WorldWideScience

Sample records for alternative electric energy

  1. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  2. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  3. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  4. Can China use alternative energies instead of coal to provide more electricity by 2030?

    Science.gov (United States)

    Wu, Yan

    Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.

  5. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  6. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    Energy Technology Data Exchange (ETDEWEB)

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  7. Alternative Energies

    Energy Technology Data Exchange (ETDEWEB)

    Planting, A.; De saint Jacob, Y.; Verwijs, H.; Belin, H.; Preesman, L.

    2009-03-15

    In two articles, one interview and one column attention is paid to alternative energies. The article 'A new light on saving energy' discusses the option to save energy by modernising lighting systems in urban areas. The column 'View from Paris' focuses on investment decisions in France with regard to renewable energy and energy savings. The article 'Europe turns a blind eye to big battery' discusses developments in batteries to store energy. The interview concerns fuel cell expert and formerly President of UTC Power Jan van Dokkum. The last article gives a brief overview of the European Energy Research Alliance (EERA) and the challenges this alliance will have to face with regard to climate change and energy security.

  8. GENDER PREFERENCES FOR ALTERNATIVE ENERGY TRANSPORT WITH FOCUS ON ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    Nirupama Prakash

    2014-01-01

    Full Text Available Transportation has become an important part of our day to day life. Due to changing lifestyle, frequent travels whether related to work or leisure has become a common phenomenon. Such lifestyle also demands comfortable transport medium and reasonable availability of fuels. As need of vehicle for transportation is rising, it has put pressure of fuel supply, fuel prices and environment as well. The rising prices of fuel, increasing pressure on resources and threatening environment pollution is driving the need for alternative and clean sources of energy. Increasing competition among nations to own the resources is becoming a serious threat for many developing countries. This paper empirically examines the gender preference for alternative energy sources and related technologies for vehicles. In total, 1168 questionnaires were received from respondents (male-711, female-442, not disclosed-15 from eleven cities in India viz. Bengaluru, Chennai, Cochin, Coimbatore, Hyderabad, Pune, Imphal, Rohtak, Sagar and Tiruvanathpuram in India and one city from Bhutan-Thimpu. Respondents who did not disclose their gender were excluded from the study. The study was conducted from October 2013 to June 2014. The objective of the study was to understand the social dimensions and gender preferences of the respondents regarding their preference for electric vehicle as an alternative energy transport for personal and public use. The primary data was collected through a structured questionnaire. The data was analyzed through the Statistical Package for Social Science (SPSS®. Findings indicate that in general fueled vehicles are still preferred over electric vehicles. However there is a strong interest in electric vehicles. It was observed that more than 66% of the respondents in the age group of 18-30 can become prospective customers in the near future, if the electric vehicles meet their expectations. In this age group, 59% of the respondents were male

  9. Influence of a Transverse Electric Field on the Alternating Currents Rectification Effect in Superstructures with Non-additive Energy Spectrum

    Directory of Open Access Journals (Sweden)

    V.I. Konchenkov

    2015-12-01

    Full Text Available It is investigated the effect of mutual rectification of alternating currents, induced by an electric field of two uniformly polarized electromagnetic waves with different frequencies in two-dimensional superlattice with non-additive energy spectrum under the influence of a constant transverse electric field. The possibility of control of constant component of electric current (amplification, change of sign, suppression by the transverse electric field is shown. The abilities of the practical use of the results are discussed.

  10. Alternative energies. Alternative Energien

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D.

    1979-01-01

    This is a popular review of problems of present and, in particular, future energy supply. All energy sources available are discussed, including improved energy use and energy conservation. Solar energy is favoured as energy source of the future. A great number of examples are given along with many bibliographic references.

  11. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy

  12. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site

  13. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  14. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    Science.gov (United States)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  15. Alternative energy in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, H.B.; Bhandari, K.P.

    2011-05-15

    Renewable energy Technology (RET) becomes the mainstream option for rural Nepal to access modern source of energy. It focuses on the trend of RET applications consisting of biogas technology, solar thermal, micro and Pico hydropower, biomass technology bio fuel technology, wind power technology etc. The RET's which provide both electricity based as well as non electricity based services, have been shown to most immediately meet the needs of a cleaner indoor environment, better quality lightning for education and income generating, activities, alternative cooking fuels and agro processing as well as rural industries. Improved cooking stoves and much more beneficial than other technologies. Wind energy utilization is still not popular. Solar thermal to generate thermal energy to cook, warm and dry, biogas for lighting and cooking services. Micro hydropower for electric as well as mechanical use and solar PV mainly for domestic lighting may become choice. The most important Renewable Energy Technology (RET's) in Nepal are related to Pico hydropower and micro-hydropower, biomass energy (biogas, briquettes, gasifies, improved cooking stoves, bio-fuels etc.) solar photovoltaic energy, solar PV water pumping, solar thermal energy (solar heater, solar dryers, solar cookers etc.) and wind energy (such as wind generators, wind mills etc.). One renowned Non-governmental organization has been established in the Jhapa and Mornag Bhutanese refugee camp. Two families from all the seven camps in Nepal received one solar cooker, one hay box and two cooking posts to each family. Under this programme, a total of 6,850 solar cookers, 12600 hay boxes and 25,200 cooking pots have been distributed 2009. The number of beneficiaries from this program has reached 85,000. Before the distribution of the cookers and the utensils, the instruction and orientation training for the maintenance and repair and operation method was improved. The refugees were divided in 315 groups of 40

  16. Tajikistan’s Winter Energy Crisis : Electricity Supply and Demand Alternatives

    OpenAIRE

    Fields, Daryl; Kochnakyan, Artur; Stuggins, Gary; Besant-Jones, John

    2012-01-01

    Reliable power supply is critical for Tajikistan's economy and poverty reduction goals. Without reliable, affordable electricity throughout the year, Tajikistan's businesses cannot invest, operate and create jobs; hospitals and schools cannot function fully or safely with frequent power cuts during winter; citizens suffer indoor air pollution from burning wood for heating and cooking. Electricity also powers the country's two largest exports: aluminum and agricultural produce, which account f...

  17. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  18. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  19. Alternative energies for transportation at the end of the mineral-oil aera. Pt. 3. Electricity offers good chances for short-distance vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.G. (GES Gesellschaft fuer Elektrischen Strassenverkehr m.b.H., Duesseldorf (Germany, F.R.)); Ehren, N.; Thomas, R.

    1977-09-01

    In three parts the article tests the possible ways of using an alternative fuel for motor vehicles. This third part deals with the application of electrical energy for the operation of motor vehicles. Special stress is laid on showing electronic drives which are rational for distances up to 100 km. A consequent development of vehicles used in short-haul traffic could lead to the result that, by the end of the century, 1/3 of all vehicles would be operated with electrical energy. Coal and nuclear energy will be used more and more instead of mineral oil.

  20. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  1. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  2. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  3. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    Science.gov (United States)

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  4. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  5. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  6. Electrical Supply System for the Experimental Zero-Energy Building (of 300 m2 Based on Renewable and Alternative Energy Sources

    Directory of Open Access Journals (Sweden)

    Basok, B.I.

    2015-11-01

    Full Text Available The results of the development and implementation of the power supply system of the experimental zero-energy building based on renewable and alternative energy sources are presented. CDF-model to determine the optimal conditions for the deployment of wind energy installations within the building limits is developed.

  7. The actual role of alternative energies in electricity supply in Brazil in the nineties; O real papel das energias alternativas no suprimento de electricidade no Brasil na decada de 90

    Energy Technology Data Exchange (ETDEWEB)

    Prado Junior, Fernando Amaral Almeida; Simoes, Nivaldo Silveira [Companhia Energetica de Sao Paulo, SP (Brazil)

    1993-12-31

    Starting in the seventies, deep changes have occurred in the electric sector, and alternative energy sources appeared as an option to hydraulic power. Presently, the effective contribution of alternative sources such as solar energy, cogeneration and energy conservation will not be predominant in the short run. Nevertheless, the study of these technologies is fundamental for the utilities` strategies. 4 refs., 5 figs.

  8. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation; Stromeffizienz und erneuerbare Energien - Wirtschaftliche alternative zu Grosskraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R. [Infras, Zuerich (Switzerland); Nordmann, T. [TNC Consulting AG, Erlenbach (Switzerland)

    2010-05-15

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  9. Alternative energies. Updates on progress

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, German (ed.) [CIRCE - Centre of Research for Energy Resources and Consumption, Zaragoza (Spain)

    2013-07-01

    Presents fundamental and applied research of alternative energies. Address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress. Includes the life cycle assessment and thermoeconomic analysis as tools for evaluating and optimising environmental and cost subjects. This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.

  10. Alternative Energy Busing

    Science.gov (United States)

    LaFee, Scott

    2012-01-01

    In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…

  11. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    Science.gov (United States)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  12. Wind energy as an alternative source to alleviate the shortage of electricity that prevails during the dry season: a case study of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kainkwa, R.R. [Dar es Salaam Univ., Physics Dept., Dar es Salaam (Tanzania)

    1999-10-01

    Currently, hydroelectric power supply systems in Tanzania are faced with drought, site and water management problems hindering efficient and reliable power supply from this source. Thermal power systems that were intended to alleviate the shortage of hydroelectricity that arise during the dry season are themselves expensive due to high operational and running costs as a result of the increasing prices of petroleum and spare parts. Wind speed data from two prospective sites indicate that during the dry season, wind speed is sufficiently high and steady to generate electricity. The wind speed at these sites from August to October is well above 7.0 m/s as measured at a height of 10 m above ground level. A combined hydro-generator and wind-turbine system is suggested as a possible alternative to electric power supply in Tanzania. The use of wind energy in generating electricity will reduce the large dependence on fossil fuel sources that are expensive and also harmful to our environment. (Author)

  13. Electric energy generation matrix alternatives for the expansion of the Brazil 2000 - 2030 - 2050 electric power offer; Alternativas de matrizes de geracao de energia eletrica para expansao da oferta de eletricidade Brasil 2000 - 2030 - 2050

    Energy Technology Data Exchange (ETDEWEB)

    Bahia, Raymundo Ruy; Silva, Marcos Vinicius M. da; Luczynski, Estanislau [Universidade da Amazonia (UNAMA), Manaus, AM (Brazil). Grupo de Pesquisas Economicas Energeticas]. E-mails: ruybahia@uol.com.br; vini67@ig.com.br; stasnis@yahoo.com

    2006-07-01

    This paper is a follow-up of several papers presented by the authors in the 9. CBE (2002), 4. CBPE (2004) and X CBE (2004) congresses. These papers discussed some tools for energy planning aiming to develop some alternatives of Brazilian electricity generation matrices. Data used for such follow-up led to some new forecasting based on economic scenarios, which were related to electricity generation matrices. Rates are taken from macro economic series since 1970. However, it is assumed that from 2010 to 2050 there will be a new cycle of economic growing. Such cycle varies from an average growing one to a sustainable one in opposition to the recessive cycle of 1980 to 2010. Investments required to expansion of electrical generation installed capacity were obtained by an evaluation of generation and energy transmission costs, which were based on analysing some options to generation matrices that are hydropower, hydro thermo and thermo hydro ones. These matrices were forecasted for two periods, the first one from 2000 to 2030 and the second one from 2030 to 2050. Such analysing reveals that the hydropower generation is uneconomic, even when it is considered as an alternative for expansion of electricity supplying. Such uneconomic conditions are perennial and they are even worst since the Brazilian electricity power rationing of 2001. Hydro thermo and thermo hydro matrices have a lot of financial, economical and ecological advantages when they are compared to hydropower one in any scenario whether high or low ones, both of them considered for the period of 2000 to 2050. Data analyses showed here may be considered as a study, which can help discussions and evaluations of energy planning governmental offices by making them to understand that hydropower matrix is out of date, and it is not an economic option to be used in a supply expansion plan for the considered periods of 2000 to 2030 and 2030 to 2050. (author)

  14. Experiences in mainstreaming alternative energy

    Energy Technology Data Exchange (ETDEWEB)

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  15. Impact of energy efficiency and alternative sources in the Brazilian electric matrix: scenarios 2005-2050; Impacto da eficiencia energetica e das fontes alternativas na matriz eletrica brasileira: cenarios 2005-2050

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/USP), SP (Brazil). Dept. de Energia e Automacao Eletricas. Grupo de Energia; Furtado, Marcelo [Greenpeace Brasil, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Part of a worldwide initiative championed by Greenpeace International and EREC - European Renewable Energy Council, a partnership between Greenpeace Brazil and GEPEA/USP were established for producing two national alternative energy scenarios, as a blueprint for how to meet forthcoming Brazilian energy needs in a sustainable way. Such scenarios, one reflecting the views of GEPEA/USP and another the perceptions by Greenpeace, were both based on a reference scenario strongly drawing from the 'Plano Decenal 2006-2015' and the 'Plano Nacional de Energia 2030', both by the Ministry of Mines and Energy. From the alternative scenarios one may see that is feasible to satisfy the increasing Brazilian demand through the integrated deployment of alternative resources, Natural Gas fueled thermal power plants and energy conservation measures. To develop the Brazilian electricity energy base in such terms, however, is mandatory to conduct further debate on energy planning issues, conservation measures and alternatives resources concerns included. (author)

  16. An Envoy for Alternative Energy

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ The United States stands poised to cash in on China's growing appetite for alternative energy.This message rang loud and clear during a recent visit to China by U.S.Secretary of Commerce Gary Locke.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  18. Optimization of electric energy

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, A.R.

    1984-02-01

    Several examples are used to show how electrical energy consumption can be reduced using appropriate consultation. According to on detailed analysis on energy consumption, a reduction can be achieved with peak loads as well as with the application of a combined emergency power supply - thermal machine, at least for middle- and large-sized buildings. The calculations for profitability are extended for the following areas: energy-saving light systems, ventilation plants, elevator plants, and kitchen equipment. A comment on employee motivation closes the report.

  19. Economics of Carbon Dioxide Sequestration and Mitigation versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S.

    Directory of Open Access Journals (Sweden)

    Zheming Zhang

    2011-01-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation in U.S has been developed; the model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints. The non-renewable energy sources include three types of fossil fuels: coal, natural gas and petroleum, and renewable energy sources include nuclear, hydraulic, wind, solar photovoltaic, biomass wood, biomass waste and geothermal. Energy demand sectors include households, industrial manufacturing and non-manufacturing commercial enterprises. Energy supply takes into account the electricity delivered to the consumer by the utility companies at a certain price which maybe different for retail and wholesale customers. Environmental risks primarily take into account the CO2 generation from fossil fuels. The model takes into account the employment in various sectors and labor supply and demand. Detailed electricity supply and demand data, electricity cost data, employment data in various sectors and CO2 generation data are collected for a period of nineteen years from 1990 to 2009 in U.S. The model is employed for policy analysis experiments if a switch is made in sources of electricity generation, namely from fossil fuels to renewable energy sources. As an example, we consider a switch of 10% of electricity generation from coal to 5% from wind, 3% from solar photovoltaic, 1% from biomass wood and 1% from biomass waste. The model is also applied to a switch from 10% coal to 10% from clean coal technologies. It should be noted that the cost of electricity generation from different sources is different and is taken into account. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and

  20. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  1. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  2. Alternative energies - the illusion and the facts

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, P.

    1981-08-31

    Alternative eneriges and energy techniques are evaluated very differently from the point of view of their contribution to energy supply. The present article attempts to make a reasonable estimate of their possibilities and limits. It is found that, from the potenial inexhaustible energies, only a fraction can actually be utilised in a reasonable manner. Although it is an illusion - by wider utilisation of inexhaustible energies to dispense with nuclear energy also, in the long view a notable contribution is to be expected for world energy supply. The existing structures of the electricity economy in the Federal Republic of Germany offer adequate provision for an initial exploitation of the, here severely limited, potential of inexhaustible energies.

  3. Geothermal Energy : An Alternative Source of Energy

    Directory of Open Access Journals (Sweden)

    R R Shah

    2014-04-01

    Full Text Available Nowadays renewable sources are preferred over the non renewable source to generate the energy. The rapid rates of exhausting non-renewable resources have completed us to look out for new avenues in energy generation. According to global energy scenario, developed countries are adopting renewable resources as major source of energy. Geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Geothermal energy is derived from the hot interior of the earth. The earth is a reservoir of heat energy, most of which is buried and is observed during episodes of volcanic eruption at the surfaces. Geothermal is one of the most promising renewable source of energy which is plentiful, eco-friendly, reliable and clean source of energy available in earth crust. In our country there is wide scope for the utilization of geothermal energy with proper strategically approach to meet the energy requirement. The future prospects of this heat energy as a sustainable source of renewable energy are indeed promising. Today India is the fifth largest consumer of electricity and by 2030 it will become third largest overtaking Japan and Russia according to statistical data available by Energy Planning Commission, Government of India.

  4. Economics of Carbon Dioxide Sequestration versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S., California and Illinois

    Directory of Open Access Journals (Sweden)

    Ramesh Agarwal

    2012-07-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation at national and individual state level in U.S has been developed. The model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints (CO2 emissions. Economic policy analysis experiments are carried out to determine the consequences of switching the sources of electricity generation under two scenarios: in first scenario, a switch from coal to renewable sources is made for 10% of electricity generation; in the second scenario, the switch is made for 10% of electricity generation from coal to coal with clean coal technology by employing CO2 capture and sequestration (CCS. The cost of electricity generation from various non-renewable and renewable sources is different and is taken into account in the model. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and electricity supply both are fully adjusted. The model is applied to the states of California and Illinois, and at national level.

  5. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  7. Alternate Energy for National Security.

    Science.gov (United States)

    Rath, Bhakta

    2010-02-01

    Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )

  8. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  10. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  11. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  12. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    Science.gov (United States)

    2007-11-02

    in converting electric energy to thermal energy for the decon applications. Other conductive materials, such as polythiophenes , polypyrroles, carbon...Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline, can be used as coatings or

  13. Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

    1976-01-01

    This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

  14. Balancing energy strategies in electricity portfolio management

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Christoph; Rachev, Svetlozar T. [Karlsruhe University, Karlsruhe (Germany); Fabozzi, Frank J. [Yale School of Management, New Haven, CT (United States)

    2011-01-15

    Traditional management of electricity portfolios is focused on the day-ahead market and futures of longer maturity. Within limits, market participants can however also resort to the balancing energy market to close their positions. In this paper, we determine strategic positions in the balancing energy market and identify corresponding economic incentives in an analysis of the German balancing energy demand. We find that those strategies allow an economically optimal starting point for real-time balancing and create a marketplace for flexible capacity that is more open than alternative marketplaces. The strategies we proffer in this paper we believe will contribute to an effective functioning of the electricity market. (author)

  15. Characteristics and optimum end uses of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.D.

    1980-12-01

    From the perspective of a consulting engineer to public-electric utilities, projections of growth in energy consumption by the year 2000 present both problems and opportunities. Consumption of energy to generate electricity will substantially increase its relative share and alternatives will have to compete with electricity generated from conventional sources in terms of end-use economics. Organizations having a direct interest in furthering coal-fired and nuclear generation have estimated their capabilities to expand. The resulting competition between the conventional technologies and alternative energies will be decided not by the wishes of ''soft path'' proponents but by the outcome of technical and economic feasibility studies. Comparisons are made of five alternative energy options (wind, wood, solar, geothermal and coal conversion) on the basis of four characteristics (schedule, cost, resource, environment). As it turns out, end-use and location may prove to be the overriding considerations.

  16. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  17. Alternative Energy for Higher Education

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cherney, PhD

    2012-02-22

    This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time dashboard and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.

  18. Electricity production from renewables energies

    CERN Document Server

    Robyns, Benoit; François, Bruno; Henneton, Antoine; Sprooten, Jonathan

    2012-01-01

    Energy and environmental issues have caused a marked increase in electricity production from renewable energy sources since the beginning of the 21st Century. The concept of sustainable development and concern for future generations challenge us every day to produce new technologies for energy production, and new patterns of use for these energies. Their rapid emergence can make the understanding and therefore the perception of these new technologies difficult. This book aims to contribute to a better understanding of the new electricity generation technologies by addressing a diverse audie

  19. Electric Power From Ambient Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  20. Alternative energies and innovation thrusts

    Energy Technology Data Exchange (ETDEWEB)

    Suter, P.

    1985-03-01

    Today, well-conceived systems for exploiting renewable energy sources are economically viable in many cases, despite various obstacles. Improved prospects are appearing for some of these energy forms through new innovative technologies. The present importance of renewable energy sources as well as the state of the art and obstacles to the use of these energy sources are discussed. The exploitation of solar energy, photocells, biomass, heat pumps, and geothermal heat is reviewed.

  1. Electricity energy outlook in Malaysia

    Science.gov (United States)

    Tan, C. S.; Maragatham, K.; Leong, Y. P.

    2013-06-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  2. Alternative energies and innovative measures

    Energy Technology Data Exchange (ETDEWEB)

    Suter, P.

    1985-01-01

    Well-planned, simple and viable systems which use renewable energies are economically efficient in field use today. Operational safety and service life are very good indeed after eliminating the errors and failures of the early stages of this technology caused by the attempt to achieve a deceptive optimum by means of sophisticated intricateness of appliances and systems. Renewable energies are beneficial for the environment too. Of course there is some energy required for building systems for renewable energy: i.e. process energy for raw material production, transport energy for people and goods, fuel for heating the factories and business rooms, driving energy for machine tools etc. Correct analysis of these process chains is quite expensive and rather difficult. Upper limits for the energy invested into such plants can, however, be obtained from energy balances of whole industries. The ratio of energy invested and energy produced p.a. is the so-called energy return period; the ratio of service life and return period, called yield factor ought to be more than 1 of course. Detailed analysis of existing, adequate plants shows this factor to be usually much greater than 1. Renewable energies are therefore expected to make a small but most welcome contribution to the energy requirements of buildings, in the long run (50 years) they will help us to solve our environmental- and ressource problems in an efficient way. (orig./BWI).

  3. Peat gasification and new alternatives of electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Solantaus, Y.

    1986-01-01

    Electricity, chemicals and liquid fuels can be produced from peat by gasification. If the product gas is used in a gas turbine, the efficiency of electricity production is higher in a combined gasification-gas turbine plant than in a conventional condensation power plant. If the gas is first led to chemical conversion and the unreacted gas is then burnt in a gas turbine, for example, octane boosters for liquid fuels and electricity can be produced in the same plant. Experimental knowhow of gasification and new syntheses have been critically evaluated in a work carried out at the Laboratory of Fuel Processing Technology of VTT. Concepts have been developed for processes, and then the actual techno-economic evaluations have been carried out. THe gasification-gas turbine plant may in the future offer a competitive alternative to the present energy production methods. Combined process alternatives based on gasification are fairly attractive also with regard to environmental protection. The feasibility of the production of chemicals and liquid fuel blend components is hihgly dependent on the prices of other raw materials.

  4. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  5. A New Challenge for Alternative Energy

    Institute of Scientific and Technical Information of China (English)

    Editorial Department of China Power Enterprise Management

    2009-01-01

    @@ The year 2008 sees a turning point in China's strategy of promoting energy saving and emissions reduction,as well as development of renewable energy.Oil price breaking US$140 and large area in China suffering from ice and snow disaster,a result of global warming,have both stressed the importance of developing alternative energy.Today,alterative energy accounts for a very small portion in China's power industry.Therefore,it is imminently required to speed up energy restructuring,to vigorously develop power generation with alternative energy such as nuclear energy,hydroenergy,wind energy,solar energy,biomass energy,geothermic energy,thus to realize sustainable development.

  6. Energy conservation in electric distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  7. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  8. Radiant energy to electric energy converter

    Science.gov (United States)

    Sher, Arden (Inventor)

    1980-01-01

    Radiant energy is converted into electric energy by irradiating a capacitor including an ionic dielectric. The dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or silver bromide, so that a multiplicity of crystallites exist between electrodes of the capacitor. The radiant energy cyclically irradiates the dielectric so that the dielectric exhibits a cyclic photocapacitive like effect. Adjacent crystallites have abutting surfaces that enable the crystallites to effectively form a multiplicity of series capacitor elements between the electrodes. Each of the capacitor elements has a dipole layer only on or near its surface. The capacitor is initially charged to a voltage just below the dielectric breakdown voltage by connecting it across a DC source causing a current to flow through a charging resistor to the dielectric. The device can be utilized as a radiant energy detector or as a solar energy cell.

  9. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  10. Alternative energies: Engineering, economics, market potential

    Energy Technology Data Exchange (ETDEWEB)

    Hake, B.

    1981-11-01

    Rentability calculations are disappointing for most alternative energies. Technical improvements that might change this are not in sight, so that the dependence on imported oil and gas will hardly be reduced. Producers of solar collectors, heat pumps, solar cells, and cogeneration units must keep in mind that the market will hardly expand. This was the result of a seminar on 'Alternative energy sources: Technology, economics, marketing potential - a critical review', held on May 5 at Haus der Technik, Essen.

  11. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  12. Alternative energy development strategies for China towards 2030

    Institute of Scientific and Technical Information of China (English)

    Linwei MA; Zheng LI; Feng FU; Xiliang ZHANG; Weidou NI

    2009-01-01

    The purposes, objectives and technology path-ways for alternative energy development are discussed with the aim of reaching sustainable energy development in China. Special attention has been paid to alternative power and alternative vehicle fuels. Instead of limiting alternative energy to energy sources such as nuclear and renewable energy, the scope of discussion is extended to alternative technologies such as coal power with carbon capture and sequestration (CCS), electric and hydrogen vehicles. In order to take account of the fact that China's sustainable energy development involves many dimen-sions, a six-dimensional indicator set has been established and applied with the aim of comprehensively evaluating different technology pathways in a uniform way. The ana-lysis reaches the following conclusions: (a) in the power sector, wind power, nuclear power and hydro power should be developed as much as possible, while R&D of solar power and coal power with CCS should be strengthened continuously for future deployment. (b) in the transporta-tion sector, there is no foreseeable silver bullet to replace oil on a large scale within the time frame of 20 to 30 years. To ease the severe energy security situation, expedient choices like coal derived fuels could be developed. However, its scale should be optimized in accordance to the trade-off of energy security benefits, production costs and environmental costs. Desirable alternative fuels (or technologies) like 2nd generation biofuels and electrical vehicles should be the subject of intensive R&D with the objective to be cost effective as early as possible.

  13. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  14. Crack instability of ferroelectric solids under alternative electric loading

    Science.gov (United States)

    Chen, Hao-Sen; Wang, He-Ling; Pei, Yong-Mao; Wei, Yu-Jie; Liu, Bin; Fang, Dai-Ning

    2015-08-01

    The low fracture toughness of the widely used piezoelectric and ferroelectric materials in technological applications raises a big concern about their durability and safety. Up to now, the mechanisms of electric-field induced fatigue crack growth in those materials are not fully understood. Here we report experimental observations that alternative electric loading at high frequency or large amplitude gives rise to dramatic temperature rise at the crack tip of a ferroelectric solid. The temperature rise subsequently lowers the energy barrier of materials for domain switch in the vicinity of the crack tip, increases the stress intensity factor and leads to unstable crack propagation finally. In contrast, at low frequency or small amplitude, crack tip temperature increases mildly and saturates quickly, no crack growth is observed. Together with our theoretical analysis on the non-linear heat transfer at the crack tip, we constructed a safe operating area curve with respect to the frequency and amplitude of the electric field, and validated the safety map by experiments. The revealed mechanisms about how electro-thermal-mechanical coupling influences fracture can be directly used to guide the design and safety assessment of piezoelectric and ferroelectric devices.

  15. Energy crisis will be allowed alternative energy

    OpenAIRE

    Березуцкий, Вячеслав Владимирович; БЕРЕЗУЦКАЯ Н.Л.

    2014-01-01

    Рассмотрены традиционные источники получения энергии и показаны их недостатки. Выполнены исследования по определению наличия энергии в пирамидках, построенных по принципу египетских пирамид. Полученные результаты позволили сделать вывод о перспективности разработки технологий получения энергии в пирамидах. Considered traditional sources of energy and show their weaknesses. Studies were performed to identify the presence of energy in the pyramids that are built at the principle of the Egypt...

  16. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  17. Harvesting alternate energies from our planet

    Science.gov (United States)

    Rath, Bhakta B.

    2009-04-01

    Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.

  18. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  19. Electric energy savings from new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  20. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  1. Economic assessment of alternative energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Groncki, P J; Goettle, IV, R J; Hudson, E A

    1980-04-01

    Current US energy policy includes many programs directed toward the restructuring of the energy system so as to decrease US dependence on foreign supplies and to increase our reliance on plentiful and environmentally benign energy forms. However, recent events have led to renewed concern over the direction of current energy policy. This study describes three possible energy strategies and analyzes each in terms of its economic, environmental, and national security benefits and costs. Each strategy is represented by a specific policy. The first strategy is to initiate no additional programs or policies beyond those currently in effect or announced. The second is to direct policy toward reducing the growth in energy demand, i.e., energy conservation. The third is to promote increased supply through accelerated development of synthetic and unconventional fuels. The analysis focuses on the evaluation and comparison of these strategy alternatives with respect to their energy, economic, and environmental consequences. The analysis indicates that conservation can substantially reduce import dependence and slow the growth of energy demand, with only a small macroeconomic cost and with substantial environmental benefits; the synfuels policy reduces imports by a smaller amount, does not reduce the growth in energy demand, and involves substantial environmental costs and impacts on economic performance. However, these relationships could be different if the energy savings per unit cost for conservation turned out to be less than anticipated; therefore, both conservation and R, D, and D support for synfuels should be included in future energy policy.

  2. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    Directory of Open Access Journals (Sweden)

    DEEPAK PALIWAL,

    2010-10-01

    Full Text Available The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternative to conserve the natural resources and reduce the pollution burden. At present renewable sources of energy such as solar, wind, geothermal and hydropower provide small fraction of energy need. The most prevalent source is biomass, which accounts around 12% of total energy requirement. This source of energy includes wood, logging waste, sawdust, animal dung and vegetables consisting of grass, leaves, grass residues and agricultural waste. The biomass is abundant in nature which can be trapped as source of energy for generation of electricity for the rural as well as urban population. The technology needs to be developed for use of biomass as a source of energy. This paperdiscusses about its prospects in Asia and particularly in India. The recent developments and projects in India are discussed. A note on pollution control strategies has also been added.

  3. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...

  4. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  5. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  6. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  7. Utilizing alternative energy sources in France

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, M.

    1977-01-01

    The relative merits of various alternative-energy sources are discussed with particular reference to their suitability in the French context. The case is presented for decentralized solar power as against centralized solar-power production and some test installations in France are described. The potential for geothermal power is examined, and it is shown that the resource is essentially nonrenewable. A history of wind generation in France is presented, and power extraction from the seas is discussed, with particular reference to the Rance tidal-power scheme. While the public romance with alternative-energy schemes is accepted, it is pointed out that this may only last for as long as their implementation is on a small scale.

  8. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  9. Alternative electrical transmission systems and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.

    1977-08-01

    A general description is provided of electrical transmission systems as an aid in determining their environmental impacts. Alternating current, direct current, overhead systems, underground systems, and water crossings are treated. The cost, performance, reliability, safety, and environmental impact of these systems are compared.

  10. Energy demand analysis in the workshop on alternative energy strategies

    Energy Technology Data Exchange (ETDEWEB)

    Carhart, S C

    1978-04-01

    The Workshop on Alternative Energy Strategies, conducted from 1974 through 1977, was an international study group formed to develop consistent national energy alternatives within a common analytical framework and global assumptions. A major component of this activity was the demand program, which involved preparation of highly disaggregated demand estimates based upon estimates of energy-consuming activities and energy requirements per unit of activity reported on a consistent basis for North America, Europe, and Japan. Comparison of the results of these studies reveals that North America requires more energy per unit of activity in many consumption categories, that major improvements in efficiency will move North America close to current European and Japanese efficiencies, and that further improvements in European and Japanese efficiencies may be anticipated as well. When contrasted with expected availabilities of fuels, major shortfalls of oil relative to projected demands emerge in the eighties and nineties. Some approaches to investment in efficiency improvements which will offset these difficulties are discussed.

  11. Drop oscillation and mass transfer in alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  12. DSP based inverter control for alternate energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Shireen, Wajiha; Vanapalli, Srinivas [University of Houston, Houston, TX 77204-4022 (United States); Nene, Hrishikesh [Texas Instruments Inc., Houston, TX (United States)

    2007-04-15

    This paper presents a DSP based algorithm to control inverters used in interfacing alternate energy systems with the electric utility. Since a constant and ripple free dc bus voltage is not ensured at the output of alternate energy sources, the main aim of the proposed algorithm is to make the output of the inverter immune to the fluctuations in the dc input voltage. In this paper a modified space vector pulse width modulation (SVPWM) technique is proposed which will maintain the quality of the ac output of the inverter, regardless of the ripple present at the inverter input. The principle is explained qualitatively and extensive experiments have been carried out to verify and validate the proposed algorithm. A 16-bit fixed-point C2000 family DSP from Texas Instruments was used as the controller to implement the proposed control algorithm. (author)

  13. Microalgae: An Alternative Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. Z. A. Saifullah

    2016-08-01

    Full Text Available This paper presents an overview on the potentiality of microalgae with particular emphasis as a sustainable renewable energy source for biodiesel. One of the most important dilemmas of the modern world is to supply maximal amount of energy with minimal environmental impact. The total energy demand of our planet is increasing with population growth whereas the fossil fuel reserves are dwindling swiftly. Biodiesel produced from biomass is widely considered to be one of the most sustainable alternatives to fossil fuels and a viable means for energy security and environmental and economic sustainability. But as a large area of arable land is required to cultivate biodiesel producing terrestrial plants, it may lead towards food scarcity and deforestation. Microalgae have a number of characteristics that allow the production concepts of biodiesel which are significantly more sustainable than their alternatives. Microalgae possess high biomass productivity, oils with high lipid content, fast growth rates, possibility of utilizing marginal and infertile land, capable of growing in salt water and waste streams, and capable of utilizing solar light and CO2 gas as nutrients.

  14. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  15. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  16. California energy approach: from conventional to alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Varanini, E.E. III

    1981-08-01

    The paper outlines the work of a State Government Agency, the California Energy Commission, which is now completing its major analytical task - forecasting California's future energy demand five, ten, and twenty years hence and formulating an optimal state strategy for energy production and conservation. The approach of the Commission was to study, in depth, the evolution of the demand of each category of end users. Supplemented by a realistic assessment of the impact of various conservation measures and by extensive discussions with different groups of concerned citizens, the Commission's approach produced much lower and quite manageable estimates of future energy demand. In devising an energy-supply strategy, the Commission postulated a mix of conventional and alternative energy technologies of proven practicability and diverse lead times. Providing such latitude in the choice of energy options increases the flexibility of the state's strategy to cope with possible unforeseen developments.

  17. Nanostructures for Electrical Energy Storage (NEES) EFRC

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanostructures for Electrical Energy Storage (NEES) EFRC is a multi-institutional research center, one of 46 Energy Frontier Research Centers established by the...

  18. Electrical energy storage and dissipation in materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyu, E-mail: zheng@math.kent.edu [Department of Mathematical Sciences, Kent State University, Kent, OH 44242 (United States); Palffy-Muhoray, Peter [Liquid Crystal Institute, Kent State University, Kent, OH 44242 (United States)

    2015-09-18

    Using a simple classical approach, we consider where and how electrical energy is stored in lossy dispersive materials. We argue that the material contribution to the electrical energy density is simply the sum of the kinetic and potential energies of the charges present under the influence of the applied electric field. It follows that the stored energy density must be positive. We provide simple expressions for the stored and dissipated energy densities; in the lossless case, our expressions reduce to the standard results of Brillouin and Landau.

  19. Linear oscillations of a drop in uniform alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenrui; Carleson, T.E.

    1990-10-01

    Oscillations of a conducting drop immersed in a dielectric fluid in an alternating electric field has been modelled in order to understand the enhancement of the transport processes by the electric field. Numerical solutions for oscillation amplitude, velocity distribution, resonant frequency and streamlines were obtained. The effects of viscosity and density on the resonant frequency and the velocity distribution were investigated. It was found that the resonant frequency of viscous fluids was always smaller than the free oscillation frequency of the same droplet. The predicted scanning frequency response curve and the streamlines agree well with the experimental observations.

  20. Evaluating the economy of alternative energies to petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Mitate, H.

    1982-01-01

    An account is given of the present state of the use of alternative energies to petroleum. This is followed by descriptions of current economic evaluations of such energies (energy choice and economy, cost analysis of alternative energy use) and of future tasks for economic evaluations (international comparisons of energy prices, comprehensive evaluations of alternative energies and economic evaluations of new energy technologies.) (1 ref.) (In Japanese)

  1. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  2. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  3. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  4. Electric Vehicles Mileage Extender Kinetic Energy Storage

    Science.gov (United States)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  5. A study on electric bicycle energy efficiency

    Directory of Open Access Journals (Sweden)

    Ivan EVTIMOV

    2015-09-01

    Full Text Available The paper presents a construction of an experimental electric bicycle for evaluation of the energy efficiency. The bicycle is equipped with onboard computer which can store the information about motion and energy consumption. The result concerning power, energy consumption, recharging during brake process, etc. are given. Energy consumption for 3 typical city routes is studied.

  6. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    Science.gov (United States)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  7. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    Science.gov (United States)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  8. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    Science.gov (United States)

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  9. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  10. USU Alternative and Unconventional Energy Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Robert [Utah State Univ., Logan, UT (United States); Wood, Byard [Utah State Univ., Logan, UT (United States); Heaslip, Kevin [Utah State Univ., Logan, UT (United States); Zane, Regan [Utah State Univ., Logan, UT (United States); Lyman, Seth [Utah State Univ., Logan, UT (United States); Simmons, Randy [Utah State Univ., Logan, UT (United States); Christensen, David [Utah State Univ., Logan, UT (United States)

    2014-01-29

    The purpose and rationale of this project has been to develop enduring research capabilities at Utah State University (USU) and the Utah State University Research Foundation (USURF) in a number of energy efficient and renewable energy areas including primarily a) algae energy systems, b) solar lighting, c) intuitive buildings, d) electric transportation, 3) unconventional energy environmental monitoring and beneficial reuse technologies (water and CO2), f) wind energy profiling, and g) land use impacts. The long-term goal of this initiative has been to create high-wage jobs in Utah and a platform for sustained faculty and student engagement in energy research. The program’s objective has been to provide a balanced portfolio of R&D conducted by faculty, students, and permanent staff. This objective has been met. While some of the project’s tasks met with more success than others, as with any research project of this scope, overall the research has contributed valuable technical insight and broader understanding in key energy related areas. The algae energy systems research resulted in a highly productive workforce development enterprise as it graduated a large number of well prepared students entering alternative energy development fields and scholarship. Moreover, research in this area has demonstrated both the technological and economic limitations and tremendous potential of algae feedstock-based energy and co-products. Research conducted in electric transportation, specifically in both stationary and dynamic wireless inductive coupling charging technologies, has resulted in impactful advances. The project initiated the annual Conference on Electric Roads and Vehicles (http://www.cervconference.org/), which is growing and attracts more than 100 industry experts and scholars. As a direct result of the research, the USU/USURF spin-out startup, WAVE (Wireless Advanced Vehicle Electrification), continues work in wirelessly charged bus transit systems

  11. Understanding and accepting fusion as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  12. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  13. Electric load management and energy conservation

    Science.gov (United States)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  14. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  15. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  16. Alternatives for hydrogen production in Brazilian regions aiming the generation of distributed electric energy; Alternativas para a producao de hidrogenio nas regioes brasileiras visando a geracao de energia eletrica distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi Junior, Paulo

    2009-07-01

    In this work possible sources of hydrogen production for the generation of electric energy in a distributed way, with the fuel cell use, had been selected and studied. Three renewable sources (biomass, photovoltaic and wind) have been studied for energy generation in Brazil. For the establishment of numerical values, the main regional agricultural cultures and the amount of biomass in various brazilian states had been evaluated, in the form of waste, capable to be used for future hydrogen production. It was also investigated and evaluated the numerical capacity of hydrogen production from wind and photovoltaic resources for each region in Brazil, considering the electrolytic process. Based on the results, it is possible to demonstrate the potentialities of Brazil for electric energy generation in a planned distributed way, with fossil fuel substitution, and consequently, decreasing the environmental impacts. (author)

  17. Categorization of Alternative Conceptions in Electricity and Magnetism: the Case of Ethiopian Undergraduate Students

    Science.gov (United States)

    Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja

    2013-10-01

    The purpose of this study was to categorize 35 Ethiopian undergraduate physics students' alternative conceptions in the concepts of electric potential and energy. A descriptive qualitative research design was used to categorize the students' alternative conceptions. Four independently homogeneous ability focus groups were formed to elicit the students' conceptual perceptions. A five-stage thematic (categorical) framework analysis—familiarization, identifying a thematic framework, coding, charting, and interpretation—was made to analyze data of the focus group discussions. The categories of alternative conceptions were based on the students' epistemological and ontological descriptions of the concepts investigated. Consequently, the following categories were diagnosed: naive physics, lateral alternative conceptions, ontological alternative conceptions, Ohm's phenomenological primitives, mixed conceptions, and loose ideas. The extensiveness of the alternative conceptions from the epistemological and ontological perspectives was comparable and considerable. The naïve physics and lateral alternative conceptions were more extensive than the others. The alternative conceptions were less frequently and inconsistently revealed within and across the categories. In general, it was concluded that the categories have common characteristics of diversified distribution of alternative conceptions and multiple alternative conceptions of specific concepts within and across the categories. Finally, instructional and theoretical implications are forwarded.

  18. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  19. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  20. Electrical-energy storage in hybrid ultracapacitors

    OpenAIRE

    Ravikumar, MK; Niranjana, E; Sundar Rajan, A; Banerjee, A.; Gaffoor, SA; Shukla, AK

    2009-01-01

    There are several ways of storing electrical energy in chemical and physical forms and retrieving it on demand, and ultracapacitors are one among them. This article presents the taxonomy of ultracapacitor and describes various types of rechargeable-battery electrodes that can be used to realize the hybrid ultracapacitors in conjunction with a high-surface-area-graphitic-carbon electrode. While the electrical energy is stored in a battery electrode in chemical form, it is stored in physical...

  1. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  2. Storing wind energy into electrical accumulators

    Science.gov (United States)

    Dordescu, M.; Petrescu, D. I.; Erdodi, G. M.

    2016-12-01

    Shall be determined, in this work, the energy stored in the accumulators electrical, AE, at a wind system operating at wind speeds time-varying. mechanical energy caught in the turbine from the wind, (TV), is transformed into electrical energy by the generator synchronous with the permanent magnets, GSMP. The Generator synchronous with the permanent magnets saws, via a rectifier, energy in a battery AE, finished in a choice of two: variant 1-unregulated rectifier and variant of the 2-controlled rectifier and task adapted. Through simulation determine the differences between the two versions

  3. Industrial electricity demand and energy efficiency policy

    OpenAIRE

    Henriksson, Eva

    2010-01-01

    This dissertation consists of an introduction and five self-contained papers addressing the issues of industrial electricity demand and the role of energy efficiency policy. An important context for the study is the increased interest in so-called voluntary energy efficiency programs in which different types of tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. Paper 1 conceptually analyses the cost-effectiveness of voluntary ...

  4. Solar energy for electricity and fuels.

    OpenAIRE

    Inganäs, Olle; Sundström, V

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorga...

  5. Decentralized energy systems for clean electricity access

    Science.gov (United States)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  6. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  7. Use of Geothermal Energy for Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mashaw, John M.; Prichett, III, Wilson (eds.)

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  8. APPLICATION OF ALTERNATIVE ENERGIES IN THE AUSTRALIAN OFFSHORE SECTOR

    OpenAIRE

    M. F. HJ. MOHD AMIN; C. K. H. CHIN; V. GARANIYA

    2016-01-01

    Fossil fuel is not practically renewable and therefore the world is at risk of fossil fuel depletion. This gives urgency to investigate alternative energies, especially for industries that rely entirely on energies for operations, such as offshore industry. The use of alternative energies in this industry has been in place for a while now. This paper discusses the application of various alternative energy sources to assist powering the Goodwyn Alpha (A) Platform, located on the North West ...

  9. Effect of decreasing electrical resistance in Characeae cell membranes caused by the flow of alternating current

    Directory of Open Access Journals (Sweden)

    Edward Śpiewla

    2014-02-01

    Full Text Available By means of the techniques of external electrodes and microelectrodes, it was found that evanescent flow of an alternating current through plasmalemma of Characeae cells neutralises oscillatory change in their electrical resistance and reversibly diminishes its value. This effect is particularly significant in the case of "high resistance cells", but it weakens with increasing temperature. The value of the estimated activation energy indicates that, after flow of the alternating current through the membrane, a rapid increase in the conductivity may be caused by an increase in conductivity of potassium channels. This result seems to support the hypothesis of electroconformational feedback.

  10. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  11. Alternative dispute resolution in electricity: Just do it!

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.T.

    1995-11-01

    Using mediation and arbitration, rather than traditional litigation, would produce enormous savings to the utility industry - in costs, time, and sparing use of key management resources. The time to institutionalize ADR is now! Prior to the recent formation of the first regional transmission groups (RTGs), the electric utility industry had made relatively sparing use of alternative dispute resolution (ADR). Historically, the industry`s time-honored reaction, when confronted with disputes of any significance, has been to sound the alarm and have its lawyers man their litigation battle stations. The results of these efforts have been mixed for both winners and losers - but the most common result has been high legal fees and multi-year litigation. In contrast to the electric utility industry`s marginal use of ADR, alternative dispute resolution is widely used to resolve disputes in such areas as: environmental cleanup, product liability, intellectual property and construction contract disputes, to name just a few. Internationally, disputes arising in North America Free Trade Agreement-related matters are subject to arbitration.

  12. Electric and magnetic energy at axion haloscopes

    Science.gov (United States)

    Ko, B. R.; Themann, H.; Jang, W.; Choi, J.; Kim, D.; Lee, M. J.; Lee, J.; Won, E.; Semertzidis, Y. K.

    2016-12-01

    We review the electro-magnetic energy at axion haloscopes and find that the electric and the corresponding magnetic energy stored in the cavity modes or, equivalently, the mode dependent electric and magnetic form factors are the same regardless of the position of the cavity inside the solenoid. Furthermore, we extend our argument to the cases satisfying ∇→×B→external=0 , where B→external is a static magnetic field provided by a magnet at an axion haloscope. Two typical magnets, solenoidal and toroidal, satisfy ∇→×B→external=0 ; thus, the electric and the corresponding magnetic energy stored in the cavity modes are always the same in both cases. The energy, however, is independent of the position of the cavity in axion haloscopes with a solenoid, and depends on those with a toroidal magnet.

  13. Metal oxide electrocatalysts for alternative energy technologies

    Science.gov (United States)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  14. Prioritizing Energy Sources to Generate Electricity (Application of Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Bahareh Hashemlou

    2015-08-01

    Full Text Available Organizations, institutions, and different sectors of manufacturing, services and agriculture are constantly making decisions. Each of the aforementioned sectors, have strategies, tactics, and various functions that play a basic role in reaching the objectives. On the other hand, energy demand in developing countries is increasing day by day. The exact calculation of the cost per unit of electricity generated by power plants is not easy. Therefore, this study according to four sources of natural gas, nuclear energy, renewable energy and other fossil fuels other than natural gas that are used in a variety of electricity production plants is trying to clarify the ranking of generation electricity approach using "fuzzy preference relations" analysis. Accordingly, three models were used and the results showed that natural gas, with regard to the four criteria of low investment cost, low power, lack of pollution and the safety and reliability of electrical energy has priority over other alternatives. Full preferred model results also suggested that the energy of natural gas, renewable energies, nuclear and other fossil fuels should be considered in a priority for power generation. Sensitivity analysis results moreover demonstrated that the above models are not affected by the threshold values ​​and the full stability of the models is observed.

  15. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  16. Electricity Demand and Energy Consumption Management System

    CERN Document Server

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  17. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  18. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  19. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  20. What's Next for Alternative Energy?

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal, B.; Paranikas, P.; Rose, J.

    2010-11-15

    Conventional energy sources will remain the bulk of the world's energy mix for at least the next few decades. Yet there are several alternative-energy technologies that are approaching inflection points in their development and could have an impact on the global energy landscape far sooner than commonly assumed. Other alternative-energy technologies, meanwhile, will remain largely vision and promise for the foreseeable future. This report looks at the prospects for a range of alternative-energy technologies, including wind and solar.

  1. Nuclear energy such as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S, E-mail: douglasborgesdomingos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  2. Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model

    DEFF Research Database (Denmark)

    Kemausuor, Francis; Nygaard, Ivan; Mackenzie, Gordon A.

    2015-01-01

    biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate......As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework...... combined with increasing demand for energy has created an opportunity for dramatic changes in the way energy is generated in Ghana. However, the impending changes and their implication remain uncertain. This paper examines the extent to which future energy scenarios in Ghana could rely on energy from...

  3. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Science.gov (United States)

    2010-08-18

    ... Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... service area. The electric energy that Vitol proposes to export to Canada would be surplus...

  4. 78 FR 65978 - Application To Export Electric Energy; Powerex Corp.

    Science.gov (United States)

    2013-11-04

    ... Application To Export Electric Energy; Powerex Corp. AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... Powerex to transmit electric energy from the United States to Mexico as a power marketer for a...

  5. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Science.gov (United States)

    2010-08-03

    ... Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Order No. EA-281, which authorized Manitoba to transmit electric energy from the United States to...

  6. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Science.gov (United States)

    2012-04-04

    ... Application To Export Electric Energy; WSPP Inc. AGENCY: Office of Electricity Delivery and Energy Reliability... members, to renew the authority of those members to transmit electric energy from the United States to... new export authority for two other members to transmit electric energy from the United States...

  7. Low-energy control of electrical turbulence in the heart

    Science.gov (United States)

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-07-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ~Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.

  8. Chances and limits of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Schillmoeller, P.

    1980-04-01

    The author gives a general view of the reserves of fossile energy sources, the energy consumption of the western world, and the possibilities to meet a part of the need using renewable energy sources. As this part will remain very small at the moment, he shows the nececssity to expand also energy sources which do not correspond with the ideal norms regarding environment protection and low risk probability. This is especially nuclear energy, coal refining, and petroleum sands and schist.

  9. Solar energy for electricity and fuels.

    Science.gov (United States)

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  10. The private sector`s role in developing alternative energy systems in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Abdulkadir, A. [PT. Adriant Trading and Engineering, Jakarta, (Indonesia)

    1996-12-31

    Several scenarios have been used to predict the need for electricity in Indonesia up to the year 2020, all of which should provide the best economic performance and the lowest damage to the environment. All scenarios have minimized the use of oil and natural gas as primary energy sources in favour of their use as foreign exchange generators and industrial raw materials. The alternative energy scenarios so developed shows the increasing use of coal, combined cycles, geothermal and hydro-power energy. Nuclear energy is apparently only considered whenever its selection becomes inevitable. The environmental issues associated with future energy generation necessitate serious consideration of the use of the latest technological state-of-the-art clean coal-fired power plants. Other types of alternative energy systems such as photovoltaic, wind energy, biomass, etc., are expected to be developed for site specific regions or remote areas where electricity grids are prohibitive economically. The Indonesian government has supported the use of NRSE (New and Renewable Sources of Energy) for electricity generation by introducing the SPPT, or Small Power Purchase Tariffs, intended to stimulate private sector participation in electricity by offering for purchase PLN (the State power company), using avoided cost calculation mainly for cogeneration systems and electric power from small power producers consisting of private sector and cooperative organizations. (author). 10 tabs., 14 refs.

  11. Oil prices and the stock prices of alternative energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Irene; Sadorsky, Perry [Schulich School of Business, 4700 Keele Street, Toronto, Ontario (Canada)

    2008-05-15

    Energy security issues coupled with increased concern over the natural environment are driving factors behind oil price movements. While it is widely accepted that rising oil prices are good for the financial performance of alternative energy companies, there has been relatively little statistical work done to measure just how sensitive the financial performance of alternative energy companies are to changes in oil prices. In this paper, a four variable vector autoregression model is developed and estimated in order to investigate the empirical relationship between alternative energy stock prices, technology stock prices, oil prices, and interest rates. Our results show technology stock prices and oil prices each individually Granger cause the stock prices of alternative energy companies. Simulation results show that a shock to technology stock prices has a larger impact on alternative energy stock prices than does a shock to oil prices. These results should be of use to investors, managers and policy makers. (author)

  12. Washoe Tribe Alternative Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and CA

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  13. Electric impedance study of elastic alternating propylene-carbon monoxide copolymer (PCO-200)

    Science.gov (United States)

    Abdul Jawad, Saadi; Abu-Surrah, Adnan S.; Maghrabi, Mufeed; Khattari, Ziad

    2011-07-01

    The electrical properties of elastic alternating propylene-carbon monoxide copolymer (PCO-200) were investigated using the impedance spectroscopy technique. The results revealed a phase transition at about 70 °C where the material transforms from its insulating phase of conductivity in the order of 6×10-9 to about 9×10-5 (Ω m)-1, The second phase is characterized by temperature dependent electrical relaxation phenomena. The plot of the complex electric modulus and the complex impedance yields semicircles in the temperature range 70 up to 110 °C and a decreasing radius with increasing temperature. The activation energy was found to be in the order of 0.8 eV.

  14. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  15. Energy infrastructure: Mapping future electricity demand

    Science.gov (United States)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  16. Alternative energies. The bottom line in the discussion on energy; Alternative Energien. Eine Bestandsaufnahme zur Energiediskussion

    Energy Technology Data Exchange (ETDEWEB)

    Freilaender, R. [Freilaender und Partner Beratende Ingenieure VBI, Mannheim (Germany)

    1996-05-01

    The topical discussion on problems of the security of energy supply since the first oil crisis in 1973 has meanwhile been replaced by apprehensions in connection with growing carbon dioxide pollution from the combustion of fossil fuels such as wood, coal, natural oil and natural gas. Under the catchword of the ``climate catastrophe``, the increase in atmospheric pollutants and the associated greenhouse effect have become the object of world-wide conferences and declarations of intent for cutting down pollutant emissions. Hopes are pinned on alternative and renewable energies. The article informs on the current state of matters. (orig./RHM) [Deutsch] Die seit der 1. Oelkrise 1973 aktuelle Diskussion um die Probleme einer sicheren Energieversorgung ist inzwischen von der Sorge um die steigende CO{sub 2}-Belastung bei der Verbrennung fossiler Brennstoffe wie Holz, Kohle, Erdoel und -gas verdraengt worden. Die Zunahme von Schadstoffen in der Atmosphaere und der damit verbundene Treibhauseffekt ist unter dem Schlagwort `Klimakatastrophe` Gegenstand weltweiter Konferenzen und Absichtserklaerungen zur Senkung der Schadstoffemissionen. Alternative und regenerative Energien gelten als Hoffnungstraeger. Der vorliegende Beitrag gibt einen allgemeinen Ueberblick ueber den Stand der Dinge. (orig./RHM)

  17. Assessment Alternative Energy for Organic Rankine Cycle Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2015-02-01

    Full Text Available This paper studies the possibility of power generation by using alternative energy in Thailand which are geothermal energy, solar energy and waste energy based on the energy and economy indicators. An Organic Rankine Cycle (ORC is used to generate electricity from heat sources of hot springs, solar water heating system and RDF-5, respectively. In this study, a 20 kW ORC system with using R-245fa as working fluid was tested and evaluated the system efficiency. It could be found that the efficiency of ORC system was around 8%, when hot water temperature was higher than 100 ºC. The values of levelized electricity costs (LEC of geothermal energy, solar energy and waste energy were 0.148, 0.547 and 0.442 USD/kWh, respectively. The suitable alternative energy for generating electricity was the geothermal energy which was beneficial than the solar and waste energy power plants in terms of energy and economy results.

  18. Mesoporous Carbon-based Materials for Alternative Energy Applications

    Science.gov (United States)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  19. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  20. 77 FR 20805 - Application to Export Electric Energy; PPL EnergyPlus, LLC

    Science.gov (United States)

    2012-04-06

    ... Application to Export Electric Energy; PPL EnergyPlus, LLC AGENCY: Office of Electricity Delivery and Energy... renew its authority to transmit electric energy from the United States to Canada pursuant to section 202.... EA-210 authorizing PPL EnergyPlus to transmit electric energy from the United States to Canada as...

  1. 78 FR 14778 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity... (US), L.P. (Shell Energy) has applied to renew its authority to transmit electric energy from the..., which authorized Shell Energy to transmit electric energy from the United States to Mexico as a...

  2. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... Order No. EA-314, which authorized BP Energy to transmit electric energy from the United States...

  3. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Science.gov (United States)

    2010-03-17

    ... Application To Export Electric Energy; Integrys Energy Services, Inc. AGENCY: Office of Electricity Delivery.... (Integrys Energy) has applied to renew its authority to transmit electric energy from the United States to... authorizing Integrys Energy to transmit electric energy from the United States to Canada as a power......

  4. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... (DOE) issued Order No. EA-315, which authorized BP Energy to transmit electric energy from the...

  5. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... Application To Export Electric Energy; DC Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Energy to transmit electric energy from the United States to Canada as a power marketer for a...

  6. 78 FR 14779 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity... (US), L.P. (Shell Energy) has applied to renew its authority to transmit electric energy from the..., which authorized Shell Energy to transmit electric energy from the United States to Canada as a...

  7. Ferroelectric polymers for electrical energy storage

    Science.gov (United States)

    Claude, Jason W.

    The energy storage properties of vinylidene fluoride based fluoropolymers were explored. Energy density is a function of a materials permittivity and electrical breakdown strength. High values of each of these parameters are desirable for a high energy density and were explored in various fluoropolymer systems. Copolymers containing vinylidene fluoride (VDF), chlorofluoroethylene (CTFE), and trifluoroethylene (TrFE) were synthesized by a two-step approach beginning with the copolymerization of VDF and CTFE and the subsequent hydrogenation of the CTFE units to TrFE to create the terpolymer P(VDF-CTFE-TrFE). By changing the chemical composition of the fluoropolymers, the permittivity was varied from 12 to 50 due to changes in the crystal phase that converted the polymers from paraelectric to ferroelectric materials. The electrical breakdown mechanisms of a single copolymer composition of P(VDF-CTFE) was studied as a function of molecular weight and temperature. Energy density and breakdown strength increased as molecular weight increased and temperature decreased. An electromechanical breakdown mechanism was responsible for failure at 25°C while a thermal breakdown mechanism operated at -35°C which was below the glass transition of the material. In between at -15°C, a combination of the two mechanisms was found to operate. Electromechanical breakdown was also found to operate in a copolymer system with a fixed amount of VDF and varying amounts of TrFE and CTFE. The molecular weights were identical for all the polymers. Maxwell stress is the primary contributor to the electromechanical stress in polymers with a high amount the CTFE. Electrostrictive stress due to a crystal phase change at high electric fields is a major contributor to the electromechanical stress in polymers containing a high amount of TrFE. Energy density and electrical breakdown strength increased with increasing amounts of TrFE. Nanometer sized silica particles were incorporated into a P

  8. Electric and magnetic energy at axion haloscopes

    CERN Document Server

    Ko, B R; Jang, W; Choi, J; Kim, D; Lee, M J; Lee, J; Won, E; Semertzidis, Y K

    2016-01-01

    We review a recent letter published in Phys. Rev. Lett. $\\textbf{116}$, 161804 (2016) of which the main argument is that the mode dependent magnetic form factors at axion haloscopes depend on the position of the cavity inside the solenoid while the corresponding electric form factors do not. We, however, find no such dependence, which is also equivalent to the statement that the electric and corresponding magnetic energy stored in the cavity modes are the same regardless of the position of the cavity inside the solenoid. Furthermore, we extend the statement to the cases satisfying $\\vec{\

  9. Sustainable Energy. Alternative proposals to Mercosur

    Energy Technology Data Exchange (ETDEWEB)

    Honty, G. [Centro de Estudios Uruguayo de Tecnologias CEUTA, Montevideo (Uruguay)

    2002-08-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation.

  10. Sustainability of fossil fuels and alternative energies for Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tasdemiroglu, E.

    1989-01-01

    Reserves and production of fossil fuels in Turkey are discussed, as well as projections of production rates to the year 2010. Sustainability of fossil-fuel production has been estimated on the basis of presently known data. Fossil fuels will have a very limited lifetime. Bitumens, hydropower, geothermal energy, solar energy, wind power, biomass, and nuclear energy are appropriate alternative technologies. The potentials of these alternatives are given and recommendations made to enhance their contributions. 19 refs., 1 fig., 2 tabs.

  11. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  12. Electric energy supply systems: description of available technologies

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  13. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  14. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2012-05-04

    ... for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal Register / Vol. 77, No. 87... Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors AGENCY: Office... to amend the test procedures for electric motors and small electric motors. That...

  15. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2011-01-05

    ... Energy 10 CFR Part 431 Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3 / Wednesday, January 5, 2011... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and...

  16. PROSPECTS FOR USAGE OF ALTERNATIVE SOURCES FOR OBTAINING ELECTRIC POWER IN ISLAMIC REPUBLIC OF IRAN

    Directory of Open Access Journals (Sweden)

    D. B. Zorov

    2014-01-01

    Full Text Available The paper briefly describes the current state of power engineering industry  in the  Islamic Republic of Iran, contribution to gross output of electric power of gas turbine  power stations, combined-cycle power stations, hydroelectric power stations, wind power stations and solar power stations.  Substantiation of prospects pertaining to further development of alternative energy sources  in  the  Islamic Republic of Iran  in the context of availability of natural resources, economic efficiency and ecological safety

  17. Surface technologies 2006 - Alternative energies and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Vancouver (Canada). Department of Materials Engineering

    2007-12-15

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector. (author)

  18. 75 FR 54116 - Application To Export Electric Energy; Powerex Corp

    Science.gov (United States)

    2010-09-03

    ...] [FR Doc No: 2010-22064] DEPARTMENT OF ENERGY [OE Docket No. EA-171-C] Application To Export Electric... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... term. The electric energy that Powerex proposes to export to Canada would be surplus energy...

  19. Airports offer unrealized potential for alternative energy production.

    Science.gov (United States)

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  20. Alternative Dark Energy Models: An Overview

    CERN Document Server

    Lima, J A S

    2004-01-01

    A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed of $\\sim$ 1/3 of matter (baryonic + dark) and $\\sim$ 2/3 of an exotic component with large negative pressure, usually named {\\bf Dark Energy} or {\\bf Quintessence}. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, large scale structure, X-ray data from galaxy clusters, age estimates of globular clusters and old high redshift galaxies (OHRG's). Such results seem to provide the remaining piece of information connecting the inflationary flatness prediction ($\\Omega_{\\rm{T}} = 1$) with astronomical observations. Theoretically, they have also stimulated the current interest for more general models containing an extra component describing this unknown dark energy, and simultaneously accounting for the present accelerating stage of the Universe. An overlook in the literature shows that at least five dark energy candidates have been proposed in the context of general re...

  1. Renewable energy for sustainable electrical energy system in India

    Energy Technology Data Exchange (ETDEWEB)

    Mallah, Subhash; Bansal, N.K. [Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir (India)

    2010-08-15

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO{sub 2} emissions can be reduced by 72% as compared to the base case scenario. (author)

  2. Control of Energy Regeneration for Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; MAO Xiao-jian; LI Li-ming; ZHUO Bn

    2008-01-01

    To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current (DC) brushless motor was studied, the motor mathematical model and PI control method with torque close-loop were built. This control method was applied to pure EV and the real road tests were evaluated.The ER control does not make any significant uncomfortable influence brake feeling and can save about 10% battery energy based on 3 times economic commission for Europe (ECE) driving cycles.

  3. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Science.gov (United States)

    2013-11-04

    ... Application to Export Electric Energy; Brookfield Energy Marketing Inc. AGENCY: Office of Electricity Delivery.... (BEMI) has applied to renew its authority to transmit electric energy from the United States to Canada... electric energy that BEMI proposes to export to Canada would be surplus energy purchased from...

  4. 77 FR 50486 - Application To Export Electric Energy; TexMex Energy, LLC

    Science.gov (United States)

    2012-08-21

    ... Application To Export Electric Energy; TexMex Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... authorized TexMex to transmit electric energy from the United States to Mexico as a power marketer for a...

  5. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Science.gov (United States)

    2012-08-21

    ... Application To Export Electric Energy; RBC Energy Services LP AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... Order No. EA-328 authorizing RBC Energy to transmit electric energy from the United States to Canada...

  6. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Science.gov (United States)

    2011-01-21

    ... Application To Export Electric Energy; Intercom Energy, Inc. AGENCY: Office of Electricity Delivery and Energy... renew its authority to transmit electric energy from the United States to Mexico pursuant to section 202... authorized Intercom to transmit electric energy from the United States to Mexico as a power marketer for...

  7. 77 FR 20375 - Application to Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2012-04-04

    ... Application to Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity... Corporation (Rainbow) has applied to renew its authority to transmit electric energy from the United States to... Department of Energy (DOE) issued Order No. EA-296 authorizing Rainbow to transmit electric energy from...

  8. 75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC

    Science.gov (United States)

    2010-12-07

    ... Application To Export Electric Energy; Sempra Energy Trading LLC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... authorized Sempra Energy Trading Corp. (SETC) to transmit electric energy from the United States to...

  9. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Science.gov (United States)

    2012-03-14

    ... Application To Export Electric Energy; DTE Energy Trading, Inc. AGENCY: Office of Electricity Delivery and... Trading) has applied to renew its authority to transmit electric energy from the United States to Canada... Order No. EA-211, which authorized DTE Energy Trading to transmit electric energy from the United...

  10. 78 FR 64207 - Application To Export Electric Energy; TEC Energy Inc.

    Science.gov (United States)

    2013-10-28

    ... Application To Export Electric Energy; TEC Energy Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... transmit electric energy from the United States to Canada for five years as a power marketer using...

  11. 76 FR 20968 - Application To Export Electric Energy; DC Energy Texas, LLC

    Science.gov (United States)

    2011-04-14

    ... Application To Export Electric Energy; DC Energy Texas, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... application from DCE Texas requesting authority to transmit electric energy from the United States to...

  12. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  13. Alternative energies. Keeping cool in Helsinki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Gatermann, R.

    2009-09-15

    For more than fifty years the combination of power generation with district heating has been the norm in Helsinki, Finland. A few years ago Helsinki Energy decided to integrate district cooling into the system, with great success. It showed that Helsinki is an excellent example of how the efficient use of fossil fuels can be environmentally friendly.

  14. 1976 Energy Resource Alternatives II Competition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R.A.; Iannucilli, M.; Marshal, J.; Sununu, J.H.; Eschbach, J.E.; Anson, J.; Wark, D.; Stock, D.E.

    1977-10-01

    Descriptions of all the entries in the competition are presented. Competition rules and judging procedures are described. Entries consisted of team efforts from colleges and universities. The competition called for the student teams to develop means for producing electrical power sufficient to meet the needs of a single family home, using an energy source other than oil or natural gas. The electric power produced had to be economically realistic when compared to present energy sources.

  15. The use of alternative energies for powering ELTs

    Science.gov (United States)

    Pescador, German R.

    2004-07-01

    The use of alternative energies is becoming common in many places around the world. It is envisaged that most large projects will consider the use of alternative energies in this new century. Such use or at least the attempts to use renewable energies to somewhat offset the power requirements of an ELT will be seen very positively by the general public, as well as by the administration and political authorities. The enclosure of an ELT will be one of the most unique buildings on earth. Its location will be suitable for the use of alternative energies and in particular of solar energy. The use of solar energy to power the building of an ELT will be discussed. A conceptual design of the possible building shall be done cosidering the installation of photovoltaic panels as part of the building structure.

  16. Photovoltaic system as an alternative source of electricity generation : a case study in Hashemite University, Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Etier, I. [Hashemite Univ., Zarqa (Jordan). Dept. of Electrical Engineering; Ababneh, M. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechatronics Engineering

    2007-07-01

    Approximately 97 per cent of the primary energy is imported in Jordan, of which 30 per cent is used to generate electrical energy. In response to increasing oil prices, renewable-energy sources are becoming increasingly viable in Jordan. As such, photovoltaic (PV) systems are gaining attention as an alternative source of energy. This paper presented a case study involving the design and simulation of a 10-kW photovoltaic system in Hashemite University, Jordan. The purpose of the study was to investigate the feasibility of using solar energy in Jordan using a grid-connected photovoltaic-system in an effort to encourage investment in this field. In addition, the site was selected because the campus is located in a desert area where the global radiation numbers are among the highest in the world; the campus has a great deal of safe building flat-roof areas to install solar panels; and most of the power demand occurs during the daytime so that implementing grid-connected PV system would contribute to a considerable savings in electricity. The paper discussed the PV system and described the system components. Actual and simulated meteorological data was used to define and optimize different parts of the system. It was concluded that future work might include improving system-efficiency and optimizing system components by investigating a new mechanism to keep the sun radiation vertical to solar-panels, or using newer technologies for solar cells and inverters. 21 refs., 3 tabs., 6 figs.

  17. USD Catalysis Group for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  18. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Science.gov (United States)

    2010-07-02

    ... Application to Export Electric Energy; Brookfield Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP... power marketing agencies and other entities within the United States. The existing...

  19. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    OpenAIRE

    2010-01-01

    The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS) emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternat...

  20. Nanostructured Materials for Renewable Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  1. Survey on the energy transportation technology for the alternative energies; Sekiyu daitai energy nado no yuso gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    Studied is a system in which hydrogen is produced through a water electrolysis process using clean energy from hydro-electric and solar power generations which can be obtained overseas with relative ease and at a low cost and is converted to a transportable chemical medium for transportation to Japan and utilization as energy like electricity, etc. The hydroelectric power generation is the most realistic alternative energy source in terms of energy density, technology and economy. Described here is the feasibility of development of hydroelectric power generation using rivers in Indonesia and Canada. As chemical substances which can be transportable chemical media, methanol/CO cycle (methanol is synthesized from coal gasified CO and electrolytic hydrogen) or liquid hydrogen cycle are the most practical on a short-term basis, and ammonia cycle and cyclohexane cycle are more advantageous than other cycles on a long-term basis. It is essential to reduce a cost of water electrolysis for each chemical substance. Potential needs are great for distribution and utilization of hydrogen energy regenerated from the transportable chemical medium, but it requires a lot of technological innovations regarding the system structure and materials (safety, particularly). 58 refs., 116 figs., 79 tabs.

  2. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)

    2006-10-15

    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  3. Alternative Energy Center, Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  4. The biogas: a future energy alternative; Biogas: a alternativa energetica do futuro

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, Carla Marques [Faculdade de Tecnologia e Ciencias, Salvador, BA (Brazil)]. E-mail: paixao_cm@yahoo.com.br; Anjos, Jose Angelo Sebastiao Araujo dos [Universidade de Salvador, BA (Brazil). Lab. de Pesquisa Ambiental e Geotecnologias (LAGEO)]. E-mail: jangello@unifacs.br; Mascarenhas, Artur Jose Santos [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: ajsmascarenhas@yahoo.com.br

    2006-01-15

    The biogas is one of the principal factors. During the last years the biogas use are intensifying himself which can make the energy alternative of the future. The methane, present in these gas, can be converted into energy, for his combustion generates a large quantity of thermal energy, which can be concerted into electrical ou mechanical energy. Being so, it is important that we aware that the caloric power of the biogas varies between 5000 to 7000 kcal/m{sup 3}, depending on the methane concentrations. Besides, the biogas purification through the removal of the carbonic gas can rising his calorific to values larger than 8700 kcal/m{sup 3}.

  5. 75 FR 57911 - Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc.

    Science.gov (United States)

    2010-09-23

    ... Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc. AGENCY: Office of Electricity..., Inc. (GSEMNA) has applied for authority to transmit electric energy from the United States to Canada... received an application from GSEMNA for authority to transmit electric energy from the United States...

  6. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Science.gov (United States)

    2010-12-10

    ... Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and....) has applied to renew its authority to transmit electric energy from the United States to Canada..., which authorized MAG E.S. to transmit electric energy from the United States to Canada for a...

  7. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Science.gov (United States)

    2012-04-18

    ... Application To Export Electric Energy; Citigroup Energy Canada ULC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to.... EA-326 authorizing CECU to transmit electric energy from the United States to Canada as a...

  8. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Science.gov (United States)

    2010-03-17

    ... Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity... applications, Noble Energy Marketing and Trade Corp. (NEMT) has applied for authority to transmit electric... electric energy from the United States to Mexico and from the United States to Canada as a power...

  9. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2010-09-23

    ... Application To Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity... Corporation (Rainbow) has applied for authority to transmit electric energy from the United States to Mexico... received an application from Rainbow for authority to transmit electric energy from the United States...

  10. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... Application To Export Electric Energy; Societe Generale Energy Corp. AGENCY: Office of Electricity Delivery.... (SGEC) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from the SGEC for authority to transmit electric energy from the United States to Canada as...

  11. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Science.gov (United States)

    2012-05-25

    ... Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States to... date listed above. Comments on the Emera applications to export electric energy to Canada should...

  12. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Science.gov (United States)

    2011-05-25

    ...] Application to Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202... an application from E-T Global for authority to transmit electric energy from the United States...

  13. 77 FR 1474 - Application To Export Electric Energy; AEP Energy Partners, Inc.

    Science.gov (United States)

    2012-01-10

    ... Application To Export Electric Energy; AEP Energy Partners, Inc. AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Mexico pursuant to... (DOE) issued Order No. EA-318, which authorized CSW Power Marketing to transmit electric energy...

  14. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Science.gov (United States)

    2010-12-17

    ... Application to Export Electric Energy; Direct Energy Marketing, Inc. AGENCY: Office of Electricity Delivery.... (DEMI) has applied to renew its authority to transmit electric energy from the United States to Canada... to transmit electric energy from the United States to Canada for a two-year term as a power...

  15. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    on gasification technology appears to be more environmentally friendly than straw direct combustion in all impact categories considered. The comparison with coal results in the same conclusion as that reached in the comparison with straw direct combustion. The comparison with natural gas shows that using straw......This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume......Wh of electricity from straw through gasification would lead to a global warming potential of 0.08 kg CO2e, non-renewable energy use of 0.2 MJ primary, acidification of 1.3 g SO2e, respiratory inorganics of 0.08 g PM2.5e and eutrophication potential of -1.9 g NO3e. The production of electricity from straw based...

  16. Alternative energy technologies: their application in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    de Carmona, L.S.

    1980-08-01

    This paper was presented at the Fourth Annual Conference of INTA, in Cairo, Egypt, in October 1980. It deals with the possibilities of using alternative energy technologies in planned urban areas in the developing countries. The case of Mexico is used to analyze use, energy balance, inventories of energy resources, and forecasts of energy supply by the year 2000. Described is the relationship between urban structures and energy requirements, providing data and commentary with respect to Mexican national urban plans, and with its programs in the energy area. Data in charts, maps, and statistics are included.

  17. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  18. The influence of values on evaluations of energy alternatives

    NARCIS (Netherlands)

    Perlaviciute, G.; Steg, L.

    2015-01-01

    Although both promoted as sustainable, nuclear and renewable energy elicit different evaluations in people. People expect (whether true or not) different implications for the environment and for consumers' resources from these energy alternatives. But what factors define the perceived importance of

  19. Electric energy consumption in the cotton textile processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Palamutcu, S. [Textile Engineering Department, Pamukkale University, Engineering Faculty, 20070 Kinikli, Denizli (Turkey)

    2010-07-15

    Electric energy is one of the primary energy sources consumpted in cotton textile processing. Current energy cost rate is reported about 8-10% in the total production cost of an ordinary textile product manufactured in Turkey. Significantly important share of this energy cost is electric energy. The aim of this paper was to investigate unit electric energy consumption of cotton textile processing stages using real-time measurements method. Actual and estimated Specific Energy Consumption (SEC) values for electric energy was calculated in the cotton textile processing stages of spinning, warping-sizing, weaving, wet processing and clothing manufacturing. Actual electric energy consumption data are gathered from monthly records of the involved plant managements. Estimated electric energy consumption data is gathered through on-site measurement. Actual and estimated electric energy consumption data and monthly production quantities of the corresponding months are used to facilitate specific electric energy consumption of the plants. It is found that actual electric energy consumption amount per unit textile product is higher than the estimated electric energy consumption amount per unit textile product of each involved textile processing stages. (author)

  20. Electrical energy in the future. A vision of 2050

    Directory of Open Access Journals (Sweden)

    Sławomir Królikowski

    2012-09-01

    Full Text Available The article contains scenarios for the power sector’s development until 2050, as proposed by students of Electrical High School No. 4 in Wloclawek. Many current trends in the development of technology have led the authors to attribute the verisimilitude to their selected visions of the future. The growing demand for energy, while fossil fuel resources and traditional methods of processing them are shrinking, will cause dissemination of the use of so-called environment-friendly sources of energy, such as wind or biomass. Energy will be commonly converted in domestic power stations equipped with energy storage capabilities and integrated with the grid by smart controllers for two-way energy transfer. The power grid role will change, and the existing energy consumers will become its prosumers. In the opinion of the authors the only alternative for this power sector development vision may be thermonuclear generation, which requires, however, incredibly high capital expenditures and level of technological development. However, launching thermonuclear power plants would free humanity from the fear of a future predominated by energy crisis.

  1. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Science.gov (United States)

    2010-08-02

    ...] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice... Order, the Commission directed Strategic Energy Management Corp. and Solaro Energy Marketing Corporation... Energy Management Corp. and Solaro Energy Marketing Corporation) have failed to file their...

  2. Distribution of Electrical Field Energy for Conversion of Methane to C2 Hydrocarbons via Dissymmetrical Electric Field Enhanced Plasma

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Genhui Xu; Hongwei Sun

    2006-01-01

    Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions.The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm3 and it was higher than the methane dissociation energy (0.0553 J/mm3).The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.

  3. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  4. APPLICATION OF ALTERNATIVE ENERGIES IN THE AUSTRALIAN OFFSHORE SECTOR

    Directory of Open Access Journals (Sweden)

    M. F. HJ. MOHD AMIN

    2016-09-01

    Full Text Available Fossil fuel is not practically renewable and therefore the world is at risk of fossil fuel depletion. This gives urgency to investigate alternative energies, especially for industries that rely entirely on energies for operations, such as offshore industry. The use of alternative energies in this industry has been in place for a while now. This paper discusses the application of various alternative energy sources to assist powering the Goodwyn Alpha (A Platform, located on the North West Shelf (NWS of Australia. The three alternative energy sources under discussion are: wind, wave and solar. The extraction devices used are the Horizontal and Vertical-Axis Wind Turbines - for wind; Pelamis, PowerBuoy and Wave Dragon - for wave; and the solar parabolic dish of SunBeam and Photovoltaic (PV cells of SunPower - for solar. These types of devices are installed within the same offshore platform area. Technical, environmental and economic aspects are taken into consideration before the best selection is made. The results showed that PowerBuoy used for wave energy, is the best device to be used on offshore platforms where operators could save up to 9% of power; $603,083 of natural gas; and 10,848 tonnes of CO2 per year.

  5. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Science.gov (United States)

    2011-08-15

    ... Application To Export Electric Energy; Glacial Energy of Texas, Inc. AGENCY: Office of Electricity Delivery.... (Glacial) has applied for authority to transmit electric energy from the United States to Mexico pursuant...)). On July 14, 2011, DOE received an application from Glacial for authority to transmit electric...

  6. Alternative propulsion concepts using high-energy batteries and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Braess, H.-H.

    1988-07-01

    Current projects on electrical and hydrogen propulsion are discussed. The role of electricity and hydrogen in vehicle propulsion, whether in a purely solar energy system or in a mixed nuclear/solar system, but at any rate in an extremely low pollution energy economy is considered. Advanced systems such as the sodium-sulphur battery offer the possibility of providing urban and short range transport (up to a range of 200 km). Larger distances of 200-500 km would have to be covered by using liquid hydrogen fuelled cars with internal combustion engines.

  7. 75 FR 10873 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors

    Science.gov (United States)

    2010-03-09

    ... Energy 10 CFR Part 431 Energy Conservation Program: Energy Conservation Standards for Small Electric... Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AB70 Energy Conservation Program: Energy Conservation Standards for Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable......

  8. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  9. Transmission of Electric Energy Along Long Lines

    Directory of Open Access Journals (Sweden)

    Berzan V.P.

    2009-08-01

    Full Text Available Transmission of electric energy along long lines is examined and characteristics of the change of capacities at the beginning and at the end of a line are submitted: factor of capacity, efficiency of a transmission line, currents depending on length, parameters of a line and parameters of loading. Influence of losses upon the dynamics of instant values of voltages and currents in the opened and short-circuited long lines is investigated and effects of nonlinearity in such chains are revealed at a power supply from a sinusoidal source of voltage. It is shown, that the method of complex amplitudes is not always applicable for the calculation of modes in long lines.

  10. Deregulation of Electricity Market and Drivers of Demand for Electrical Energy in Industry

    Directory of Open Access Journals (Sweden)

    Bojnec Štefan

    2016-09-01

    Full Text Available This paper investigates deregulation of electricity market focusing on electricity prices and drivers of demand for electrical energy in industry in Slovenia. The patterns in evolution of real electricity price developments and the three main components of the electricity price are calculated: liberalized market share for purchased electricity price, regulated infrastructure share for use of electricity network grids and mandatory state charges in the sale of electricity (duty, excise duty and value-added tax. To calculate the real value of electricity prices, producer price index of industrial commodities for electricity prices in industry is used as deflator and implicit deflator of gross domestic product for the size of the economy. In the empirical econometric part is used regression analysis for the amount electricity consumption in the industry depending on the real gross domestic product, direct and cross-price elasticity for natural gas prices in the industry. The results confirmed volatility in real electricity price developments with their increasing tendency and the increasing share of different taxes and state charges in the electricity prices for industry. Demand for electrical energy in industry is positively associated with gross domestic product and price of natural gas as substitute for electrical energy in industry use, and negatively associated with prices of electrical energy for industry.

  11. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium

    Institute of Scientific and Technical Information of China (English)

    LUO Ming-Yan; SONG Kun; ZHANG Xu; LEE Imshik

    2009-01-01

    In this work, from the point of calcium ions in the cytosol, we extend a Vm-[Ca2+]cyt model to explain the changes of action potential Vm of the plasma membrane and the calcium concentration in the cytosol [Ca2+]cyt under an alternating electric field in cells. An alternating external electric field may exert an oscillating force to each of the free electrolytes, existing on both sides of the plasma membrane. The mechanism for the alternating electric field induced-effects on Vm and [Ca2+]cyt is elucidated. The simulation results show a correlation between the changes of [Ca2+]cyt and the alternating electric field. When the numerical ratio between the intensity Eo(mV/m) and the frequency ν, (Hz) of the field was about 1-2, the [Ca2+]cyt signal is changed dramatically. The bioactive changes of [Ca2+]cyt appear at low frequency, in the range of 0-100 Hz.

  12. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Science.gov (United States)

    2010-04-05

    ... Part 431 RIN 1904-AB70 Energy Conservation Program: Energy Conservation Standards for Small Electric... rule regarding the energy conservation standards for small electric motors, which was published on... energy conservation standards for small electric motors. Due to a drafting error, an incorrect...

  13. Economic Impact of CDM Implementation through Alternate Energy Resource Substitution

    Directory of Open Access Journals (Sweden)

    K.J. Sreekanth

    2013-02-01

    Full Text Available Since the Kyoto protocol agreement, Clean Development Mechanism (CDM hasgarnered large emphasis in terms of certified emission reductions (CER not only amidst the globalcarbon market but also in India. This paper attempts to assess the impact of CDM towardssustainable development particularly in rural domestic utility sector that mainly includes lightingand cooking applications, with electricity as the source of energy. A detailed survey has undertakenin the state of Kerala, in southern part of India to study the rural domestic energy consumptionpattern. The data collected was analyzed that throws insight into the interrelationships of thevarious parameters that influence domestic utility sector pertaining to energy consumption byusing electricity as the source of energy. The interrelationships between the different parameterswere modeled that optimizes the contribution of electricity on domestic utility sector. The resultswere used to estimate the feasible extent of CO2 emission reduction through use of electricity as theenergy resources, vis-à-vis its economic viability through cost effectiveness. The analysis alsoprovides a platform for implementing CDM projects in the sector and related prospects withrespects to the Indian scenario.

  14. Renewable energy made easy free energy from solar, wind, hydropower, and other alternative energy sources

    CERN Document Server

    Craddock, David

    2008-01-01

    Studies have shown that the average North American family will spend more than a quarter of a million dollars on energy in a lifetime. What many other countries, including Germany, Spain, France, Denmark, China, Brazil, and even Iceland, have realized is that there is a better way to power our homes, businesses, and cars by using renewable energy sources. Recently, the United States has begun to understand the importance of reducing its reliance on coal, natural gas, nuclear power, and hydropower plants, which comprise the majority of the nation's electricity, due to increasing oil prices.

  15. Electric energy savings from new technologies. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.

  16. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  17. 新能源电力系统中需求侧响应关键问题及未来研究展望%Key Issues and Research Prospects for Demand-side Response in Alternate Electrical Power Systems with Renewable Energy Sources

    Institute of Scientific and Technical Information of China (English)

    曾博; 杨雍琦; 段金辉; 曾鸣; 欧阳邵杰; 李晨

    2015-01-01

    Fossil energy shortage and the goals of energy-saving and emission reduction are making it imperative to make adjustment in energy development strategies.With the large-scale connection to new energy generation,traditional power grids are evolving into alternate electrical power systems to,challenge their operational control.As a category of virtual controllable resource,introducing demand-side response (DR) can effectively overcome the problem of intermittency of new energy generation,while improving the utilization efficiency in the grids.Therefore,it is an important issue worth further discussion. This paper firstly introduces the basic features and implication of alternate electrical power systems with renewable energy sources.Then the potential contribution and effects of different demand side resources in such systems are treated according to their inherent characteristics.The enabling technologies of DR and the information about their application across the world are also summarized.On this basis,the status quo concerning DR studies in alternate electrical power systems is analyzed from five facets:planning,operation,control,evaluation,and market mechanism.Subsequently,we analyze the nodus that existed and point out the research directions worth further exploration in the above fields.Finally,based on the actual conditions of China,some suggestions are put forward for commercial application of DR and its safeguard mechanism in the context of the new energy era.%化石能源短缺和节能减排的双重压力促使中国能源发展方式亟待转型调整。随着新能源发电的规模化并网应用,传统电网正在逐步向着新能源电力系统方向演变,并对其运行控制带来显著的影响。作为一类虚拟可控资源,在新能源电力系统中考虑需求侧响应(DR)可有效克服新能源发电的间歇性问题,提高电网对新能源的利用效率,实现源荷互动与协同增效。文

  18. Electric discharge excitation and energy source integration

    Science.gov (United States)

    Grosjean, D. F.

    1985-01-01

    Methods of transferring energy from electrical storage to an electro-negative gas discharge at high repetition rates of approx. modeling of the pertinent kinetics of a He/Xe/HCl gas mixture which was performed in conjunction with various configurations of pulse-forming networks is described; gas thyratrons and magnetic switches were used as switching elements. Due to the relatively constant E/N characterisitics of this system, a stripline arrangement is shown to provide the most efficient method of energy transfer for pulse lengths approx < 50 nsec. Capacitor discharge methods are applicable to shorter pulse lengths. Construction of a closed-cycled, high-rep-rate XeCl gas-discharge laser is described. Operation of an X-ray preionized system at 1.5 kHz is also detailed; no contamination was observed in this configuration. The application of the XeCl laser as a pump source for a high-rep-rate, high-average-power dye laser is also described. A flowing-dye jet was utilized in order to avoid liquid-cell boundary-layer problems of a fast-flow stream. The optical quality of the jet stream was the limiting factor in achieving the power goals. A method of achieving high efficiency in a rare-gas-halide system is proposed via a magnetic switch and prepulse arrangement in conjunctions with a stripline PFN.

  19. Alternating Current All-electrical Gun Control System in Tanks

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-07-01

    Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.

  20. Electric Charge as a Form of Imaginary Energy

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2008-04-01

    Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.

  1. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  2. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  3. Institutional aspects of state regulation of interrelations of subjects of the electric energy market

    Directory of Open Access Journals (Sweden)

    Kuzmynchuk Nataliia V.

    2014-01-01

    Full Text Available The article identifies tendencies of development of international electric energy markets. It marks out the role of well-organised functioning of the electric energy market for maintaining the energy security of the country under complex conditions of Ukrainian economy transformation under the influence of geopolitical changes, financial, economic and social factors. It justifies important role of the state in realisation of the regulating impact through mechanisms of institutional support of production, transportation and supply of electric energy; it focuses on imperfection of the existing system of institutes of this sphere, which determine harmonicity of the electric energy buy and sell process. Based on the system analysis of the institutional foundation, which reflects principles and essence of regulation of the electric energy market and interrelations of its subjects, the article generalises problems of the modern regulatory and legal base and realisation of strategic programmes of development in the context of formation of relations between the energy market participants, which would facilitate renovation of state regulation. The article marks out key directions of solution of topical issues of institutional support of activity of electric energy market participants, the most urgent of which are problems of the tariff policy, alternative energy development, financial discipline and technical state of fixed assets of the electric energy complex. The article puts in order the system of contractual relations of subjects of the electric energy market, which allows formation of the scientifically justified approaches in the direction of improvement of the organisational structure of the energy market and introduction of measures on increase of efficiency of regulating actions by the state.

  4. Nanoscale heat transfer and thermoelectrics for alternative energy

    Science.gov (United States)

    Robinson, Richard

    2011-03-01

    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  5. Refrigerator-freezer energy testing with alternative refrigerants

    Science.gov (United States)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  6. Norway cogitates on alternate energies; En Norvege, on cogite sur les energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Th.

    2011-06-15

    The author reports his visit of a Norwegian research centre, expert in offshore technologies, which is currently investigating CO{sub 2} storage. All aspects of storage are considered: carbon capture, separation, transport and storage. A carbon capture and storage facility is already operating to develop a solvent-based extraction process. The main challenge is to reduce energy consumption and to prevent the emission of solvents in the environment. The research centre is also involved in the development of offshore wind energy production. It possesses a pool equipped with wave and current generators where measurements are performed on ship and floating wind turbine mock-ups

  7. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades 4-6.

    Science.gov (United States)

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  8. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades K-3.

    Science.gov (United States)

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  9. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  10. Electrical design for ocean wave and tidal energy systems

    CERN Document Server

    Alcorn, Raymond

    2013-01-01

    Provides an electrical engineering perspective on offshore power stations and their integration to the grid. With contributions from a panel of leading international experts, this book is essential reading for those working in ocean energy development and renewable energy.

  11. Space electric power design study. [laser energy conversion

    Science.gov (United States)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  12. New Free Electron Wire for Loss Free Utilization of Electrical Energy and Highly Energy Efficient Electrical Appliances

    Directory of Open Access Journals (Sweden)

    Sabyasachi Haldar

    2014-07-01

    Full Text Available New Free Electrons Wire will enable the use of electrical energy and also energy in various other forms, in a loss free way, at room temperature. Free Electrons confined in vacuum at the order of 10-4 torr or more, at the core of the wire, can move a distance as long as about, to a few kilometers without any collision. The vacuum is maintained in a tube made up of alternate layers of Teflon and Silicon Oxynitride. The columbic repulsion between these free electrons will actually conduct energy without any loss. The free electrons trapped in vacuum tube, should be at a particular density of around 2.02 x 108 electrons per unit area. A metal encapsulation(s over the wire is there to keep the electromagnetic field remain confined within the free electron wire, to make it harmless to the health of living creatures. Apart from loss free energy transportation, the free electron wire is also capable of generating very high electromagnetic field due to the free electrons, simply by removing the metal encapsulation(s, which can be used for various purposes. The materials and techniques adopted will make New Free Electron Wire producible commercially, at the cost of general copper wires.

  13. AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 32: ALTERNATIVE ENERGY: STATE AND PROSPECTS OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-06-01

    Full Text Available Purpose. Implementation of brief analytical review of the state and prospect of development in the modern world of alternative energy, including wind energy, sun energy, geothermal energy, biogas energy, flood-tide water energy, hydrogen energy and small water energy. Methodology. Scientific methods of collection, analysis and analytical treatment of scientific and technical information in area of the present state of world energy and ways of its further development. Results. A brief scientific and technical review is resulted about the state and prospects of world development of basic types of alternative energy. It is shown that, in spite of comparatively small stake (to 10 % of this untraditional energy in general world balance of making of electric power, world association taking into account the necessary changing in the nearest 50 years of present oil-gas «foundation» of energy on other with large raw material, potential and ecological possibilities are forced to invest large financial means in development of the indicated directions of alternative energy. Originality. First on the basis of materials of separate magazine publications, scientific monographs and internet-reports on power problem the brief analytical review of the state and prospects of world development of basic types of alternative energy is executed. Practical value. Deepening and spread of the scientific and technical learnings in area of functioning and ways of development of modern energy. Scientific popularization of arising up before society claimed tasks from global and important for all of humanity of power problem.

  14. Investment costs incurring with the application of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Mengeringhausen, M.

    1982-09-01

    The application of alternative methods of energy utilization must lead to significant savings in comparison to the conventional methods if it is to be done in a degree which can affect the national economy. Especially in systems with integrated heat pumps, the amount of the investment costs plays an important role. Starting from these statements the author emphasizes the necessity of seeing the possibilities of electronic data processing as a ''complementary technology'' to the alternative energies. The author shows the usefulness of the procedure referring to a calculation method. At the example of the new building of the MERO-factory the applicability of the method is demonstrated.

  15. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    Science.gov (United States)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  16. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  17. Energy alternatives in urban transportation; Alternativas energeticas em transportes urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Jose C. [SVO, Brasilia, DF (Brazil)

    1984-12-31

    The essay remarks the high dependence of petroleum derivative fuels, by analysing the energetic characteristics of urban transportation in Brazil. However, taking the global costs of energy in the country, only a little parcel of the petroleum expense is concerned to urban collective transportation. As a result, some energetic alternatives are being studied, in order to substitute petroleum derivative fuels, and parameters are being suggested to a national policy of urban transportation. (author). 8 refs., 5 tabs

  18. Electrically powered automotive vehicle with an energy recovering apppartus

    OpenAIRE

    Chevroulet, Tristan; Damminger, Ludwig

    1994-01-01

    Electrically driven motor vehicle, comprising mechanical means for braking the driving wheel and at least one electric motor. System for transfering brake energy into air-conditioning device. Enhances electro brake capabilities, provides controlled dissipation means, enables energy recovery & management. Improves accumulator lifetime (limits power surges due to braking). SMH - MCC Smart car concepts (electic & hybrid)

  19. Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife

    Directory of Open Access Journals (Sweden)

    Alfredo Ramírez Díaz

    2015-11-01

    Full Text Available Isolated regions are highly dependent on fossil fuels. The use of endogenous sources and the improvement in energy efficiency in all of the consumption activities are the two main ways to reduce the dependence of petroleum-derived fuels. Tenerife offers an excellent renewable resource (hours of sun and wind. However, the massive development of these technologies could cause important operational problems within the electric power grids, because of the small size of the system. In this paper, we explore the option of coupling an electric vehicle fleet as a distributed energy storage system to increase the participation of renewables in an isolated power system, i.e., Tenerife Island. A model simulator has been used to evaluate five key outputs, that is the renewable share, the energy spilled, the CO2 emissions, the levelized cost of generating electricity and fuel dependence, under alternative scenarios. Comparing to the current situation, combining a gradual renewable installed capacity and the introduction of an electric vehicle fleet using alternative charging strategies, a total of 30 different scenarios have been evaluated. Results shows that the impact of 50,000 electric vehicles would increase the renewable share in the electricity mix of the island up to 30%, reduce CO2 emissions by 27%, the total cost of electric generation by 6% and the oil internal market by 16%.

  20. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  1. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  2. Social issues and energy alternatives: the context of conflict over nuclear waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, M.K.; Earle, T.C.; Perry, R.W.

    1980-06-01

    The perceived risks and benefits of electric power alternatives were used to explore the context of attitudes toward nuclear power. Supporters and opponents of nuclear power responded to thirty-three items which referred to five categories of energy issue: the production potential of electric, risks of those technologies, power generation technologies, energy conservation, comparisons of risks among technologies and comparisons between risks and benefits of each technology. The results are summarized. The nuclear supporters studied here do favor nuclear power. However, they believe that there are limited prospects for contributions from solar, wind and hydroelectric technologies. They also believe that there are serious disadvantages to conservation. Nuclear opponents, on the other hand, disagree that there are such limited prospects for solar and wind, although they are neutral on the prospects for increased hydro capacity. They also do not believe that conservation necessarily poses serious adverse consequences either for themselves or others.

  3. Contextual and psychological factors shaping evaluations and acceptability of energy alternatives : Integrated review and research agenda

    NARCIS (Netherlands)

    Perlaviciute, Goda; Steg, Linda

    2014-01-01

    Sustainable energy transitions will be hampered without sufficient public support. Hence, it is important to understand what drives public acceptability of (sustainable) energy alternatives. Evaluations of specific costs, including risks, and benefits of different energy alternatives have been linke

  4. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  5. Age of alternative energies: speeding up the consolidation of the energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Miki, S.

    1986-01-01

    The author discusses the necessity of consolidating the energy infrastructure (i.e., the basic facilities) required for the main energy sources such as petroleum, LNG and electricity. He also explains that, in the case of the new energy sources currently being developed (e.g. coal gasification and liquefaction, coal cartridge systems, solar energy and biomass), much research still has to be carried out before this consolidation of the infrastructure will be possible.

  6. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  7. 75 FR 80292 - Energy Conservation Program: Energy Conservation Standards for Electric Motors

    Science.gov (United States)

    2010-12-22

    ... Part 431 RIN 1904-AB71 Energy Conservation Program: Energy Conservation Standards for Electric Motors..., promulgating energy conservation standards for certain electric motors as prescribed in the Energy Policy and... motors that, due to a drafting error, are not consistent with statutory requirements. DATES:...

  8. Analysis of alternative strategies for energy conservation in new buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  9. Alternative energy sources for non-highway transportation. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  10. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  11. Decarbonizing electricity generation with intermittent sources of energy

    OpenAIRE

    2015-01-01

    We examine the impact of public policies that aim to decarbonate electricity production by replacing fossil fuel energy by intermittent renewable sources, namely wind and solar power. We consider a model of energy investment and production with two sources of energy: one is clean but intermittent (e.g. wind), whereas the other one is reliable but polluting (e.g. coal). A carbon tax decreases electricity production while simultaneously increasing investment in wind power. This tax may however ...

  12. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  13. Plug in electric vehicles in smart grids energy management

    CERN Document Server

    Rajakaruna, Sumedha; Ghosh, Arindam

    2014-01-01

    This book highlights the cutting-edge research on energy management within smart grids with significant deployment of Plug-in Electric Vehicles (PEV). These vehicles not only can be a significant electrical power consumer during Grid to Vehicle (G2V) charging mode, they can also be smartly utilized as a controlled source of electrical power when they are used in Vehicle to Grid (V2G) operating mode. Electricity Price, Time of Use Tariffs, Quality of Service, Social Welfare as well as electrical parameters of the network are all different criteria considered by the researchers when developing

  14. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  15. Plasmonic Nanomaterials for Optical-to-Electrical Energy Conversion

    Science.gov (United States)

    Sheldon, Matthew

    High-quality semiconductor solids have been the dominant photovoltaic materials platform for decades. Although several alternative approaches have been proposed, e.g. dye-sensitized cells or polymeric solids, none compete in terms of cost and conversion efficiency, the crucial benchmarks for industrial scale implementation. However, semiconductors suffer from several fundamental limitations relating to the microscopic mechanism of power conversion that preclude them, even theoretically, from achieving conversion efficiency at the Carnot limit of 95%. Indeed, the fundamentally different tasks of semiconductors in photovoltaic devices, both as optical absorbers, and separately, for electron-hole pair separation and collection, often demand opposing trade-offs in materials optimization. Alternatively, recent advances in subwavelength metal optics, e.g. nanophotonics, metamaterials, and plasmonics, provide several new examples where nanostructured metals perform the separate tasks of absorption and charge separation necessary for photovoltaic power conversion. Nanostructured metals are extremely efficient broadband absorbers of radiation, with tailorable optical properties throughout the visible and infrared spectrum. It is traditionally assumed that the lack of a band gap and consequent fast electronic relaxation (fs) and short mean free path (100 nm) hinders efficient carrier collection. However, new phenomena resulting from the remarkable energy concentration and nanoscale collection geometry afforded by plasmonic systems suggest new strategies may be possible that use all metal structures. In this talk, I will describe two ongoing studies in our laboratory that exemplify opportunities for metal-based optical energy conversion: (1) Excitation with circularly polarized illumination can induce strong, persistent electrical drift currents in resonant metal nanostructures via the inverse faraday effect. (2) Plasmonic absorption in metal nanostructures provides an

  16. 76 FR 3881 - Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc.

    Science.gov (United States)

    2011-01-21

    ... Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc. AGENCY: Office of Electricity....S.) Inc. (TEMUS) has applied to renew its authority to transmit electric energy from the United... Order No. EA-216, which authorized TEMUS to transmit electric energy from the United States to Canada...

  17. Laboratory of alternative energies and hydrogen in ESPOL. Coupling needs and knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Mendieta, E. [Escuela Superior Politecnica del Litoral, Campus Gustavo Galindo, Guayaquil (Ecuador)

    2009-07-01

    The Ecuadorian problems with electricity and oil for the near future are shortly assessed in this paper. The main Ecuadorian universities contribution towards a real solution is also mentioned here. Projected Knowledge Park of ESPOL (PARCON) and its 7 integrated research centers is presented briefly. The integration of multidisciplinary research being developed in ESPOL is one foundation for this Knowledge Park. The results of previous researches like the Hydrogen project will be used to set the first stage database for future R and D initiatives. The University of Applied Science of Stralsund is one formal partner for ESPOL in Alternative Energies and Hydrogen utilization. (orig.)

  18. Biogas production: new trends for alternative energy sources in rural and Urban zones

    Energy Technology Data Exchange (ETDEWEB)

    Martins das Neves, L.C.; Vessoni Penna, T.C. [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo (Brazil); Converti, A. [Department of Chemical and Process Engineering, University of Genoa (Italy)

    2009-08-15

    Biogas is a biofuel with a high energy value and basically consisting of methane, which can be used as a renewable energy source as a substitute for natural gas or liquefied petroleum gas. It can be produced by anaerobic digestion of agricultural organic waste or manure in rural areas, where it can be used to generate electric, thermal or mechanical energy. It can also be generated in landfills from the organic fraction of municipal solid wastes and used as an alternative energy source in urban areas. Industrialized and urbanized areas are afflicted by serious environmental problems associated with the generation of organic residues. Anaerobic microorganisms can degrade pollutants resulting in two kinds of products, i.e., digested sludge and biogas, which can be exploited as a soil fertilizer and a renewable energy source, respectively. The correct management of residual waste involves high costs, and inadequate treatment and storage can compromise its quality. Environmental agencies have been encouraging the dissemination of anaerobic digesters to produce biogas from organic residues and the use of the resulting sludge as fertilizer since it is able to destroy pathogenic agents and reduce the humidity level. This review aims to evaluate the production capability of biogas and its application as an alternative energy source in rural and urban areas. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Alternative energy sources for non-highway transportation: technical section

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  20. Direct Conversion of Radioisotope Energy to Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Marks Prelas; Alexey Spitsyn; Alejandro Suarez; Eric Stienfelds; Dickerson Moreno; Bia-Ling Hsu; Tushar Ghosh; Robert Tompson; Sudarshan Loyalka; Dabir Viswanath

    2003-09-09

    A new chemical reactor has been tested for Field Enhanced Diffusion by Optical Activation doping and purification of SiC, GaN and AlN films. Different conditions have been used on SiC, GaN and AlN samples including temperature variation, electrical field variation, variations in electrical current and optical activation. A 5mW (630-680) nm laser was used for optical activation. It was observed that optical activation has a major effect on ion drift rates. It was also observed that the magnitude of the electrical current also enhanced ion drift rates by a postulated current drag mechanism. I-V characteristic curves were measured to verify changes in the electrical properties of the samples SIMS was used to analyze the concentrations of impurities in the film samples before and after treatment. It has been demonstrated that the field-enhanced diffusion by optical activation method can dope and purify the films. As a result, the electrical properties of the wafers have been significantly improved during treatment especially in cases where a laser is used.

  1. Wavelet modulation: An alternative modulation with low energy consumption

    Science.gov (United States)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  2. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  3. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  4. Biogas : Animal Waste That Can be Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Tuti Haryati

    2006-09-01

    Full Text Available Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerobe bacteria activity in aerobic digester . Anaerobic digestion process is basically carried out in three steps i.e. hydrolysis, acidogenic and metanogenic . Digestion process needs certain condition such as C : N ratio, temperature, acidity and also digester design . Most anaerobic digestions perform best at 32 - 35°C or at 50 - 55°C, and pH 6 .8 - 8 . At these temperatures, the digestion process essentially converts organic matter in the present of water into gaseous energy . Generally, biogas consists of methane about 60 - 70% and yield about 1,000 British Thermal Unit/ft 3 or 252 Kcal/0.028 m3 when burned . In several developing countries, as well as in Europe and the United States, biogas has been commonly used as a subtitute environmental friendly energy . Meanwhile, potentially Indonesia has abundant potential of biomass waste, however biogas has not been used maximally .

  5. Alaska Regional Energy Resources Planning Project, Phase 2: coal, hydroelectric, and energy alternatives. Volume III. Alaska's alternative energies and regional assessment inventory update

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Alaska Regional Energy Resources Planning Project is presented in three volumes. This volume, Vol. III, considers alternative energies and the regional assessment inventory update. The introductory chapter, Chapter 12, examines the historical background, current technological status, environmental impact, applicability to Alaska, and siting considerations for a number of alternative systems. All of the systems considered use or could use renewable energy resources. The chapters that follow are entitled: Very Small Hydropower (about 12 kW or less for rural and remote villages); Low-Temperature Geothermal Space Heating; Wind; Fuel Cells; Siting Criteria and Preliminary Screening of Communities for Alternate Energy Use; Wood Residues; Waste Heat; and Regional Assessment Invntory Update. (MCW)

  6. Energy Efficiency Under Alternative Carbon Policies. Incentives, Measurement, and Interregional Effects

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Daniel C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-28

    In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures are treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.

  7. Electricity from wave and tide an introduction to marine energy

    CERN Document Server

    Lynn, Paul A

    2014-01-01

    This is a concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation. With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today's most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources - drawing energy from the World's waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters. This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appea...

  8. Energy consumption of electric systems compared with fuel-fired systems. Advantage of energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Betray, A.; Delabby, P.; Mannoni, P.; Sola, J.

    1981-06-01

    Growth of the applications of electricity for heating purposes is often impeded by habits and preconceived ideas. However, in spite of a rather poor efficiency at the generating stage (Carnot's principle) electric processes are economic and save both raw materials and prime energy. The initial handicap of a low efficiency of electricity generating plants is offset by the efficiencies achievable in actual practice with electrically operated equipment. The comparative analysis of electric and fuel-fired equipment calls for complex measurements (energy and raw material consumptions...). Though expensive these measurements are instrumental in saving energy and may in the medium-range lead to a new plant design.

  9. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    Directory of Open Access Journals (Sweden)

    Yuefei Wang

    2016-10-01

    Full Text Available As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as a global optimal control problem which aims to minimize fuel consumption. Pontryagin’s minimum principle is applied to solve the optimal control problem to realize a real-time control strategy for electrical energy management in vehicles. The control strategy can change the output of the intelligent alternator and the battery with the changes of electrical load and driving conditions in real-time. Experimental results demonstrate that, compared to the traditional open-loop control strategy, the proposed control strategy for vehicle energy management can effectively reduce fuel consumption and the fuel consumption per 100 km is decreased by approximately 1.7%.

  10. Electrical Load and Energy Management. Course Outline and Instructional Materials.

    Science.gov (United States)

    Wang, Paul

    Presented are 13 lecture outlines with accompanying handouts and reference lists for teaching school administrators and maintenance personnel the use of electrical load management as an energy conservation tool. To aid course participants in making cost effective use of electrical power, methods of load management in a variety of situations are…

  11. 75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.

    Science.gov (United States)

    2010-06-14

    ... Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc. AGENCY: Office of Electricity Delivery.... (HQUS) has applied to renew its authority to transmit electric energy from the United States to Canada... Department of Energy (DOE) issued Order No. EA-182, which authorized HQUS to transmit electric energy...

  12. Storage of electric and magnetic energy in passive nonreciprocal networks

    Science.gov (United States)

    Smith, W. E.

    1969-01-01

    Examination of the relation of stored electric and magnetic energy within a system to the terminal behavior of nonreciprocal passive networks shows both similarities and important differences between wholly reciprocal systems and systems containing nonreciprocal elements.

  13. Energy storage specification requirements for hybrid-electric vehicle

    Science.gov (United States)

    Burke, A. F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide 'primary energy' ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W(center dot)h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  14. Spatial monopoly and the U. S. electrical energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Uri, N.D.

    1984-11-01

    The authors examine the effectiveness of regulation in the electrical energy industry in the U.S. On the whole, the industry is not allowed to act as a spatial monopolist. It is not justifiable, however, to conclude that monopolistic tendencies are absent. In particular, the pricing structure departs from the competitive criterion, which requires price to equal the marginal cost of supplying electrical energy to a given consumer.

  15. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  16. Energy differently - Booklet supplement to 'Alternatives economiques' journal (no. 54, Feb. 2012); L'energie autrement - Alternatives economiques hors-serie (no. 54, Fevrier 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-02-01

    This booklet screens the different renewable energy sources and focusses on their ecological advantage and economical maturity aspects. The book is divided in five parts: 1 - the energy transition: energies of yesterday and tomorrow; France: the end of compulsive consumption?; NegaWatt: a transition scenario for France; 2 - consuming less energy: saving energy; will the building industry revolution take place?; electricity: the constantly seeking more attitude can be avoided; smart grids: can they generate energy saving?; is the electric-powered car really ecological?; waste sorting: more effort is needed; is Internet a source of energy saving?; does tele-working reduce pollution?; how to feed people without impacting environment?; should we stop purchasing imported goods?; how can we get rid of trucks?; Is the carbon compensation system useful?; is innovation capable to save us?; 3 - producing energy differently: renewable energies - the French backwardness; hydro-energy; marine energies; thermal solar energy; photovoltaic energy; solar concentration; terrestrial wind power; offshore wind power; geothermal energy; heat pumps; agro-fuels; biomass and wood fuels; biogas; cogeneration; CO{sub 2} capture and sequestration; adapting the power grid to the renewable energies development; 4 - Initiatives: Enercoop, a 100% renewable power supplier; Le Mene (Brittany, France): towards a positive energy territory; local wind turbines: from Montdidier to Issoudun; the eco-districts revolution; interdependent funds for alternate energies; against fossil fuels extraction; Juneau (Alaska) moves to low-consumption; when solidarity and electricity go together: the example of Nicaragua; 5 - energy in debates: 'it is not too late'; a challenge for democracy; is France ready for nuclear phasing out?; reorganizing consumption; a turn to take today; understanding the photovoltaic crisis; how to finance renewable energy sources?; what impact on employment?; should we have to

  17. Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we explore energy storage and the role it is playing and could potentially play in increasing grid flexibility and renewable energy integration. We explore energy storage as one building block for a more flexible power system, policy and R and D as drivers of energy storage deployment, methods for valuing energy storage in grid applications, ways that energy storage supports renewable integration, and emerging opportunities for energy storage in the electric grid.

  18. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    Science.gov (United States)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  19. A simple forecasting model for industrial electric energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shehri, Abdallah [King Fahd Univ. of Petroleum and Minerals, Electrical Engineering Dept., Dhaharan (Saudi Arabia)

    2000-07-01

    A single-equation model is developed and employed for forecasting industrial electric energy consumption in the Saudi Consolidated Electric Company in the Eastern Province (SCECO-East) of Saudi Arabia. SCECO-East's industrial loads are composed mainly of oil-related and petrochemical industries. Even though industrial loads are generally characterised by their steadiness, the harsh weather conditions of the Eastern Province cause great variations in the industrial electric energy consumption at SCECO-East. The developed model reflects these variations. MATLAB is used to solve the model. (Author)

  20. Electric power processing, distribution, management and energy storage

    Science.gov (United States)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  1. Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Action Nechibvute

    2012-01-01

    Full Text Available The recent advances in ultralow power device integration, communication electronics, and microelectromechanical systems (MEMS technology have fuelled the emerging technology of wireless sensor networks (WSNs. The spatial distributed nature of WSNs often requires that batteries power the individual sensor nodes. One of the major limitations on performance and lifetime of WSNs is the limited capacity of these finite power sources, which must be manually replaced when they are depleted. Moreover, the embedded nature of some of the sensors and hazardous sensing environment make battery replacement very difficult and costly. The process of harnessing and converting ambient energy sources into usable electrical energy is called energy harvesting. Energy harvesting raises the possibility of self-powered systems which are ubiquitous and truly autonomous, and without human intervention for energy replenishment. Among the ambient energy sources such as solar energy, heat, and wind, mechanical vibrations are an attractive ambient source mainly because they are widely available and are ideal for the use of piezoelectric materials, which have the ability to convert mechanical strain energy into electrical energy. This paper presents a concise review of piezoelectric microgenerators and nanogenerators as a renewable energy resource to power wireless sensors.

  2. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  4. Energy management strategies for electric and plug-in hybrid electric vehicles

    CERN Document Server

    Williamson, Sheldon S

    2013-01-01

    Covers power electronics and motor drives for energy management of electric and plug-in hybrid electric vehicles Addresses specific issues and design solutions related to photovoltaic/grid based EV battery charging infrastructures and on-board battery management systems Emphasis on power electronic converter topologies for on-board battery management

  5. Electric Demand Analysis of the Tunisian Network: Trends and Short Term Photovoltaic Implementation with Alternatives Prospects and Technologies

    Directory of Open Access Journals (Sweden)

    J. Bouattour

    2014-08-01

    Full Text Available The main objective of this study is to analyze the system of electric demand in Tunisia and to propose immediate alternative solution of photovoltaic implementation that can be suitable based on available natural solar energy resources in the country to respond to the short Forecast peak demand growth and energy consumptions taking into account financial strain. On the first step, analysis of the situation based on the recent historical data is proposed. In a second step, a solution is considered, based on photovoltaic implementation and using the results of historical data analysis. The resulting benefits are highlighted: financial, technical, environmental and social. Future studies may be made to use a mix of technology and policy as well: among it combining photovoltaic and battery storage, in parallel with energy efficiency programs.

  6. Electricity, policy and landscape: An integrated geographic approach to renewable electric energy development

    Science.gov (United States)

    Serralles, Roberto Juan

    The development of a centralized electric energy infrastructure in industrialized areas of the world has significantly impacted the character and nature of local and regional landscapes. Since their development at the beginning of the 20th century, electric energy networks have become one of the most distinctive and visible landscape features found in industrialized regions today. At the same time, our perceptual relationship with the electric energy infrastructure, along with the meanings we ascribe to these electricity-related landscape features, has shifted dramatically over the last century. The early stages of the historical development of the electric energy infrastructure in the United States and Europe were marked by an optimistic popular perception that celebrated electricity's vast potential as an economic and social transformative agent. However, by the end of the 20th century, concerns in these industrialized regions over environmental degradation and resource scarcity significantly altered these popularized political and aesthetic judgments. Ironically, the recent growth of renewable energy projects, in particular large-scale wind energy facilities, while seeking to ameliorate the industrial causes of environmental degradation, has sparked an intense public debate over the visual impacts of these projects on local landscapes. To understand this shifting perceptual relationship between industrialized societies and the electricity landscapes found in these regions, in this dissertation I analyze the evolving social, economic and political milieu underlying the creation and reproduction of meanings ascribed to the visual landscape modifications spawned by the electricity network. In addition, I describe the political conditions and trends that are shaping and contextualizing the role of renewable electric energy facilities in the future electricity budgets of the United States and the EU. To address the concerns over negative visual impacts of renewable

  7. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  8. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long......Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... the output from the switch arrangement and designed such that a high impedance at a frequency range below the switching frequency is obtained, seen from the output terminals. Switches implemented by normally-on-devices are preferred, e.g. in the form of a JFET. The converter circuit may be in different...

  9. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  10. Electrical energy generation in Europe the current and future role of conventional energy sources in the regional generation of electricity

    CERN Document Server

    Morales Pedraza, Jorge

    2014-01-01

    Maximizing reader insights into the current use of conventional energy sources (such as fossil fuels) in the generation of electricity in the European region, this book addresses several key issues including: potential ways European countries could expand their energy sector in the coming years; the impact on the climate, the level of energy reserves, different efficiency measures that could be adopted to reduce the consumption of fossil fuels in the generation of electricity, and current and future energy production and consumption trends, amongst other topics.   Covering both how the use

  11. Valuation of flexible solutions with alternative fuel cell energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Haahtela, T.; Surakka, T.; Malinen, P. [Helsinki Univ. of Technology, Espoo (Finland). BIT Research Centre

    2009-07-01

    Fuel cells are an emerging technology with high potential, but also with significant market uncertainty. Fuel cells are currently in the transition from field trials to commercial introduction, and firms need to consider whether the technology fulfils the reliability and cost requirements of their current and upcoming products. This paper presented a framework to assist managers in finding the suitable valuation method for comparing different alternatives with emerging fuel cell technology. The dynamic valuation approaches of decision tree analysis, real options and system dynamics were discussed as they help in choosing the optimal timing and product structure over a long time period. Three examples of applications with fuel cells were briefly presented. The paper also addressed how the suggested valuation methods could be applied to them. These applications included maritime buoys; removable crisis management energy source container; and electrification of public transportation. It was concluded that the fuel cell technology has already become economically feasible in certain application areas. Improving technical reliability and cost reductions will make fuel cells even more competitive alternatives in new application areas. 9 refs., 1 tab., 1 fig.

  12. Modified gravity as an alternative to dark energy

    Science.gov (United States)

    Duvvuri, Vikram

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the late-time evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. We show that modifications of the form f ( R ) are ruled out by solar system tests of gravitation. In addition, we also review the Palatini method of variation for such theories and contrast it with the metric variation approach.

  13. Modified Gravity As An Alternative To Dark Energy

    CERN Document Server

    Duvvuri, V

    2005-01-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the late-time evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. We show that modifications of the form f( R) are ruled out by solar system tests of gravitation. In addition, we also review the Palatini method of variation for such theories and contrast it with the metric variation approach.

  14. Variable time flow as an alternative to dark energy

    CERN Document Server

    Magain, Pierre

    2016-01-01

    Time is a parameter playing a central role in our most fundamental modelling of natural laws. Relativity theory shows that the comparison of times measured by different clocks depends on their relative motions and on the strength of the gravitational field in which they are embedded. In standard cosmology, the time parameter is the one measured by fundamental clocks, i.e. clocks at rest with respect to the expanding space. This proper time is assumed to flow at a constant rate throughout the whole history of the Universe. We make the alternative hypothesis that the rate at which cosmological time flows depends on the global geometric curvature the Universe. Using a simple one-parameter model for the relation between proper time and curvature, we build a cosmological model that fits the Type Ia Supernovae data (the best cosmological standard candles) without the need for dark energy nor probably exotic dark matter.

  15. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    Science.gov (United States)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  16. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2016-01-04

    The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale.

  17. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    Science.gov (United States)

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  18. Conservation of Mechanical and Electric Energy: Simple Experimental Verification

    Science.gov (United States)

    Ponikvar, D.; Planinsic, G.

    2009-01-01

    Two similar experiments on conservation of energy and transformation of mechanical into electrical energy are presented. Both can be used in classes, as they offer numerous possibilities for discussion with students and are simple to perform. Results are presented and are precise within 20% for the version of the experiment where measured values…

  19. The Impact of Location and Proximity on Consumers’ Willingness to Pay for Renewable and Alternative Electricity: The Case of West Virginia

    OpenAIRE

    Nkansah, Kofi; Collins, Alan

    2014-01-01

    In 2015, West Virginia will implement a Renewable and Alternative Energy Portfolio Standards Act. Meeting these standards with either natural gas or wind power will generate different welfare impacts across society. In particular, this study examined how energy source and generation proximity influence consumers’ willingness-to-pay (WTP) for electricity. Using choice modelling, residents within two counties with distinct location characteristics (existing coal power plant or wind farm) were a...

  20. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  1. The oscillations of cylindrical drop under the influence of a nonuniform alternating electric field

    Science.gov (United States)

    Alabuzhev, A. A.; Kashina, M. A.

    2016-02-01

    The forced oscillations of incompressible fluid drop under the alternating electric field are considered. In equilibrium, the drop has the form of a cylinder bounded axially parallel solid planes and contact angle is right. The drop is surrounded by an incompressible fluid with another density. The external nonuniform electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional

  2. Linear oscillations of a drop in uniform alternating electric fields. [Annual report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenrui; Carleson, T.E.

    1990-10-01

    Oscillations of a conducting drop immersed in a dielectric fluid in an alternating electric field has been modelled in order to understand the enhancement of the transport processes by the electric field. Numerical solutions for oscillation amplitude, velocity distribution, resonant frequency and streamlines were obtained. The effects of viscosity and density on the resonant frequency and the velocity distribution were investigated. It was found that the resonant frequency of viscous fluids was always smaller than the free oscillation frequency of the same droplet. The predicted scanning frequency response curve and the streamlines agree well with the experimental observations.

  3. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  4. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Geoffrey K.F.; Yau, Kelvin K.W. [City University of Hong Kong, Kowloon, Hong Kong (China). Department of Management Sciences

    2007-09-15

    This study presents three modeling techniques for the prediction of electricity energy consumption. In addition to the traditional regression analysis, decision tree and neural networks are considered. Model selection is based on the square root of average squared error. In an empirical application to an electricity energy consumption study, the decision tree and neural network models appear to be viable alternatives to the stepwise regression model in understanding energy consumption patterns and predicting energy consumption levels. With the emergence of the data mining approach for predictive modeling, different types of models can be built in a unified platform: to implement various modeling techniques, assess the performance of different models and select the most appropriate model for future prediction. (author)

  5. Deformation analysis of vesicles in an alternating-current electric field.

    Science.gov (United States)

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  6. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  7. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    Science.gov (United States)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  8. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    CERN Document Server

    Dedinec, Aleksandar; Gajduk, Andrej; Markovska, Natasa; Kocarev, Ljupco

    2016-01-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  9. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  10. Energy management systems on board of electric vehicles, based on power electronics

    OpenAIRE

    Guidi, Giuseppe

    2009-01-01

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion.The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently ...

  11. The importance of electrical energy for economic growth in Barbados

    Energy Technology Data Exchange (ETDEWEB)

    Lorde, Troy; Francis, Brian [Department of Economics, University of the West Indies, Cave Hill Campus (Barbados); Waithe, Kimberly [Research and Planning Unit, Ministry of Economic Affairs, Warrens, St. Michael (Barbados)

    2010-11-15

    Using a neo-classical aggregate production model where capital, labour, technology, and energy are treated as separate inputs, this paper tests for the existence and direction of causality between output growth and electrical energy use in Barbados, analysed as a whole and in sectors respectively. Results indicate the presence of a long-run relationship between growth and electricity consumption; specifically we find that the non-residential sector is a key driver of growth. In addition, the evidence reveals a bidirectional causal relationship between electrical energy consumption and real GDP in the long run, but only a unidirectional causal relationship from energy to output in the short run. Forecasts indicate increasing consumption of electrical energy, particularly by the residential sector. We suggest that plans by the Government to liberalise the sector should encourage efficiency and innovation in production and distribution which should result in lower prices, as independent suppliers compete to maintain their market shares. Changes in the regulatory environment will also be necessary if such plans materialise. Policymakers will need to pay greater attention to the expected increase in the rate of consumption by the residential sector, as this will help to reduce the imports of oil and depletion of scarce foreign exchange resources by a sector that does not spur economic growth. An increase in energy capacity should be encouraged as contingency planning in the event of a technical or political disruption to fuel imports will be critical, notwithstanding the drive to use more renewable sources of energy. (author)

  12. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  13. Research of Energy Regeneration Technology in Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    陈家新; 江建中; 汪信尧

    2003-01-01

    The theory of energy regeneration in electric vehicle (EV) has been introduced in most papers, but the mathematic model of EV energy regeneration system was little studied. In this paper the mathematic model of EV energy regeneration system is studied,and then the system ability under four control strategies is analyzed. In the end the system reliability is researched, and the calcula-tion model of system reliability is proposed.

  14. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  15. The formation of energy supplying companies’ electricity customers’ relationship value

    Directory of Open Access Journals (Sweden)

    P.H. Pererva

    2014-03-01

    Full Text Available The aim of the article. The aim of the article is definition and scientifically justification values of the relationship between supply companies and their clients on the way of transition to a market model of bilateral agreements with the balancing market. The results of the analysis. Relations between power supply enterprises and consumers of electricity are considered as unique resources of the company, which, combined with capacity building is a source of potential advantages that allow electricity providers to provide better results. There are formed and justified monetary and nonmonetary indicators of value relationship for energy supply companies and their customers. Based on the analysis of the features of electricity consumption in the retail market of industrial and non-industrial sources consumers it was established sources of values for the relationship of the parties interact. Conclusions and directions of further researches. Developing ideas of predecessors, it was refined, systematized and adapted to the specifics of the national electricity market indicators of monetary and non-monetary create value relationship that allows self-assessment by power supply portfolio of relationships. The monetary aspect of relationship reflects the ability of capital to bring benefit to supply companies in the form of cost savings that occur as a result of timely and full repayment of the consumed energy and increased revenues as a result of customization market offer additional services to customers, increase consistency and coordination mode electricity consumption activities to reduce network losses and cost savings for electricity consumers by offering a package of services for power saving modes and increase energy efficiency. We have identified the main expectations of consumers, such as the required level of availability of supply, an acceptable level of reliability and quality of services available in standard electricity prices, a high

  16. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Science.gov (United States)

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Connecticut Transmission Municipal Electric Energy Cooperative; Notice... Municipal Electric Energy Cooperative filed a petition requesting full waiver or exemption from...

  17. Alternate pulses of ultrasound and electricity enhanced electrochemical process for p-nitrophenol degradation.

    Science.gov (United States)

    Xie, Fengchun; Xu, Yun; Xia, Kunyuan; Jia, Caixia; Zhang, Pin

    2016-01-01

    A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC-MS. Experimental results showed that 94.1% of PNP could be removed at 2h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC)=50 ms and ultrasonic pulse time (T US)=100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.

  18. Nanogenerators Convert Mechanical Energy into Electricity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Nano-devices are at the most active research frontier in today's world thanks to their unmatched features such as miniature dimension, lowenergy consumption, high sensitivity in performance. Researchers have developed a broad range of nanodevices with various applications including in situ, real-time biomedical monitoring and detection,but their use has been limited by the sources of energy available to power them. Conventional batteries make the nanoscale systems too large, and the toxic contents of batteries limit their use in human body.

  19. Applying Smart Grid Technology For Reducing Electric Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Roy

    2010-09-15

    In recent years the term 'Smart Grid' has become a widely used buzz word with respect to the operation of Electric Power Systems. One analysis has suggested that a Smart Grid could potentially reduce annual energy consumption in the USA by 56 to 203 billion kWh in 2030, corresponding to a 1.2 to 4.3% reduction in projected retail electricity sales in 2030. This paper discusses some of the smart grid technologies pertaining to the operation of electric power distribution networks.

  20. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    Science.gov (United States)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  1. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  2. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  3. A novel scheme for making cheap electricity with nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Pettibone, J.S.

    1991-04-01

    Nuclear fuels should produce cheaper electricity than coal, considering their high specific energy and low cost. To exploit these properties, the scheme proposed here replaces the expensive reactor/steam-turbine system with an engine in which the expansion of a gas heated by a nuclear explosion raises a mass of liquid, thereby producing stored hydraulic energy. This energy could be converted to electricity by hydroelectric generation with water as the working fluid or by magnetohydrodynamic (MHD) generation with molten metal. A rough cost analysis suggests the hydroelectric system could reduce the present cost of electricity by two-thirds, and the MHD system by even more. Such cheap power would make feasible large-scale electrolysis to produce hydrogen and other fuels and chemical raw materials. 2 refs., 1 fig.

  4. Novel scheme for making cheap electricity with nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Pettibone, J.A.

    1979-08-24

    Nuclear fuels should produce cheaper electricity than coal, considering their high specific energy and low cost. To exploit these properties, the scheme proposed here replaces the expensive reactor/steam-turbine system with an engine in which the expansion of a gas heated by a nuclear explosion raises a mass of liquid, thereby producing stored hydraulic energy. This energy could be converted to electricity by hydroelectric generation with water as the working fluid or by magnetohydrodynamic (MHD) generation with molten metal. A rough cost analysis suggests the hydroelectric system could reduce the present cost of electricity by two-thirds, and the MHD system by even more. Such cheap power would make feasible large-scale electrolysis to produce hydrogen and other fuels and chemical raw materials.

  5. Solar energy alternatives for the United States Embassy and for rural development projects within the Republic of Upper Volta

    Energy Technology Data Exchange (ETDEWEB)

    Kern, E.C. Jr.

    1978-03-07

    This report is organized in three sections/: solar cooling options for the new Embassy office building, electrification of Fada N' Gourma using solar photovolatic versus conventional energy systems and an overview of the potential for village solar photovoltaic energy utilization in Upper Volta. The analysis indicates that the least-cost alternative for cooling the new offices is to modify existing plans, which call for standard electric room air conditioning units, and to incorporate energy conservation measures in the building construction and operation.

  6. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  7. Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System

    Directory of Open Access Journals (Sweden)

    Xiaoyang Sun

    2016-11-01

    Full Text Available Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%–50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.

  8. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    Science.gov (United States)

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  9. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    Science.gov (United States)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  10. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    NARCIS (Netherlands)

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R.E.E.; Conijn, J.G.; Rutgers, B.; Valot, L.; Joubert, E.; Perelgritz, J.F.; Filogonio, A.; Roetger, T.; Prieur, A.; Starck, L.; Jeuland, N.; Bogers, P.; Midgley, R.; Bauldreay, J.; Rollin, G.; Rye, L.; Wilson, C.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in

  11. 76 FR 53888 - Application to Export Electric Energy; Morgan Stanley Capital Group Inc.

    Science.gov (United States)

    2011-08-30

    ... Application to Export Electric Energy; Morgan Stanley Capital Group Inc. AGENCY: Office of Electricity... Inc. (MSCG) has applied to renew its authority to transmit electric energy from the United States to...-year term. The electric energy that MSCG proposes to export to Mexico would be surplus energy...

  12. 75 FR 6369 - Application To Export Electric Energy; Aquilon Power Ltd.

    Science.gov (United States)

    2010-02-09

    ... Application To Export Electric Energy; Aquilon Power Ltd. AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... electric energy from the United States to Canada as a power marketer using international...

  13. 78 FR 42512 - Application to Export Electric Energy; Royal Bank of Canada

    Science.gov (United States)

    2013-07-16

    ... Application to Export Electric Energy; Royal Bank of Canada AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... transmit electric energy from the United States to Canada as a power marketer for a five-year term...

  14. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S.; Schimanski, M.

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  15. Sustainable Energy alternatives for the rural community "Pozo Blanco", in Jatibonico, Sancti Spíritus.

    Directory of Open Access Journals (Sweden)

    Elizabeth Iparraguirre Carbonell

    2012-04-01

    Full Text Available Is analyzed the decisions taking for the execution of rural energización projects, it showed the ideas developed in the project "Renewable Energy for Ways of Sustainable Life" (RESURL, and the design tools based on the simplified method. Its objective was to identify alternatives to implement the cover of energy inadequacies in the community "Pozo Blanco" of the municipality of Jatibonico, by means of an integral study of selection based in the techniques of multipurpose analysis and the electric systems design, sustained in technologies with the renewable energy use, that provide a sustainable development; that generated concrete proposal. Also was executed a characterization over socioeconomic and energy diagnostic of the community, by means of the software SURE and the calculation based on the simplified method to obtain the matrix. The energy potentials were determined in terms of the indispensable demands, for the infrastructure development of the community. The originated proposal offers solution for electrification of houses in the referred community.

  16. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    Science.gov (United States)

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  17. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost......) – of the TES unit influences the savings. For this purpose, a reference price signal was used. Results show that it is possible to save up to approximately 14% of the electricity costs. In general, savings increase with Pmax and Emax. However, the benefit of increasing these two values ceases when certain...

  18. Energy partitioning of gaseous ions in an electric field.

    Science.gov (United States)

    Hahn, H.-S.; Mason, E. A.

    1973-01-01

    The partitioning of ion energy among thermal energy, drift energy, and random-field energy is studied by solution of the Boltzmann equation. An expansion in powers of the square of the electric field strength is obtained by Kihara's method. Numerical calculations for several ion-neutral force laws show that Wannier's constant mean-free-time model gives a reasonable first approximation. The formal extension to multicomponent mixtures is also given. The matrix elements obtained are tabulated, and can be used to study the field dependence of other moments of the ion-distribution function.

  19. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens (Lund Univ., Dept. of Chemical Engineering, Lund (Sweden))

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  20. Electrical activation of ultralow energy As implants in Si

    Science.gov (United States)

    Whelan, S.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; La Magna, A.; Napolitani, E.

    2001-10-01

    Arsenic implants performed in Si at ultralow energy have been extensively studied with structural, chemical, and electrical analysis. The near-surface damage annealing and its influence on the electrical activation of ultrashallow As in Si as a function of the anneal ambient has been investigated. Double alignment medium energy ion scattering, high resolution transmission electron microscopy, and low energy secondary ion mass spectrometry have been used to assess the dopant behavior and crystal recovery in the near-surface regions. The electrical activation of As in Si has been measured with spreading resistance profiling, four point probe, and van der Pauw methods. Major redistribution of the dopant into the SiO2-Si interface region occurred during crystal regrowth of the damaged Si layer. An inactive meta-stable As solid solution was formed in the near-surface region after amorphous layer regrowth. Electrical activation of the dopant occurred upon dissociation of the As solid solution, when the dopant concentration fell to the steady state level. The As diffusion observed has been shown to be enhanced for short (10 s) anneal times at 1100 °C. When annealing at high temperature in an oxidizing ambient the dopant is retained at a high concentration in the solid and a higher level of electrical activation is observed. Significant outdiffusion of the dopant is observed during high temperature annealing in nonoxidizing conditions which reduced the level of activation.

  1. Consumption dynamics of primary-energy sources: The century of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Matias, Joao Carlos de; Devezas, Tessaleno Campos [Department of Electromechanical Engineering, University of Beira Interior, P-6201-001 Covilha (Portugal)

    2007-07-15

    The present article characterizes economically and socially the two past centuries, focusing the consumption development of several primary-energy sources, linking it with this century's reality. The main objective is to demonstrate the relationship between the substitution process of primary-energy sources and the socio-economic development. Our analysis focuses on four technological transformations that have already occurred, emphasizing some aspects of present technological transformations. Thus, the role of primary-energy sources in the development of each long economic wave is analysed, as well as its geopolitical, commercial and social importance. Finally, bearing in mind the past dynamics associated with long structural waves, and making use of technological forecasting tools (Logistic Substitution and Delphi Technique), a future perspective is presented in which the substitution process points toward alternative-energy sources. (author)

  2. Consumption dynamics of the primary energy sources. The Century of the alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Joao Carlos de Oliveira; Devezas, Tessaleno Campos [Dept. of Electromechanical Engineering, University of Beira Interior, Covilha (Portugal)

    2002-07-01

    The present article characterizes the two past centuries economically and socially, focusing on the development of the several energy sources' consumption and linking it with this century's reality. The central aim is to demonstrate the relation between substitution of primary energy sources and socio-economic development. Our analysis focuses four technological transformations already occurred in the past, emphasising some aspects of the present technological transformation. Thus, the role of primary energy sources on the development of each long wave is emphasized as well as their geopolitical, commercial and social importance. Finally, and keeping in mind this past dynamics associated with long structural waves, and making use of technological forecasting tools (Logistic Substitution and Delphi Technique), it is presented a future perspective in which the substitution process points towards alternative energy sources.

  3. Alternative approach for Article 5. Energie Efficiency Directive; Alternatieve aanpak artikel 5. Energy Efficiency Directive

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Jablonska, B. [ECN Beleidsstudies, Petten (Netherlands)

    2013-05-15

    Article 5 of the Energy Efficiency Directive (EED) is an annual obligation to renovate 3% of the building stock of central government. After renovation the buildings will meet the minimum energy performance requirements laid down in Article 4 of the EPBD. The Directive gives room to an alternative approach to achieve the same savings. The Ministry of Interior Affairs has asked ECN to assist with this alternative approach. ECN calculated what saving are achieved with the 3% renovation obligation under the directive. Then ECN looked for the possibilities for an alternative approach to achieve the same savings [Dutch] In artikel 5 van de Energie Efficiency Directive (EED) staat een verplichting om jaarlijks 3% van de gebouwvoorraad van de centrale overheid te renoveren. Die 3% van de gebouwvoorraad moet na renovatie voldoen aan de minimum eisen inzake energieprestatie die door het betreffende lidstaat zijn vastgelegd op grond van artikel 4 in de EPBD. De verplichting betreft gebouwen die in bezit en in gebruik zijn van de rijksoverheid met een gebruiksoppervlakte groter dan 500 m{sup 2}, vanaf juli 2015 groter dan 250 m{sup 2}. De gebouwen die eigendom zijn van de Rijksgebouwendienst betreft kantoren van rijksdiensten, gerechtsgebouwen, gebouwen van douane en politie en gevangenissen. Van de gebouwen van Defensie hoeven alleen kantoren en legeringsgebouwen aan de verplichting te voldoen.

  4. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  5. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens (Lund Univ., Dept. of Chemical Engineering, Lund (Sweden))

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  6. Water-in-oil emulsification in a non-uniform alternating electric field

    Science.gov (United States)

    Choi, Suhwan; Saveliev, Alexei

    2015-11-01

    The emulsification of a water microdroplet placed in castor oil was performed using a non-uniform alternating electric field formed in the pin-to-plate geometry. A non-uniform electric field of ~40 kV/mm alternating with a frequency of 6.7 kHz was generated near the pin electrode. The applied frequency exceeded charge relaxation frequency of castor oil (0.3 Hz) and was below charge relaxation frequency of deionized water (7.8 kHz) used in the experiments. The emulsification process was captured with a CCD camera. The emulsification process started with entrainment of the water droplet in the high electric filed region near the pin electrode under the dielectrophoretic force. Upon touching the pin, the microdroplet was disintegrated in numerous channels and secondary droplets. The process continued by entrainment of secondary droplets and continuous size reduction. Three droplet breakup mechanisms were identified: drop elongation and capillary breakup, ac electrospraying of individual droplets, chain and bridge formation and decay. The quasi-steady narrow size distribution of emulsified water droplets with diameters close to 1 μm was formed after a few minutes. The generated emulsion was confined near the needle electrode due to the dielectrophoretic force. The emulsion had a well-defined boundary with a shape resembling a pendant drop suspended on the pin electrode.

  7. Renewable Energy for Electric Vehicles: Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power s

  8. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  9. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  10. 78 FR 64207 - Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New...

    Science.gov (United States)

    2013-10-28

    ... Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New Brunswick Power... Power Generation Corporation, has applied to renew its authority to transmit electric energy from the... Generation Corporation, to transmit electric energy from the United States to Canada as a power marketer...

  11. 77 FR 39689 - Application To Export Electric Energy; IPR-GDF SUEZ Energy Marketing North America, Inc.

    Science.gov (United States)

    2012-07-05

    ... No: 2012-16464] DEPARTMENT OF ENERGY [OE Docket No. EA-386] Application To Export Electric Energy.... (GSEMNA) has applied for authority to transmit electric energy from the United States to Mexico pursuant... authority to transmit electric energy from the United States to Mexico for five years as a power...

  12. Energy and electricity use in buildings. Pre-study; Energi- och Elanvaendning i byggnader. Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Dalenbaeck, Jan-Olof; Goeransson, Anders; Jagemar, Lennart [Chalmers EnergiCentrum CEC, Goeteborg (Sweden)

    2006-05-15

    The built environment accounts for 40 % of energy use and 50 % of electricity use in Sweden. Sweden uses more than twice as much electrical energy as the mean value for EU-15 and the principal reason for this is good access to relatively inexpensive electricity. This pre-study summarises the current use of electricity, the prerequisites and potential for reducing the use of electricity and current RDandD projects focusing on the use of energy. It also gives a brief description of a couple of visions for the future. The proposed research projects focus on describing the use of electricity (energy, output, voltage etc) and analysing the way different control mechanisms influence the opportunity to realise sustainable developments. The heated areas in houses and buildings are distributed as follows: 45 % in detached or semi-detached houses, 30 % in blocks of flats (including some business premises) and 25 % in business premises. About 80 % of these areas were erected before 1980. A large percentage of the energy that is supplied to these houses and buildings, around 65 %, is used for various heating purposes, first and foremost in older detached or semi-detached houses and blocks of flats. The heating for detached or semi-detached houses is supplied in many different ways, while district heating is primarily responsible for the heating that is supplied to blocks of flats and business premises. A large percentage of the electricity usage is accounted for by heating, primarily in new detached or semi-detached houses, and electricity for operations in business premises - around 35% and 28% respectively. In addition to heating, electricity is used first and foremost for lighting and different types of electrical equipment, but most of the existing statistics relating to the distribution of electricity usage between different applications are based on old surveys and studies and need to be updated. It is estimated that the techno-economic potential for saving energy in

  13. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  14. 3rd Miami international conference on alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  15. Using of solar energy in replacing of electric shower; Utilizacao da energia solar em substituicao a chuveiros eletricos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Samuel Luna de [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Energia Solar (LABSOLAR)]. E-mail: samuel@labsolar.ufsc.br

    2000-07-01

    This chapter studies the utilization of solar energy heating as replacing electric showers, and presents proposals for solar heating to be used by low income residences, obtained results from different alternatives of solar heating and the economic feasibility of the propose systems.

  16. Problem-oriented system solutions in the use of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.

    1982-01-01

    The share of alternative energies in the energy supply of the earth that is solar-, wind- and bio-energy will rise to about 20% within the next 50 years. Use of alternative energy on a large basis will, however, not take place in central power stations but in decentralised plants within the KW- and lower MW-range. Utilization of alternative energies demands individual solution for individual problems depending on the site and consumer-demands, and at this point they differ from conventional energy technology.

  17. Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems

    Directory of Open Access Journals (Sweden)

    Binod Prasad Koirala

    2016-11-01

    Full Text Available Integrated community energy systems (ICESs are emerging as a modern development to re-organize local energy systems allowing simultaneous integration of distributed energy resources (DERs and engagement of local communities. Although local energy initiatives, such as ICESs are rapidly emerging due to community objectives, such as cost and emission reductions as well as resiliency, assessment and evaluation are still lacking on the value that these systems can provide both to the local communities as well as to the whole energy system. In this paper, we present a model-based framework to assess the value of ICESs for the local communities. The distributed energy resources-consumer adoption model (DER-CAM based ICES model is used to assess the value of an ICES in the Netherlands. For the considered community size and local conditions, grid-connected ICESs are already beneficial to the alternative of solely being supplied from the grid both in terms of total energy costs and CO2 emissions, whereas grid-defected systems, although performing very well in terms of CO2 emission reduction, are still rather expensive.

  18. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For wireless sensor node (WSN applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters’ wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V and rechargeable battery (Nickel-Cadmium, 3.8 V are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  19. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  20. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field

    Science.gov (United States)

    Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng

    2016-09-01

    Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.

  1. Heterobarrier for converting hot-phonon energy to electric potential

    Science.gov (United States)

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  2. Renewable energy sources in the Mexican electrical sector

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V. [Univ. Nacional Autonoma de Mexico, Div. de Estudios de Postrado, Facultad de Ingenieria, Coyoacan (Mexico); Martinez, J.H. [Univ. Nacional Autonoma de Mexico, Posgrado en Estudios Latinoamericanos, Facultad de Filosofia y Letras, Div. de Estudios de Posgrado, Coyoacan (Mexico); Ruiz, B.J.

    2008-07-01

    This paper analyzes the role of the renewable energy sources (RES) in the Mexican electrical sector in the context of the proposed renewable energy bill currently under consideration in the Mexican Congress. This paper was divided in three parts. The first part consists of a chronology of institutional background related to RES. The second part is an analysis of the coordination and management system of the Mexican electrical sector, which can facilitate the promotion of RES without significant structural changes. Finally, the pros and cons of the renewable energy bill are analyzed in order to demonstrate the need for greater coherence between the bill and the coordination system. It is concluded that when inconsistency is eliminated, RES would strongly be promoted in Mexico. (orig.)

  3. Renewable energy sources in the Mexican electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, B.J.; Rodriguez-Padilla, V. [Universidad Nacional Autonoma de Mexico, DEPFI, Edificio A 1 piso Bernardo Quintana, Circuito Exterior, C.U., Coyoacan, C.P. (Mexico); Martinez, J.H. [Universidad Nacional Autonoma de Mexico, Posgrado en Estudios Latinoamericanos, Facultad de Filosofia y Letras, Division de Estudios de Posgrado, Circuito Exterior, C.U., Coyoacan (Mexico)

    2008-06-15

    This paper analyzes the role of renewable energy sources (RES) in the Mexican electricity sector in the context of the proposed renewable energy bill currently under consideration in the Mexican Congress. This paper was divided into three parts. The first part presents a chronology of institutional background related to the RES. This is followed by an analysis of the coordination and management system of the Mexican electricity sector, which can facilitate the promotion and integration of the RES without significant structural changes. Finally, the pros and cons of the renewable energy bill are analyzed in order to demonstrate the need for greater coherence between the bill and the coordination system of the sector. It is concluded that when inconsistency is eliminated, RES would strongly be promoted in Mexico. (author)

  4. Value analysis of wind energy systems to electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Percival, D.; Harper, J.

    1981-01-01

    A method has been developed for determining the value of utility-operated wind energy systems to electric utilities. The analysis is performed by a package of computer models that interface with most conventional utility planning models. Weather data are converted to wind turbine output powers, which are used to modify the utility load representation. Execution of the utility planning models with both the original and modified load representation yields the gross and marginal value ($/rated kW/) of the added wind energy systems. This value is then compared with cost estimates to determine if for economic reasons the wind energy system should be included in future generation plans.

  5. Electrical energy storage for the grid: a battery of choices.

    Science.gov (United States)

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-18

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

  6. Mapping alternative energy paths for taiwan to reach a sustainable future: An application of the leap model

    Science.gov (United States)

    Chen, Wei-Ming

    Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease

  7. A Novel, High Energy-Density Electrical Storage Device for Electric Weapons

    Science.gov (United States)

    1992-08-25

    18 I. Task Objectives The primary object of the Phase I effort was to design a Million...field, which drives current at the voltage needed to power a variety of electric weapons such railguns, coilguns , and directed energy devices. Three... inductive , double ring circuit. Tremendous repulsion forces are exerted on the rings when the current circulation reaches Meg-Amp current levels. One

  8. 76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation

    Science.gov (United States)

    2011-03-02

    ... Application to Export Electric Energy; Ontario Power Generation AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... authorized OPG to transmit electric energy from the United States to Canada as a power marketer for a...

  9. 75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited

    Science.gov (United States)

    2010-04-29

    ... Application To Export Electric Energy; Centre Lane Trading Limited AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Canada pursuant to section 202... application from CLT for authority to transmit electric energy from the United States to Canada as a...

  10. 78 FR 11633 - Application To Export Electric Energy; ConocoPhillips Company

    Science.gov (United States)

    2013-02-19

    ... Application To Export Electric Energy; ConocoPhillips Company AGENCY: Office of Electricity Delivery and... to renew its authority to transmit electric energy from the United States to Mexico pursuant to... transmit electric energy from the United States to Mexico as a power marketer for a five-year term...

  11. 77 FR 74472 - Application to Export Electric Energy; Energia Renovable S.C., LLC

    Science.gov (United States)

    2012-12-14

    ... Application to Export Electric Energy; Energia Renovable S.C., LLC AGENCY: Office of Electricity Delivery and... Renovable) has applied for authority to transmit electric energy from the United States to Mexico pursuant... application from Energia Renovable for authority to transmit electric energy from the United States to...

  12. 75 FR 80482 - Application To Export Electric Energy; TransCanada Power Marketing Ltd.

    Science.gov (United States)

    2010-12-22

    ... Application To Export Electric Energy; TransCanada Power Marketing Ltd. AGENCY: Office of Electricity Delivery.... (TCPM) has applied to renew its authority to transmit electric energy from the United States to Canada..., which authorized TCPM to transmit electric energy from the United States to Canada as a power...

  13. 75 FR 22579 - Application To Export Electric Energy; Morgan Stanley Capital Group Inc.

    Science.gov (United States)

    2010-04-29

    ... Application To Export Electric Energy; Morgan Stanley Capital Group Inc. AGENCY: Office of Electricity... Inc. (MSCG) has applied to renew its authority to transmit electric energy from the United States to...-185 authorizing MSGC to transmit electric energy from the United States to Canada as a power...

  14. 76 FR 20651 - Application To Export Electric Energy; Cargill Power Markets, LLC

    Science.gov (United States)

    2011-04-13

    ... Application To Export Electric Energy; Cargill Power Markets, LLC AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202..., 2011, DOE received an application from CPM for authority to transmit electric energy from the...

  15. 76 FR 19069 - Application to Export Electric Energy; Cargill Power Markets, LLC

    Science.gov (United States)

    2011-04-06

    ... Application to Export Electric Energy; Cargill Power Markets, LLC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... authorized CPM to transmit electric energy from the United States to Canada as a power marketer for a...

  16. 77 FR 39689 - Application To Export Electric Energy; Dynasty Power, Inc.

    Science.gov (United States)

    2012-07-05

    ...] [FR Doc No: 2012-16465] DEPARTMENT OF ENERGY [OE Docket No. EA-385] Application To Export Electric... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... of electricity to Canada as requested. The electric energy that Dynasty Power proposes to export...

  17. 75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.

    Science.gov (United States)

    2010-12-17

    ... Application to Export Electric Energy; Twin Rivers Paper Company Inc. AGENCY: Office of Electricity Delivery.... (Twin Rivers) has applied for authority to transmit electric energy from the United States to Canada... authority to transmit electric energy from the United States to Canada over the existing...

  18. 75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-09-23

    ... Application to Export Electric Energy; EDF Trading North America, LLC AGENCY: Office of Electricity Delivery... (EDF) has applied for authority to transmit electric energy from the United States to Mexico pursuant... application from EDF for authority to transmit electric energy from the United States to Mexico for five...

  19. 78 FR 26765 - Application to Export Electric Energy; ALLETE, Inc., d/b/a Minnesota Power

    Science.gov (United States)

    2013-05-08

    ... Application to Export Electric Energy; ALLETE, Inc., d/b/a Minnesota Power AGENCY: Office of Electricity... Power (Minnesota Power) has applied to renew its authority to transmit electric energy from the United...-C, which authorized Minnesota Power to transmit electric energy from the United States to Canada...

  20. 77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.

    Science.gov (United States)

    2012-02-27

    ... Application To Export Electric Energy; Pilot Power Group, Inc. AGENCY: Office of Electricity Delivery and...) has applied for authority to transmit electric energy from the United States to Mexico pursuant to... Power for authority to transmit electric energy from the United States to Mexico for five years as...

  1. 76 FR 11437 - Application To Export Electric Energy; SESCO Enterprises Canada, LTD

    Science.gov (United States)

    2011-03-02

    ... Application To Export Electric Energy; SESCO Enterprises Canada, LTD AGENCY: Office of Electricity Delivery.... (SESCO Canada) has applied to renew its authority to transmit electric energy from the United States to...-297, which authorized SESCO Canada to transmit electric energy from the United States to Canada as...

  2. 76 FR 67430 - Application To Export Electric Energy; Tenaska Power Services Co.

    Science.gov (United States)

    2011-11-01

    ... Application To Export Electric Energy; Tenaska Power Services Co. AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... (DOE) issued Order No. EA-243 which authorized Tenaska to transmit electric energy from the...

  3. 75 FR 26202 - Application To Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-05-11

    ... Application To Export Electric Energy; EDF Trading North America, LLC AGENCY: Office of Electricity Delivery... (EDF) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from EDF for authority to transmit electric energy from the United States to Canada as a...

  4. 76 FR 37797 - Application to Export Electric Energy; Freepoint Commodities, LLC

    Science.gov (United States)

    2011-06-28

    ... Application to Export Electric Energy; Freepoint Commodities, LLC AGENCY: Office of Electricity Delivery and... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... application from Freepoint Commodities requesting authority to transmit electric energy from the United...

  5. Thermal-to-electric energy conversion using ferroelectric film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I. [Saint-Petersburg State Electrotechnical University, 5 Professor Popov Street, St-Petersburg 197376 (Russian Federation)

    2014-10-28

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  6. Development of an International Electric Cooperative Initiative on Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Paul Clark; David South

    2004-05-01

    NRECA conceived of the International Electric Cooperative Initiative on Energy Efficiency (IECIEE) in order to provide an ongoing means of contributing voluntary actions on greenhouse gas emissions mitigation as an integral component of its international programs and projects. This required designing the IECIEE to be integrated directly with the core interests and attributes of participating cooperatives in the U.S. and Latin America, which was the initial focus area selected for the IECIEE. In the case of NRECA International, the core interests related to promoting and strengthening the electric cooperative model, which has proved highly successful in maximizing operational efficiencies in electric power generation, distribution and retailing, as compared to government-owned entities. The approach involved three basic components: (i) establishing the IECIEE mechanism, which involved setting up a functioning organizational vehicle providing for investment, management, and emissions credit accounting; (ii) developing a portfolio of projects in countries where NRECA International could effectively implement the broader mandate of cooperative development as energy efficient suppliers and distributors of electrical energy; and (iii) conducting outreach to obtain the commitment of participants and resources from U.S. and Latin American cooperatives and partnering agencies in the development financing community.

  7. Thermal-to-electric energy conversion using ferroelectric film capacitors

    Science.gov (United States)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I.

    2014-10-01

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba0.3Sr0.7TiO3 film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm3. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  8. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    Science.gov (United States)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  9. Energy and health: the health impacts of present and alternative energy sources and policies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.

    1975-01-01

    The total emissions to the atmosphere in the United States in 1971 for carbon dioxide, particulates, 1971 are shown for caron monoxide, sulfur dioxide, hydrocarbons, and nitrogen oxides are shown. The Reference Energy System (RES) developed at BNL diagrams the methodological approach used to study the health and environmental impacts of energy. The RES takes each energy source--nuclear, hydropower, coal, oil, and natural gas--and traces it through each of the stages in the fuel cycle to its conversion at the electric power stations to its end use. In calculating the health/environmental costs of any given energy source, the entire range of production and use of that source are included. Comparative statements are given about many energy sources regarding their risks to health. An example is described of an effects module of sulfur oxides in air. Sulfur emission released into air ultimately affects biota and materials in buildings and other structures via several different pathways; it operates directly or after various chemical transformations in the smokestack, and then in the atmosphere. An effects module is provided for suspended solids into water. The use of this design for a new technology may be applied to minimize its potential environmental impact. It is designed to help the regulatory agencies, the EPA, and the NRC to set standards for new and existing technologies that have some relationship to actual risk. The author then discusses some assessments of energy problems, with emphasis on nuclear power impacts. (MCW)

  10. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    Science.gov (United States)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  11. Development of alternative energies for oil and the problems facing industry

    Energy Technology Data Exchange (ETDEWEB)

    Idemura, H.

    1982-01-01

    According to a provisional long-term energy forecast, Japan's degree of dependence on oil will drop from its present 74% to 62.9% in 1985 and to 48.1% in 1995. This is an indication of the amount of alternative energy required. Explanations are given of the characteristics of the following alternative energy sources: coal, natural gas, atomic energy, geothermal, solar energy, biomass, chemical energy, and energy from wastes. There is an introduction to the role and function of the engineering industry, which is closely related to the development of these energies.

  12. Economical analysis of the use of biogas in swine production for generation of electric energy; Analise economica da utilizacao do biogas na suinocultura para geracao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Franco Muller; Oliveira, Paulo Armando Victoria de [EMBRAPA Suinos e Aves, Concordia, SC (Brazil)], Emails: franco@cnpsa.embrapa.br, paolive@cnpsa.embrapa.br

    2009-07-01

    The demand for alternative sources of energy has been growing in the last years in function of the variation on the prices of petroleum and the recent energy crisis. The anaerobic bio digestion can convert swine manure in biogas. In the present work it was studied the economic viability of the use of the biogas as alternative source for the generation of electric energy in different demand levels. The methodology utilized was the Net Present Value. The study showed that the utilization of biogas as electric energy source is economically feasible. The increase of the demand of electric energy, in the property, associated to the increase of the price of the electric energy, increases the economical profits and accelerates the time of return of the investments. (author)

  13. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

  14. A DSP based power electronics interface for alternative /renewable energy system.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-28

    This report is an update on the research project involving the implementation of a DSP-based power electronics interface for alternate/renewable energy systems, that was funded by the Department of Energy under the Inventions and Innovations program.

  15. Energy efficiency and CO2: is electricity the key factor?

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Y.

    2007-07-01

    Europe must face soon to the depletion of fossil energy resources. Efficiency in end energy uses is a key to prepare this challenge. First, the report shows that significant energy efficiency capacities remain in the main economy sectors in France and Europe: buildings, industry, transportation. The key technologies, mainly electricity-driven, are briefly presented, together with the related main tracks for R and D: heat pumps, thermal insulation, induction and mechanical vapour compression for industry, plugged hybrid vehicle, LED sources for lighting. Their ability to decrease CO2 emissions is shown. Control equipment and users behaviour are pointed out, mainly with the key role of price energy with recent French experience : load shifting, peak shaving. Finally, the report shows that a firm policy, based on high performance equipments, could lead to a significant decrease of energy needs in France around 2030.

  16. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  17. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  18. Energy management systems on board of electric vehicles, based on power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guidi, Giuseppe

    2009-03-15

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion. The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently the most suitable device for electrical energy storage, have serious limitations in terms of energy and/or power density, cost and safety. All those characteristics reflect in pure electric vehicles being outperformed by standard internal combustion engine (ICE) based vehicles in terms of driving range, time needed to refuel and purchase cost. Electric vehicles do have their distinctive advantages, being intrinsically much more efficient, operating at zero emissions at the pipe, and offering a higher degree of controllability that can potentially enhance driving safety. No wonder then, that electric energy storage technology has attracted considerable R&D investments, resulting in new traction battery packs that are getting closer and closer to the industrial targets. In this scenario of EV technology gaining momentum, power electronics engineers have to come up with newer solutions allowing for more efficient and more reliable utilization of the precious on-board energy that comes in a form that cannot be directly utilized by the motor. At present, most of the research in the area of power electronics for automotive is focused in volume and cost reduction techniques. The increase in power density is pursued by developing components that can be operated at higher temperature, thus relieving the requirements on cooling. In this thesis, the focus is on the development of alternative topologies for the power electronics converters that make use of some peculiarities of the energy

  19. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    Science.gov (United States)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  20. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Power and Energy.

    Science.gov (United States)

    1980-12-22

    8000 C electricity Heliostats and Central High Process heat and Receiver 2000 C to 1,1000 C electricity 4190 Photovoltaic cells convert sunlight...energy for process heat or electric generation. A heliostat array for the M-X program would probably be used primarily as a central receiver electric...Introduction 23 2.3.2 Estimating Methods for Determining Heating , Ventilating, and Air Conditioning (HVAC) Requirements 27 2.3.3 Estimating Methods for

  1. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal......This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... or for natural gas reduces global warming, non-renewable energy use, human toxicity and ecotoxicity, but increases eutrophication, respiratory inorganics, acidification and photochemical ozone. The results at the aggregate level show that the use of straw biomass for conversion to energy scores better than...

  2. Crowd Energy Management:New Paradigm for Electricity Market

    Institute of Scientific and Technical Information of China (English)

    Mario Gstrein; Stephanie Teufel

    2015-01-01

    Abstract-The traditionally centralized approach of electricity networks is progressively undergoing a shift towards a decentralized, distributed structure. The local and crowd-based principle is transforming the existing supply chain and related activities into a value network (VN). Previous researches on crowd value network concepts focus on the activities of infrastructure and load management and neglect activities that generate collaboration. Collaboration with and within crowds particularly demands a different mindset and management of sharing values, information, benefit, and risks. Furthermore, these concepts must integrate technical, processual, and social aspects. Thus, this article proposes a holistic framework of electricity VN management for crowd energy. It redefines VN activities for infrastructure and load management while appending VN activities for social electricity handling. Additionally, the framework illustrates the interactions among these three elements and concludes with an adaption cycle for the crowd value network.

  3. New method for the transformation of solar radiation energy into electric power for energy feeding of the space vehicles

    Science.gov (United States)

    Ludanov, K. I.

    The author proposes a new method for the transformation of solar radiation energy into electric power, which is alternative for photo-transformation. Ukrpatents's positive decisions are obtained for the method and for the installation for its realization. The method includes two phases: concentration of solar radiation by paraboloid mirrors with high potential heat obtaining in the helio receiver and the next heat transformation into electric power in the framework of the thermal cycle "high temperature electrolytic steam decomposition on the components (H2 and O2) + electrochemical generation by the way of the water recombination from H2 and O2 in the low temperature fuel cell". The new method gives the double superiority in comparison with the photo-transformation.

  4. Towards greener and more sustainable batteries for electrical energy storage.

    Science.gov (United States)

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  5. Towards greener and more sustainable batteries for electrical energy storage

    Science.gov (United States)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  6. Alternating electric field-induced changes in morphological features of mouse blood in relation to age

    Energy Technology Data Exchange (ETDEWEB)

    Baskuryan, A.K.; Kartashev, A.G.

    Outbred white mice were employed in a study on the effects of alternating electric fields (50 Hz, 40 +/- 5 kV/m) on blood morphology in relation to age. Exposure of 15-60-day old mice for 5 days resulted in marked anemia and reticulocytosis. With a 10-day exposure, erythrocyte counts fell by 30%; after 20 days of exposure, recovery of the red elements was evident in conjunction with leucocytosis. After 40 days of exposure, the blood counts were essentially normal. Exposure of adult (60-100 days) mice resulted in leucopenia, that disappeared after 10 days of exposure, with further exposure for 20-40 days accompanied by basically normal counts. Aged mice (240-260 days) were entirely refractory to the effects of the alternating electric field. These findings indicate that juvenile mice are most susceptible to the physical agent in question, but that the changes are temporary and apparently reflect adaptive changes in the erythropoietic system. 1 reference.

  7. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    Science.gov (United States)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  8. Effect of driving cycles on energy efficiency of electric vehicles

    Institute of Scientific and Technical Information of China (English)

    JI FenZhu; XU LiCong; WU ZhiXin

    2009-01-01

    Based on several typical domestic and foreign driving cycles, the energy usage efficiency of the EVs-XL 2000 type electric vehicle (EV) is analyzed.The energy usage efficiency of EVs and the evaluation index of electromotor efficiency are studied.The concepts of "interval usage percentage of energy efficiency" and "exertion degree of energy efficiency" of electromotor are presented.The effects of driving cycles on the distribution of the running status of electromotor and the efficiency are investi-gated.The efficiency of electromotor and the trend of average driving force at different driving cycles are discussed.The exertion degree of energy efficiency and the total power train efficiency of the EVs-XL 2000 type electric vehicle at typical driving cycles are analyzed and calculated.The result in-dicates that the driving cycle engenders a big influence on the exertion degree of electromotor energy efficiency at different driving cycles.Dissimilar driving cycles result in different efficiency distributions of electromotor, the control system as well as the average driving force and driving range are variable.

  9. Effect of driving cycles on energy efficiency of electric vehicles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on several typical domestic and foreign driving cycles, the energy usage efficiency of the EVs-XL 2000 type electric vehicle (EV) is analyzed. The energy usage efficiency of EVs and the evaluation index of electromotor efficiency are studied. The concepts of "interval usage percentage of energy efficiency" and "exertion degree of energy efficiency" of electromotor are presented. The effects of driving cycles on the distribution of the running status of electromotor and the efficiency are investi-gated. The efficiency of electromotor and the trend of average driving force at different driving cycles are discussed. The exertion degree of energy efficiency and the total power train efficiency of the EVs-XL 2000 type electric vehicle at typical driving cycles are analyzed and calculated. The result indicates that the driving cycle engenders a big influence on the exertion degree of electromotor energy efficiency at different driving cycles. Dissimilar driving cycles result in different efficiency distributions of electromotor, the control system as well as the average driving force and driving range are variable.

  10. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Science.gov (United States)

    2012-05-31

    ...- 0121. Phone: (202) 586- 2945. Please submit one signed paper original. Hand Delivery/Courier: Ms..., SW., Washington, DC 20024. Phone: (202) 586-2945. Please submit one signed paper original... of Electrical and Electronics Engineer (IEEE) Standard 114 or Standard 112 (the two protocols used...

  11. 78 FR 38455 - Energy Conservation Program: Test Procedures for Electric Motors

    Science.gov (United States)

    2013-06-26

    ... for Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 78, No. 123 / Wednesday, June 26... Program: Test Procedures for Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy... of certain U.S. Department of Energy (DOE) energy efficiency regulations related to electric...

  12. Applying portfolio theory to the electricity sector. Energy versus power

    Energy Technology Data Exchange (ETDEWEB)

    Delarue, Erik; D' haeseleer, William; De Jonghe, Cedric; Belmans, Ronnie [Leuven University, Leuven (Belgium)

    2011-01-15

    Portfolio theory has found its way in numerous applications for optimizing the electricity generation mix of a particular region. Existing models, however, consider typically a single time period and correspondingly do not properly account for actual dispatch constraints and energy sources with a non-dispatchable, variable output. This paper presents a portfolio theory model that explicitly distinguishes between installed capacity (power), electricity generation (energy) and actual instantaneous power delivery. This way, the variability of wind power and ramp limits of conventional power plants are correctly included in the investment optimization. The model is written as a quadratically constrained programming problem and illustrated in a case study. The results show that the introduction of wind power can be motivated to lower the risk on generation cost, albeit to smaller levels than typically reported in the literature. This wind power deployment further requires the need for sufficiently rampable technologies, to deal with its fluctuating output. (author)

  13. Deaging and Asymmetric Energy Landscapes in Electrically Biased Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L. (Ecole); (UST - China); (Florida)

    2015-09-01

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO{sub 3}-0.64PbTiO{sub 3}.

  14. A novel vibrational energy harvester with electric double layer electrets

    Science.gov (United States)

    Ono, S.; Miwa, K.; Iori, J.; Mitsuya, H.; Ishibashi, K.; Sano, C.; Toshiyoshi, H.; Fujita, H.

    2016-11-01

    We propose a new type of vibrational energy harvester with an electric double layer (EDL) electrets. Instead of using any external bias-voltage source or dielectric layer on top of the metal electrode to sustain EDL, we succeed to anchor the ions to polymer network to form the EDL electrets. By changing contact area between the EDL electrets and the electrode, large electric current is generated in the circuit. Owing to extremely large capacitance of the EDL electret, vibrational energy harvesters have the unique capability to leverage the high- density charge accumulation to the electrode and obtained current density becomes as high as 200 μA/cm2 with output voltage of 1V even with low frequency vibrations as low as 1 Hz.

  15. EMR modelling of a hydrogen-based electrical energy storage

    Science.gov (United States)

    Agbli, K. S.; Hissel, D.; Péra, M.-C.; Doumbia, I.

    2011-05-01

    This paper deals with multi-physics modelling of the stationary system. This modelling is the first step to reach the fuel cell system dimensioning aim pursued. Besides this modelling approach based on the stationary energetic system, the novelty in this paper is both the new approach of the photovoltaic EMR modelling and the EMR of the hydrogen storage process. The granular modelling approach is used to model each component of the system. Considering a stand alone PEM fuel cell system, hydrogen is expected to be produced and stored on the spot from renewable energy (photovoltaic) in order to satisfy the fuel availability. In fact, to develop a generic and modular model, energetic macroscopic representation (EMR) is used as graphical modelling tool. Allowing to be easily grasped by the experts even not necessarily gotten used to the modelling formalism, EMR is helpful to model the multi-domains energetic chain. The solar energy through solar module is converted in electrical energy; part of this energy is transformed in chemical energy (hydrogen) thanks to an electrolyser. Then the hydrogen is compressed into a tank across a storage system. The latter part of the solar module energy is stored as electrical energy within supercapacitor or lead-acid battery. Using the modularity feature of the EMR, the whole system is modelled entity by entity; afterwards by putting them together the overall system has been reconstructed. According to the scale effect of the system entities, some simulation and/or experimental results are given. Given to the different aims which are pursued in the sustainable energy framework like prediction, control and optimisation, EMR modelling approach is a reliable option for the energy management in real time of energetic system in macroscopic point of view.

  16. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens;

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...

  17. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  18. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  19. Integrated design by optimization of electrical energy systems

    CERN Document Server

    Roboam, Xavier

    2013-01-01

    This book proposes systemic design methodologies applied to electrical energy systems, in particular integrated optimal design with modeling and optimization methods and tools. It is made up of six chapters dedicated to integrated optimal design. First, the signal processing of mission profiles and system environment variables are discussed. Then, optimization-oriented analytical models, methods and tools (design frameworks) are proposed. A "multi-level optimization" smartly coupling several optimization processes is the subject of one chapter. Finally, a technico-economic optimizatio

  20. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management

    Energy Technology Data Exchange (ETDEWEB)

    Hochgraf, C.G.; Ryan, M.J.; Wiegman, H.L. [Univ. of Wisconsin, Madison, WI (United States)

    1996-09-01

    This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle. Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme. An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously. Battery state of charge is determined from battery voltage and current measurements. Experimental results of the system`s performance in a test vehicle during city driving are presented.

  1. Wind energy in a competitive electricity supply environment

    Energy Technology Data Exchange (ETDEWEB)

    Strbac, G.; Jenkins, N. [Manchester Centre for Electrical Energy, Manchester (United Kingdom)

    1995-12-31

    In the UK, there has been an increasing interest in the commercial aspects of the impact of wind energy on transmission and distribution networks. In a competitive electricity supply environment, mechanisms for pricing network services are considered to be the main vehicle for evaluating that impact. This article reviews the major pricing strategies based on embedded costs, short and long run marginal costing theory as well as time-of-use pricing, and comments on the influence of each particular strategy on the calculated value of wind energy. Also, prospective tools for evaluating savings in capital and operating network costs due to wind generation, are identified. (author)

  2. Electric propulsion - A high energy capability for solar system exploration

    Science.gov (United States)

    Atkins, K. L.

    1976-01-01

    The principles of spacecraft electric (ion thruster) propulsion are briefly reviewed. Attention is given to the inner and outer planet applications of electric (and solar electric) propulsion. Electric propulsion is considered as a stepping stone to nuclear electric propulsion.

  3. Alternative energies. Sahara Power needs pan-European grid operator

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijland, G.

    2009-09-15

    A consortium of leading European - mostly German - companies plans to invest 400 billion euros in a megaproject to generate solar power in the Sahara desert. Desertec, as the project is called, could cover 15 percent of European electricity demand. The problem is, how do you transport this power to Paris and Berlin? It can only work with a pan-European grid operator.

  4. Proposal to Include Electrical Energy in the Industrial Return Statistics

    CERN Document Server

    2003-01-01

    At its 108th session on the 20 June 1997, the Council approved the Report of the Finance Committee Working Group on the Review of CERN Purchasing Policy and Procedures. Among other topics, the report recommended the inclusion of utility supplies in the calculation of the return statistics as soon as the relevant markets were deregulated, without reaching a consensus on the exact method of calculation. At its 296th meeting on the 18 June 2003, the Finance Committee approved a proposal to award a contract for the supply of electrical energy (CERN/FC/4693). The purpose of the proposal in this document is to clarify the way electrical energy will be included in future calculations of the return statistics. The Finance Committee is invited: 1. to agree that the full cost to CERN of electrical energy (excluding the cost of transport) be included in the Industrial Service return statistics; 2. to recommend that the Council approves the corresponding amendment to the Financial Rules set out in section 2 of this docum...

  5. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  6. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  7. Local alternative energy futures: developing economies/building communities

    Energy Technology Data Exchange (ETDEWEB)

    Totten, M.; Glass, B.; Freedberg, M.; Webb, L.

    1980-12-01

    A separate abstract was prepared for each of the three parts of the conference. A sufficient range of information is presented to enable interested parties to explore the viable alternatives for community self-sufficiency. The parts are entitled: Financial Incentives and Funding Sources; Standards, Regulations, Mandates, Ordinances, Covenants; and Community/Economic Development. (MCW)

  8. Energies alternatives, énergies renouvelables, énergies vertes

    OpenAIRE

    Fontana, André

    2013-01-01

    Après avoir brossé le paysage énergétique du monde et de l’Europe, et compte tenu de la volonté de nombreux états de voter un moratoire pour la poursuite du nucléaire, les atouts des énergies alternatives et renouvelables sont passées en revue.

  9. The feasibility of a nuclear renaissance: A cost-benefit analysis of nuclear energy as a source of electricity

    OpenAIRE

    2016-01-01

    Purpose: This article evaluates a possible global nuclear renaissance in the provision of electrical energy.Problem investigated: Several countries, such as South Africa, are experiencing problems in the provision of electricity and the maintenance of the infrastructure to answer growing demand. This article investigates an alternative, which was popular in the 1970s and provides clean energy.Methodology: The study firstly evaluates the main arguments set by anti-nuclear activists critically....

  10. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system.

    Science.gov (United States)

    Racyte, Justina; Bernard, Séverine; Paulitsch-Fuchs, Astrid H; Yntema, Doekle R; Bruning, Harry; Rijnaarts, Huub H M

    2013-10-15

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For disinfection performance of FBE several pure microbial cultures were tested: Bacillus subtilis, Bacillus subtilis subsp. subtilis, Enterococcus faecalis as representatives from Gram positive bacteria and Erwinia carotovora, Pseudomonas luteola, Pseudomonas fluorescens and Escherichia coli YMc10 as representatives from Gram negative bacteria. The alternating electric field amplitude and shape were kept constant. Only the effect of alternating electric field frequency on disinfection performance was investigated. From the bacteria tested, the Gram negative strains were more susceptible and the Gram positive microorganisms were more resistant to FBE disinfection. The collected data indicate that the efficiency of disinfection is frequency and strain dependent. During 6 h of disinfection, the decrease above 2 Log units was achieved with P. luteola and E. coli at 10 kHz and at dual frequency shift keying (FSK) modulated signal with frequencies of 10 kHz and 140 kHz. FBE technology appears to offer a new way for selective bacterial disinfection, however further optimizations are needed on treatment duration, and energy input, to improve effectiveness.

  11. The CEA and alternative energies. 8 April 2010 press conference; Le CEA et les energies alternatives. Conference de presse du 8 avril 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document presents the CEA's strategy in terms of alternative energies and the various implemented research programs which mainly concern the building sector and the transport sector. After a recall of the energy and climate context, a presentation of the NTE program (Nouvelles Technologies de l'Energie, new energy technologies), the different topics and projects are presented: photovoltaic solar energy and its integration in building; batteries, hydrogen and fuel cells for applications in transports; second-generation bio-fuels.

  12. Proceedings of condensed papers on alternate energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. (ed.)

    1979-01-01

    The conference covers the results of research and developments which have taken place during the last 2 years. It includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or waste, hydrogen production and uses. The volume of the Proceedings presents the papers and lectures in condensed format grouped by their subjects under 40 technical sessions. Condensed papers are presented for the 336 presentations; abstracts have previously appeared in the DOE Energy Data Base for 33 of the full-length papers.

  13. Roraima State: energy and alternatives to the future; Roraima: energia e alternativas para o futuro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    Report made by the Conselho Indigena de Roraima by and large with the Comissao Pro-Indio of Sao Paulo, addressed to the indigenous populations who lives near from the hydroelectric power plant on the state of Roraima, giving information about damns construction, energy electric uses, description of Hydroelectric and thermoelectric functioning, the energy program, electric energy landscape now and in the future, are presented. The work, was developed as support to meetings with the indigenous leaders. 7 figs.

  14. Future electricity production methods. Part 1: Nuclear energy

    Science.gov (United States)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  15. 75 FR 41166 - Office of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the...

    Science.gov (United States)

    2010-07-15

    ... of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the Electricity Advisory... the Electricity Advisory Committee has been reestablished for a two-year period. The Committee will provide advice to the Office of Electricity Delivery and Energy Reliability (DOE), on its programs...

  16. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration.

    Science.gov (United States)

    Zapata-Solvas, E; Gómez-García, D; Domínguez-Rodríguez, A; Todd, R I

    2015-02-17

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena.

  17. Machian strings as an alternative to dark energy

    CERN Document Server

    Essex, David W

    2016-01-01

    The expansion history of the Universe is calculated using a simple model in which the entire rest mass energy of a massive particle is distributed throughout the set of Machian strings connecting it to all the other particles in the observable Universe. With the assumption that the energy in a Machian string has the form of positive Newtonian potential energy, the deceleration rates in the radiation and matter eras are exactly the same as in the conventional $\\Lambda$CDM model. The transition from deceleration to acceleration at the present time is obtained by making the simplest possible modification of the Newtonian potential energy to represent the effect of the cosmological expansion. The effective dark matter and dark energy densities are calculated in terms of the speed of the Hubble flow at the radius of the observable Universe.

  18. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  19. The value of electricity storage in energy-only electricity markets

    Science.gov (United States)

    McConnell, D.; Forcey, T.; Sandiford, M.

    2015-12-01

    Price volatility and the prospect of increasing renewable energy generation have raised interest in the potential opportunities for storage technologies in energy-only electricity markets. In this paper we explore the value of a price-taking storage device in such a market, the National Electricity Market (NEM) in Australia. Our analysis suggests that under optimal operation, there is little value in having more than six hours of storage in this market. However, the inability to perfectly forecast wholesale prices, particularly extreme price spikes, may warrant some additional storage. We found that storage devices effectively provide a similar service as peak generators (such as Open Cycle Gas Turbines) and are similarly dependent on and exposed to extreme price events, with revenue for a merchant generator highly skewed to a few days of the year. In contrast to previous studies, this results in the round trip efficiency of the storage being relatively insignificant. Financing using hedging strategies similar to a peak generator effectively reduces the variability of revenue and exposure of storage to extreme prices. Our case study demonstrates that storage may have a competitive advantage over other peaking generators on the NEM, due to its ability to earn revenue outside of extreme peak events. As a consequence the outlook for storage options on the NEM is dependent on volatility, in turn dependent on capacity requirements. Further to this, increased integration of renewable energy may both depend on storage and improve the outlook for storage in technologies in electricity markets.

  20. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  1. Voltage inverter with push-pull topology to inject energy into electrical systems with modulation SPWM

    Directory of Open Access Journals (Sweden)

    Emerson Charles M. Silva

    2013-09-01

    Full Text Available This paper presents a proposal for a voltage inverter topology based on push-pull converters, switched at high frequency to inject energy into the grid from a source of DC power. A system using two reverse voltage static converters provides the power grid; energy in the form of alternating current, that can work in conjunction with the provision of utility power. Aiming at the possible use of renewable energy sources, that can be stored in the form of voltage continuous, such as wind, solar, hydroelectric and others. The functioning of topology is presented, such as the power and control circuits, as well as sizing components, theoretical and practical results achieved with the assembly of a prototype 100W of power and switching in 40khz, which after filtering provides the frequency of 60Hz, which is compatible with the Brazilian electrical system.

  2. Economic assessment of electric energy storage for load shifting in positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Do Carmo, Carolina Madeira Ramos; Georges, Emeline

    2017-01-01

    Net zero energy buildings and positive energy buildings are gaining more and more interest. This paper evaluates the impact of the integration of a battery in a positive energy building used to increase its self-consumption of electricity. Parametric studies are carried out by varying the buildin...... and a 3.7 kWh battery. Finally, simple correlations (based on the feed-in tariff, the annual electrical consumption and production) to predict the optimal size of battery and the lowest payback period are proposed.......Net zero energy buildings and positive energy buildings are gaining more and more interest. This paper evaluates the impact of the integration of a battery in a positive energy building used to increase its self-consumption of electricity. Parametric studies are carried out by varying the building...... envelope characteristics, the power supply system, the climate, the lighting and appliances profiles, the roof tilt angle, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption and self-production rate and payback...

  3. Alternate Energy Research and Technology Challenges in the New Millennium

    Science.gov (United States)

    2010-09-01

    d, g eoth erm al 0.5% Source: Internatinal Energy Agency 2002 Sources of Energy Supply - Worldwide The ENERGY REVOLUTION (The Terawatt...barrels
per
day
 •  “OpBmisBc
case
for
out
put
of
100
 million
barrels
per
day
could
 outstrip
 supply 
before
2020”









 
C.
de
Margerie,
TOTAL...of syngas ) Fischer-Tropsch (FT) diesel Corn / Sugar Cane Hydrolysis/ Fermentation Ethanol/C2+ Alcohols Processes Products Problems Feedstocks

  4. Study for the electric arc of alternative current at the single phase welding machine using the Matlab/Simulink environment

    Science.gov (United States)

    Baciu, I.; Ghiormez, L.; Vasar, C.

    2017-01-01

    In this paper is presented a mathematical model of the electric arc for an alternative current welding machine of low power. The electric arc model is based on dividing the voltage-current characteristic of the electric arc in many functioning zones. For the model of the entire welding machine are used real parameters as the ones of the proper welding machine. The voltage and current harmonics spectrum that is obtained during the welding process is presented. Also, the waveforms for the current and voltage of the electric arc plotted against time and the voltage-current characteristic of the electric arc are illustrated. The electric arc is considered as being supplied by alternative voltage from the electrical power network using a single phase transformer which has the output voltage of 80 volts. The model of the welding machine is developed in Simulink and the variations of some parameters of the electric arc are obtained by modifying of them in a Matlab function. Also, in this paper is presented the total harmonic distortion for the voltage and current of the electric arc obtained during simulation of the welding machine.

  5. Hierarchical energy management mechanisms for an electricity market with microgrids

    Directory of Open Access Journals (Sweden)

    Hong-Tzer Yang

    2014-08-01

    Full Text Available This study addresses a micro-grid electricity market (MGEM with day-ahead (DA and real-time market mechanisms integrated. The bidding mechanisms for the market are described in this study, considering the generation cost of different distributed energy resources (DERs, like distributed generator, energy storage system and demand response. Including load and renewable generation forecasting systems and a fuzzy decision supporting system, a hierarchical micro-grid energy management system (MG-EMS is then proposed to ensure the benefits of involved micro-grid central controller, DER owners and customers. To verify the feasibility of the proposed system, the whole-year historical pricing and load data for New England independent system operator are employed. The numerical results show that the proposed MG-EMS is promising and effective for the operations of MGEM.

  6. Electrification of small rural properties in the Cangucu-Brazil city using alternative sources for electricity generation; Eletrificacao de pequenas propriedades rurais do municipio de Cangucu empregando fontes alternativas para a producao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Hecktheuer, Lucio Almeida [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Nucleo de Energia

    1998-12-31

    This paper aims at specifying and measuring the main alternative electrification system components, such as solar and eolic, which make use of the property`s energetical potential that, to a small extent, do not represent pollution sources to the environment. The results indicated that, the small rural properties of Cangucu country, which present a low daily electric energy consumption, these alternative systems are able to technically and economically supply electric energy and provide reasonable subsidies to electrification projects which can eventually be developed in the country. (author) 4 refs., 2 figs., 5 tabs.

  7. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO4, and LiMn2O4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  8. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  9. Impact of Variable Renewable Energy in the Iberian Electricity Market

    DEFF Research Database (Denmark)

    Nuño, Edgar; Pereira, Adelino J. C.; Machado Ferreira, C. M.

    2015-01-01

    Market and system operators face new challenges as more renewable energy sources are added. The driving factors in this trend are mainly associated with environmental benefits of the renewable generation and climate change mitigation, as well as the reduction of the dependency of conventional...... and external energy source. If integrated in large scale, the nondispatchable nature of intermittent resources imposes some technical and economic challenges on the operation of power systems. Particularly, market dynamics and prices could be influenced by such integrations. Over the last years, the generation...... mix of Spain and Portugal has undergone a dramatic change, driven by new environmental policies and financial incentives. In this regard, wind has become one of the most popular alternative sources of energy, bringing new challenges from the operational and structural point of view. This trend has...

  10. Electrical characterization of a buckling thermal energy harvester

    Science.gov (United States)

    Trioux, E.; Rufer, L.; Monfray, S.; Skotnicki, T.; Muralt, P.; Basrour, S.

    2015-12-01

    This paper presents the electrical characterizations of a novel concept for thermal energy harvesting at micro scale. The devices presented here are based on a two-step transduction combining thermo-mechanical and piezoelectric conversion. The piezoelectric layer is directly integrated into a buckling bilayer plate made of aluminium and aluminium nitride. For the first time, we have characterized the structures electrically and we have investigated their output power during the buckling. Firstly, we have used an insulating tip to make the plate buckle in order to have an estimation of the output power due to piezoelectric contribution only, and to eliminate any pyroelectric contribution that might be present during the thermal actuation. Then, we heated up the structure and we collected the output signal with an instrumentation amplifier in order to measure the voltage generated during the buckling. The output power during the mechanical and the thermal buckling is compared in the paper.

  11. Codex EU energy law. The most relevant directives, regulations and decisions on electricity, gas and oil, renewables, energy efficiency, energy taxation, energy infrastructures, energy labelling

    Energy Technology Data Exchange (ETDEWEB)

    Deketelaere, Kurt (ed.) [Leuven Univ. (Belgium). Chair of Energy and Environmental Law

    2012-07-01

    This Codex EU Energy Law brings together the most important, presently applicable, legislation on energy, as adopted by the EU. The legislation has been booming in recent years, after decades of very limited European activity in the field, with the exception of coal and nuclear. Several drivers explain this increase: the liberalisation of the European gas and electricity markets, the awareness to improve the security of energy supply, the necessity to be more energy-efficient, and the protection of the environment. All this has been translated in several, recent (i.e. 2009/2010) legislative energy packages: the liberalisation package, the climate and energy package, and the energy efficiency package. As a consequence, a serious amount of new regulations, directives and decisions on gas, electricity, renewables, biofuels, regulators, appliances, buildings, etc. must be implemented and/or applied by the Member States. Practitioners and academics will find this codex to be a good working tool. (orig.)

  12. 77 FR 11515 - Application to Export Electric Energy; NRG Power Marketing LLC

    Science.gov (United States)

    2012-02-27

    ... Application to Export Electric Energy; NRG Power Marketing LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ] ACTION: Notice of application. SUMMARY: NRG Power Marketing LLC (NRGPML) has... would be surplus energy purchased from electric utilities and Federal power marketing agencies...

  13. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Science.gov (United States)

    2010-04-01

    ... 1978 PROCEDURES FOR SHORTAGES OF ELECTRIC ENERGY AND CAPACITY UNDER SECTION 206 OF THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 § 294.101 Shortages of electric energy and capacity. (a) Definition of shortages of electric energy and capacity. For purposes of this section, the term anticipated shortages...

  14. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  15. Biomass Energy Self-Sufficiency Resource Alternatives for a Forested Air Force Installation.

    Science.gov (United States)

    1982-05-01

    to support basewide biomass energy systems. The study confirmed the feasibility of a biomass energy plantation supplying the required fuel wood to...support the basewide biomass energy systems while, at the same time not conflicting with any of the operational missions of Eglin AFB. This conclusion is...have an installation that provides all of its electrical and thermal energy requirements through the utilization of the Biomass Energy Island concept. (Author)

  16. The AC (Alternating Current) Electrical Behavior of Multi-layered Thermoelectric Devices

    Science.gov (United States)

    Alim, Mohammad A.; Budak, Satilmis; Bhattacharjee, Sudip

    2016-11-01

    In this study the ac (alternating current) small-signal electrical data in the frequency range 5 Hz ≤ f ≤ 13 MHz are obtained for the multi-layered thermoelectric (TE) devices to extract underlying operative mechanisms via an equivalent circuit model. This model is developed from the complex plane plots in conjunction with the Bode plot. It is observed that the inductive behavior is prevalent for both unbombarded and bombarded TE devices regardless of the doses as both types are observed as somewhat weak in thermoelectric properties. The bombarded multi-layered devices followed a systematic pattern in ac behavior via semicircular relaxation both in the impedance and admittance planes for the same measured data. This pattern is attributed to the transition from one lumped behavior to two distinct mechanisms. It is observed that the conductive nature of the equivalent circuit model via non-blocking (non-capacitive) elements, attributed to the underlying operative electrical paths between the two opposite electrodes across the multi-layered device exists, satisfying direct current conditions of the equivalent circuit model. The inductive behavior at high frequencies originates from the conductive aspect of the lumped response of the device in addition to the contribution of the electrode leads. Thus, the proposed equivalent circuit model contains external inductance that verifies a meaningful representation of the multi-layered TE device, though weak in thermoelectric properties.

  17. Electrodynamic energy harvester for electrical transformer's temperature monitoring system

    Indian Academy of Sciences (India)

    Farid Khan; Shadman Razzaq

    2015-10-01

    The development of an electrodynamic energy harvester (EDEH) for operating a wireless temperature monitoring system for electrical transformer is reported in this work. Analytical modeling, fabrication and characterization of EDEH prototype are performed. The developed EDEH consists of a mild steel core, a wound copper coil and Teflon housing. COMSOL Multiphysics software is used to optimize the design of the harvester. The split-cylindrical design of the developed EDEH permitted the harvester to be wrapped around the output power cable of the electrical transformer without shutting-off the power or disconnecting the power cable. From the electrical transformer, at current levels of 27, 72 and 155 A in the main power line, the energy harvester produced maximum RMS load voltages of 0.356, 1.09 and 2.58 V respectively, when connected to 100 load resistance. However, at matching impedance of 24 (resistance of the coil), the EDEH produced the maximum power levels of 2.99, 19.66 and 112.03 mW for a cable currents of 27, 72 and 155 A respectively. The simulation results of the devised analytical model of the harvester are in good agreement with the experimental results. Moreover, at a cable current of 93 A, when the harvester is connected to the rectifying circuit, the optimum impedance shifted to 185 and the maximum power of 19 mW is generated at that load. The reduction in power generation is attributed to the power consumption of the rectifying circuit. When the rectified DC voltage is used to charge a 3.8 V, Nickel–Cadmium (Ni–Cd) rechargeable battery, it took 3 h to completely charge the battery from 1 to 3.85 V. With the charged battery a wireless temperature sensor node is successfully operated for monitoring the temperature of the electrical transformer.

  18. Facing a Problem of Electrical Energy Quality in Ship Networks-measurements, Estimation, Control

    Institute of Scientific and Technical Information of China (English)

    Tomasz Tarasiuk; Janusz Mindykowski; Xiaoyan Xu

    2003-01-01

    In this paper, electrical energy quality and its indices in ship electric networks are introduced, especially the meaning of electrical energy quality terms in voltage and active and reactive power distribution indices. Then methods of measurement of marine electrical energy indices are introduced in details and a microprocessor measurement-diagnosis system with the function of measurement and control is designed. Afterwards, estimation and control of electrical power quality of marine electrical power networks are introduced. And finally, according to the existing method of measurement and control of electrical power quality in ship power networks, the improvement of relative method is proposed.

  19. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  20. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  1. A novel, high energy-density electrical storage device for electric weapons

    Science.gov (United States)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  2. Implications of solar energy alternatives for community design

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Steinitz, C.

    1980-06-01

    A graduate-level studio at the Harvard School of Design explored how a policy of solar-based energy independence will influence the design of a new community of approximately 4500 housing units and other uses. Three large sites outside Tucson (a cooling problem), Atlanta (a humidity problem), and Boston (a heating problem) were selected. Each is typical of its region. A single program was assumed and designed for. Each site had two teams, one following a compact approach and one following a more dispersed approach. Each was free to choose the most appropriate mix of (solar) technology and scale, and was free to integrate energy and community in the design as it saw fit. These choice and integration issues are key areas where our experience may be of interest to those involved in community design and solar energy.

  3. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    Science.gov (United States)

    Thompson, Travis

    Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to

  4. Comparing energy technology alternatives from an environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    House, P W; Coleman, J A; Shull, R D; Matheny, R W; Hock, J C

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity.

  5. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  6. Alternative Sources of Energy - An Introduction to Fuel Cells

    Science.gov (United States)

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  7. Renewable (alternative) energies. Theoretical potentials, realistic future of the energy supply; Erneuerbare (alternative) Energien. Theoretische Potentiale, reale Zukunft der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.H. [Hochschule fuer Technik Suedwestfalen (Germany)]|[Institut fuer Technologie- und Wissenstransfer an der Hochschulabteilung Soest (Germany); Giber, J. [TU Budapest (Hungary). Inst. fuer Atomphysik

    2007-07-01

    The depletion of fossil fuels and the accumulation of greenhouse gases, whose effects are already making themselves felt, are impacting not only on technical but also on societal and political developments around the globe. The human demand for energy from fossil fuels is growing worldwide, and the depletion of these reserves can already be clearly perceived. This is incidentally also true of nuclear fuels, at least for those reserves that are exploitable with currently available technology. The use of renewable energies such as wind power, solar energy, geothermal energy, hydropower and biomass - to name just a few - appears at present to offer a solution to the future problems relating to energy supply and environment (global warming and follow-on effects). The technologies required for this are already well-advanced today. Over a period of several years the authors have collected data and facts on global energy scenarios, evaluated countless studies, studied the technologies required for tapping renewable energy potentials and performed their own calculations on the topic.

  8. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    Science.gov (United States)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  9. Alternative Energy Sources for United States Air Force Installations

    Science.gov (United States)

    1975-08-01

    1971. The Savonius rotor basically operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of...pumps, ship propulsion, and building ventilators--all with some success. Savonius also showed the feasibility of using the energy in ocean waves to

  10. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix J: alternatives studies. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M. [ed.

    1979-01-01

    A comprehensive review of a wide range of alternatives to the proposed action, the commercial demonstration of an industrial cogenerating facility fired with wood fuels is provided. An extensive effort has been devoted to the evaluation of all reasonable alternatives to this project. A number of possible actions were also briefly considered, but, for various reasons, they were found not to be appropriate at present for a commercial-scale demonstration of an alternative energy source. The critical characteristics of the wood-fueled commercial demonstration project at Westbrook are considered to be: industrial cogeneration of power; the production of 510,000 pounds per hour of industrial process steam; the production of approximately twenty-five megawatts of electric generating capacity, some of which would be available to a public utility in southern Maine; and the consumption of 2,000 tons of wood fuel per day. Each of the alternatives examined in this appendix offers a different option for one or several of the characteristics of the project listed above. As a whole, the appendix describes the range of possible actions that the US Department of Energy and its contractors have considered.

  11. Alternative Policy Study: Environment and energy in Europe and Central Asia 1990-2010. Energy-related environmental impacts of policy scenarios GEO-2000 alternative policy study

    NARCIS (Netherlands)

    Vuuren DP van; Bakkes JA; United Nations Environment; MNV

    2000-01-01

    The GEO-2000 study into alternative policy options for Europe and Central Asia focuses on energy use as an important driver for environmental problems across the region. The problems analyzed are climate change, acidification, summer smog, urban air pollution and risks of reactor accidents associate

  12. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr-1 and 6 × 1019 J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr-1 and 5 × 1017 J yr-1.

  13. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  14. Alternative energies for road traffic - methanol. Alternative Energien fuer den Strassenverkehr - Methanol

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Methanol motor fuels are alternative fuels which can supplement to the supply with petrol and diesel fuel from mineral oil to a greater extent. Since 1979, a fleet comprising more than 1,000 vehicles is being tested by customers in a practical large-scale test involving the motor fuels M15 and M100. The study on hand was produced by means of forecasts and facts based on today's technology and state of experience. The part concerning demand development and availability demonstrates in what quantities methanol could be available till the year 2000 (demand tendencies, future methanol production capacity in the world). The part concerning technology examines how the methanol quantities mentioned before could be used in road traffic (Otto engine, diesel engine, state of testing and trial, fuel technology) introduction phase, cost). The part concerning framework conditions notes that, in principle, there are no unsurmountable obstacles with setting up or amending methanol-specific technical and legal regulations.

  15. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  16. S&T advisors call for development of petroleum supplements and alternative energy sources in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Under the auspices of the Academic Divisions of CAS (CASAD), a panel of experts recently completed a consultative project on the medium- and long-term development strategy for petroleum supplements and alternative energy sources in China.

  17. Transverse electric fields' effects in the Dark Energy Camera CCDs

    CERN Document Server

    Plazas, Andres; Sheldon, Erin

    2014-01-01

    Spurious electric fields transverse to the surface of thick, fully-depleted, high-resistivity CCDs displace the photo-generated charges in the bulk of the detector, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs. The transverse fields mainly manifest as concentric rings (tree rings) and bright stripes near the boundaries of the detectors (edge distortions) with relative amplitudes of about 1 % and 10 % in the flat-field images, respectively. Their nature as pixel size variations is confirmed by comparing their photometric and astrometric signatures. Using flat-field images from DECam, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position in each DECam detector. The templates are directly incorporated into the der...

  18. Low-energy electric dipole response in 120Sn

    CERN Document Server

    Krumbholz, A M; Hashimoto, T; Tamii, A; Adachi, T; Bertulani, C A; Fujita, H; Fujita, Y; Ganioglu, E; Hatanaka, K; Iwamoto, C; Kawabata, T; Khai, N T; Krugmann, A; Martin, D; Matsubara, H; Neveling, R; Okamura, H; Ong, H J; Poltoratska, I; Ponomarev, V Yu; Richter, A; Sakaguchi, H; Shimbara, Y; Shimizu, Y; Simonis, J; Smit, F D; Susoy, G; Thies, J H; Suzuki, T; Yosoi, M; Zenihiro, J

    2015-01-01

    Electric dipole strength in 120Sn below the neutron threshold has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. The strength distribution is very different from the results of a 120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma') reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.

  19. Low-energy electric dipole response in 120Sn

    Directory of Open Access Journals (Sweden)

    A.M. Krumbholz

    2015-05-01

    Full Text Available The electric dipole strength distribution in 120Sn has been extracted from proton inelastic scattering experiments at Ep=295 MeV and at forward angles including 0°. It differs from the results of a Sn120(γ,γ′ experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2% of the energy-weighted sum rule and is more than three times larger than what is observed with the (γ,γ′ reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1− states.

  20. Hot dry rock: A versatile alternative energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

    1995-01-01

    Hot dry rock (HDR) is the most abundant geothermal resource, and is found almost everywhere at depth. The technology to extract energy from HDR for practical use has been under development at the Los Alamos National Laboratory for more than twenty years. During the 1970`s, the possibility of mining the heat from HDR by circulating water through an engineered geothermal reservoir was first demonstrated on a small scale. Between 1980 and 1986 a larger, deeper, and hotter HDR reservoir was constructed. This large reservoir was subsequently mated to a permanent surface plant. A number of flow tests of this large HDR reservoir were conducted between 1991 and 1995. The results of these tests have indicated that it should be practical to operate an HDR heat mining facility to produce power on a sustained basis. An industry-led, government cost-shared project to produce and market energy generated from HDR is currently being put in place. That project should help demonstrate that HDR reservoirs can be operated to provide energy for long periods of time at rates sufficient to be commercially viable. In the longer run, additional applications of HDR technology such as water and waste treatment, and steam generation for oil field flooding may come into widespread use.