are good for the financial performance of alternative energy companies, there has been relatively little statistical work done to measure just how sensitive the financial performance of alternative energy companies are to changes in oil prices. In this paper, a four variable vector autoregression model is developed and estimated in order to investigate the empirical relationship between alternative energy stock prices, technology stock prices, oil prices, and interest rates. Our results show technology stock prices and oil prices each individually Granger cause the stock prices of alternative energy companies. Simulation results show that a shock to technology stock prices has a larger impact on alternative energy stock prices than does a shock to oil prices. These results should be of use to investors, managers and policy makers. (author)

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Schools Serving as Centres for Dissemination of Alternative Energy Know-How and Technologies: Evidence from Southern Ethiopia

    Science.gov (United States)

    Dalelo, Aklilu

    2008-01-01

    The school curricula are widely believed to be the best vehicle for generating public awareness of and action related to areas of energy concern. In an attempt to build the capacity of schools to address key environmental issues in Ethiopia, a pilot project had been designed in 2004. The principal aim of the project was to bring about positive…

  14. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  15. The CEA and alternative energies. 8 April 2010 press conference

    International Nuclear Information System (INIS)

    This document presents the CEA's strategy in terms of alternative energies and the various implemented research programs which mainly concern the building sector and the transport sector. After a recall of the energy and climate context, a presentation of the NTE program (Nouvelles Technologies de l'Energie, new energy technologies), the different topics and projects are presented: photovoltaic solar energy and its integration in building; batteries, hydrogen and fuel cells for applications in transports; second-generation bio-fuels

  16. 40 CFR 35.2032 - Innovative and alternative technologies.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from...

  17. Potential of renewable and alternative energy sources

    OpenAIRE

    Konovalov, Vyacheslav Vasilievich; Pozharnitskaya, Olga Vyacheslavovna; Rostovshchikova, А.; Matveenko, Irina Alekseevna

    2015-01-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative a...

  18. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative

  19. Environmental impacts of energy alternatives

    International Nuclear Information System (INIS)

    Indian society today is concerned about the health and environmental risks of technologies. The major environmental issues of concern for technologies available for electricity generation are air emissions, management of wastes generated and land requirements. The production of electricity in India is primarily composed of a mix of thermal and hydroelectric power plants with nuclear energy currently contributing to an extent of slightly above 2.0%. For maintaining a decent living standard the present electricity generation has to be increased manifold and with the existing commercially available technologies this can lead to a greater impact on the environment in the immediate vicinity of plant unless a judicious mix is chosen. India which hardly contributed 1 of the global pollution in the year 1950 contributes about 20% now and with the growth in electricity generation its contribution will also be slightly increasing and hence environment will have to be one of the guiding factors in future choice of technologies for the growth of electric power generation. Indian coal has a very high ash content (30 - 50 %) and hence the fly ash problem in India can be severe. During the year 1993-94 approximately 33 million tonnes of fly ash was generated in India from the coal fired thermal power stations. The land requirement for disposal of this ash is continuously increasing. The disposal of fly ash near water bodies will also create difficulties as in addition to radionuclides, toxic trace elements may also get washed out. Pollution from the use of coal will have a definite effect on the environment in addition to depletion of the energy source

  20. Competitive Cost Analysis of Alternative Powertrain Technologies.

    OpenAIRE

    Redelbach, Martin; Propfe, Bernd; Friedrich, Horst E.

    2012-01-01

    This paper examines the cost competitiveness of different electrified propulsion technologies from hybrid cars to full battery electric vehicles in the time horizon 2010 to 2020. The assessment shows that the current TCO gaps for alternative drivetrains will increasingly converge over time mainly driven by decreasing production cost. However, the cost-efficiency of different powertrain architectures depends highly on the mileage a user expects to drive per year. In the mid-run, hybrid elec...

  1. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  2. Technological Change during the Energy Transition

    OpenAIRE

    van der Meijden, Gerard; Smulders, Sjak

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth through expanding varieties. During the energy transition, technological progress is non-monotonic over time: it declines initially, starts increasing when the economy approaches the regime shift, a...

  3. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth t

  4. EDITORIAL: Renewing energy technology Renewing energy technology

    Science.gov (United States)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  5. Emerging Energy Alternatives for the Southeastern States

    Science.gov (United States)

    Stefanakos, E. K. (Editor)

    1978-01-01

    The proceedings of the first symposium on emerging energy alternatives for the Southeastern States are presented. Some topics discussed are: (1) solar energy, (2) wood energy, (3) novel energy sources, (4) agricultural and industrial process heat, (5) waste utilization, (6) energy conservation and (7) ocean thermal energy conversion.

  6. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  7. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  8. Conservation as an alternative energy source

    Science.gov (United States)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  9. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  10. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  11. Alternative Energy Center, Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  12. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  13. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    in the flue gas when biomass is combusted. By co-firing with large amounts of CO2-neutral straw or wood (tomeet stringent CO2 emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop......The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...

  14. German energy technology prospects.

    Science.gov (United States)

    Popp, M

    1982-12-24

    After more than 25 years of development of nuclear power and almost 10 years of research and development in numerous areas of nonnuclear energy, there is now a good basis for judging the future prospects of energy technologies in the Federal Republic of Germany. The development of nuclear power has provided an important and economically advantageous new source of energy. Further efforts are needed to establish the nuclear fuel cycle in all stages and to exploit the potential of advanced reactors. In all other areas of energy technology, including energy conservation, new energy sources, and coal, economics has turned out to be the key problem, even at today's energy prices. Opportunities to overcome these economic problems through additional R & D are limited. There is some potential for special applications, and there are many technologies that could contribute to the energy supply of developing countries. In general, however, progress in energy conservation and the use of renewable energy sources will depend on the degree to which energy policy measures can improve their economic basis. For some technologies, such as solar thermal power stations and coal liquefaction, large-scale economic deployment cannot be foreseen today. Instead of establishing costly demonstration projects, emphasis will be put on improving key components of these technologies with the aim of having the most advanced technology available when the economic parameters are more favorable.

  15. A New Challenge for Alternative Energy

    Institute of Scientific and Technical Information of China (English)

    Editorial Department of China Power Enterprise Management

    2009-01-01

    @@ The year 2008 sees a turning point in China's strategy of promoting energy saving and emissions reduction,as well as development of renewable energy.Oil price breaking US$140 and large area in China suffering from ice and snow disaster,a result of global warming,have both stressed the importance of developing alternative energy.Today,alterative energy accounts for a very small portion in China's power industry.Therefore,it is imminently required to speed up energy restructuring,to vigorously develop power generation with alternative energy such as nuclear energy,hydroenergy,wind energy,solar energy,biomass energy,geothermic energy,thus to realize sustainable development.

  16. Alternative energy development strategies for China towards 2030

    Institute of Scientific and Technical Information of China (English)

    Linwei MA; Zheng LI; Feng FU; Xiliang ZHANG; Weidou NI

    2009-01-01

    The purposes, objectives and technology path-ways for alternative energy development are discussed with the aim of reaching sustainable energy development in China. Special attention has been paid to alternative power and alternative vehicle fuels. Instead of limiting alternative energy to energy sources such as nuclear and renewable energy, the scope of discussion is extended to alternative technologies such as coal power with carbon capture and sequestration (CCS), electric and hydrogen vehicles. In order to take account of the fact that China's sustainable energy development involves many dimen-sions, a six-dimensional indicator set has been established and applied with the aim of comprehensively evaluating different technology pathways in a uniform way. The ana-lysis reaches the following conclusions: (a) in the power sector, wind power, nuclear power and hydro power should be developed as much as possible, while R&D of solar power and coal power with CCS should be strengthened continuously for future deployment. (b) in the transporta-tion sector, there is no foreseeable silver bullet to replace oil on a large scale within the time frame of 20 to 30 years. To ease the severe energy security situation, expedient choices like coal derived fuels could be developed. However, its scale should be optimized in accordance to the trade-off of energy security benefits, production costs and environmental costs. Desirable alternative fuels (or technologies) like 2nd generation biofuels and electrical vehicles should be the subject of intensive R&D with the objective to be cost effective as early as possible.

  17. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  18. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  19. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  20. Economy of Alternative Energy Sources

    OpenAIRE

    Pincová, Olga

    2012-01-01

    This diploma thesis is about electricity production generated from renewable energy sources and their relation to investors and to the objectives of Czech Republic set by European Union. First part of this theses introduces renewable energy sources and conditions for their usage. Second part evaluates, by means of econometrics and three predefined scenarios, whether it is possible to meet objectives given by Strategy Europe 2020. In the third part, these scenarios are evaluated by mi...

  1. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  2. Department of energy technology

    International Nuclear Information System (INIS)

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  3. Geothermal Energy : An Alternative Source of Energy

    Directory of Open Access Journals (Sweden)

    R R Shah

    2014-04-01

    Full Text Available Nowadays renewable sources are preferred over the non renewable source to generate the energy. The rapid rates of exhausting non-renewable resources have completed us to look out for new avenues in energy generation. According to global energy scenario, developed countries are adopting renewable resources as major source of energy. Geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Geothermal energy is derived from the hot interior of the earth. The earth is a reservoir of heat energy, most of which is buried and is observed during episodes of volcanic eruption at the surfaces. Geothermal is one of the most promising renewable source of energy which is plentiful, eco-friendly, reliable and clean source of energy available in earth crust. In our country there is wide scope for the utilization of geothermal energy with proper strategically approach to meet the energy requirement. The future prospects of this heat energy as a sustainable source of renewable energy are indeed promising. Today India is the fifth largest consumer of electricity and by 2030 it will become third largest overtaking Japan and Russia according to statistical data available by Energy Planning Commission, Government of India.

  4. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  5. Promoting Renewable Energy Technologies

    DEFF Research Database (Denmark)

    Olsen, Ole Jess; Skytte, Klaus

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies.......Wind power and combined heat and power (CHP) using biomass (for combustion, gasification or fermentation) are two of the most promising renewable technologies for generation of electricity. Denmark has a long and well-established tradition for these technologies that now account for approx. 25...

  6. Project finance for alternative energy

    International Nuclear Information System (INIS)

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It will set out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximise their prospects of raising bank finance. (author)

  7. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  8. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  9. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  10. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  11. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  12. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  13. Proceedings of the Alternate Energy Systems Seminar

    Science.gov (United States)

    1978-01-01

    The Alternative Energy Systems Seminar was held on March 30, 1978, and was sponsored jointly be the Southwest District Office of the U.S. Department of Energy and JPL. The seminar was an experiment in information exchange with the aim of presenting, in a single day, status and prospects for a number of advanced energy systems to a diverse, largely nontechnical audience, and to solicit post-seminar responses from that audience as to the seminar's usefulness. The major systems presented are: (1) Solar Photovoltaic; (2) Geothermal; (3) Cogeneration Power; (4) Solar Thermal; (5) Solar Heating and Cooling; (6) Wind Energy; and (7) Systems Considerations.

  14. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  15. Fossil Fuels, Alternative Energy and Economic Growth

    OpenAIRE

    Raul Barreto

    2013-01-01

    We present a theoretical framework that incorporates energy within an endogenous growth model. The model explicitly allows for the interaction and substitution between fossil fuels, defined as a non-renewable resource derived from some fixed initial stock, and alternative energy, defined as renewable resource whose production requires capital input. The dynamics of the model depict a unique balance growth to a saddle point. The consumption path temporarily peaks, when fossil fuels are plentif...

  16. A Course on Energy Technology and Policy

    Science.gov (United States)

    Edgar, Thomas F.

    2007-01-01

    The emerging energy situation in the United States puts chemical engineering at the forefront of the large research and education effort that will need to be undertaken during the next 20 years. Chemical engineering undergraduates and graduate students will need to be literate on energy alternatives and the interconnection of technology,…

  17. Energy and technology review

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers

  18. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  19. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  20. Technology-Based Classroom Assessments: Alternatives to Testing

    Science.gov (United States)

    Salend, Spencer J.

    2009-01-01

    Although many teachers are using new technologies to differentiate instruction and administer tests, educators are also employing a range of technology-based resources and strategies to implement a variety of classroom assessments as alternatives to standardized and teacher-made testing. Technology-based classroom assessments focus on the use of…

  1. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  2. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  3. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O' Neal, E.; Van Dyke, P. (eds.)

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  4. Energy and technology review

    International Nuclear Information System (INIS)

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  5. Alternatives - talk about energy differently. Radioactive waste a societal issue

    International Nuclear Information System (INIS)

    ''Alternatives'' is an information magazine proposed by the Areva Group, a world nuclear energy leader. It is devoted to the public information on topics of the Group activities. This issue deals with the fusion technology, the strengths and weaknesses of interconnected networks, the undersea tidal power farms, the danish paradox which has the highest levels of CO2 emissions despite the use of wind energy, the international community renewed commitment to renewable energy, the hydrogen, the low speed wind turbines and the future miniature fuel cells. A special interest is given to the radioactive wastes management. (A.L.B.)

  6. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  7. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    , including the direct-drive solution without gearbox. The technology solutions are strongly influenced by the development of the international industry with a global market for components and a trend towards a “shared” development effort in collaboration between the OEM’s and component sub-suppliers. Wind......This chapter describes the present mainstream development of the wind turbine technology at present. The turbine technology development trend is characterized by up-scaling to turbines with larger capacity for both onshore and offshore applications, larger rotors and new drivetrain solution...... turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  8. INDOT Fleet Management Strategies: Implementing Alternative Fuel Technologies

    OpenAIRE

    Rudolph, Joseph

    2012-01-01

    This session will discuss INDOT’s initiative to introduce vechicles fueled by propane and compressed natural gas (CNG) to their fleet. Successes to date will be shared as well as recommendations for fleet managers considering these alternative technologies.

  9. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    Science.gov (United States)

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  10. Electric car batteries: Avoiding the environmental drawbacks via alternative technologies

    Science.gov (United States)

    Warlimont, Hans; Olper, Marco

    1996-07-01

    In this article, we address the question of whether air pollution resulting from the pyrometallurgical winning, recycling, and casting of lead for car batteries is a serious threat to the environmental acceptability of introducing electric cars. Specifically, we describe an alternative to pyrometallurgical processes—an electrochemical process called CX-EWS that can be used for the winning and recycling of lead. Also presented is a new manufacturing route for battery grids; it employs a combination of electroforming, the codeposition of dispersoids, and the electrowinning of spent batteries. The technology cannot only eliminate the casting of conventional or expanded metal grids but can also serve to reduce battery weight and, thus, increase energy density.

  11. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.S. (ed.)

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  12. Energy and technology review

    International Nuclear Information System (INIS)

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base

  13. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  14. Understanding and accepting fusion as an alternative energy source

    International Nuclear Information System (INIS)

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs

  15. Alternative energy as a factor of ecological and energy security: features of Russia

    Directory of Open Access Journals (Sweden)

    Boris Nikolaevich Porfiryev

    2011-06-01

    Full Text Available This paper analyzes the current situation in the sphere of alternative energy engineering in Russia. On the one hand, the national economy and the population in general do not have problems with energy supply and Russia in general is the world's largest exporter of energy. On the other hand, centralized energy supply covers only one third of its territory and two-thirds are in the area of decentralized and autonomous power supply. In the current situation, energy sources that are independent of centralized networks based on clean technologies are a promising alternative. The paper assesses the current state of alternative energy development in the world and in Russia, its potential and prospects. It was found out that development and qualitative improvement of the regulatory framework should have priority for alternative energy mastering in Russia as well as active joint action of government, business and civic leaders to gradually consolidate in public consciousness and behaviour of a new culture of energy consumption based on the rules of economy and environmental safety. The analysis of the proposals for the development of alternative energy industries in Russia was made. Particular attention is paid to energy saving experience and energy efficiency in housing services and public utilities. Questions on the creation and development of formal and informal institutions of non-conventional energy sources usage are asked.

  16. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  17. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  18. Microalgae: An Alternative Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. Z. A. Saifullah

    2016-08-01

    Full Text Available This paper presents an overview on the potentiality of microalgae with particular emphasis as a sustainable renewable energy source for biodiesel. One of the most important dilemmas of the modern world is to supply maximal amount of energy with minimal environmental impact. The total energy demand of our planet is increasing with population growth whereas the fossil fuel reserves are dwindling swiftly. Biodiesel produced from biomass is widely considered to be one of the most sustainable alternatives to fossil fuels and a viable means for energy security and environmental and economic sustainability. But as a large area of arable land is required to cultivate biodiesel producing terrestrial plants, it may lead towards food scarcity and deforestation. Microalgae have a number of characteristics that allow the production concepts of biodiesel which are significantly more sustainable than their alternatives. Microalgae possess high biomass productivity, oils with high lipid content, fast growth rates, possibility of utilizing marginal and infertile land, capable of growing in salt water and waste streams, and capable of utilizing solar light and CO2 gas as nutrients.

  19. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Science.gov (United States)

    2012-05-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed rulemaking. SUMMARY: The U.S....

  20. Conventional versus Alternative Energy Sources and their Economy

    OpenAIRE

    Jirková, Kateřina

    2012-01-01

    The aim of the diploma thesis is to deliver a complex and understandable knowledge about the issue of renewable sources of energy and its comparison to conventional sources of energy. For that reason the first part of this work contains theoretical background about renewable energy: definition of alternative sources of energy and conventional sources of energy, different options of alternative energy, pros and cons of alternative energy, analysis of the situation on the market with alternativ...

  1. Impact of alternative energy forms on public utilities

    Science.gov (United States)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  2. Study of Manpower Requirements by Occupation for Alternative Technologies in the Energy-Related Industries, 1970-1990. Volumes I, IIA, and III.

    Science.gov (United States)

    Gutmanis, Ivars; And Others

    The report presents the methodology used by the National Planning Association (NPA), under contract to the Federal Energy Administration (FEA), to estimate direct labor usage coefficients in some sixty different occupational categories involved in construction, operation, and maintenance of energy facilities. Volume 1 presents direct labor usage…

  3. Energy demand analysis in the workshop on alternative energy strategies

    Energy Technology Data Exchange (ETDEWEB)

    Carhart, S C

    1978-04-01

    The Workshop on Alternative Energy Strategies, conducted from 1974 through 1977, was an international study group formed to develop consistent national energy alternatives within a common analytical framework and global assumptions. A major component of this activity was the demand program, which involved preparation of highly disaggregated demand estimates based upon estimates of energy-consuming activities and energy requirements per unit of activity reported on a consistent basis for North America, Europe, and Japan. Comparison of the results of these studies reveals that North America requires more energy per unit of activity in many consumption categories, that major improvements in efficiency will move North America close to current European and Japanese efficiencies, and that further improvements in European and Japanese efficiencies may be anticipated as well. When contrasted with expected availabilities of fuels, major shortfalls of oil relative to projected demands emerge in the eighties and nineties. Some approaches to investment in efficiency improvements which will offset these difficulties are discussed.

  4. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  5. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  6. Energy Consumption and Technological Developments

    OpenAIRE

    Okorokov, V.R.

    1989-01-01

    This report determines an outline of the world energy prospects based on principal development trends of energy consumption analysed over a long period. According to the author, the development of energy systems will be determined in the nearest future (30-40 years) by contemporary energy technologies based on the exploitation of traditional energy resources, but in the more distant future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role.

  7. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  8. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  9. USD Catalysis Group for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  10. 77 FR 31756 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Science.gov (United States)

    2012-05-30

    ... Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable... proposed modifications to the regulations authorizing the use of alternative methods of determining...

  11. Proceedings of the International conference on energy alternatives/risk education V. 1

    International Nuclear Information System (INIS)

    This Proceedings volume on Energy Education within the context of the International Conference on Energy Alternatives/Risk Education contains papers on Energy Education, on Nuclear Education and on Risk Education. Ten papers concerning nuclear science and technology, and nuclear energy, were indexed and abstracted separately for the INIS database. (R.P.)

  12. Morgantown Energy Technology Center, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  13. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  14. Optimization methods for alternative energy system design

    Science.gov (United States)

    Reinhardt, Michael Henry

    An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study

  15. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  16. DUPIC technology as an alternative for closing nuclear fuel cycle

    International Nuclear Information System (INIS)

    The study of DUPIC technology as an alternative for closing nuclear fuel cycle has been carried out. The goal of this study is to understand the DUPIC technology and its possibility as an alternative technology for closing nuclear fuel cycle. DUPIC (Direct Use of PWR spent fuel In CANDU) is a utilization of PWR spent fuel to reprocess and fabricate become DUPIC fuel as nuclear fuel of Candu reactor. The synergy utilization is based on the fact that fissile materials contained in the PWR spent fuel is about twice as much as that in Candu fuel. Result of the study indicates that DUPIC is an alternative promising technology for closing nuclear fuel cycle. The DUPIC fuel fabrication technology of which the major process is the OREOX dry processing, is better than the conventional reprocessing technology of PUREX. The OREOX dry processing has no capability to separate fissile plutonium, thus give the impact of high nuclear proliferation resistance. When compared to once through cycle, it gives advantages of uranium saving of about 20% and spent fuel accumulation reduction of about 65%. Economic analysis indicates that the levelized cost of DUPIC cycle is cheaper by 0.073 mill$/kwh than that of once through cycle. (author)

  17. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  18. Technology and the diffusion of renewable energy

    International Nuclear Information System (INIS)

    We consider investment in wind, solar photovoltaic, geothermal, and electricity from biomass and waste across 26 OECD countries from 1991 to 2004. Using the PATSTAT database, we obtain a comprehensive list of patents for each of these technologies throughout the world, which we use to assess the impact of technological change on investment in renewable energy capacity. We consider four alternative methods for counting patents, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries. For each patent count, we create knowledge stocks representing the global technological frontier. We find that technological advances do lead to greater investment, but the effect is small. Investments in other carbon-free energy sources, such as hydropower and nuclear power, serve as substitutes for renewable energy. Comparing the effectiveness of our four patent counts, we find that both using only patents filed in multiple countries and weighting by family size improve the fit of the model.

  19. Biomass production and bioconversion to both fuel and food employing solar energy technology - An alternative to conventional farming and the conversion of food to fuel

    Science.gov (United States)

    Wise, D. L.

    1981-01-01

    A process for the bioconversion of high-yield biomass to both fuel and food, judged more efficient than the conventional production of soybean meal and methanol, is described. Attention is given the diversion of farm land for the production of a conventional food/energy crop, such as corn, that will be subsequently converted to a liquid fuel. The technique presented involves growing biomass at optimum crop yield, then converting it to synthesis gas and finally, through bioconversion, to single-cell protein and methanol. Background for the various aspects of the system and its preliminary engineering economics are provided.

  20. 40 CFR 35.908 - Innovative and alternative technologies.

    Science.gov (United States)

    2010-07-01

    ... grant. (v) Only if sewer related costs qualify as alternatives to conventional treatment works for small... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act... waste water treatment works. Such technologies may be used in the construction of waste water...

  1. Valuation of flexible solutions with alternative fuel cell energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Haahtela, T.; Surakka, T.; Malinen, P. [Helsinki Univ. of Technology, Espoo (Finland). BIT Research Centre

    2009-07-01

    Fuel cells are an emerging technology with high potential, but also with significant market uncertainty. Fuel cells are currently in the transition from field trials to commercial introduction, and firms need to consider whether the technology fulfils the reliability and cost requirements of their current and upcoming products. This paper presented a framework to assist managers in finding the suitable valuation method for comparing different alternatives with emerging fuel cell technology. The dynamic valuation approaches of decision tree analysis, real options and system dynamics were discussed as they help in choosing the optimal timing and product structure over a long time period. Three examples of applications with fuel cells were briefly presented. The paper also addressed how the suggested valuation methods could be applied to them. These applications included maritime buoys; removable crisis management energy source container; and electrification of public transportation. It was concluded that the fuel cell technology has already become economically feasible in certain application areas. Improving technical reliability and cost reductions will make fuel cells even more competitive alternatives in new application areas. 9 refs., 1 tab., 1 fig.

  2. Technology, energy and the environment

    Science.gov (United States)

    Mitchell, Glenn Terry

    This dissertation consists of three distinct papers concerned with technology, energy and the environment. The first paper is an empirical analysis of production under uncertainty, using agricultural production data from the central United States. Unlike previous work, this analysis identifies the effect of actual realizations of weather as well as farmers' expectations about weather. The results indicate that both of these are significant factors explaining short run profits in agriculture. Expectations about weather, called climate, affect production choices, and actual weather affects realized output. These results provide better understanding of the effect of climate change in agriculture. The second paper examines how emissions taxes induce innovation that reduces pollution. A polluting firm chooses technical improvement to minimize cost over an infinite horizon, given an emission tax set by a planner. This leads to a solution path for technical change. Changes in the tax rate affect the path for innovation. Setting the tax at equal to the marginal damage (which is optimal in a static setting with no technical change) is not optimal in the presence of technical change. When abatement is also available as an alternative to technical change, changes in the tax can have mixed effects, due to substitution effects. The third paper extends the theoretical framework for exploring the diffusion of new technologies. Information about new technologies spreads through the economy by means of a network. The pattern of diffusion will depend on the structure of this network. Observed networks are the result of an evolutionary process. This paper identifies how these evolutionary outcomes compare with optimal solutions. The conditions guaranteeing convergence to an optimal outcome are quite stringent. It is useful to determine the set of initial population states that do converge to an optimal outcome. The distribution of costs and benefits among the agents within an

  3. Technological research on alternative energy sources in Brazil: the case of biodiesel; Pesquisas tecnologicas sobre fontes alternativas de energia no Brasil: o caso do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Franca; Souza, Cristina Gomes de; Peixoto, Jose Antonio Assuncao [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This article aims to map the main characteristics of research projects promoted in Brazil on biodiesel, as part of the National Program for Production and Use of Biodiesel (PNPB), aiming to identify issues, such as: what are the types of plants studied, which is being searched and what the different partners involved. The survey was made on the basis of data available on the web site of the government www.biodiesel.gov.br, and showed the existence of 118 searches registered on the subject. The contents of the study addresses initially some relevant information on biodiesel and its peculiarities in Brazil. In the following sections are identified actions taken by the Brazilian government to create an environment to encourage technological development related to biodiesel, with emphasis on the PNPB and its lines of research. Finally, the results obtained from the database found are presented and discussed. Among other information, the study reveals that: the plants most studied are castor bean, soybeans and cotton, and the research on the biodiesel has focused on improvements in its characterization and quality control as well as in the production of the fuel itself. (author)

  4. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  5. Environmental effects of alternative energy policies

    International Nuclear Information System (INIS)

    The exponential increase of the energy consumption has reduced the possibility to pollute air and land so much that the detrimental external effects of economic activities must be regarded in energy modelling. That means to analyse the interdependent connections between the economic system and the environment and to picture the structure of the real system on a mathematical model. To do this, System Dynamics models were developed. Beside the relevant technical variables also sociological variables such as 'public pressure' or 'lobby pressure' were regarded. So it was possible to break open the 'ceteris paribus' assumption of the constant sociological and political influences. The environmental effect of various policies to meet the energy demand were critically examined in simulation runs. It was demonstrated that the pollution of the atmosphere will decrease in the beginning of the 80ies. This is based on the implementation of a new energy technology with a lower pollution and, on the other side, on the increasing amount of pollution control. (orig.)

  6. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  7. Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain

    International Nuclear Information System (INIS)

    The shift to a low carbon society is an issue of highest priority in the EU. For electricity generation, such a target counts with three main alternatives: renewable energies, nuclear power and carbon capture and storage. This paper focuses on the renewables’ alternative. Due to resource availability, a technology mix with a high share of PV and wind power is gaining increasing interest as a major solution for several EU member states and in part for the EU collectively to achieve decarbonization and energy security with acceptable costs. Due to their intermittency, the integration of high shares of PV and wind power in the electricity supply is challenging. This paper presents a techno-economic assessment of technology mix alternatives with a high share of PV and wind power in Spain, as an example. Thereby, the focus is on the option of increasing wind curtailment versus substituting rigid baseload generation in favor of the more flexible gas turbines and combined cycle gas turbines. - Highlights: ► The potential of power generation from renewable energy resources in the EU is illustrated. ► The LEC of the different technologies considered is calculated for today and future scenarios. ► An excel-based model for the technology mix assessment is applied using Spanish data. ► Technology mix alternatives with a high share of PV and wind power are assessed. ► The focus is on increasing wind curtailment vs. relying on more flexible power generation units.

  8. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  9. The CEA and alternative energies. 8 April 2010 press conference; Le CEA et les energies alternatives. Conference de presse du 8 avril 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document presents the CEA's strategy in terms of alternative energies and the various implemented research programs which mainly concern the building sector and the transport sector. After a recall of the energy and climate context, a presentation of the NTE program (Nouvelles Technologies de l'Energie, new energy technologies), the different topics and projects are presented: photovoltaic solar energy and its integration in building; batteries, hydrogen and fuel cells for applications in transports; second-generation bio-fuels.

  10. Consumption dynamics of primary-energy sources: The century of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Matias, Joao Carlos de; Devezas, Tessaleno Campos [Department of Electromechanical Engineering, University of Beira Interior, P-6201-001 Covilha (Portugal)

    2007-07-15

    The present article characterizes economically and socially the two past centuries, focusing the consumption development of several primary-energy sources, linking it with this century's reality. The main objective is to demonstrate the relationship between the substitution process of primary-energy sources and the socio-economic development. Our analysis focuses on four technological transformations that have already occurred, emphasizing some aspects of present technological transformations. Thus, the role of primary-energy sources in the development of each long economic wave is analysed, as well as its geopolitical, commercial and social importance. Finally, bearing in mind the past dynamics associated with long structural waves, and making use of technological forecasting tools (Logistic Substitution and Delphi Technique), a future perspective is presented in which the substitution process points toward alternative-energy sources. (author)

  11. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  12. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

    1997-04-01

    The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

  13. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro;

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  14. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  15. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  16. Alternative high-resolution lithographic technologies for optical applications

    Science.gov (United States)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  17. Conservation and renewable energy technologies for transportation

    Science.gov (United States)

    1990-11-01

    The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

  18. Conservation and renewable energy technologies for transportation

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

  19. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  20. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81). (GHT)

  1. Energy and technology review

    International Nuclear Information System (INIS)

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81)

  2. Global energy and technology trends

    International Nuclear Information System (INIS)

    from the world's nuclear power reactors has continued to climb steadily, although the amount of new nuclear capacity coming on line each year has dropped substanially since its peak in 1980s. Looking ahead to nuclear power's prospects in the new century, four features stand out: (1) new nuclear power plants are not being built fast enough to maintain nuclear power's 16% share of global electricity generation; (2) current expansion, as well as near-term and long term growth prospects, are centered in Asia; (3) but 2002 also saw some signs of revitalized growth in Western Europe and North america, where growth has stagnated because of economics, market liberalization, and excess capacity; (4) long-term projections for nuclear power, particularly in the event of international agreement to significantly limit greenhouse gas (GHG) emissions, are more bullish than near term trends. The key determining factor will be economics. In considering how to meet the world's growing need for enegy, it is important to recognize that each country is unique in itself and that every country uses a mix of energy supplies because: (1) different technologies are needed to meet diferent needs, e.g. for baseload power in contrast to peak power, or for meeting concentrated demand in megacities in contrast to that required by small users in remote areas; (2) evolution of the energy supply is uneven, and new technologies replace older ones in fits and starts and with overlaps; (3) different investors choose different technologies based on different requirements and perceptions about profitability and risk; (4) fast growing countries like China may need to expand all energy sources simultaneously just to keep up with growing demand. Moreover, the right mix for each country depends partly on how fast a country's energy demand is growing; on the country's energy resources and alternatives; on the available financing options and whether the investment is in a deregulated market that values rapid

  3. Cogeneration technology alternatives study. Volume 6: Computer data

    Science.gov (United States)

    1980-01-01

    The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.

  4. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Quirk, W.J. [eds.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  5. Washoe Tribe Alternative Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and CA

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  6. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    Science.gov (United States)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  7. The Aluminum Smelting Process and Innovative Alternative Technologies

    OpenAIRE

    Kvande, Halvor; Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenh...

  8. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    International Nuclear Information System (INIS)

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor

  9. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.

  10. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S. [eds.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure.

  11. Energy and Technology Review

    International Nuclear Information System (INIS)

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure

  12. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    International Nuclear Information System (INIS)

    The US Department of Energy's Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOXSM, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis

  13. Energy and Technology Review

    International Nuclear Information System (INIS)

    Three articles and two briefs discuss ongoing research at Lawrence Livermore National Laboratory. Topics in this issue include: construction of human chromosome library (brief); dispersion of liquified gases (brief); magma evolution; energy flow diagrams; and computer simulation of particulate flow

  14. Technology and energy at school

    International Nuclear Information System (INIS)

    The teaching of technology and energy in schools requires more than simply the transfer of information. Public attitudes towards technology often contain unacknowledged contradictions, and research has shown that programmes for greater public understanding of science depend for their success on context, motivation, and on the source of the information. Exploration of the methods of science, its motivations and its limitations, should provide the basis for teaching nuclear energy in schools

  15. Economic impulses to the implementation of alternative energy sources

    International Nuclear Information System (INIS)

    The factors are considered of macroeconomic regulation and microeconomic incentives of the implementation of alternative energy sources in condition of prevailing utilization of conventional energy sources. The analysis concludes that both state regulation and microeconomic incentives shift a time horizon of effective implementation of alternative sources nearer to the present. (author) 6 figs

  16. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  17. Energy and technology review

    International Nuclear Information System (INIS)

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets

  18. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets. (GHT)

  19. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    Science.gov (United States)

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  20. Land-Rich Colleges Explore Opportunities to Create Alternative-Energy Sources

    Science.gov (United States)

    Carlson, Scott

    2008-01-01

    In a time of expensive energy and concerns about climate change, land may be a major asset for colleges, providing a vastly different opportunity than it did in the past, when it was merely a place to set down new buildings, new campuses, or research parks. Since new alternative-energy technologies like wind and solar demand a lot of land--along…

  1. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  2. Energy and technology review

    International Nuclear Information System (INIS)

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch

  3. Barriers and possibilities for the emerging alternative lighting technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Andersen, Jan; Kjær, Tyge

    2009-01-01

    cope with this challenge in the future. Furthermore, even with the emergence of energy saving devices, the global ecological footprint is still rising. In this article, we discuss the main challenges that the emerging illumination technologies will have to deal with, if we really aim to achieve more...

  4. Energy and technology review

    International Nuclear Information System (INIS)

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures

  5. Global energy transitions : Renewable energy technology and non-renewable resources

    OpenAIRE

    Davidsson, Simon

    2015-01-01

    The global energy system is dominated by the use of fossil fuels. This system suffers from several problems, such as different environmental issues, while the long-term energy security is sometimes questioned. As an alternative to this situation, a transition to a global energy system based on renewable energy technologies, to a large extent solar and wind energy, is commonly proposed. Constructing the technology needed for such a transition requires resources and how fast this could happen i...

  6. Industry requirements for introduction of alternative energies with emphasis on hydrogen fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Delabbio, F. [Rio Tinto, Canadian Exploration Ltd., Toronto, ON (Canada); Starbuck, D. [Newmont Mining Corp., Denver, CO (United States); Akerman, A. [CVRD-Inco, Toronto, ON (Canada); Betournay, M.C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2007-07-01

    This paper discussed issues related to the use of alternate sources of energy in underground mining applications. Hydrogen power systems were examined in relation to operational drivers, available commercial supplies, site supplies, health and safety issues, capital and operating costs, mine production, and the role of government. Hydrogen power systems are being considered for mining applications in an effort to reduce greenhouse gas (GHG) emissions and reduce cooling and ventilation requirements. This article examined a range of issues that must be addressed before alternate energy systems such as hydrogen fuel cell technology can be used in larger-scale underground mining applications. The mining industry supports the development of new technologies. However, the introduction of alternate energy technologies must proceed in steps which include proof of concept testing, the development of generic infrastructure, power systems and regulations, and whole operating system studies. 13 refs., 1 fig.

  7. Energy and Technology Review

    International Nuclear Information System (INIS)

    A specialized laser amplifier for use with velocity-measuring systems is described which makes possible detailed measurements of explosion-driven targets extending over long times. The experimental and diagnostic facilities of the Bunker 801 project enables sensitive and thorough hydrodynamics tests on the high-explosive components of nuclear devices. An improved spectrometry system has been developed covering the energy range from 0.025 eV to 20 MeV for use in radiation monitoring, and a new material is being tested for the neutron dosimeter worn with identification badges

  8. New technologies and alternative feedstocks in petrochemistry and refining. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M. (eds.)

    2013-11-01

    This international conference paper provides a forum for chemists and engineers from refinery, petrochemistry and the chemical industry as well as from academia to discuss new technologies and alternative feedstocks in petrochemistry and refining with the special topic ''Shale Gas, Heavy Oils and Coal''. 23 Lectures and 18 Posters are presented. All papers are analyzed for the ENERGY database.

  9. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  10. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  11. Airports offer unrealized potential for alternative energy production.

    Science.gov (United States)

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  12. Sustainable Energy. Alternative proposals to Mercosur

    Energy Technology Data Exchange (ETDEWEB)

    Honty, G. [Centro de Estudios Uruguayo de Tecnologias CEUTA, Montevideo (Uruguay)

    2002-08-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation.

  13. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  14. An integrated approach to shaping the future of alternative energy in Canada

    Energy Technology Data Exchange (ETDEWEB)

    James, D. [EnergyINet Inc., Calgary, AB (Canada)

    2005-07-01

    EnergyINet Inc. is an energy innovation network that is part of the Alberta Energy Research Institute and the Alberta Government. Its mandate is to link industry, government and academia to facilitate innovation and research in energy. The organization's strategic goals are to maintain a competitive energy supply, take advantage of the shift in energy systems and put Canada at the forefront of integration between energy systems. EnergyINet's value-added approach is to develop an integrated strategy that results in better industry participation and technology transfer while reducing the risk of costly investment in technology. Current innovation programs focus on oil sands upgrading; clean coal technology with carbon sequestration; enhanced recovery; alternate and renewable energy; water management and carbon dioxide management. The organization's cross-cutting initiatives include capacity building; global intelligence; strategic communications and technology commercialization. EnergyINet's objective is develop energy resources that reduce dependence of fossil fuels while better utilizing existing energy sources to reduce greenhouse gas emissions. The strategy is to catalyze research and development to achieve an effective and environmentally suitable mix or alternate and renewable energy technologies. This presentation included graphs depicting Canadian energy sector growth from 1985 to the present; conversion of the Canadian economy to impure hydrogen for heating and transportation; an impure hydrogen value hierarchy; impure hydrogen implementation; and, hydrogen option examples such as wind electric power, hydrogen by electrolysis, electric power generation by hydrocarbon gasification, and distributed power generation with combined heat and power. It was noted that regulations and infrastructure are the key challenges facing hydrogen technology options in terms of production, transportation and applications. The action plan is to expand the

  15. Key energy technologies for Europe

    DEFF Research Database (Denmark)

    Jørgensen, B.H.

    2005-01-01

    This report on key energy technologies is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. Senior Scientist BirteHolst Jørgensen, Risø National Laboratory......, is responsible for the report, which is based on literature studies. Post Doc Stefan Krüger Nielsen, Risø National Laboratory, has contributed to parts of the report, including the description of the IEA energyscenarios, the IEA statistics on R&D and the description of the science and technology base of biomass...

  16. Alternative alkali resistant deNO{sub x} technologies

    Energy Technology Data Exchange (ETDEWEB)

    Buus Kristensen, S.; Due-Hansen, J.; Putluru, S.S.R.; Kunov-Kruse, A.; Fehrmann, R.; Degn Jensen, A.

    2011-04-15

    The aim of the project is to identify, make and test possible alkali resistant deNO{sub x} catalysts for use in biomass, waste or fossil fuelled power plants, where the flue gas typically has a high level of potassium compounds, which rapidly de-activate the traditional V{sub 2}O{sub 5}/TiO{sub 2} catalyst. Furthermore, new technologies are investigated based on a protective coating of the catalyst elements and selective reversible absorption of NO{sub x} with ionic liquids. Several promising alternative deNO{sub x} catalyst types have been made during the project: 1) V, Fe, CU based nano-TiO{sub 2} and nano-TiO{sub 2}-SO{sub 4}{sup 2-} catalysts; 2) V/ZrO{sub 2}-SO{sub 2}- and V/ZrO{sub 2}-CeO{sub 2} catalysts; V, Fe, Cu based Zeolite catalysts; 4) V, Fe, Cu based Heteropoly acid catalysts. Several of these are promising alternatives to the state-of the art industrial reference catalyst. All catalysts prepared in the present project exhibit higher to much higher alkali resistance compared to the commercial reference. Furthermore, two catalysts, i.e. 20 wt% V{sub 2}O-3-TiO{sub 2} nano-catalyst and the 4 wt% CuO-Mordenite zeolite based catalyst have also a higher initial SCR activity compared to the commercial one before alkali poisoning. Thus, those two catalysts might be attractive for SCR deNO{sub x} purposes even under ''normal'' fuel conditions in power plants and elsewhere making them strong candidates for further development. These efforts regarding all the promising catalysts will be pursued after this project has expired through a one year Proof of Concept project granted by the Danish Agency for Science, Technology and Innovation. Also the severe rate of deactivation due to alkali poisons can be avoided by coating the vanadium catalyst with Mg. Overall, the protective coating of SCR catalysts developed in the project seems promising and a patent application has been filed for this technology. Finally, a completely different approach to

  17. Alternative concept for a fast energy amplifier accelerator driven reactor

    International Nuclear Information System (INIS)

    Recently Rubbia et al. introduced a conceptual design of a Fast Energy Amplifier (EA) as an advanced innovative reactor which utilizes a neutron spallation source induced by protons as an external source in a subcritical array imbibed a molten lead coolant which, besides being breeder and waste burner, generates energy. This paper introduces some qualitative changes in Rubbia's concept such as more than one point of spallation, in order to reduce the requirement in the energy and current of the accelerator, and mainly to make a more flat neutron distribution. The subcritical core which in Rubbia's concept is an hexagonal array of pins immersed in a molten lead coolant is replaced by a concept of a solid lead calandria with the fuel elements in channels cooled by helium, allowing on line refueling or shuffling, and the utilization of a direct thermodynamic cycle (Brayton), which is more efficient than a vapor cycle. Although the calculations to demonstrate the feasibility of the EA alternative concept are underway and not yet finished, these ideas do not violate the basic physics of the EA, as showed in this paper, with evident advantages in the fuel cycle (on line refueling); reduced requirements in the accelerator complex, which is more realistic and economical in today accelerators technology; and finally the utilization of He as coolant compared with molten Pb is more close to the proved technology given the know how of gas cooled reactors and more efficient from the thermodynamic point of view, allowing simplification and the utilization in other process, besides electricity generation, as hydrogen generation. (author)

  18. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  19. Assessing Impacts of Alternative Renewable Energy Strategies

    OpenAIRE

    d'Artis Kancs; Hans Kremers

    2002-01-01

    The preparation, implementation, coordination and verification of policy measures is a complex and difficult process. This paper presents the first results of an empirical ex-ante analysis which evaluates the effects of renewable energy policies on the bioenergy sector applying an Applied General Equilibrium model. The empirical results suggest that the bioenergy sector benefits more from an indirect tax reduction than from the removal of fossil energy sector subsidies. Reductions in fossil e...

  20. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity. PMID:24699503

  1. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  2. ANALYSIS OF THE PROSPECTS OF SOLAR ENERGY AND OTHER ALTERNATIVE ENERGY SOURCES IN UKRAINE

    OpenAIRE

    Mogylko, O.

    2010-01-01

    The need to develop an alternative energy sources in Ukraine to increase energy efficiency and energy security it is explained in the article. The international experience of development of solar energy are analyzed. The prospects and other alternative energy sources in Ukraine are defined. The conclusions and recommendations to address the problems are identified.

  3. Alternative Energy Resources for Family House

    OpenAIRE

    Němec, David

    2015-01-01

    Tato bakalářská práce je zaměřena na problematiku dodávky tepelné energie pro rodinné domy z obnovitelných zdrojů. Cílem celé práce je poskytnout souhrn možností dodávek tepelné energie pomocí obnovitelných zdrojů (solární kolektory, tepelná čerpadla), po kterém následuje návrh a ekonomické zhodnocení systémů s jednotlivými těmito zdroji tepelné energie. V úvodní části je popsána energie Slunce, která tvoří převážnou část obnovitelné energie. Na tuto část navazuje rešerše s popisem, rozdělení...

  4. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  5. Alternative Dark Energy Models: An Overview

    CERN Document Server

    Lima, J A S

    2004-01-01

    A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed of $\\sim$ 1/3 of matter (baryonic + dark) and $\\sim$ 2/3 of an exotic component with large negative pressure, usually named {\\bf Dark Energy} or {\\bf Quintessence}. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, large scale structure, X-ray data from galaxy clusters, age estimates of globular clusters and old high redshift galaxies (OHRG's). Such results seem to provide the remaining piece of information connecting the inflationary flatness prediction ($\\Omega_{\\rm{T}} = 1$) with astronomical observations. Theoretically, they have also stimulated the current interest for more general models containing an extra component describing this unknown dark energy, and simultaneously accounting for the present accelerating stage of the Universe. An overlook in the literature shows that at least five dark energy candidates have been proposed in the context of general re...

  6. ALGAE AS AN ALTERNATIVE SOURCE OF ENERGY

    OpenAIRE

    Тітлова, О.А.

    2015-01-01

    Today humanity is beginning to understand the consequences of ill-considered use of energy resources. In the last decade  a new direction of the economy is actively developing – «The Blue Economy». Its aim is to find innovative solutions that are safe for the environment and society. Bioenergy is one of the directions of the «Blue Economy» which is actively developing lately. The article discusses the possibility, advisability and examples of the algae use as a feedstock for the energy resour...

  7. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  8. Discarded tires: energy conservation through alternative uses

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Wolsky, A.M.

    1979-12-01

    Scrap tires that are not recycled through retreading constitute a serious solid-waste problem, but also offer energy-conservation opportunities through their use as: (1) solid fuel (displaced energy = 15,000 Btu/lb or 35 kJ/g); (2) derived fuel and chemical feedstock (11,000 to 23,000 Btu/lb or 25 to 53.5 kJ/g); (3) virgin rubber compound substitute in traditional rubber products (34,000 to 40,000 Btu/lb or 79 to 93 kJ/g); and (4) asphalt additive for paving applications (90,000 Btu/lb or 210 kJ/g). Both the energy of the displaced fuel and material and the energy consumed preparing the tires for the above uses have been included, where possible, in these estimates. Also provided is a summary of the available data on the cost and requisite scale of operation for the various end use processes.

  9. Alternative energies. Keeping cool in Helsinki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Gatermann, R.

    2009-09-15

    For more than fifty years the combination of power generation with district heating has been the norm in Helsinki, Finland. A few years ago Helsinki Energy decided to integrate district cooling into the system, with great success. It showed that Helsinki is an excellent example of how the efficient use of fossil fuels can be environmentally friendly.

  10. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    OpenAIRE

    Giedrius Šiupšinskas; Solveiga Adomėnaitė

    2013-01-01

    The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water), solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to deter...

  11. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW he/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW he/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the

  12. The Alternative Investment Market and the Financing of Technological Innovation

    Directory of Open Access Journals (Sweden)

    Raffaele Visconti

    2014-06-01

    Full Text Available The Alternative Investment Market (AIM is characterized by the presence of numerous firms operating in sectors with a high rate of technological innovation. In this research we will deal with IPOs about companies active in the sector of Information Technology and Software & Computer Services. The purpose of the research is testing the market’s ability to attract the listing of new companies in these sectors and to examine the following questions: 1 Have the IPOs about economic sectors examined a concentration in specific periods? 2 Have firms’ average size, the average capital raised on the market and the share of capital on average placed with the initial offer, at the time of listing, changed during the analysed periods? We consider three periods. The first, from the birth of the market (1995 until the speculative bubble (2001, which follows the so-called dot.com boom. The second, from 2002 to 2007, beginning of the severe economic and financial crisis, and the third from 2008 until June 2013.

  13. Health and economic costs of alternative energy sources

    International Nuclear Information System (INIS)

    National energy policy requires realistic totalling of costs in assessing energy alternatives. The Biomedical and Environmental Assessment Division (BEAD) at Brookhaven is estimating health and environmental costs of energy production and use. It was estimated that the production of electric power from all sources in the USA in 1975 was associated with 2000-19,000 deaths and 29,000-48,000 disabilities; this is roughly 0.2-2% of total deaths in the USA for ages 1-74. The estimated health effects associated with a total fuel cycle standardized to produce 1010kWh electric power were: from coal, estimated deaths 10-200, estimated disabilities 300-500; from oil, estimated deaths 3-150, estimated disabilities 150-300; from gas, estimated deaths 0.2, estimated disabilities 20; from nuclear power, estimated deaths 1-3, estimated disabilities 8-30. The differences in the year 2000 between health impacts of the US energy system under normal growth expectations and under conditions of a nuclear moratorium were estimated. On the assumption that the nuclear moratorium would require 200 additional 1000-MW(e) coal-fired power plants and that, with improved control technology, sulphur emissions were equivalent to 0.5% sulphur coal (12,500Btu/lb), additional estimated deaths were 1500-18,000 annually. By the same assumptions, it turns out that a nationwide nuclear moratorium could lead to low economic losses initially that would rise rapidly after the year 2000, so that the cost to the USA in 2010 would be US $109x109. Summing the costs for 1975 through 2050, the present value of these losses would be US $77x109 or US $595x109, depending on whether public decisions are to be based on a 10% or 5% discount rate. (author)

  14. Geothermal energy resource: an alternative to energy source in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Ogala, J.S. [Nairobi Univ., Faculty of Science, Nairobi (Kenya)

    1999-07-01

    Kenya energy potential lies in the use of geothermal resources. Currently the country relies heavily on imported petroleum fuels and biomass. Electricity is derived from hydropower which is currently 570 MW with an additional 30MW imported from Uganda; thermal 136MW and geothermal 45MW. Geothermal potential in Kenya currently stands at 2000MW. Other potential areas include Suswa, Longonot, Menengai, Korosi, Paka, Silai, Emurungogolak, Namarunu, Barrier and Homa Hill. Geothermal exploration is taking place at Olkaria, Eburru and L. Bogoria, all in the Kenya rift valley. Other potential areas include the Nyanza rift. Exploitation of this potential would meet the current and future electricity needs of the country. Geothermal resources is a relatively environmentally friendly source of energy. The technology of production is well developed to minimise gas and water vapour emissions into the atmosphere. For example, at Olkaria Geothermal Station, the production system has a cooling tower where hot water steam mixture is cooled. Only 5% of the water, representing 70% of the condensed steam is lost from the cooling tower through evaporation. The cooled water, at a temperature of 23degC is injected back into the well for the recharge of the steam reservoir. (Author)

  15. Southern California Edison bets on energy alternatives

    Science.gov (United States)

    Riley, W. B.

    1981-08-01

    A 10-MW solar-thermal generating plant and a 100-MW integrated coal-gasification combined cycle (IGCC) power facility are being built to develop a wide range of renewable, alternative power sources by 1990. The solar-thermal generating plant will use steam at 500 C and 100 kg/sq cm to produce 10 MW of electricity. It consists of a 1818 heliostat array, each weighing 1155 kg and having 12 mirrors which are rotated at either 0.25 deg/min (for sun following) or 22.5 deg/min (for major focusing and defocusing). A master control system allows both fully automatic and manual operation, and a beam-characterization system permits the operator to check the alignment of each heliostat individually. A central receiver, consisting of 24 panels of tubing, produces steam at 500 C and 100 kg/sq cm. The thermal storage unit uses crushed granite to absorb 50 kWht/cu m, allowing the plant to operate after sundown. The IGCC plant integrates the coal-gasification plant and the combined-cycle unit, demonstrating operational flexibility and reliability, load-following capability, and compliance with environmental regulations. The gasifier produces 79,300 cu m/h of a mixture of 51% CO and 36% H at 1370 C,and the gas turbine regenerates 65 MW through its own generator.

  16. Energy rape seed - Non-food alternatives

    International Nuclear Information System (INIS)

    The aim of the project is to evaluate possibilities to use agrobiomass for several energy end use sectors. The reference is common European approach where ethanol and rape seed oil is produced for transportation sector. The production costs are approximately 3 - 4 times higher compared to non taxed refinery price of gasoline and diesel fuel. This is also the case for energy crops compared to peat and coal. For Finnish conditions several other options are studied including technical and economical assessments. Solid fuels in form of energy crops like reed canary grass, salix-SRF and straw are evaluated as a feed to multifuel fluid bed boilers and as a futuristic scenario also for flashpyrolysis oil production. Rape seed oil is tested by Neste Oy as a biocomponent in heating oil and as a biocomponent in diesel fuel in engines by VTT. According to present results about 10 - 20 % rape seed oil can be mixed unprocessed to heating oils. Agrofibre production is studied in a laboratory phase with two advanced cooking methods to produce a high value product as a fraction of a biorefinery. The aim of the project is to identify possible research and development paths for future activities. With present prices no agrobiomass is today economically competitive with other fuels. (author)

  17. Mesoporous Carbon-based Materials for Alternative Energy Applications

    Science.gov (United States)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  18. Nanostructured Materials for Renewable Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  19. Energy Technology Programs: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

  20. Alternatives - talk about energy differently. Radioactive waste a societal issue; Alternatives - parler autrement de l'energie. Dechets radioactifs un enjeu de societe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    ''Alternatives'' is an information magazine proposed by the Areva Group, a world nuclear energy leader. It is devoted to the public information on topics of the Group activities. This issue deals with the fusion technology, the strengths and weaknesses of interconnected networks, the undersea tidal power farms, the danish paradox which has the highest levels of CO{sub 2} emissions despite the use of wind energy, the international community renewed commitment to renewable energy, the hydrogen, the low speed wind turbines and the future miniature fuel cells. A special interest is given to the radioactive wastes management. (A.L.B.)

  1. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  2. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  3. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated-assessment model

    International Nuclear Information System (INIS)

    Improving the energy efficiency of building stock, commercial equipment, and household appliances can have a major positive impact on energy use, carbon emissions, and building services. Sub-national regions such as the U.S. states wish to increase energy efficiency, reduce carbon emissions, or adapt to climate change. Evaluating sub-national policies to reduce energy use and emissions is difficult because of the large uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change itself may undercut such policies. However, assessing all of the uncertainties of large-scale energy and climate models by performing thousands of model runs can be a significant modeling effort with its accompanying computational burden. By applying fractional–factorial methods to the GCAM-USA 50-state integrated-assessment model in the context of a particular policy question, this paper demonstrates how a decision-focused sensitivity analysis strategy can greatly reduce computational burden in the presence of uncertainty and reveal the important drivers for decisions and more detailed uncertainty analysis. - Highlights: • We evaluate building energy codes and standards for climate mitigation. • We use an integrated assessment model and fractional factorial methods. • Decision criteria are energy use, CO2 emitted, and building service cost. • We demonstrate sensitivity analysis for three states. • We identify key variables to propagate with Monte Carlo or surrogate models

  4. The influence of values on evaluations of energy alternatives

    NARCIS (Netherlands)

    Perlaviciute, G.; Steg, L.

    2015-01-01

    Although both promoted as sustainable, nuclear and renewable energy elicit different evaluations in people. People expect (whether true or not) different implications for the environment and for consumers' resources from these energy alternatives. But what factors define the perceived importance of

  5. Preparatory assistance project alternative energy sources. Summary of results

    International Nuclear Information System (INIS)

    This work is about the forest areas and the artificial forest wood survey carried out in the alternative energy sources framework project. The use of wood as fuel in Uruguay requires specific actions of the State to ensure the balanced management of natural energy resources

  6. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  7. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  8. Commercialization of sustainable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Balachandra, P. [Department of Management Studies, Indian Institute of Science, Bangalore 560 012 (India); Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara [Indira Gandhi Institute of Development Research, Goregaon (E), Mumbai 400 065 (India)

    2010-08-15

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  9. Bioleaching - an alternate uranium ore processing technology for India

    International Nuclear Information System (INIS)

    Meeting the feed supply of uranium fuel in the present and planned nuclear reactors calls for huge demand of uranium, which at the current rate of production, shows a mismatch. The processing methods at UCIL (DAE) needs to be modified/changed or re-looked into because of its very suitability in near future for low-index raw materials which are either unmined or stacked around if mined. There is practically no way to process tailings with still some values. Efforts were made to utilize such resources (low-index ore of Turamdih mines, containing 0.03% U3O8) by NML in association with UCIL as a national endeavor. In this area, the R and D work showed the successful development of a bioleaching process from bench scale to lab scale columns and then finally to the India's first ever large scale column, from the view point of harnessing such a processing technology as an alternative for the uranium industry and nuclear sector in the country. The efforts culminated into the successful operation of large scale trials at the 2 ton level column uranium bioleaching that was carried out at the site of UCIL, Jaduguda yielding a maximum recovery of 69% in 60 days. This achievement is expected to pave the way for scaling up the activity to a 100T or even more heap bioleaching trials for realization of this technology, which needs to be carried out with the support of the nuclear sector in the country keeping in mind the national interest. (author)

  10. Climate change and renewable energy alternatives for Antigonish

    International Nuclear Information System (INIS)

    Antigonish is located along the northeastern shores of mainland Nova Scotia, bounded by the Gulf of St. Lawrence and the Bay of St. George. This document investigated the local effects of climate change in the area and on known renewable energy alternatives that are currently being used around the world, and how those same options could be applied to Antigonish. Examples of each energy option were applied to industrial, institutional and residential sectors, and the local effects of climate change were also examined. The renewable energy alternatives were probed against a variety of criteria and were compared on a cost basis. Focusing on the resources available in Antigonish, each energy alternative was rated on a scale of 1 to 10, with one being the best option. The top 5 renewable energy alternatives for Antigonish were identified as: (1) geothermal heating through a heat pump; (2) solar thermal for small business, institutional or residential applications; (3) small scale wind for commercial, institutional or farm practices; (4) biomass plants for secondary material, particularly forestry residue; and, (5) low-head hydro generating stations. The broad range of uses for these renewable energy resources were described. In order to reduce dependence on traditional energy sources, the examples described the potential changes for industry, institutional and residential applications. 74 refs., 6 figs.

  11. User innovation in sustainable home energy technologies

    International Nuclear Information System (INIS)

    The new millennium has marked an increasing interest in citizens as energy end-users. While much hope has been placed on more active energy users, it has remained less clear what citizens can and are willing to do. We charted user inventions in heat pump and wood pellet burning systems in Finland in years 2005–2012. In total we found 192 inventions or modifications that improved either the efficiency, suitability, usability, maintenance or price of the heat pump or pellet systems, as evaluated by domain experts. Our analysis clarifies that users are able to successfully modify, improve and redesign next to all subsystems in these technologies. It appears that supplier models do not cater sufficiently for the variation in users' homes, which leaves unexplored design space for users to focus on. The inventive users can speed up the development and proliferation of distributed renewable energy technologies both through their alternative designs as well as through the advanced peer support they provide in popular user run Internet forums related to the purchase, use and maintenance of these technologies. There are several implications for how such users can be of benefit to energy and climate policy as well as how to support them. - Highlights: ► We clarify how citizen users are able to invent in home heating systems. ► We researched inventions that users did to heat pump and wood pellet burning systems. ► During the years 2005–2012 there were 192 inventions by users in Finland alone. ► Users were able to invent in practically all subsystems of these technologies. ► Users’ ability merits policy attention and can lead to new types of policy action

  12. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  13. Biogas : Animal Waste That Can be Alternative Energy Source

    OpenAIRE

    Tuti Haryati

    2006-01-01

    Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerob...

  14. New energy technologies in Singapore

    International Nuclear Information System (INIS)

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  15. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  16. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  17. APPLICATION OF ALTERNATIVE ENERGIES IN THE AUSTRALIAN OFFSHORE SECTOR

    Directory of Open Access Journals (Sweden)

    M. F. HJ. MOHD AMIN

    2016-09-01

    Full Text Available Fossil fuel is not practically renewable and therefore the world is at risk of fossil fuel depletion. This gives urgency to investigate alternative energies, especially for industries that rely entirely on energies for operations, such as offshore industry. The use of alternative energies in this industry has been in place for a while now. This paper discusses the application of various alternative energy sources to assist powering the Goodwyn Alpha (A Platform, located on the North West Shelf (NWS of Australia. The three alternative energy sources under discussion are: wind, wave and solar. The extraction devices used are the Horizontal and Vertical-Axis Wind Turbines - for wind; Pelamis, PowerBuoy and Wave Dragon - for wave; and the solar parabolic dish of SunBeam and Photovoltaic (PV cells of SunPower - for solar. These types of devices are installed within the same offshore platform area. Technical, environmental and economic aspects are taken into consideration before the best selection is made. The results showed that PowerBuoy used for wave energy, is the best device to be used on offshore platforms where operators could save up to 9% of power; $603,083 of natural gas; and 10,848 tonnes of CO2 per year.

  18. Improving the Energy-Efficiency of Buildings: The Impact of Environmental Policy on Technological Innovation

    OpenAIRE

    Noailly, Joëlle

    2010-01-01

    This paper investigates the impact of alternative environmental policy instruments on technological innovations aiming to improve the energy efficiency in buildings. The empirical analysis focuses on three main types of policy instruments, namely regulatory energy standards in buildings codes, energy taxes as captured by energy prices and specific governmental energy R&D expenditures. Technological innovation is measured using patent counts for specific technologies related to energy efficien...

  19. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  20. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  1. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy...... technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  2. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  3. Global warming impacts of CFC alternative technologies: Combining fluorocarbon and CO2 effects

    International Nuclear Information System (INIS)

    Chlorofluorocarbons (CFCs) are on their way out, due to their role in stratospheric ozone depletion and the related international Montreal Protocol agreement and various national phaseout timetables. As the research, engineering development, and manufacturing investment decisions have ensued to prepare for this transition away from CFCs, the climate change issue has emerged and there has recently been increased attention on the direct global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, there has been less focus on the indirect global warming effect arising from end-use energy changes and associated CO2 emissions. A study was undertaken to address these combined global warming effects. A concept of Total Equivalent Warming Impact (TEWI) was developed for combining the direct and indirect effects and was used for evaluating CFC-replacement options available in the required CFC transition time frame. Analyses of industry technology surveys indicate that CFC-user industries have made substantial progress toward near-equal energy efficiency with many HCFC/HFC alternatives. The findings also bring into question the relative importance of the direct effect in many applications and stress energy efficiency when searching for suitable CFC alternatives. For chillers, household refrigerators, and unitary air-conditioning or heat pump equipment, changes in efficiency of only 2--5% would have a greater effect on future TEWI than completely eliminating the direct effect

  4. The relationship between agricultural technology and energy demand in Pakistan

    International Nuclear Information System (INIS)

    The purpose of this study was two fold: (i) to investigate the casual relationship between energy consumption and agricultural technology factors, and (ii) electricity consumption and technological factors in the agricultural sector of Pakistan. The study further evaluates four alternative but equally plausible hypotheses, each with different policy implications. These are: (i) Agricultural technology factors cause energy demand (the conventional view), (ii) energy demand causes technological factors, (iii) There is a bi-directional causality between the two variables and (iv) Both variables are causality independent. By applying techniques of Cointegration and Granger causality tests on energy demand (i.e., total primary energy consumption and electricity consumption) and agricultural technology factors (such as, tractors, fertilizers, cereals production, agriculture irrigated land, high technology exports, livestock; agriculture value added; industry value added and subsides) over a period of 1975–2010. The results infer that tractor and energy demand has bi-directional relationship; while irrigated agricultural land; share of agriculture and industry value added and subsides have supported the conventional view i.e., agricultural technology cause energy consumption in Pakistan. On the other hand, neither fertilizer consumption and high technology exports nor energy demand affect each others. Government should form a policy of incentive-based supports which might be a good policy for increasing the use of energy level in agriculture. - Highlights: ► Find the direction between green technology factors and energy demand in Pakistan. ► The results indicate that there is a strong relationship between them. ► Agriculture machinery and energy demand has bi-directional relationship. ► Green technology causes energy consumption i.e., unidirectional relationship. ► Agriculture expansion is positive related to total primary energy consumption.

  5. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development

    Science.gov (United States)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  6. Energy efficient vehicles technology I

    Energy Technology Data Exchange (ETDEWEB)

    Baeker, Bernard [Dresden Univ. of Technology (Germany). Inst. of Automotive Technology Dresden - IAD; Morawietz, Lutz (eds.) [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics; IAM GmbH, Dresden (Germany)

    2011-07-01

    The ongoing demand for optimization of today's (auto-)mobility concepts towards increased efficiency and customer perceivable functionality can only be realized using novel mechatronic sensor, control and actuator systems. This development trend is especially evident in the field of alternative or hybrid/full electric powertrain systems of vehicles. This book originates from the 1{sup st} International Energy Efficient Vehicles Conference (EEVC 2011) which took place from June 30{sup th} - July 1{sup st} in Dresden, Germany. The special conference program for EEVC 2011 contained contributions and presentations by researcher, developers, product planners and managers of all main German and international OEMs, system suppliers and research institutes. So all the main topics related to energy efficient vehicles could be covered, as there are for example aerodynamics and thermal management, renewable energy management linked to mobile systems, hybrid power trains, semiconductors and driver assistance systems. Different types of vehicles such as cars, trains and even fork lift trucks were also discussed.

  7. Integrated system of alternative energy generation for fruits and fish agroindustry using clean technology; Sistema integrado de geracao de energia alternativa para agroindustria de fruta e peixe usando tecnologia limpa

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Santiago, B.H.S.; Queiroz, W.F. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: bunnohenrique@yahoo.com.br; Bayer, M. [Centro Tecnologico do Gas (CTGas), Natal, RN (Brazil)

    2004-07-01

    In the present work the study of again exploitation of the residues of vegetal biomass for improvement in agricultural communities search, in special in agrobusiness micron-plant applying the concept of cleaner production and searching technological innovation and of low cost. One develops in this work study and optimized of bioprocessors for energy production and co-products using itself synthesis and analysis of projects. Where the biomass residue is processed in reactor of pyrolysis for coal production, gas and bio oil. This gas will go to benefit the micron-plant since the same it will be used for the drying, processes of smoking, and improvements in general. The project was initiated with a bibliographical research for verification, study and involved election of existing technologies already and equipment. It was initiated a simulation of bioprocess through the Super Software Pro Design 4.9 for term the confirmation of the study make through bibliographical revision. They are in phase of developments the simulations in Software Orc2004 developed by our base of research with validation of the economic viability for agricultural environment. Two scenes had been created, where one used the conventional system of again exploitation of the coconut and the other with our innovation in study that uses the cashew residue in view of the great production in the State and Northeast region. Considering the viability of this process it is intended to apply this technology in agricultural communities as Bebida Velha, Parazinho, Serra do Mel and Pureza, cities of the RN, providing them an energy source of ample utility, resultants of the process, bringing innumerable benefits to the population as reduction of energy problems and improvement in the ambient aspects. (author)

  8. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  9. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  10. Social issues and energy alternatives: the context of conflict over nuclear waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, M.K.; Earle, T.C.; Perry, R.W.

    1980-06-01

    The perceived risks and benefits of electric power alternatives were used to explore the context of attitudes toward nuclear power. Supporters and opponents of nuclear power responded to thirty-three items which referred to five categories of energy issue: the production potential of electric, risks of those technologies, power generation technologies, energy conservation, comparisons of risks among technologies and comparisons between risks and benefits of each technology. The results are summarized. The nuclear supporters studied here do favor nuclear power. However, they believe that there are limited prospects for contributions from solar, wind and hydroelectric technologies. They also believe that there are serious disadvantages to conservation. Nuclear opponents, on the other hand, disagree that there are such limited prospects for solar and wind, although they are neutral on the prospects for increased hydro capacity. They also do not believe that conservation necessarily poses serious adverse consequences either for themselves or others.

  11. Social issues and energy alternatives: the context of conflict over nuclear waste. Final report

    International Nuclear Information System (INIS)

    The perceived risks and benefits of electric power alternatives were used to explore the context of attitudes toward nuclear power. Supporters and opponents of nuclear power responded to thirty-three items which referred to five categories of energy issue: the production potential of electric, risks of those technologies, power generation technologies, energy conservation, comparisons of risks among technologies and comparisons between risks and benefits of each technology. The results are summarized. The nuclear supporters studied here do favor nuclear power. However, they believe that there are limited prospects for contributions from solar, wind and hydroelectric technologies. They also believe that there are serious disadvantages to conservation. Nuclear opponents, on the other hand, disagree that there are such limited prospects for solar and wind, although they are neutral on the prospects for increased hydro capacity. They also do not believe that conservation necessarily poses serious adverse consequences either for themselves or others

  12. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  13. 77 FR 48148 - Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding, of Energy Alternatives Wholesale, LLC's application for...

  14. Comparative analysis of traditional and alternative energy sources

    International Nuclear Information System (INIS)

    The presented thesis with designation of Comparing analysis of traditional and alternative energy resources includes, on basis of theoretical information source, research in firm, internal data, trends in company development and market, description of the problem and its application. Theoretical information source is dedicated to the traditional and alternative energy resources, reserves of it, trends in using and development, the balance of it in the world, EU and in Slovakia as well. Analysis of the thesis is reflecting profile of the company and the thermal pump market evaluation using General Electric method. While the company is implementing, except other products, the thermal pumps on geothermal energy base and surround energy base (air), the mission of the comparing analysis is to compare traditional energy resources with thermal pump from the ecological, utility and economic side of it. The results of the comparing analysis are resumed in to the SWOT analysis. The part of the thesis includes t he questionnaire offer for effectiveness improvement and customer satisfaction analysis, and expected possibilities of alternative energy resources assistance (benefits) from the government and EU funds. (authors)

  15. Novel, low-cost alternative technologies to tackle practical, industrial conundrums – a case study of batteries

    Directory of Open Access Journals (Sweden)

    Chan Victor K. Y.

    2016-01-01

    Full Text Available Whereas batteries in comparison with most other means of energy storage are more environmentally friendly and economical in their operation, they are beset by low energy replenishment rates, low energy storage density, high capital cost of themselves, and high capital cost of energy replenishment infrastructures. Mainly based on ergonomics, this paper proposes a novel, low-cost alternative technology to practically and industrially make these weaknesses irrelevant to some extent without calling for revolutionary technological breakthroughs in material science, batteries’ microstructures, or battery manufacturing technologies. The technology takes advantage of modularization of battery systems, prioritization of charging and discharging of battery module(s according to ease of unloading and/or loading the battery module(s and/or ease of loading replacement battery module(s of the battery module(s.

  16. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  17. MRI device – alternative for electrical energy storage

    Directory of Open Access Journals (Sweden)

    Molokáč, Š.

    2008-01-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically difficult process. Such a process is marked by the energy losses, as the conversion of electrical energy into another form, is most frequently for example mechanical, and then back to the primary electrical form. Though, the superconducting magnetic energy storage (SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. Magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the application of superconducting magnet. After its rejection from operation, there is possibility of using such devices for energy storage purposes. Additionally, such a technology of storage is also ecological.

  18. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  19. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  20. Electric energy savings from new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  1. Harnessing Ocean Energy by Tidal Current Technologies

    OpenAIRE

    Nasir Mehmood; Zhang Liang; Jawad Khan

    2012-01-01

    The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today ma...

  2. Long-term alternative energy R and D strategies

    International Nuclear Information System (INIS)

    Within the coming decades a transition must be initiated from oil and gas to 'unlimited' primary energy sources, i.e., nuclear and solar energy. Ever more expensive fossil energy forms will have to provide for an intermediary solution to the growing global energy demand. While a rather clear-cut picture of the energy problem has emerged on the global level, a straightforward translation to the national or even to the company level is not available. The current study contract between the European Economic Community and the International Institute for Applied Systems Analysis (IIASA) is a first exercice designed to transfer the global results to the intermediary level of the ''Subregion'' of the European Community. In operational terms the contract aims at identifying long-term (up to 2030) alternative energy R and D strategies for twelve European countries that would be consistent with the global scenarios, identified by IIASA

  3. A Review of Renewable Energy Supply and Energy Efficiency Technologies

    OpenAIRE

    Abolhosseini, Shahrouz; Heshmati, Almas; Altmann, Jörn

    2014-01-01

    Electricity consumption will comprise an increasing share of global energy demand during the next two decades. In recent years, the increasing prices of fossil fuels and concerns about the environmental consequences of greenhouse gas emissions have renewed the interest in the development of alternative energy resources. In particular, the Fukushima Daiichi accident was a turning point in the call for alternative energy sources. Renewable energy is now considered a more desirable source of fue...

  4. Alternative forms of energy transmission from OTEC plants

    Energy Technology Data Exchange (ETDEWEB)

    Talib, A.; Konopka, A.; Biederman, N.P.; Blazek, C.; Yudow, B.

    1978-01-01

    The alternative forms of energy transmission from ocean thermal energy conversion (OTEC) plants are compared. The chemical energy carriers considered are the following: gaseous and liquid hhydrogen, liquid ammonia, methanol, gasoline, and methane. The assessment assumes that each of the above energy carriers were transported by barge and/or pipeline. The delivered costs of energy using the above chemical energy carriers are compared for different offshore distances. When comparing the delivered cost of chemical energy with transmission of electricity by submarine cables, the outputs are converted to a common form. Thus, in addition to presenting the production and transportation costs and overall energy efficiency of the chemical energy carriers, we have provided a discussion of the equipment, capital and operating costs, and efficiencies of converting the delivered hydrogen and ammonia into electricity. A concise technical assessment and economic analysis of components associated with the conversion, storage, transportation, and shore-based receiving facilities for the conversion of OTEC mechanical energy to chemical energy, and in some cases conversion of delivered chemical energy to electricity are presented.

  5. On brackish water desalination economics and alternative renewable energies in Mena countries

    International Nuclear Information System (INIS)

    Nowadays, water management in MENA, no longer exclusive to a sectoral issue pertaining to engineering and technical expertise such as irrigation, water supply and water storage, becomes a shared developmental challenge. In order to face an increasingly growing water crisis, attention on balancing the supply and demand for water given the current constraints, needs analysis of conventional and non conventional water resources from a range of perspectives, including considerations about technological dynamics and alternative renewable energies, which are highly recommended. Thanks to engaged technical progress enabling sensitive desalination cost reduction, water crisis could be of lower impacts. For this region being the world leader in desalination technology investments, we are obliged to rexamine the characteristics of alternative renewable energies. To prevent water shortage from being a constraint to economic development and social stability in MENA, we argue brackish water desalination as one of the most promising and viable options, notably in long term for future generations. This paper contains four sections. brackish water characteristics are clarified in section 1. Then in section 2, we focus on factors affecting both desalination costs and desalination implementation costs. A particular attention is spent in section 3 to electro-dialysis reverse (EDR), subsequent capital and O and M costs approximations. Besides, since there is a pressing need for brackish water desalination, which is energy intensive, alternative renewable energies related to desalination technologies are hightlighted in section 4.

  6. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  7. Energy alternatives and energy policy - a UK viewpoint

    International Nuclear Information System (INIS)

    1. To evaluate the role of new energy sources in meeting future needs it is necessary to choose the correct context with regard to pattern of energy usage and quality as well as quantity of energy required; 2. present official forecasts of exponential growth in energy demand are almost certainly wildly exaggerated, particularly in the electricity sector; 3. official statements identify an anticipated 'energy gap' which can be filled only with nuclear electricity; the data do not support any such conclusion, either as regards the 'gap' or as regards the capability of filling it with nuclear electricity; 4. the fast breeder reactor, the focus of future UK planning, has a long and depressing history everywhere it has been developed; its technical and economic characteristics seem likely to make virtually all other options cheaper, easier and safer; 5. nuclear fusion, if it can be developed at all, may remove an essential constraint on the amount of man-made energy added to the planetary system; 6. research and development of solar, wind, tidal and wave energy all warrant far more substantial support, although their wide-scale introduction will require many years; 7. nuclear proponents have implied that the choice is either nuclear electricity or sun, wind and waves; such an implication is without substance, since it ignores the reborn UK coal industry; 8. the UK should undertake a major programme of development of small-scale total-energy coal-fired fluidized-bed systems, on the urban sites of existing CEGB stations due for shut-down; 9. the public should insist that the planners look at the real world and plan accordingly. (author)

  8. Biomass gasification- a promising renewable energy technology for industries

    International Nuclear Information System (INIS)

    The demand for energy in the industrial sector is increasing to meet the growing activities due to the encouragement of the government in our country. This energy requirement is mostly thermal or electrical. To sustain the healthy trend there is an urgent need to look for alternate (renewable) sources of energy in addition to the measures of energy conservation wherever possible. One such very promising, matured, and advanced renewable energy technology is biomass gasification, offering a host of benefits. The use of this technology especially in the industrial sector, by taking the first hand practical examples from our experience of working in this area where it has been put to use is discussed. To further give an idea of the vast nature of its applicability different class of industries have been chosen highlighting the advantages derived by adopting this technology. (author). 8 refs., 3 figs

  9. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  10. Environmental aspects of solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  11. From basic science to social issue: the CEA's role in nuclear energy and alternative sources of energy

    International Nuclear Information System (INIS)

    By force of circumstance, thoroughgoing changes are under way in the ways we consume and produce energy. Research and development must respond to these changes by making technological innovations and proposing solutions that are safe, competitive, economic with regard to natural resources and respectful of the environment. The French ''Commissariat a l'Energie Atomique et aux energies alternatives'' (CEA) has a leading role to play through its large range of activities: fundamental research and technological research in various fields from biology to nuclear sciences via energy efficiency of buildings and solar energy and through its access to big experimental facilities like Orphee and Osiris reactors or peta-watt Lasers or Soleil synchrotron

  12. Refrigerator-freezer energy testing with alternative refrigerants

    Science.gov (United States)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  13. Technology assessment of alternative fuels for the transportation sector. Fact sheets on technology elements and system calculations for technology tracks; Teknologivurdering af alternative drivmidler til transportsektoren. Fakta-ark for teknologi-elementer og systemberegninger for teknologi-spor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    The report documents an analysis, which aims at evaluating technologies in connection with alternative fuels for the transportation sector. During the analysis process a method has been developed for consistent evaluation of alternative transportation fuels with the largest technological and economic potential. This appendix presents key fact sheets which substantiate the analysis presented in the report 'Technology assessment of alternative fuels for the transportation sector'. (BA)

  14. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  15. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  16. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  17. Ranking of sabotage/tampering avoidance technology alternatives

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effective alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets

  18. Ranking of sabotage/tampering avoidance technology alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.; Daling, P.M.; Fecht, B.A.; Gore, B.F.; Overcast, T.D.; Rankin, W.R.; Schreiber, R.E.; Tawil, J.J.

    1986-01-01

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effective alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.

  19. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    produced to evaluate the optimum mixing ratio. Based on these results, a monolith containing V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2} in 25 wt% sepiolite was produced, and evaluated with respect to the influence of space velocity, reaction temperature, and NH{sub 3}/NO feed ratio on the NO reduction efficiency. The last part of this thesis deals with the non-catalytic sorption of NO{sub x} in ionic liquids, collected in chapter 5. Since no previous studies of the absorption of NO in ionic liquids have been reported, a preliminary study was conducted to identify suitable solvents. Two resulting imidazolium-based candidates, namely [BMIM]OAc and [BMIM]OTf, were selected due to their impressively high sorption capacities. Both solvents examined here revealed solubilities about twofold higher than those previously reported for e.g. CO{sub 2}-capture in ionic liquids. Especially the [BMIM]OAc demonstrated extraordinary absorption capabilities, being able to retain around four NO molecules per molecule ionic liquid. However, [BMIM]OTf exhibited promising behavior due to its reversible absorption/desorption properties. This in principle allows recycling of the ionic liquid as well as harvesting the NO. The accumulated NO could hereby be used in e.g. the synthesis of nitric acid allowing production of value-added chemicals from waste flue gas effluent. Although additional understanding of the mechanisms of the presented system is required, the perspective of a selective NO stripping technology is a very interesting alternative to the catalytic removal of NO from industrial flue gases. (Author)

  20. Addressing Energy Poverty through Smarter Technology

    Science.gov (United States)

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  1. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    Science.gov (United States)

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  2. Emerging energy-efficient technologies for industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

    2004-01-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

  3. Energy Storage (II): Developing Advanced Technologies

    Science.gov (United States)

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  4. Contextual and psychological factors shaping evaluations and acceptability of energy alternatives : Integrated review and research agenda

    NARCIS (Netherlands)

    Perlaviciute, Goda; Steg, Linda

    2014-01-01

    Sustainable energy transitions will be hampered without sufficient public support. Hence, it is important to understand what drives public acceptability of (sustainable) energy alternatives. Evaluations of specific costs, including risks, and benefits of different energy alternatives have been linke

  5. Cost-Benefit Analysis For Alternative Low-Emission Surface Preparation/ Depainting Technologies for Structural Steel

    Science.gov (United States)

    Lewis, Pattie

    2007-01-01

    Stennis Space Center (SSC), Kennedy Space Center (KSC) and Air Force Space Command (AFSPC) identified particulate emissions and waste generated from the depainting process of steel structures as hazardous materials to be eliminated or reduced. A Potential Alternatives Report, Potential Alternatives Report for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, provided a technical analyses of identified alternatives to the current coating removal processes, criteria used to select alternatives for further analysis, and a list of those alternatives recommended for testing. The initial coating removal alternatives list was compiled using literature searches and stakeholder recommendations. The involved project participants initially considered approximately 13 alternatives. In late 2003, core project members selected the following depainting processes to be further evaluated: (1) Plastic Blast Media-Quickstrip(R)-A. (2) Hard Abrasive-Steel-Magic(R). (3) Sponge Blasting-Sponge-Jet(R). (4) Liquid Nitrogen-NItroJet(R). (5) Mechanical Removal with Vacuum Attachment-DESCO and OCM Clean-Air (6) Laser Coating Removal Alternatives were tested in accordance with the Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Evaluation Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel. Results of the testing are documented in the Joint Test Report. This Cost-Benefit Analysis (CBA) focuses on the three alternatives (Quickstrip(R)-A, SteelMagic (R), and Sponge-Jet(R)) that were considered viable alternatives for large area operations based on the results of the field demonstration and lab testing. This CBA was created to help participants determine if implementation of the candidate alternatives is economically justified. Each of the alternatives examined reduced Environmental

  6. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success. PMID:26667058

  7. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  8. Emerging energy-efficient technologies for industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-03-20

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  9. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  10. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  11. Solar energy – new photovoltaic technologies

    OpenAIRE

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiati...

  12. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  13. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  14. Alternatives to Industrial Work Placement at Dublin Institute of Technology

    OpenAIRE

    Bates, Catherine; Gamble, Elena

    2011-01-01

    In the current economic crisis, higher education graduates need transferable professional skills more than ever. They need resourcefulness, an ability to work reflectively, a sense of civic awareness and an impressive curriculum vitae. This case study analyses how Dublin Institute of Technology’s Programme for Students Learning With Communities provides cost-effective, sustainable solutions to these needs, offering an alternative to industrial work placement. Community-based learning and rese...

  15. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  16. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  17. Renewable (alternative) energies. Theoretical potentials, realistic future of the energy supply; Erneuerbare (alternative) Energien. Theoretische Potentiale, reale Zukunft der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.H. [Hochschule fuer Technik Suedwestfalen (Germany)]|[Institut fuer Technologie- und Wissenstransfer an der Hochschulabteilung Soest (Germany); Giber, J. [TU Budapest (Hungary). Inst. fuer Atomphysik

    2007-07-01

    The depletion of fossil fuels and the accumulation of greenhouse gases, whose effects are already making themselves felt, are impacting not only on technical but also on societal and political developments around the globe. The human demand for energy from fossil fuels is growing worldwide, and the depletion of these reserves can already be clearly perceived. This is incidentally also true of nuclear fuels, at least for those reserves that are exploitable with currently available technology. The use of renewable energies such as wind power, solar energy, geothermal energy, hydropower and biomass - to name just a few - appears at present to offer a solution to the future problems relating to energy supply and environment (global warming and follow-on effects). The technologies required for this are already well-advanced today. Over a period of several years the authors have collected data and facts on global energy scenarios, evaluated countless studies, studied the technologies required for tapping renewable energy potentials and performed their own calculations on the topic.

  18. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  19. Bionic models for new sustainable energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Tributsch, H. [Hahn-Meitner Inst., Dept. Solare Energetik, Berlin (Germany)

    2004-07-01

    Within the boundary conditions of an abundant, but diluted solar energy supply nature has successfully evolved sophisticated regenerative energy technologies, which are not yet familiar to human engineering tradition. Since until the middle of this century a substantial contribution of renewable energy to global energy consumption is required in order to limit environmental deterioration, bionic technologies may contribute to the development of commercially affordable technical options. Four biological energy technologies have been selected as examples to discuss the challenges, both in scientific and technological terms, as well as the material research aspects involved: photovoltaics based on irreversible kinetics, tensile water technology, solar powered protonic energy circuits, fuel cell catalysis based on abundant transition metals. (orig.)

  20. Alternative energy sources for non-highway transportation. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  1. Technology and alternative cancer therapies: an analysis of heterodoxy and constructivism.

    Science.gov (United States)

    Hess, D J

    1996-12-01

    Theories of the construction of technology are reviewed from the wider interdisciplinary conversation known as science and technology studies (STS) and from the growing field of the anthropology of science and technology. These theories are used to contribute to research situated at the intersection of the anthropology of alternative medicine and of medical technologies. Cases drawn from the research tradition on microbial theories of cancer are considered to show how unorthodox medical theories become embedded in technologies through choices in microscope design and treatment technologies. In turn, the technologies contribute to the heterodox standing of the researchers, their research, and their therapies.

  2. Barriers and possibilities for the emerging alternative lighting technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Kjær, Tyge; Andersen, Jan

    2009-01-01

    the incandescent lamp; However, the emergence of other illumination technologies such as Light Emitting Diodes (LEDs) are currently raising in question, whether the fluorescent lamp is the technology that best can reduce the (large) illumination cological footprint. Europe and more specifically Denmark, a country...... with a strong experience on photonic technologies, could contribute in reducing the lighting ecological footprint due to its human, and physical capitals related to this industry. Still Europe struggles with the paradox of losing productive jobs in this sector. This study will explore the question: What...... are the main possibilities and limitations for the Danish lighting Industry to help reducing the global illumination ecological footprint and what can be improved in the current illumination value chain in order to use the possibilities?...

  3. Fusion reactor technology impact of alternate fusion fuels

    International Nuclear Information System (INIS)

    The initial results of a study carried out to assess some of the technology implications of non-D-T fusion fuel cycles are presented. The primary emphasis in this paper is on D-D, catalyzed-D and D-3He fuel cycles. Tokamaks and field-reversed mirrors have been selected as sample confinement concepts. The technology areas considered include first wall design considerations, shielding requirements, fuel cycle requirements and some safety and environmental considerations. Conclusions resulting from the study are also presented

  4. Analysis of alternative strategies for energy conservation in new buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  5. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  6. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological...... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... development are one of the main causes for the very diverging results which have been obtained using bottom-up and top-down models for analysing the costs of greenhouse gas mitigation. One of the objectives for studies comparing model results have been to create comparable model assumptions regarding...

  7. Alternative administration routes and delivery technologies for polio vaccines.

    Science.gov (United States)

    Kraan, Heleen; van der Stel, Wanda; Kersten, Gideon; Amorij, Jean-Pierre

    2016-08-01

    Global polio eradication is closer than ever. Replacement of the live attenuated oral poliovirus vaccine (OPV) by inactivated poliovirus vaccine (IPV) is recommended to achieve complete eradication. Limited global production capacity and relatively high IPV costs compared to OPV spur the need for improved polio vaccines. The target product profile of these vaccines includes not only dose sparing but also high stability, which is important for stockpiling, and easy application important for (emergency) vaccination campaigns. In this review, the current status of alternative polio vaccine delivery strategies is given. Furthermore, we discuss the feasibility of these strategies by highlighting challenges, hurdles to overcome, and formulation issues relevant for optimal vaccine delivery. PMID:26912100

  8. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    Science.gov (United States)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  9. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  10. EMERGING TECHNOLOGY SUMMARY: ELECTRO-PURE ALTERNATING CURRENT ELECTROCOAGULATION

    Science.gov (United States)

    The Superfund Innovative Technology Evaluation (SITE) Program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development and Office of Solid W...

  11. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  12. Harnessing Ocean Energy by Tidal Current Technologies

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today makes it possible to extract energy from tides. The growing interest in exploring tidal current technologies has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The purpose of this study is to present a comprehensive review of tidal current technologies to harness ocean energy. The ocean energy resources are presented. The author discusses tidal energy technologies. The tidal current turbines are discussed in detail. The author reviews today’s popular tidal current technologies. The present status of ocean energy development is also reported.

  13. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  14. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  15. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  16. Technological learning in the energy sector

    NARCIS (Netherlands)

    Junginger, H.M.; Lako, P.; Lensink, S.; van Sark, W.G.J.H.M.; Weiss, M.

    2008-01-01

    Technology learning is a key driver behind the improvement of (energy) technologies available to mankind and subsequent reduction of production costs. Many of the conventional technologies in use today have already been continuously improved over decades, sometimes even a century. In contrast, many

  17. Toward a Concept of Facilitative Theorizing: An Alternative to Prescriptive and Descriptive Theory in Educational Technology

    Science.gov (United States)

    Yanchar, Stephen C.; Faulconer, James E.

    2011-01-01

    This article presents the concept of facilitative theorizing as an alternative to prescriptive and descriptive theory in educational technology. The authors contend that these traditional forms of theory do not offer sufficient assistance to practitioners as they go about everyday design work. Facilitative theorizing, as an alternative, is…

  18. INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V.; Richardson, John Grant

    2000-03-01

    A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.

  19. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  20. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    metrics exist for defining land use impacts of energy technologies, with little consensus on how much total land is impacted or is necessary. Here we characterize the land use requirements of energy technologies by comparing various metrics from different studies, providing ranges of the potential land impact from alternative energy scenarios. Land use requirements for energy needs under these scenarios are compared with projected land use requirements for agriculture to support a growing population. The water implications of various energy and food scenarios are analyzed to provide insights into potential regional impacts or conflicts between sectors.

  1. Reading comprehension as an alternative tool for teaching science and nuclear technology

    International Nuclear Information System (INIS)

    In recent decades, the vast amount of information originated in the production of knowledge and its applications, has highlighted the importance of being independent readers, critics, and able to interpret written material circulating referred to scientific and technological issues, that invade the people's daily life. Moreover, in the last stage of education system of all future citizens of the country, the results of many diagnoses have highlighted the difficulties of young students to understand the texts related to science and technology. However, simultaneously with these weaknesses, students permanently express the need to relate science and technology to everyday life, and are interested in the discussion of the news related to atomic energy spread by the mass media. This duality lack of interest in reading vs interest in knowledge in certain subjects, is what has been taken into account when proposing this pedagogical approach that simultaneously involves several aspects. From the need to find a trigger for the treatment of a particular issue, to familiarization of students with the vocabulary and methodology of science ill the debate on the characteristics of specific technological applications of nuclear technology. Considering particularly the last of these factors, since 2011 has been developed in Jose Maria Paz School of Cordoba, Reading Comprehension Experience, using texts with scientific and technological contents published by Institute for Energy and Development (IEDS) of the National Atomic Energy Commission (CNEA) in Knowledge Leaves Series, as a methodological tool, to bring students to the physics of the atom and matter. The reading strategy used is based on the hypothesis of the type of questions being asked about the contents, can help students to develop reading strategies for comprehension and thus contribute positively to his learning. With this proposal it has been observed an increased on student interest in learning natural science

  2. Energy Technology Innovation in Brazil

    OpenAIRE

    Nnaemeka Vincent Emodi; Zorig Bayaraa; Samson D. Yusuf

    2015-01-01

    The Brazilian electricity sector has witnessed numerous technological changes and has evolved to become a global leader in clean technology sales, both to the domestic and foreign market. A lot of factors contributed to the innovative activities in its electricity sector which includes both government and FDI contribution. This paper reviewed the past and current technology innovation in the country’s electricity sector with some concentration on the patent, and research and development. Some...

  3. Demonstration of alternative traffic information collection and management technologies

    Science.gov (United States)

    Knee, Helmut E.; Smith, Cy; Black, George; Petrolino, Joe

    2004-03-01

    Many of the components associated with the deployment of Intelligent Transportation Systems (ITS) to support a traffic management center (TMC) such as remote control cameras, traffic speed detectors, and variable message signs, have been available for many years. Their deployment, however, has been expensive and applied primarily to freeways and interstates, and have been deployed principally in the major metropolitan areas in the US; not smaller cities. The Knoxville (Tennessee) Transportation Planning Organization is sponsoring a project that will test the integration of several technologies to estimate near-real time traffic information data and information that could eventually be used by travelers to make better and more informed decisions related to their travel needs. The uniqueness of this demonstration is that it will seek to predict traffic conditions based on cellular phone signals already being collected by cellular communications companies. Information about the average speed on various portions of local arterials and incident identification (incident location) will be collected and compared to similar data generated by "probe vehicles". Successful validation of the speed information generated from cell phone data will allow traffic data to be generated much more economically and utilize technologies that are minimally infrastructure invasive. Furthermore, when validated, traffic information could be provided to the traveling public allowing then to make better decisions about trips. More efficient trip planning and execution can reduce congestion and associated vehicle emissions. This paper will discuss the technologies, the demonstration project, the project details, and future directions.

  4. Sustainable Development of Sewage Sludge-to-Energy in China: Barriers Identification and Technologies Prioritization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang;

    2017-01-01

    proposed. After the grey DEMATEL analysis, a grey Multi-Criteria Decision Making (MCDM) framework which allows multiple decision-makers/stakeholders to use linguistic terms to participate in the decision-making for prioritizing the alternative technologies for sludge-to-energy was developed......In order to promote the sustainable development of sludge-to-energy industry and help the decision-makers/stakeholders to select the most sustainable technology for achieving the sludge-to-energy target, this study aims at using grey Decision Making Trial and Evaluation Laboratory (DEMATEL...... is feasible for group decision-making and sustainability assessment of the alternative technologies for sludge-to-energy....

  5. Depletion of energy or depletion of knowledge alternative use of energy resources

    International Nuclear Information System (INIS)

    This research paper is about the depletion of Energy resources being a huge problem facing the world at this time. As available energy sources are coming to a shortage and measures are be taken in order to conserve the irreplaceable energy resources that leads to sustainability and fair use of energy sources for future generations. Alternative energy sources are being sought; however no other energy source is able to provide even a fraction of energy as that of fossil fuels. Use of the alternative energy resources like wind corridors (Sindh and Baluchistan), fair use of Hydro energy (past monsoon flooding can produce enough energy that may available for next century). Uranium Resources which are enough for centuries energy production in Pakistan (Dhok Pathan Formation) lying in Siwalick series from Pliocene to Pleistocene. Among all of these, my focus is about energy from mineral fuels like Uranium from Sandstone hosted deposits in Pakistan (Siwalik Series in Pakistan). A number of uranium bearing mineralized horizons are present in the upper part of the Dhok Pathan Formation. These horizons have secondary uranium mineral carnotite and other ores. Uranium mineralization is widely distributed throughout the Siwaliks The purpose of this paper was to introduce the use of alternative energy sources in Pakistan which are present in enough amounts by nature. Pakistan is blessed with wealth of natural resources. Unfortunately, Pakistan is totally depending on non renewable energy resource. There are three main types of fossil fuels: coal, oil and natural gas. After food, fossil fuel is humanity's most important source of energy. Pakistan is among the most gas dependent economies of the world. Use of fossil fuel for energy will not only increase the demand of more fossils but it has also extreme effects on climate as well as direct and indirect effects to humans. These entire remedial thinking can only be possible if you try to use alternative energy resources rather than

  6. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  7. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  8. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.W.; Yoon, K.S.; Cho, B.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)] [and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  9. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  10. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  11. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  12. Enriching stable isotopes: Alternative use for Urenco technology

    Energy Technology Data Exchange (ETDEWEB)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D. [URENCO-NL, Almelo (Netherlands)

    1996-12-31

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope {sup 235}U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company`s uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco`s stable isotopes business.

  13. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  14. Biogas : Animal Waste That Can be Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Tuti Haryati

    2006-09-01

    Full Text Available Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerobe bacteria activity in aerobic digester . Anaerobic digestion process is basically carried out in three steps i.e. hydrolysis, acidogenic and metanogenic . Digestion process needs certain condition such as C : N ratio, temperature, acidity and also digester design . Most anaerobic digestions perform best at 32 - 35°C or at 50 - 55°C, and pH 6 .8 - 8 . At these temperatures, the digestion process essentially converts organic matter in the present of water into gaseous energy . Generally, biogas consists of methane about 60 - 70% and yield about 1,000 British Thermal Unit/ft 3 or 252 Kcal/0.028 m3 when burned . In several developing countries, as well as in Europe and the United States, biogas has been commonly used as a subtitute environmental friendly energy . Meanwhile, potentially Indonesia has abundant potential of biomass waste, however biogas has not been used maximally .

  15. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  16. Integrated alternative energy systems for use in small communities

    Science.gov (United States)

    Thornton, J.

    1982-01-01

    This paper summarizes the principles and conceptual design of an integrated alternative energy system for use in typical farming communities in developing countries. A system is described that, utilizing the Sun and methane produced from crop waste, would supply sufficient electric and thermal energy to meet the basic needs of villagers for water pumping, lighting, and cooking. The system is sized to supply enough pumping capacity to irrigate 101 ha (249 acres) sufficiently to optimize annual crop yields for the community. Three economic scenarios were developed, showing net benefits to the community of $3,578 to $15,547 anually, payback periods of 9.5 to 20 years, and benefit-to-cost ratios of 1.1 to 1.9.

  17. Environmental Value Considerations in Public Attitudes About Alternative Energy Development in Oregon and Washington

    Science.gov (United States)

    Steel, Brent S.; Pierce, John C.; Warner, Rebecca L.; Lovrich, Nicholas P.

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.

  18. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...... to photovoltaics with a special focus on the new photovoltaic technologies that promises ultra low cost solar cells. Unlike many other renewable energy technologies, a pipeline of new technologies is established and forms a road towards low cost energy production directly from the sun....

  19. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  20. Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level

    International Nuclear Information System (INIS)

    Many countries, especially in Europe, have ambitious goals to transform their national energy systems towards renewable energies. Technological change in both renewable production and efficient use of energy can help us to make these targets come true. Using a panel of German firms linked to the PATSTAT patent data, we study inventions in both types of energy technologies and investigate the role prior inventions as technology-push factors play for both types of technologies. In addition and more importantly, we study whether previous inventions in non-energy technologies also stimulate technical change in energy technologies and whether this effect differs between energy conservation and renewable energy technologies

  1. A Project-Based, STEM-Integrated Alternative Energy Team Challenge for Teachers

    Science.gov (United States)

    Felix, Allison; Harris, John

    2010-01-01

    The topic of alternative energy is not only relevant to a multitude of issues today, it is also an effective vehicle for developing instruction that applies across a variety of content disciplines and academic standards. Since many of the issues associated with alternative energy are open-ended, alternative energy also lends itself to…

  2. The Alternative Way of Creating Infographics Using SVG Technology

    Directory of Open Access Journals (Sweden)

    Sandra Pavazza

    2012-07-01

    Full Text Available The article develops new ways of creating and using interactive SVG infographics. The emphasis lies on the compatibility of SVG standard with other web standards, like XML, XSL, CSS, SMIL and ECMAScript, the advantages that it brings are particularly explored. There is a XSLT template developed which transforms XML data into SVG infographic, and the way of achieving complete control over data and data visualization is tested. This enabled the achieving of dynamic control of content and its presentation, and contributed to the results in reduced developing cost and time, better flexibility and reliability of the organizational system. The paper also studied the possibility to convey infographic message by adding interactivity, and explored technologies by means of which this can be achieved. The aspects of establishing a more efficient communication with end users, such as searchability and accessibility are also considered. SVG infographics are compared with other approaches for creating infographics in raster and vector techniques.

  3. IMPLEMENTING INFORMATION TECHNOLOGY: AN ALTERNATIVE FOR URBAN RESETTLEMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    Bauni Hamid

    2001-01-01

    Full Text Available Revitalizing slum-area has been recognized as one of the most complicated parts in urban resettlement program. With such a context we need a particular mode of communication to initiate and generate the project based on people's own aspiration. There are problem characteristics here, which are usually executed by Information Technology (IT. It is a potential to overcome the problem by using IT based on its ability to manage abundant information with various variables. At least there are three prospective opportunities in applying IT in this area. Firstly, it is the role of visualization, where computer can execute several visual features of the projects, which will be more representative than the previous ones. Secondly, it is the role of IT in generating the customization process to everyone involved in the projects. The last is the role of IT as executing tool for project's database management.

  4. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  5. Emerging Energy-Efficient Technologies for Industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  6. USD Catalysis Group for Alternative Energy - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  7. Final priority; Rehabilitation Services Administration--Assistive Technology Alternative Financing Program. Final priority.

    Science.gov (United States)

    2014-08-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Assistive Technology Alternative Financing Program administered by the Rehabilitation Services Administration (RSA). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. This priority is designed to ensure that the Department funds high-quality assistive technology (AT) alternative financing programs (AFPs) that meet rigorous standards in order to enable individuals with disabilities to access and acquire assistive technology devices and services necessary to achieve education, community living, and employment goals.

  8. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing

  9. Implications of solar energy alternatives for community design

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Steinitz, C.

    1980-06-01

    A graduate-level studio at the Harvard School of Design explored how a policy of solar-based energy independence will influence the design of a new community of approximately 4500 housing units and other uses. Three large sites outside Tucson (a cooling problem), Atlanta (a humidity problem), and Boston (a heating problem) were selected. Each is typical of its region. A single program was assumed and designed for. Each site had two teams, one following a compact approach and one following a more dispersed approach. Each was free to choose the most appropriate mix of (solar) technology and scale, and was free to integrate energy and community in the design as it saw fit. These choice and integration issues are key areas where our experience may be of interest to those involved in community design and solar energy.

  10. BIOGAS AS AN ALTERNATIVE ENERGY SOURCE TO PROMOTE INDIGENOUS COMMUNITIES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Carlos SABORÍO VÍQUEZ

    2013-01-01

    Full Text Available The key areas that determine the food and nutrition security are: availability, access, consumption and biological utilization. For this reason it is necessary to promote the health of vulnerable groups, in this case, indigenous communities, protecting and establishing conditions to ensure the human right to food. The initial plan focuses ondeveloping facilities for small swine and poultry farms, familiar, non-commercial. The main objective of the pigs raised at the site will be the production of animal waste in order to implement digesters for the production of biogas as an alternative energy source, the production of meat stays in the background, thinking only about the community consumption and helping to ensure their food source, from this perspective, the technologies applied to rural and indigenous progress are environmentally friendly, socially just, economically viable and culturally acceptable. The theme of rural and indigenous Development is focused on their food security and the use of alternative energies, considering that energy is a key element in achieving sustainable development in all sectors, therefore sought from a broad perspective solidarity and actively promote greater and more rational use of energy and the environment in remote communities, through diversification of supply sources and efficient use, thereby contributing toenvironmental conservation and reduction of health problems through the use of appropriate technologies.

  11. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  12. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  13. Emerging electrochemical energy conversion and storage technologies.

    Science.gov (United States)

    Badwal, Sukhvinder P S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  14. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  15. Evolution of competition in energy alternative pathway and the influence of energy policy on economic growth

    International Nuclear Information System (INIS)

    This work is devoted to the evolution of the competition of energy alternative pathway in China, and the influence of energy policy on economic growth by using a dynamical system method. Firstly, the relation between energy and economic growth is taken into account, and a dynamic evolution model is established. It is observed that Hopf bifurcation and chaotic behavior occurs with the varying investment in renewable energy production. Secondly, when there is no policy intervention in energy market, the evolution of competition in energy alternative pathway is also investigated. Thirdly, the system parameters are also identified by using an artificial neural network method on the basis of certain empirical statistical data in China, and the dynamics of the parameters-identified system are studied. Finally, the influences of energy policy on economic growth are empirically analyzed, and some policy recommendations are given based on the results of empirical analysis. - Highlights: • Modeling the energy economy system via the method of dynamic system. • Attaining the chaotic attractor of the energy production and economic system. • Discovering the Hopf bifurcation when the investment changes. • Proposing the alternative pathway of free competition in energy production. • Determining the turning points of parameters related to policy regulation

  16. The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and a Nuclear Venture

    OpenAIRE

    Verdeil, Éric; Verdeil, Eric

    2014-01-01

    International audience Metropolitan authorities and local business elites are often seen as major players in the energy transition in the city. Such energy transitions are mostly conceived of as low carbon technologies, which permit the retrofitting of urban infrastructure and the rebundling of metabolic circuits. This article contests these views by highlighting the major role of non-urban energy sector institutions and actors. By examining the connections between technology, space and en...

  17. Cost comparison of the satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Samsa, M.

    1981-04-01

    A framework is described for comparing the Satellite Power System (SPS) with various projected alternative energy sources on the basis of technical possibility, economic viability, and social and environmental acceptability. Each of the following energy sources is briefly described: conventional coal, light water reactor, coal gasification/combined cycle, liquid-metal fast-breeder reactor, central station terrestrial photovoltaic, fusion, and the SPS. The analysis consists of comparison of characterizations, side-by-side analysis, and alternative futures analysis. (LEW)

  18. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  19. BGP Ltd Adopts Energy-saving Technology

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ An exploration subsidiary of China National Petroleum Corporation (CNPC), the country's largest oil company, has agreed to use energy-saving technology developed by a Beijing firm in an attempt to slash costs.

  20. Energy modelling: Clean grids with current technology

    Science.gov (United States)

    Jacobson, Mark Z.

    2016-05-01

    The need for new energy storage is often seen as an obstacle to integrating renewable electricity into national power systems. Modelling shows that existing technologies could provide significant emissions reductions in the US without the need for storage, however.

  1. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  2. An Assessment Of The Life Cycle Costs And GHG Emissions For Alternative Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, C. Richard; Carias, Anibal; Ali, Mohammad; Wood, Nicholas; Morgenroth, Michael; Bridgeman, Andrew

    2010-09-15

    The best choices for supplying energy in a manner that can reduce emissions at a reasonable cost while still ensuring grid stability and reliability of supply is a matter of some debate. In this paper, a first principles analysis is performed to look at life-cycle costs and emissions as well as the amount of energy that is provided to the system from various low-emission alternatives, including wind, water, solar and nuclear power. These low-emission sources are then benchmarked against coal-fired energy production to establish a normalized assessment of the clean energy alternatives currently available.

  3. Cosmic Visions Dark Energy: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  4. Comic Visions Dark Energy: Technology

    CERN Document Server

    Dodelson, Scott; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uroš; Slosar, Anže; Trodden, Mark

    2016-01-01

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  5. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  6. Modified Gravity As An Alternative To Dark Energy

    CERN Document Server

    Duvvuri, V

    2005-01-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the late-time evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. We show that modifications of the form f( R) are ruled out by solar system tests of gravitation. In addition, we also review the Palatini method of variation for such theories and contrast it with the metric variation approach.

  7. Modified gravity as an alternative to dark energy

    Science.gov (United States)

    Duvvuri, Vikram

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the late-time evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. We show that modifications of the form f ( R ) are ruled out by solar system tests of gravitation. In addition, we also review the Palatini method of variation for such theories and contrast it with the metric variation approach.

  8. Variable time flow as an alternative to dark energy

    CERN Document Server

    Magain, Pierre

    2016-01-01

    Time is a parameter playing a central role in our most fundamental modelling of natural laws. Relativity theory shows that the comparison of times measured by different clocks depends on their relative motions and on the strength of the gravitational field in which they are embedded. In standard cosmology, the time parameter is the one measured by fundamental clocks, i.e. clocks at rest with respect to the expanding space. This proper time is assumed to flow at a constant rate throughout the whole history of the Universe. We make the alternative hypothesis that the rate at which cosmological time flows depends on the global geometric curvature the Universe. Using a simple one-parameter model for the relation between proper time and curvature, we build a cosmological model that fits the Type Ia Supernovae data (the best cosmological standard candles) without the need for dark energy nor probably exotic dark matter.

  9. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  10. Distributed technologies in California's energy future: A preliminary report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    The chapters in Volume 2 of Distributed Energy Systems in California's Future are: Environmental Impacts of Alternative Energy Technologies for California; Land Use Configurations and the Utilization of Distributive Energy Technology; Land Use Implications of a Dispersed Energy Path; Belief, Behavior, and Technologies as Driving Forces in Transitional Stages--The People Problem in Dispersed Energy Futures; Development of an Energy Attitude Survey; Interventions to Influence Firms Toward the Adoption of ''Soft'' Energy Technology; The Entry of Small Firms into Distributed Technology Energy Industries; Short-Term Matching of Supply and Demand in Electrical Systems with Renewable Sources; Vulnerability of Renewable Energy Systems; and District Heating for California.

  11. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality

  12. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions a

  13. Energy efficient vehicles technology II

    Energy Technology Data Exchange (ETDEWEB)

    Baeker, Bernard; Morawietz, Lutz (eds.) [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    This book presents the proceedings of the 2{sup nd} International Energy Efficient Vehicles Conference (EEVC 2012) which took place from June 18{sup th}-19{sup th} in Dresden, Germany. The special conference program for EEVC 2012 contained contributions and presentations by researchers, developers, product planners and managers of the main German and international vehicle manufacturers, system suppliers and research institutes. So all the main topics related to energy efficient vehicles could be covered, as there are for example new development and optimization strategies, battery management systems, different power net topologies and hybridization concepts (e.g. hydraulic power trains). A special focus lies on different aspects of electric vehicles as there are charging strategies, light weight construction and also the point of view from an energy supplier. (orig.)

  14. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    NARCIS (Netherlands)

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R.E.E.; Conijn, J.G.; Rutgers, B.; Valot, L.; Joubert, E.; Perelgritz, J.F.; Filogonio, A.; Roetger, T.; Prieur, A.; Starck, L.; Jeuland, N.; Bogers, P.; Midgley, R.; Bauldreay, J.; Rollin, G.; Rye, L.; Wilson, C.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in

  15. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  16. Value of storage technologies for wind and solar energy

    Science.gov (United States)

    Braff, William A.; Mueller, Joshua M.; Trancik, Jessika E.

    2016-10-01

    Wind and solar industries have grown rapidly in recent years but they still supply only a small fraction of global electricity. The continued growth of these industries to levels that significantly contribute to climate change mitigation will depend on whether they can compete against alternatives that provide high-value energy on demand. Energy storage can transform intermittent renewables for this purpose but cost improvement is needed. Evaluating diverse storage technologies on a common scale has proved a major challenge, however, owing to their widely varying performance along the two dimensions of energy and power costs. Here we devise a method to compare storage technologies, and set cost improvement targets. Some storage technologies today are shown to add value to solar and wind energy, but cost reduction is needed to reach widespread profitability. The optimal cost improvement trajectories, balancing energy and power costs to maximize value, are found to be relatively location invariant, and thus can inform broad industry and government technology development strategies.

  17. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  18. Social response to nuclear power and alternative energy systems

    International Nuclear Information System (INIS)

    Phase I of this study analyzed attitudes and beliefs of respondents drawn from Metro Manila. The second phase utilized a sample drawn from residents near a geothermal power plant site in the Southern Philippines. Four dimensions of beliefs (psychological environmental risks, technological benefits/development, economic benefits/implications, and socio-political/implications/benefit) were identified through factor analysis of beliefs items on nuclear energy and refined empirically to determine perceptions of respondents about all other energy systems. Identification of the relationship between dimensions provided insight into the shared perceptions about each energy system held by the various groups of respondents. The overall attitude of the respondents towards energy systems (nuclear, solar, hydro, geothermal and oil) was determined using three attitude measures: the Fishbein model, Osgood's semantic differential technique, and direct response to unfavorability/favorability scale. The belief dimensions were correlated with the attitude measures to determine the degree of contribution to attitude. A comparative analysis was made to different attitudes and beliefs held by the PRO and CON nuclear groups and by the subsamples: university students, science teachers and barangay leaders of Metro Manila sample. Attitudes and beliefs relating to the demographic variables were also examined for the two samples. (author)

  19. Public attitudes towards nuclear power and alternative energy systems

    International Nuclear Information System (INIS)

    Phase I of this study analyzed attitudes and beliefs of respondents drawn from Metro-Manila. The second phase utilized a sample drawn from residents near a geothermal power plant site in Southern Philippines. Four dimensions of beliefs (psychological/environmental risks, technological benefits/development, economic benefits/implications and socio-political implications/benefits) were identified through factor analysis of belief items on nuclear energy and refined empirically to determine perceptions of respondents about all energy systems. Identification of the relationships between dimensions provided insight into the shared perceptions about each energy system held by the various groups of respondents. The overall attitude of the respondents towards energy systems (nuclear, solar, hydro, geothermal and oil) was determined using three attitude measures: Fishbein model, Osgood's semantic differential technique, and direct response to unfavorability/favorability scale. The belief dimensions were correlated with the attitude measures to determine the degree of contribution of each dimension to attitude. A comparative analysis was made to differentiate attitudes and beliefs held by the PRO and CON nuclear groups, and by the subsamples: university students, science teachers and barangay leaders of the Metro-Manila sample. Attitudes and beliefs relating to the demographic variables were also examined for the two samples. (author)

  20. Technology assessment of disposal alternatives to determine a reference geological repository system for HLW

    International Nuclear Information System (INIS)

    This study is to determine the most promising alternative, that will be developed further as a reference HLW repository system, by comparing the 7 alternatives that were proposed based on the spent fuel packaging options concerning the characteristics of spent PWR and CANDU fuel generated from the domestic NPP and the waste package arrangements and repository layout options. It should be determined by comparing the proposed alternatives from the aspects of technology, safety and economics. In this study, however, the comparison of alternatives was just based on the technology assessment because of the lack of the relevant information. The comparison criteria includes the degree of difficulty, development and maturity of the technology to be applied in repository system construction, operation, retrieval, etc. and the safety during the repository construction and operation. Based on such comparison criteria, the alternative comparison study was performed by a typical pair-wise comparison method. The result showed that, from the aspect of the construction, vertical emplacement options ranked high so that HSA and HCop ranked first and second, respectively. On the other hand, from the aspect of operation, the vertical emplacement options ranked high and VSA and VAT were ranked first and second. Depending upon the degree of importance of construction and operation of the repository, the final results of the alternatives comparison could be changed. (author). 19 refs., 6 tabs., 13 figs

  1. Sustainable Energy Technology Acceptance: A psychological perspective

    NARCIS (Netherlands)

    Huijts, N.M.A.

    2013-01-01

    Sustainable energy systems are designed to overcome the large problems resulting from current fossil fuel use, such as climate change, air pollution and energy insecurity. Citizens’ opinions and responses are crucial to the successful implementation of new technologies. This thesis explains public a

  2. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO2, the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  3. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  4. Finnish energy technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these.

  5. Finnish energy technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  6. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  7. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  8. Alternative energy and the adoption of innovation by the consumer; Energias alternativas e a adocao da inovacao pelo consumidor

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Reinaldo Lopes [Fundacao Dom Cabral (FDC), Nova Lima, MG (Brazil)], Email: reinaldo@rlf.com.br; Mineiro, Erico Franco [Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, MG (Brazil)], Email: erico.acad@gmail.com; Veiga, Ricardo Teixeira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], Email: ricardo.necc@gmail.com

    2010-04-15

    Innovative products and services demand, in addition to development efforts, an endeavour in the adoption of the innovation by the consumer. This article presents a literature review on the subject and an approach to marketing aspects of alternative energies, based on the implications of the actions related to this process as far as environment and society are concerned. It is also discussed how marketing practices can be used in affecting the consumer behaviour on energy, promoting the adoption of technological innovations. (author)

  9. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  10. Adopting Energy Saving Technology: Inertia or Incentives?

    OpenAIRE

    Peter A. Groothuis; Tanga McDaniel Mohr

    2013-01-01

    In an effort to improve efficiency of electrical markets the U.S. government hopes to encourage changing household use patterns, such as dishwasher and clothes dryer use, to off-peak times. One strategy has been to subsidize the installation of smart meters. In addition the government has encouraged electrical energy conservation by providing incentives for energy saving technologies such as the purchase of energy star appliances or increased insulation in the home. Households have sometimes ...

  11. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  12. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-06-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  13. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  14. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  15. Gas and energy technology 2006

    International Nuclear Information System (INIS)

    The conference Energy21 is a yearly event gathering young people working in the oil sector or students in subjects related to the business to meet and network. Presentations are given by young people working in the industry, describing their experiences from working in the sector. The oil sector's history and forecast about the future of the Norwegian oil sector are also topics discussed (ml)

  16. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  17. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  18. Energy & Technology Review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  19. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  20. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  1. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  2. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products

  3. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  4. Report on the CSC project group meeting on alternative energy resources

    International Nuclear Information System (INIS)

    Under its coordinated R and D programme the Commonwealth Science Council in cooperation with the Ministry of Agriculture, Food and Consumer Affairs, Barbados, organized a meeting to identify suitable projects for inter-country collaboration. Specifically the meeting had three aims: 1. Review present state of activities in alternative energy resources and assess small scale energy needs in the region. 2. Identify specific projects for inter-country collaboration. 3. Draft joint project proposals for such collaboration. A small group of experts (Annex VII) from Britain, Canada, USA and CSC secretariat staff made detailed plans for the Barbados meeting. With a view to assessing real energy needs locally, the Group recommended that a study be undertaken in Barbados prior to the meeting. A report on such a study was presented at the meeting. Member countries were also invited to prepare country papers. In addition, following the planning Group's recommendation, several technical papers were prepared. These covered subjects ranging from conceptual aspects to clarify objectives, assumptions and criteria to a review of all alternative energy technologies

  5. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  6. Energy optimization aspects by injection process technology

    Science.gov (United States)

    Tulbure, A.; Ciortea, M.; Hutanu, C.; Farcas, V.

    2016-08-01

    In the proposed paper, the authors examine the energy aspects related to the injection moulding process technology in the automotive industry. Theoretical considerations have been validated by experimental measurements on the manufacturing process, for two types of injections moulding machines, hydraulic and electric. Practical measurements have been taken with professional equipment separately on each technological operation: lamination, compression, injection and expansion. For results traceability, the following parameters were, whenever possible, maintained: cycle time, product weight and the relative time. The aim of the investigations was to carry out a professional energy audit with accurate losses identification. Base on technological diagram for each production cycle, at the end of this contribution, some measure to reduce the energy consumption were proposed.

  7. Market penetration of new energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  8. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  9. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  10. Analysis of the use of biomass as an energy alternative for the Portuguese textile dyeing industry

    International Nuclear Information System (INIS)

    The energy efficiency and the development of environmentally correct policies are current topics, especially when applied to the industrial sector with the objective of increasing the competitiveness of the enterprises. Portuguese textile dyeing sector, being a major consumer sector of primary energy, needs to adopt measures to improve its competitiveness. Biomass appears to be a viable and preferred alternative energy source for the sector, while simultaneously develops an entire forest industry devoted to the supply of forest solid fuels. This work carries out a comprehensive PEST (political, economic, social and technological) analysis, which analyses Political, Economic, Social and Technological aspects of the replacement of the fossil fuels traditionally used in this sector by biomass, providing a framework of environmental factors that influence the strategic management of the companies. The main advantages are the reduction of external dependence on imported fuel due to the use of an endogenous renewable resource, the creation and preservation of jobs, the increased competitiveness of the sector by reducing energy costs, the use of national technology and the reduction of greenhouse gases emissions. - Highlights: • The Portuguese textile dyeing sector, being a major consumer sector of primary energy, is addressed. • Biomass is a viable and preferred alternative energy source for the sector. • A PEST (political, economic, social and technological) analysis is carried out. • The implications of the replacement of fossil fuels with biomass are studied

  11. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  12. Values and Technologies in Energy Savings

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    2000-01-01

    ´s behavioural pattern and lifestyles. Deliberate changes in social values are illustrated by a historical example. From the side of technology the basic principles in the economy of energy savings are briefly described. The marginally profitable energy savings provides an economic saving. The application of...... this saving can cause what is called the rebound effect, which reduces the savings obtained from the technology. Ways to avoid this effect are suggested, and they require value changes, primarly around frugality, consumption, and hard-working. There are indications that some of the necessary changes...

  13. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  14. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  15. Using energy efficiency and alternative energy to extend fossil resources or what if tomorrow actually comes

    International Nuclear Information System (INIS)

    This PowerPoint presentation outlined the role of energy in maintaining and advancing society, and what happens if we run out of energy. The author provided a glimpse into the energy world through the display of a series of graphs depicting world energy consumption, world energy production, world population distribution, growth rates in Asia, coal use per capita, the United States energy consumption by source, percent of air emissions in the United States from fossil fuel use, and others. It was argued that alternative energy and energy efficiency diminish growth in demand and peak load, supports portfolio diversity, lowers cost, and diminishes environmental impacts. The advances in wind power and solar power were reviewed, as well as advances in bioenergy and hydrogen. The author also argued the case for energy efficiency and conservation. A discussion of various pricing schemes was offered. The first option examined was time of use price, defined as 3 time blocks published in advance for entire seasons. The second option was critical peak pricing, involving a high price imposed for a few days per year when system conditions are critical or near critical. The third option discussed was real-time prices, implying an hourly real-time marginal cost of a kilowatt hour. It was suggested that the system should be changed, since subsidizing energy consumption distorts demand. Energy efficiency and renewables extend fossil energy availability, helping in the transition to a more sustainable world. refs., tabs., figs

  16. Materials for Alternative Energies: Computational Materials Discovery and Crystal Structure Prediction

    Science.gov (United States)

    Wolverton, Chris

    2013-03-01

    Many of the key technological problems associated with alternative energies may be traced back to the lack of suitable materials. The materials discovery process may be greatly aided by the use of computational methods, particular those atomistic methods based on density functional theory. In this talk, we present an overview of recent work on energy-related materials from density-functional based approaches. We have developed novel computational tools which enable accurate prediction of crystal structures for new materials (using both Monte Carlo and Genetic Algorithm based approaches), materials discovery via high-throughput, data mining techniques, and automated phase diagram calculations. We highlight applications in the area of Li battery materials and hydrogen storage materials.

  17. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens (Lund Univ., Dept. of Chemical Engineering, Lund (Sweden))

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  18. Technology application analyses at five Department of Energy Sites

    International Nuclear Information System (INIS)

    The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project

  19. USING THE AHP METHODOLOGY TO EVALUATE STRATEGIC INVESTMENT ALTERNATIVES OF NEW PARADIGMS IN INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    EMILIJA RISTOVA

    2012-02-01

    Full Text Available Enterprise adoption of a Product Life Cycle Management (PLM system is a multi-faceted process that can be simplified by choosing the right information technology (IT deployment model. Cloud computing has been described as a technological change brought about by the convergence of a number of new and existing technologies. The paper provides a review of the main developments in the AHP (Analytical Hierarchy Processmethodology as a tool for decision makers to be able to do more informed decisions regarding investments in new paradigms that IT offers. The AHP methodology is a multi-objective, multi criteria decision-making approach that employs a pair-wise comparison procedure to arrive at a scale of preferences among a set of alternatives. The selection process of the alternatives is not possible from the result of the financial analysis alone. Identification of the scalability and the risks assessment as criteria’s give us the comprehensiveness of the treated problem.

  20. A personal history: Technology to energy strategy

    International Nuclear Information System (INIS)

    This personal history spans a half century of participation in the frontiers of applies science and engineering ranging from the nuclear weapons project of World War II, through the development of nuclear power, engineering education, and risk analysis, to today's energy research and development. In each of these areas, this account describes some of the exciting opportunities for technology to contribute to society's welfare, as well as the difficulties and constraints imposed by society's institutional and political systems. The recounting of these experiences in energy research and development illustrates the importance of embracing social values, cultures, and environmental views into the technologic design of energy options. The global importance of energy in a rapidly changing and unpredictable world suggests a strategy for the future based on these experiences which emphasizes the value of applied research and development on a full spectrum of potential options

  1. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  2. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  3. Promoting exports in the energy technology area

    International Nuclear Information System (INIS)

    This report for the Swiss Federal Office of Energy (SFOE) examines the position of Switzerland as a leader in the investment goods markets for energy-efficiency products and for technologies for using renewable forms of energy. The report quotes figures for exports in these areas and discusses the difficulty of extracting useful data on these products from normal statistical data. Analyses made by a group of experts from the export-oriented technology field, energy service providers and representatives of export promotion institutions are presented and figures are quoted for various product categories. Factors promoting the competitiveness of Swiss products are discussed as well as those impeding it. An analysis of export potential is presented and measures to promote export are discussed. The report also discusses the aids and promotion activities that are considered necessary by companies in the field and the macro-economic perspectives of increased export promotion

  4. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  5. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  6. Proceedings of the International conference on energy alternatives/risk education V. 2

    International Nuclear Information System (INIS)

    This Proceedings volume on Energy and Risk within the context of the International Conference on Energy Alternatives/Risk Education contains papers on Nuclear Energy, on Background Radiation and on Risks of Energy Alternatives. 15 papers concerning safety of nuclear reactors, case stories of reactor and radiation accidents, monitoring low-level indoor radiation, educational tods, comparison of energy system risks, and catalyzed fusion were indexed and abstracted separately for the INIS database. (R.P.)

  7. Geospatial Technologies to Improve Urban Energy Efficiency

    OpenAIRE

    Bharanidharan Hemachandran; Arvai, Joseph L.; Fung, Tak S.; Gang Chen; Christopher Kyle; Geoffrey J. Hay; Mir Mustafizur Rahman

    2011-01-01

    The HEAT (Home Energy Assessment Technologies) pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA) and Canadian built Thermal Airborne Broadband Imager...

  8. Energy technology progress for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  9. Technological Determinism in Educational Technology Research: Some Alternative Ways of Thinking about the Relationship between Learning and Technology

    Science.gov (United States)

    Oliver, M.

    2011-01-01

    This paper argues that research on the educational uses of technology frequently overemphasizes the influence of technology. Research in the field is considered a form of critical perspective, and assumptions about technology are questioned. Technological determinism is introduced, and different positions on this concept are identified. These are…

  10. Electric Demand Analysis of the Tunisian Network: Trends and Short Term Photovoltaic Implementation with Alternatives Prospects and Technologies

    Directory of Open Access Journals (Sweden)

    J. Bouattour

    2014-08-01

    Full Text Available The main objective of this study is to analyze the system of electric demand in Tunisia and to propose immediate alternative solution of photovoltaic implementation that can be suitable based on available natural solar energy resources in the country to respond to the short Forecast peak demand growth and energy consumptions taking into account financial strain. On the first step, analysis of the situation based on the recent historical data is proposed. In a second step, a solution is considered, based on photovoltaic implementation and using the results of historical data analysis. The resulting benefits are highlighted: financial, technical, environmental and social. Future studies may be made to use a mix of technology and policy as well: among it combining photovoltaic and battery storage, in parallel with energy efficiency programs.

  11. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    OpenAIRE

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R. E. E.; Conijn, J.G.; Rutgers, B.; Valot, L.; E Joubert; Perelgritz, J.F.; Filogonio, A.; Roetger, T.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in the future has emerged. Among these concerns, the environmental impact of fossil fuel use on global warming and air quality is of major importance, while the impact of volatile oil prices and the ...

  12. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens (Lund Univ., Dept. of Chemical Engineering, Lund (Sweden))

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  13. Computer technology can enhance industrial energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Rapid escalation in energy costs since 1973 has increased operating costs and, in turn, caused a sharp rise in the prices of both consumer and industrial products. Reoptimizing manufacturing processes to account for higher energy costs is a formidable task and will strain the technical manpower of industrial communities. Analysis of a process will identify several technological or operating options that might decrease operating costs by improving energy efficiency and feedstock use. Each option must be carefully evaluated to achieve the maximum return on invested capital and manpower costs. Developments in computer technology have created tools with potential for energy conservation in the process industries comparable in some cases to the use of more energy-efficient process equipment. Some of the new developments are discussed. This report was written to familiarize the process industry manager with computer applications that have potential for minimizing energy consumption and to present an overview of the current level of computer technology and terminology as it applies to the process industry.

  14. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  15. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into...... gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency....

  16. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  17. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production

    OpenAIRE

    Rusanova, J; Bažbauers, G; Valters, K; Markova, D.

    2013-01-01

    Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare s...

  18. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  19. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  20. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  1. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  2. Novel energy saving technologies evaluation tool

    NARCIS (Netherlands)

    Klemeš, J.; Bulatov, I.; Koppejan, J.

    2009-01-01

    The lead-time for the development of a new energy technology, from the initial idea to the commercial application, can take many years. The reduction of this time has been the main objective of the EC DGTREN, who have funded two related recent projects, EMINENT and EMINENT2 (Early Market Introductio

  3. Technology arising from High-Energy Physics

    CERN Multimedia

    1974-01-01

    An exibition was held as a part of the Meeting on Technology arising from High- Energy Physics (24-26 April 1974). The Proceedings (including a list of stands) were published as Yellow Report, CERN 74-9, vol. 1-2.

  4. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  5. Investments in energy technological change under uncertainty

    Science.gov (United States)

    Shittu, Ekundayo

    2009-12-01

    This dissertation addresses the crucial problem of how environmental policy uncertainty influences investments in energy technological change. The rising level of carbon emissions due to increasing global energy consumption calls for policy shift. In order to stem the negative consequences on the climate, policymakers are concerned with carving an optimal regulation that will encourage technology investments. However, decision makers are facing uncertainties surrounding future environmental policy. The first part considers the treatment of technological change in theoretical models. This part has two purposes: (1) to show--through illustrative examples--that technological change can lead to quite different, and surprising, impacts on the marginal costs of pollution abatement. We demonstrate an intriguing and uncommon result that technological change can increase the marginal costs of pollution abatement over some range of abatement; (2) to show the impact, on policy, of this uncommon observation. We find that under the assumption of technical change that can increase the marginal cost of pollution abatement over some range, the ranking of policy instruments is affected. The second part builds on the first by considering the impact of uncertainty in the carbon tax on investments in a portfolio of technologies. We determine the response of energy R&D investments as the carbon tax increases both in terms of overall and technology-specific investments. We determine the impact of risk in the carbon tax on the portfolio. We find that the response of the optimal investment in a portfolio of technologies to an increasing carbon tax depends on the relative costs of the programs and the elasticity of substitution between fossil and non-fossil energy inputs. In the third part, we zoom-in on the portfolio model above to consider how uncertainty in the magnitude and timing of a carbon tax influences investments. Under a two-stage continuous-time optimal control model, we

  6. Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Action Nechibvute

    2012-01-01

    Full Text Available The recent advances in ultralow power device integration, communication electronics, and microelectromechanical systems (MEMS technology have fuelled the emerging technology of wireless sensor networks (WSNs. The spatial distributed nature of WSNs often requires that batteries power the individual sensor nodes. One of the major limitations on performance and lifetime of WSNs is the limited capacity of these finite power sources, which must be manually replaced when they are depleted. Moreover, the embedded nature of some of the sensors and hazardous sensing environment make battery replacement very difficult and costly. The process of harnessing and converting ambient energy sources into usable electrical energy is called energy harvesting. Energy harvesting raises the possibility of self-powered systems which are ubiquitous and truly autonomous, and without human intervention for energy replenishment. Among the ambient energy sources such as solar energy, heat, and wind, mechanical vibrations are an attractive ambient source mainly because they are widely available and are ideal for the use of piezoelectric materials, which have the ability to convert mechanical strain energy into electrical energy. This paper presents a concise review of piezoelectric microgenerators and nanogenerators as a renewable energy resource to power wireless sensors.

  7. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  8. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.;

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable....... The development of new and larger turbines to some extent stagnated, and costs even rose due to high demand and rising materials costs. We believe, however – and this is supported by recent trends – that the next decade will be a new period of technology development and further scale-up, leading to more cost...

  9. 75 FR 11153 - Hydro Energy Technologies, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-03-10

    ... Energy Regulatory Commission Hydro Energy Technologies, LLC; Notice of Preliminary Permit Application.... On November 6, 2009, Hydro Energy Technologies, LLC (Hydro Energy Technologies) filed an application...-hours. Hydro Energy Technologies: Anthony J. Marra Jr., President, Hydro Energy Technologies, LLC.,...

  10. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  11. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  12. 3rd Miami international conference on alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  13. 3rd Miami international conference on alternative energy sources

    International Nuclear Information System (INIS)

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations

  14. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  15. Energy and Technology Review, August--September

    Energy Technology Data Exchange (ETDEWEB)

    Sefcik, J A [ed.

    1992-01-01

    This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

  16. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  17. Alternative approach for Article 5. Energie Efficiency Directive; Alternatieve aanpak artikel 5. Energy Efficiency Directive

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Jablonska, B. [ECN Beleidsstudies, Petten (Netherlands)

    2013-05-15

    Article 5 of the Energy Efficiency Directive (EED) is an annual obligation to renovate 3% of the building stock of central government. After renovation the buildings will meet the minimum energy performance requirements laid down in Article 4 of the EPBD. The Directive gives room to an alternative approach to achieve the same savings. The Ministry of Interior Affairs has asked ECN to assist with this alternative approach. ECN calculated what saving are achieved with the 3% renovation obligation under the directive. Then ECN looked for the possibilities for an alternative approach to achieve the same savings [Dutch] In artikel 5 van de Energie Efficiency Directive (EED) staat een verplichting om jaarlijks 3% van de gebouwvoorraad van de centrale overheid te renoveren. Die 3% van de gebouwvoorraad moet na renovatie voldoen aan de minimum eisen inzake energieprestatie die door het betreffende lidstaat zijn vastgelegd op grond van artikel 4 in de EPBD. De verplichting betreft gebouwen die in bezit en in gebruik zijn van de rijksoverheid met een gebruiksoppervlakte groter dan 500 m{sup 2}, vanaf juli 2015 groter dan 250 m{sup 2}. De gebouwen die eigendom zijn van de Rijksgebouwendienst betreft kantoren van rijksdiensten, gerechtsgebouwen, gebouwen van douane en politie en gevangenissen. Van de gebouwen van Defensie hoeven alleen kantoren en legeringsgebouwen aan de verplichting te voldoen.

  18. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    Science.gov (United States)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  19. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research. PMID:27294983

  20. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  1. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  2. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications

  3. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  4. Nanoscale heat transfer and thermoelectrics for alternative energy

    Science.gov (United States)

    Robinson, Richard

    2011-03-01

    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  5. Treatment of Clinical Solid Waste Using a Steam Autoclave as a Possible Alternative Technology to Incineration

    OpenAIRE

    Mohd Omar Ab Kadir; Nik Norulaini Nik Ab Rahman; Md. Sohrab Hossain; Md. Zaidul Islam Sarker; Venugopal Balakrishnan

    2012-01-01

    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree ...

  6. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  7. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  8. From conventional Infrastructure to Technological Infrastructure Capabilities: A New Alternative for Harnessing Science and Technology

    International Nuclear Information System (INIS)

    Developing countries have relied on natural resources, tourism services and raw materials for economic growth. In the past the returns from such investments were high enough to sustain rapid population growth. The education system and hence the research and technology endeavors of these countries were directed at meeting the needs of the above economic drivers. the decline in the growth of gross domestic product from 7% in the seventies to three or negative percent growth of most developing countries in the last two to three decades has signaled countries are to compete favourably in a knowledge-led economy. The acceptance of the need to change on its own is not a sufficient condition for economic turn around unless the emphasis is also placed on investments that will improve the science and technological learning process. Improvement of a continuous learning process has several prerequisites, namely: Establishment of a strong science, technology and innovation policy with forward and backward linkages; Formulation of national innovation systems; Clustering of institutions and organizations to maximize co-operation between private sector, universities and research institutions and government; Establishments of legal and institutional framework laws and regulations which are essential for business investments; Provision of incentives, loans, investments and guarantees that will attract Foreign Direct Investment (FDI) and private sector participation; and Restructuring of how government does business so that there is strong government leadership through policy formulation and operations without strong government command and obey practices

  9. Evolutionary Patterns of Renewable Energy Technology Development in East Asia (1990–2010

    Directory of Open Access Journals (Sweden)

    Yoonhwan Oh

    2016-07-01

    Full Text Available This study investigates the evolutionary patterns of renewable energy technology in East Asian countries—Japan, Korea, and China—as an emerging technology where the catch-up strategy is actively taking place. To reflect the quality of technology development activities, we assess each country’s research and development (R&D activities using patent citation analysis. The goal of this study is to overcome the limitations of prior research that uses quantitative information, such as R&D expenditures and number of patents. This study observes the process of technological catch-up and leapfrogging in the East Asian renewable energy sector. Furthermore, we find that each nation’s technology development portfolio differs depending on the composition share of technologies. Policymakers in emerging economies can use the findings to shape R&D strategies to develop the renewable energy sector and provide an alternative method of evaluating the qualitative development of technology.

  10. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  11. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  12. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  13. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  14. Thermionic energy conversion technology - Present and future

    Science.gov (United States)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  15. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth

    International Nuclear Information System (INIS)

    Energy is essential to the way we live. Whether it is in the form of oil, gasoline or electricity, a country's prosperity and welfare depends on having access to reliable and secure supplies of energy at affordable prices. However, it is also one of the benefits taken for granted by many people, knowing little about the impact of electricity on their lives. Having dependent mainly on oil and gas for half a century, Malaysia has started to realize the importance to adopt renewable energy in the energy mix and continuously reviewed its energy policy to ensure sustainable energy supply and security. This paper examines and discusses the intricacy of the existing and new energy policies, issues and challenges in Malaysia. The overall approach in addressing the energy issues and challenges will continue to focus on adequacy, quality, security and sustainability of both non-renewable and renewable energy supply in the country's development and the promotion and implementation of its energy efficiency programs. The recently launched National Green Technology Policy is also discussed. (author)

  16. Building Low Carbon Cities: Framework to Design and Evaluate Alternative Technologies and Policies for Land Use Planning

    Science.gov (United States)

    Hashimoto, S.; Hamano, H.; Fujita, T.; Hori, H.

    2008-12-01

    Annex I parties of the Kyoto Protocol are facing even greater pressures to fulfill their commitment for GHG reduction as they enter the first commitment period of the Kyoto Protocol 2008-2012. In Japanese context, one such challenge is to reduce CO2 emissions from the household and business sectors because CO2 emissions from the both sectors has increased by 12% and 20% respectively since 1990 while the industry has achieved 21% of CO2 emissions reduction. Land use planning, which, either directly or indirectly, controls appropriate uses for land within jurisdictions, might play very important roles to deal with CO2 reductions from the household and business sectors. In this research, aiming at effective reductions of air- conditioning energy consumption and resultant CO2 emissions from the household and business sectors, the framework to design and evaluate land use planning was developed. The design and evaluation processes embraced in this framework consist of GIS database, technology and policy inventory for planning, one- dimensional urban canopy model which evaluate urban climate at neighborhood level and air-conditioning load calculation procedure. The GIS database provides spatial information of target areas such as land use, building use and road networks, which, then, helps design alternative land use plans. The technology and policy inventory includes various planning options ranging from those for land over control to those for building energy control, which, combined with the GIS database, serves for planning process. The urban canopy model derives vertical profiles of local climate, such as temperature and humidity, using the information of land use, building height and so on, aided by the GIS database. Vertical profiles of the urban climate are then utilized to derive air-conditioning load and associated CO2 emissions for each building located in target areas. The framework developed was applied to the coastal district of Kawasaki, Japan, with an

  17. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  18. Emerging Computing Technologies in High Energy Physics

    OpenAIRE

    Farbin, Amir

    2009-01-01

    While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of empl...

  19. Exhaust Gas Energy Recovery Technology Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Robert M [ORNL; Szybist, James P [ORNL

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  20. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear