WorldWideScience

Sample records for alternative complement pathway

  1. Quantitative Modeling of the Alternative Pathway of the Complement System.

    Science.gov (United States)

    Zewde, Nehemiah; Gorham, Ronald D; Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection.

  2. Alternative complement pathway deregulation is correlated with dengue severity.

    Directory of Open Access Journals (Sweden)

    Eduardo J M Nascimento

    Full Text Available BACKGROUND: The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF and dengue hemorrhagic fever (DHF patients and found that the level of complement activation is associated with disease severity. METHODS AND RESULTS: Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002 and increased levels of C3a, C4a and C5a (p<0.0001 when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01, which cleaves factor B to yield the active (C3bBb C3 convertase, and lower levels of factor H (p = 0.03, which inactivates the (C3bBb C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001. CONCLUSION: The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients.

  3. AMD and the alternative complement pathway: genetics and functional implications.

    Science.gov (United States)

    Tan, Perciliz L; Bowes Rickman, Catherine; Katsanis, Nicholas

    2016-06-21

    Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.

  4. Complement alternative pathway activation in human nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Filip M Segers

    Full Text Available The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH. Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10 or with NASH (n = 12 using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01 in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01. Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05 and C3c/C3 activation ratio (rs = 0.59; p<0.05. C3c, C3 activation status (C3c/C3 ratio and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05. Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;. Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28. In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05 and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08. Collectively, these data suggest a role for alternative

  5. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway.

    Science.gov (United States)

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg(2+). We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance.

  6. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway.

    Directory of Open Access Journals (Sweden)

    Esin Güven

    Full Text Available Al(OH3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH3 involves the three major pathways by monitoring complement components in Al(OH3-treated serum and in Al(OH3-containing precipitates. Al(OH3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg(2+. We thus confirm that Al(OH3 activates the complement system and show that the alternative pathway is of major importance.

  7. Aluminum Hydroxide Adjuvant Differentially Activates the Three Complement Pathways with Major Involvement of the Alternative Pathway

    Science.gov (United States)

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg2+. We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance. PMID:24040248

  8. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration.

    Science.gov (United States)

    Hecker, Laura A; Edwards, Albert O; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H; Brown, William L; Charbel Issa, Peter; Scholl, Hendrik P; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E; Bailey, Kent R; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues.

  9. Blockade of Alternative Complement Pathway in Dense Deposit Disease

    Directory of Open Access Journals (Sweden)

    Aurore Berthe-Aucejo

    2014-01-01

    Full Text Available A patient aged 17 with dense deposit disease associated with complement activation, circulating C3 Nef, and Factor H mutation presented with nephrotic syndrome and hypertension. Steroid therapy, plasma exchange, and rituximab failed to improve proteinuria and hypertension despite a normalization of the circulating sC5b9 complex. Eculizumab, a monoclonal antibody directed against C5, was used to block the terminal product of the complement cascade. The dose was adapted to achieve a CH50 below 10%, but proteinuria and blood pressure were not improved after 3 months of treatment.

  10. Blockade of Alternative Complement Pathway in Dense Deposit Disease

    Science.gov (United States)

    Sacquépée, Mathieu; Fila, Marc; Peuchmaur, Michel; Perrier-Cornet, Emilia; Frémeaux-Bacchi, Véronique; Deschênes, Georges

    2014-01-01

    A patient aged 17 with dense deposit disease associated with complement activation, circulating C3 Nef, and Factor H mutation presented with nephrotic syndrome and hypertension. Steroid therapy, plasma exchange, and rituximab failed to improve proteinuria and hypertension despite a normalization of the circulating sC5b9 complex. Eculizumab, a monoclonal antibody directed against C5, was used to block the terminal product of the complement cascade. The dose was adapted to achieve a CH50 below 10%, but proteinuria and blood pressure were not improved after 3 months of treatment. PMID:24672732

  11. Study of the optimal reaction conditions for assay of the mouse alternative complement pathway

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Klerx, J.P.A.M.; Willers, J.M.M.

    1985-01-01

    The optimal reaction conditions for hemolytic assay of alternative complement pathway activity in mouse serum were investigated. A microtiter system was used, in which a number of 7.5×106 rabbit erythrocytes per test well appeared to be optimal. Rabbit erythrocytes were superior as target cells over

  12. Determination of alternative pathway of complement activity in mouse serum using rabbit erythrocytes

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Willers, J.M.N

    1980-01-01

    Rabbit, mouse and sheep erythrocytes expressing different concentrations of membrane sialic acid were used to study possible modes of activation of the alternative complement (C) pathway in mouse, human and guinea pig serum. Mouse erythrocytes activated only human serum, whereas rabbit erythrocytes

  13. Alternative complement pathway deficiency ameliorates chronic smoke-induced functional and morphological ocular injury.

    Directory of Open Access Journals (Sweden)

    Alex Woodell

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD, a complex disease involving genetic variants and environmental insults, is among the leading causes of blindness in Western populations. Genetic and histologic evidence implicate the complement system in AMD pathogenesis; and smoking is the major environmental risk factor associated with increased disease risk. Although previous studies have demonstrated that cigarette smoke exposure (CE causes retinal pigment epithelium (RPE defects in mice, and smoking leads to complement activation in patients, it is unknown whether complement activation is causative in the development of CE pathology; and if so, which complement pathway is required. METHODS: Mice were exposed to cigarette smoke or clean, filtered air for 6 months. The effects of CE were analyzed in wildtype (WT mice or mice without a functional complement alternative pathway (AP; CFB(-/- using molecular, histological, electrophysiological, and behavioral outcomes. RESULTS: CE in WT mice exhibited a significant reduction in function of both rods and cones as determined by electroretinography and contrast sensitivity measurements, concomitant with a thinning of the nuclear layers as measured by SD-OCT imaging and histology. Gene expression analyses suggested that alterations in both photoreceptors and RPE/choroid might contribute to the observed loss of function, and visualization of complement C3d deposition implies the RPE/Bruch's membrane (BrM complex as the target of AP activity. RPE/BrM alterations include an increase in mitochondrial size concomitant with an apical shift in mitochondrial distribution within the RPE and a thickening of BrM. CFB(-/- mice were protected from developing these CE-mediated alterations. CONCLUSIONS: Taken together, these findings provide clear evidence that ocular pathology generated in CE mice is dependent on complement activation and requires the AP. Identifying animal models with RPE/BrM damage and verifying

  14. The alternative complement pathway is dysregulated in patients with chronic heart failure

    Science.gov (United States)

    Shahini, Negar; Michelsen, Annika E.; Nilsson, Per H.; Ekholt, Karin; Gullestad, Lars; Broch, Kaspar; Dahl, Christen P.; Aukrust, Pål; Ueland, Thor; Mollnes, Tom Eirik; Yndestad, Arne; Louwe, Mieke C.

    2017-01-01

    The complement system, an important arm of the innate immune system, is activated in heart failure (HF). We hypothesized that HF patients are characterized by an imbalance of alternative amplification loop components; including properdin and complement factor D and the alternative pathway inhibitor factor H. These components and the activation product, terminal complement complex (TCC), were measured in plasma from 188 HF patients and 67 age- and sex- matched healthy controls by enzyme immunoassay. Our main findings were: (i) Compared to controls, patients with HF had significantly increased levels of factor D and TCC, and decreased levels of properdin, particularly patients with advanced clinical disorder (i.e., NYHA functional class IV), (ii) Levels of factor D and properdin in HF patients were correlated with measures of systemic inflammation (i.e., C-reactive protein), neurohormonal deterioration (i.e., Nt-proBNP), cardiac function, and deteriorated diastolic function, (iii) Low levels of factor H and properdin were associated with adverse outcome in univariate analysis and for factor H, this was also seen in an adjusted model. Our results indicate that dysregulation of circulating components of the alternative pathway explain the increased degree of complement activation and is related to disease severity in HF patients. PMID:28195242

  15. Demonstration of alternative and classical complement pathway activity in colostrum from buffalo (Bubalus bubalis).

    Science.gov (United States)

    Matheswaran, K; Dhinakar Raj, G; Nachimuthu, K

    2003-09-01

    Buffalo colostrum caused lysis of unsensitized red blood cells (RBC) from sheep, goats, rabbits and chickens. RBC from cattle and buffalo were resistant to lysis. That lysis was due to the presence of natural antibodies to these RBC was ruled out since there was no reduction in haemolytic titres even after adsorption with the respective RBC. The addition of EGTA to the diluent had no effect on the haemolytic activity. These findings indicate the presence of alternative complement pathway (ACP) activity in buffalo colostrum. The haemolytic activity of buffalo complement for unsensitized rabbit RBC was reduced to very low levels by heating at 50 degrees C for 45 min. Treatment with zymosan also inhibited the haemolytic activity, while inulin had no effect. The maximum activity of ACP occurred in the presence of 4 mmol/L Mg(2+) in the diluent. The range of ACP activities in colostrum from buffaloes varied from 4.06 to 8.48 CH50 units/ml. Using a standard system for titrating the classical complement pathway and rabbit red blood cells sensitized with goat haemolysin, the range of complement activity in buffalo colostrum was 4.81-6.77 CH50/ml.

  16. Alternative complement pathway activation during invasive coronary procedures in acute myocardial infarction and stable angina pectoris.

    Science.gov (United States)

    Horváth, Zsófia; Csuka, Dorottya; Vargova, Katarina; Kovács, Andrea; Leé, Sarolta; Varga, Lilian; Préda, István; Tóth Zsámboki, Emese; Prohászka, Zoltán; Kiss, Róbert Gábor

    2016-12-01

    The effect of invasive percutaneous coronary procedures on complement activation has not been elucidated. We enrolled stable angina patients with elective percutaneous coronary intervention (SA-PCI, n=24), diagnostic coronary angiography (CA, n=52) and 23 patients with ST segment elevation myocardial infarction and primary PCI (STEMI-PCI). Complement activation products (C1rC1sC1inh, C3bBbP and SC5b-9) were measured on admission, 6 and 24h after coronary procedures. The alternative pathway product, C3bBbP significantly and reversibly increased 6h after elective PCI (baseline: 7.81AU/ml, 6h: 16.09AU/ml, 24h: 4.27AU/ml, p<0.01, n=23) and diagnostic angiography (baseline: 6.13AU/ml, 6h: 12.08AU/ml, 24h: 5.4AU/ml, p<0.01, n=52). Six hour C3bBbP values correlated with post-procedural CK, creatinine level and the applied contrast material volume (r=0.41, r=0.4, r=0.3, p<0.05, respectively). In STEMI-PCI, baseline C3bBbP level was higher, compared to SA-PCI or CA patients (11.33AU/ml vs. 7.81AU/ml or 6.13AU/ml, p<0.001). Similarly, the terminal complex (SC5b-9) level was already elevated at baseline compared to SA-PCI group (3.49AU/ml vs. 1.87AU/ml, p=0.011). Complement pathway products did not increase further after primary PCI. Elective coronary procedures induced transient alternative complement pathway activation, influenced by the applied contrast volume. In STEMI, the alternative complement pathway is promptly activated during the atherothrombotic event and PCI itself had no further detectable effect.

  17. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  18. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Directory of Open Access Journals (Sweden)

    C.S. Bitencourt

    2012-03-01

    Full Text Available Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP activity in male Wistar rats (180 ± 10 g after altering their thyroid hormone levels by treatment with triiodothyronine (T3, propylthiouracil (PTU or thyroidectomy. T3 and thyroxine (T4 levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg. Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01. In contrast, increased factor B concentration and activity (32% were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  19. A Targeted Inhibitor of the Alternative Complement Pathway Accelerates Recovery From Smoke-Induced Ocular Injury

    Science.gov (United States)

    Woodell, Alex; Jones, Bryan W.; Williamson, Tucker; Schnabolk, Gloriane; Tomlinson, Stephen; Atkinson, Carl; Rohrer, Bärbel

    2016-01-01

    Purpose Morphologic and genetic evidence exists that an overactive complement system driven by the complement alternative pathway (AP) is involved in pathogenesis of age-related macular degeneration (AMD). Smoking is the only modifiable risk factor for AMD. As we have shown that smoke-related ocular pathology can be prevented in mice that lack an essential activator of AP, we ask here whether this pathology can be reversed by increasing inhibition in AP. Methods Mice were exposed to either cigarette smoke (CS) or filtered air (6 hours/day, 5 days/week, 6 months). Smoke-exposed animals were then treated with the AP inhibitor (CR2-fH) or vehicle control (PBS) for the following 3 months. Spatial frequency and contrast sensitivity were assessed by optokinetic response paradigms at 6 and 9 months; additional readouts included assessment of retinal morphology by electron microscopy (EM) and gene expression analysis by quantitative RT-PCR. Results The CS mice treated with CR2-fH showed significant improvement in contrast threshold compared to PBS-treated mice, whereas spatial frequency was unaffected by CS or pharmacologic intervention. Treatment with CR2-fH in CS animals reversed thinning of the retina observed in PBS-treated mice as analyzed by spectral-domain optical coherence tomography, and reversed most morphologic changes in RPE and Bruch's membrane seen in CS animals by EM. Conclusions Taken together, these findings suggest that AP inhibitors not only prevent, but have the potential to accelerate the clearance of complement-mediated ocular injury. Improving our understanding of the regulation of the AP is paramount to developing novel treatment approaches for AMD. PMID:27064393

  20. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    Science.gov (United States)

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm.

  1. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M;

    2001-01-01

    Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting...... the alternative pathway. Blockade of the CR2 ligand-binding site with the monoclonal antibody FE8 resulted in 56 +/- 13% and 71 +/- 9% inhibition of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135, directed against an irrelevant CR2 epitope, had no effect. Blockade...

  2. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy

    Science.gov (United States)

    Borza, Dorin-Bogdan

    2016-01-01

    Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. PMID:27199983

  3. Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm.

    Science.gov (United States)

    Zhou, Hui-Fang; Yan, Huimin; Stover, Cordula M; Fernandez, Tamara Montes; Rodriguez de Cordoba, Santiago; Song, Wen-Chao; Wu, Xiaobo; Thompson, Robert W; Schwaeble, Wilhelm J; Atkinson, John P; Hourcade, Dennis E; Pham, Christine T N

    2012-02-14

    Abdominal aortic aneurysm (AAA) is a complex inflammatory vascular disease. There are currently limited treatment options for AAA when surgery is inapplicable. Therefore, insights into molecular mechanisms underlying AAA pathogenesis may reveal therapeutic targets that could be manipulated pharmacologically or biologically to halt disease progression. Using an elastase-induced AAA mouse model, we previously established that the complement alternative pathway (AP) plays a critical role in the development of AAA. However, the mechanism by which complement AP is initiated remains undefined. The complement protein properdin, traditionally viewed as a positive regulator of the AP, may also initiate complement activation by binding directly to target surfaces. In this study, we sought to determine whether properdin serves as a focal point for the initiation of the AP complement activation in AAA. Using a properdin loss of function mutation in mice and a mutant form of the complement factor B protein that produces a stable, properdin-free AP C3 convertase, we show that properdin is required for the development of elastase-induced AAA in its primary role as a convertase stabilizer. Unexpectedly, we find that, in AAA, natural IgG antibodies direct AP-mediated complement activation. The absence of IgG abrogates C3 deposition in elastase-perfused aortic wall and protects animals from AAA development. We also determine that blockade of properdin activity prevents aneurysm formation. These results indicate that an innate immune response to self-antigens activates the complement system and initiates the inflammatory cascade in AAA. Moreover, the study suggests that properdin-targeting strategies may halt aneurysmal growth.

  4. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea

    2015-01-01

    and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition...... of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule....... nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could...

  5. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway.

    Science.gov (United States)

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole; Bayarri-Olmos, Rafael; Romani, Luigina; Garred, Peter

    2015-10-01

    Soluble defense collagens including the collectins play important roles in innate immunity. Recently, a new member of the collectin family named collectin-12 (CL-12 or CL-P1) has been identified. CL-12 is highly expressed in umbilical cord vascular endothelial cells as a transmembrane receptor and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition molecule. Using recombinant CL-12 full length or CL-12 extracellular domain, we determined the occurrence of soluble CL-12 shed from in vitro cultured cells. Western blot showed that soluble recombinant CL-12 migrated with a band corresponding to ∼ 120 kDa under reducing conditions, whereas under nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could recognize Aspergillus fumigatus partially through the carbohydrate-recognition domain in a Ca(2+)-independent manner. This led to activation of the alternative pathway of complement exclusively via association with properdin on A. fumigatus as validated by detection of C3b deposition and formation of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule.

  6. Activation capacity of the alternative and classic complement pathways in patients operated on for colorectal cancer

    DEFF Research Database (Denmark)

    Zimmermann-Nielsen, Erik; Iversen, Lene H; Svehag, Sven-Erik;

    2002-01-01

    . Significant differences in C3 activation capacities were observed between cancer patients that were related to Dukes stage and in patients with and without buffy coat-depleted red cells suspended in saline, adenine, glucose, and mannitol transfusion, infectious events, and deep venous thromboembolism......PURPOSE: Tumor cells may suppress activation of the host's complement system, and the functional state of the complement system may be a prognostic marker of outcome in patients with malignancies. Serial plasma samples from patients undergoing intended curative surgery for colorectal cancer were...... analyzed for complement factor C3 activation capacity. METHODS: Samples were collected from 91 patients with colorectal cancer and 13 with benign colorectal diseases before surgery and 1, 2, and 7 days after surgery, between 8 and 13 days after surgery, and 3, 6, 12, 18, 24, 36, 48, and 60 months after...

  7. Regulation of the alternative pathway of complement modulates injury and immunity in a chronic model of dextran sulphate sodium-induced colitis

    Science.gov (United States)

    Elvington, M; Schepp-Berglind, J; Tomlinson, S

    2015-01-01

    The role of complement in inflammatory bowel disease (IBD) has been studied primarily using acute models, and it is unclear how complement affects processes in more relevant chronic models of IBD in which modulation of adaptive immunity and development of fibrosis have pathogenic roles. Using mice deficient in C1q/mannose-binding lectin (MBL) or C3, we demonstrated an important role for these opsonins and/or the classical pathway C3 convertase in providing protection against mucosal injury and infection in a model of chronic dextran sulphate sodium (DSS)-induced colitis. In contrast, deficiency of the alternative pathway (fB–/– mice) had significantly less impact on injury profiles. Consequently, the effect of a targeted inhibitor of the alternative pathway was investigated in a therapeutic protocol. Following the establishment of colitis, mice were treated with CR2-fH during subsequent periods of DSS treatment and acute injury (modelling relapse). CR2-fH significantly reduced complement activation, inflammation and injury in the colon, and additionally reduced fibrosis. Alternative pathway inhibition also altered the immune response in the chronic state in terms of reducing numbers of B cells, macrophages and mature dendritic cells in the lamina propria. This study indicates an important role for the alternative pathway of complement in the pathogenesis and the shaping of an immune response in chronic DSS-induced colitis, and supports further investigation into the use of targeted alternative pathway inhibition for the treatment of IBD. PMID:25293413

  8. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways

    DEFF Research Database (Denmark)

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid;

    2015-01-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative...

  9. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen;

    2009-01-01

    was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP activation showing...... that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP...... as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  10. The dual role of complement in the progression of renal disease in NZB/W F(1) mice and alternative pathway inhibition.

    Science.gov (United States)

    Sekine, Hideharu; Ruiz, Phillip; Gilkeson, Gary S; Tomlinson, Stephen

    2011-10-01

    Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F(1) mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings.

  11. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice

    Directory of Open Access Journals (Sweden)

    Holers V Michael

    2007-05-01

    Full Text Available Abstract Background The posttraumatic response to traumatic brain injury (TBI is characterized, in part, by activation of the innate immune response, including the complement system. We have recently shown that mice devoid of a functional alternative pathway of complement activation (factor B-/- mice are protected from complement-mediated neuroinflammation and neuropathology after TBI. In the present study, we extrapolated this knowledge from studies in genetically engineered mice to a pharmacological approach using a monoclonal anti-factor B antibody. This neutralizing antibody represents a specific and potent inhibitor of the alternative complement pathway in mice. Methods A focal trauma was applied to the left hemisphere of C57BL/6 mice (n = 89 using a standardized electric weight-drop model. Animals were randomly assigned to two treatment groups: (1 Systemic injection of 1 mg monoclonal anti-factor B antibody (mAb 1379 in 400 μl phosphate-buffered saline (PBS at 1 hour and 24 hours after trauma; (2 Systemic injection of vehicle only (400 μl PBS, as placebo control, at identical time-points after trauma. Sham-operated and untreated mice served as additional negative controls. Evaluation of neurological scores and analysis of brain tissue specimens and serum samples was performed at defined time-points for up to 1 week. Complement activation in serum was assessed by zymosan assay and by murine C5a ELISA. Brain samples were analyzed by immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL histochemistry, and real-time RT-PCR. Results The mAb 1379 leads to a significant inhibition of alternative pathway complement activity and to significantly attenuated C5a levels in serum, as compared to head-injured placebo-treated control mice. TBI induced histomorphological signs of neuroinflammation and neuronal apoptosis in the injured brain hemisphere of placebo-treated control mice for up to 7 days. In contrast, the

  12. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways.

    Science.gov (United States)

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid; Skjoedt, Mikkel-Ole; Garred, Peter

    2015-12-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation.

  13. A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration.

    Science.gov (United States)

    Rohrer, Bärbel; Long, Qin; Coughlin, Beth; Renner, Brandon; Huang, Yuxiang; Kunchithapautham, Kannan; Ferreira, Viviana P; Pangburn, Michael K; Gilkeson, Gary S; Thurman, Joshua M; Tomlinson, Stephen; Holers, V Michael

    2010-01-01

    Genetic variations in complement factor H (fH), an inhibitor of the complement alternative pathway (CAP), and oxidative stress are associated with age-related macular degeneration (AMD). Recently, novel complement therapeutics have been created with the capacity to be "targeted" to sites of complement activation. One example is our recombinant form of fH, CR2-fH, which consists of the N-terminus of mouse fH that contains the CAP-inhibitory domain, linked to a complement receptor 2 (CR2) targeting fragment that binds complement activation products. CR2-fH was investigated in vivo in the mouse model of choroidal neovascularization (CNV) and in vitro in oxidatively stressed RPE cell monolayers. RPE deterioration and CNV development were found to require CAP activation, and specific CAP inhibition by CR2-fH reduced the loss of RPE integrity and angiogenesis in CNV. In both the in vivo and in vitro paradigm of RPE damage, a model requiring molecular events known to be involved in AMD, complement-dependent VEGF production, was confirmed. These data may open new avenues for AMD treatment strategies.

  14. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P;

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  15. The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes

    DEFF Research Database (Denmark)

    Leslie, Robert Graham Quinton; Nielsen, Claus Henrik

    2004-01-01

    The contributions of the classical (CP) and alternative (AP) pathways of complement activation to the spontaneous deposition of C3 fragments and the formation of membrane attack complexes (MAC) on human B lymphocytes, were assessed by incubating peripheral blood mononuclear cells with autologous ...... of MAC formation was also found to be highly pathway dependent, with the AP being about 15-fold more efficient at initiating this process than the CP. A model accounting for the effectiveness of the AP in both preserving C3 fragment integrity and initiating MAC is presented....

  16. The Lectin Pathway of Complement and Biocompatibility

    DEFF Research Database (Denmark)

    Hein, Estrid; Garred, Peter

    2015-01-01

    In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contac...... been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field....... and the alternative pathway, all converging in an amplification loop of the cascade system and downstream reactions. Thus, when exposed to foreign substances complement components will be activated and lead to a powerful inflammatory response. Biosurface induced complement activation is a recognised issue that has...

  17. Regulatory components of the alternative complement pathway in endothelial cell cytoplasm, factor H and factor I, are not packaged in Weibel-Palade bodies.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP, would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF--but not factor H.

  18. Regulatory components of the alternative complement pathway in endothelial cell cytoplasm, factor H and factor I, are not packaged in Weibel-Palade bodies.

    Science.gov (United States)

    Turner, Nancy A; Sartain, Sarah E; Hui, Shiu-Ki; Moake, Joel L

    2015-01-01

    It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF) in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP), would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF--but not factor H.

  19. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.

  20. Lectin Complement Pathway Proteins in Healthy Individuals

    DEFF Research Database (Denmark)

    Troldborg, Anne; Hansen, Annette; Hansen, Søren W K

    2017-01-01

    Since the discovery of the lectin pathway of complement activation, numerous clinical cohorts have been examined for one or more of the proteins, with the intention of uncovering the functions of the proteins or with the aim of discovering new biomarkers or diagnostic tools. To unveil the abnormal......, it is pivotal to know the normal. Our aim was to describe the concentrations of the eleven known proteins of the lectin pathway in serum and plasma and to uncover possible gender differences, age and diurnal variations, which must be taken into account for investigations in different cohorts. We examined...... the concentrations of all lectin pathway proteins (mannan-binding lectin (MBL), H-ficolin, L-ficolin, M-ficolin, collectin-K1, collectin-L1, MBL-associated serine protease 2 (MASP-2), MASP-3, MBL associated protein of 44 kDa (MAp44) and MAp19 in 300 Danish blood donors in serum and EDTA plasma in established assays...

  1. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases.

    Science.gov (United States)

    Fridkis-Hareli, Masha; Storek, Michael; Mazsaroff, Istvan; Risitano, Antonio M; Lundberg, Ante S; Horvath, Christopher J; Holers, V Michael

    2011-10-27

    To selectively modulate human complement alternative pathway (CAP) activity implicated in a wide range of acute and chronic inflammatory conditions and to provide local cell surface and tissue-based inhibition of complement-induced damage, we developed TT30, a novel therapeutic fusion protein linking the human complement receptor type 2 (CR2/CD21) C3 fragment (C3frag = iC3b, C3dg, C3d)-binding domain with the CAP inhibitory domain of human factor H (fH). TT30 efficiently blocks ex vivo CAP-dependent C3frag accumulation on activated surfaces, membrane attack complex (MAC) formation and hemolysis of RBCs in a CR2-dependent manner, and with a ∼ 150-fold potency gain over fH, without interference of C3 activation or MAC formation through the classic and lectin pathways. TT30 protects RBCs from hemolysis and remains bound and detectable for at least 24 hours. TT30 selectively inhibits CAP in cynomolgus monkeys and is bioavailable after subcutaneous injection. Using a unique combination of targeting and effector domains, TT30 controls cell surface CAP activation and has substantial potential utility for the treatment of human CAP-mediated diseases.

  2. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis Ativação da via alternativa do complemento em soro de cão normal por Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    A.A.C. Bianchini

    2009-06-01

    Full Text Available The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50 hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p O fungo dimórfico Paracoccidioides brasiliensis é o agente etiológico da paracoccidioidomicose, uma doença granulomatosa humana. Recentemente, foi relatado o primeiro caso da doença natural em cães. O sistema complemento é um importante componente efetor da imunidade humoral contra agentes infecciosos. Portanto, o objetivo deste trabalho foi avaliar a ativação da via alternativa do complemento canina pelo P. brasiliensis. Inicialmente, foi avaliada a capacidade de eritrócitos de cobaia, coelho, carneiro, galinha e suíno ativarem a via alternativa do complemento canino. Os eritrócitos de cobaia apresentaram maior capacidade de ativar a via alternative do complemento canino. A atividade hemolítica da via alternativa (AH50 foi avaliada em 27 amostras de soro de cães saldáveis e os valores médios observados foram de 87,2 AH50/ml. Não foi observada diferença significativa ao sexo e idade. A ativação da via alternativa pelo P. brasiliensis foi

  3. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    OpenAIRE

    Rauna eRiva; Korhonen, Timo K.; Seppo eMeri

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement pro...

  4. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    Directory of Open Access Journals (Sweden)

    Rauna eRiva

    2015-02-01

    Full Text Available The virulence factor PgtE is an outer membrane protease (omptin of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e. rough LPS, as observed e.g. in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B and H (H, key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B and H we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella.

  5. Complement pathways and meningococcal disease : diagnostic aspects

    DEFF Research Database (Denmark)

    Sjöholm, A G; Truedsson, L; Jensenius, Jens Christian

    2001-01-01

    Complement is an immunological effector system that bridges innate and acquired immunity in several ways. There is a striking association between susceptibility to meningococcal disease and various forms of complement deficiency (1,2). In defense against bacterial infection, the most important...

  6. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

    Science.gov (United States)

    Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086

  7. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette Benthien; Takahashi, Minoru; Sekine, Hideharu;

    2014-01-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite...... in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from...

  8. Human L-ficolin, a recognition molecule of the lectin activation pathway of complement, activates complement by binding to pneumolysin, the major toxin of Streptococcus pneumoniae.

    Science.gov (United States)

    Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J

    2013-01-01

    The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.

  9. MINI-REVIEW: SYSTEMIC LUPUS ERYTHEMATOSUS AND DEFICIENCIES OF EARLY COMPONENTS OF THE COMPLEMENT CLASSICAL PATHWAY

    Directory of Open Access Journals (Sweden)

    Lourdes eIsaac

    2016-02-01

    Full Text Available The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the Classical, Alternative or Lectin Pathways. Biological functions such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, solubilization and clearance of immune complex and cell lysis are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in auto-immune diseases. Paradoxically, the deficiency of early complement proteins from the Classical Pathway is strongly associated with development of systemic lupus erythematous (SLE - mainly C1q deficiency (93% and C4 deficiency (75%. The aim of this review is to focus on the deficiencies of early components of the Classical Pathway (C1q, C1r, C1s, C4, C2 proteins in SLE patients.

  10. A metalloproteinase mirolysin of Tannerella forsythia inhibits all pathways of the complement system

    Science.gov (United States)

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta; Bielecka, Ewa; Ksiazek, Miroslaw; Riesbeck, Kristian; Garred, Peter; Eick, Sigrun; Blom, Anna M.

    2015-01-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. Here we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3 and C4, while inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia, and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium. PMID:26209620

  11. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System.

    Science.gov (United States)

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta; Bielecka, Ewa; Ksiazek, Miroslaw; Riesbeck, Kristian; Garred, Peter; Eick, Sigrun; Blom, Anna M

    2015-09-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.

  12. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Kidmose, Rune Thomas; Petersen, Steen Vang;

    2015-01-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface...... for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details...

  13. Identification of Tubular Heparan Sulfate as a Docking Platform for the Alternative Complement Component Properdin in Proteinuric Renal Disease

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Hakvoort, Jelleke J.; Navis, Gerjan J.; van Goor, Harry; Daha, Mohamed R.; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2011-01-01

    Properdin binds to proximal tubular epithelial cells (PTEC) and activates the complement system via the alternative pathway in vitro. Cellular ligands for properdin in the kidney have not yet been identified. Because properdin interacts with solid-phase heparin, we investigated whether heparan sulfa

  14. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available BACKGROUND: Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings. CONCLUSIONS/SIGNIFICANCE: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric

  15. A novel antibody against human properdin inhibits the alternative complement system and specifically detects properdin from blood samples.

    Directory of Open Access Journals (Sweden)

    Diana Pauly

    Full Text Available The complement system is an essential part of the innate immune system by acting as a first line of defense which is stabilized by properdin, the sole known positive regulator of the alternative complement pathway. Dysregulation of complement can promote a diversity of human inflammatory diseases which are treated by complement inhibitors. Here, we generated a novel blocking monoclonal antibody (mAb against properdin and devised a new diagnostic assay for this important complement regulator. Mouse mAb 1340 specifically detected native properdin from human samples with high avidity. MAb 1340 inhibited specifically the alternative complement mediated cell lysis within a concentration range of 1-10 µg/mL. Thus, in vitro anti-properdin mAb 1340 was up to fifteen times more efficient in blocking the complement system as compared to anti-C5 or anti-Ba antibodies. Computer-assisted modelling suggested a three-dimensional binding epitope in a properdin-C3(H2O-clusterin complex to be responsible for the inhibition. Recovery of properdin in a newly established sandwich ELISA using mAb 1340 was determined at 80-125% for blood sample dilutions above 1∶50. Reproducibility assays showed a variation below 25% at dilutions less than 1∶1,000. Systemic properdin concentrations of healthy controls and patients with age-related macular degeneration or rheumatic diseases were all in the range of 13-30 µg/mL and did not reveal significant differences. These initial results encourage further investigation into the functional role of properdin in the development, progression and treatment of diseases related to the alternative complement pathway. Thus, mAb 1340 represents a potent properdin inhibitor suitable for further research to understand the exact mechanisms how properdin activates the complement C3-convertase and to determine quantitative levels of properdin in biological samples.

  16. Activated complement classical pathway in a murine model of oxygen-induced retinopathy

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying; Tao; Shi-Jie; Zheng; Bo; Lei

    2015-01-01

    AIM: To investigate whether the complement system is involved in a murine model of oxygen-induced retinopathy(OIR).METHODS: Forty C57BL/6J newborn mice were divided randomly into OIR group and control group. OIR was induced by exposing mice to 75% ±2% oxygen from postnatal 7d(P7) to P12 and then recovered in room air.For the control group, the litters were raised in room air.At the postnatal 17d(P17), gene expressions of the complement components of the classical pathway(CP),the mannose-binding lectin(MBL) pathway and the alternative pathway(AP) in the retina were determined by quantitative real-time polymerase chain reaction(RT-PCR). Retinal protein expressions of the key components in the CP were examined by Western blotting.· RESULTS: Whole mounted retina in the OIR mice showed area of central hypoperfusion in both superficial and deep layers and neovascular tufts in the periphery.The expressions of C1 qb and C4 b genes in the OIR retina were significantly higher than those of the controls. The expression of retinal complement factor B(CFB) gene in OIR mice was significantly lower than those of the controls. However, the expressions of C3 and complement factor H(CFH) genes were higher. The protein synthesis of the key components involved in the CP(C1q, C4 and C3) were also significantly higher in OIR mouse retina. Although MBL-associated serine protease 1(MASP1) and MASP2 were detected in both the OIR and the control groups, the expressions were weak and the difference between the two groups was not significant.CONCLUSION: Our data suggest that the complement system CP is activated during the pathogenesis of murine model of OIR.

  17. Functional characterization of the lectin pathway of complement in human serum.

    Science.gov (United States)

    Roos, Anja; Bouwman, Lee H; Munoz, Jeric; Zuiverloon, Tahlita; Faber-Krol, Maria C; Fallaux-van den Houten, Francien C; Klar-Mohamad, Ngaisah; Hack, C Erik; Tilanus, Marcel G; Daha, Mohamed R

    2003-01-01

    Mannan-binding lectin (MBL) is a major initiator of the lectin pathway (LP) of complement. Polymorphisms in exon 1 of the MBL gene are associated with impaired MBL function and infections. Functional assays to assess the activity of the classical pathway (CP) and the alternative pathway (AP) of complement in serum are broadly used in patient diagnostics. We have now developed a functional LP assay that enables the specific quantification of autologous MBL-dependent complement activation in human serum. Complement activation was assessed by ELISA using coated mannan to assess the LP and coated IgM to assess the CP. Normal human serum (NHS) contains IgG, IgA and IgM antibodies against mannan, as shown by ELISA. These antibodies are likely to induce CP activation. Using C1q-blocking and MBL-blocking mAb, it was confirmed that both the LP and the CP contribute to complement activation by mannan. In order to quantify LP activity without interference of the CP, LP activity was measured in serum in the presence of C1q-blocking Ab. Activation of serum on coated IgM via the CP resulted in a dose-dependent deposition of C1q, C4, C3, and C5b-9. This activation and subsequent complement deposition was completely inhibited by the C1q-blocking mAb 2204 and by polyclonal Fab anti-C1q Ab. Evaluation of the LP in the presence of mAb 2204 showed a strong dose-dependent deposition of C4, C3, and C5b-9 using serum from MBL-wildtype (AA) but not MBL-mutant donors (AB or BB genotype), indicating that complement activation under these conditions is MBL-dependent and C1q-independent. Donors with different MBL genotypes were identified using a newly developed oligonucleotide ligation assay (OLA) for detection of MBL exon 1 polymorphisms. We describe a novel functional assay that enables quantification of autologous complement activation via the LP in full human serum up to the formation of the membrane attack complex. This assay offers novel possibilities for patient diagnostics as well as

  18. Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Kimura Yuko

    2011-01-01

    Full Text Available Abstract Background Complement proteins and activation products have been found associated with neuropathology in Alzheimer's disease (AD. Recently, a C5a receptor antagonist was shown to suppress neuropathology in two murine models of AD, Tg2576 and 3xTg. Previously, a genetic deficiency of C1q in the Tg2576 mouse model showed an accumulation of fibrillar plaques similar to the complement sufficient Tg2576, but reactive glia were significantly decreased and neuronal integrity was improved suggesting detrimental consequences for complement activation in AD. The goal of this study was to define the role of the classical complement activation pathway in the progression of pathology in the 3xTg mouse that develops tangles in addition to fibrillar plaques (more closely reflecting human AD pathology and to assess the influence of complement in a model of AD with a higher level of complement hemolytic activity. Methods 3xTg mice deficient in C1q (3xTgQ-/- were generated, and both 3xTg and 3xTgQ-/- were backcrossed to the BUB mouse strain which has higher in vitro hemolytic complement activity. Mice were aged and perfused, and brain sections stained for pathological markers or analyzed for proinflammatory marker expression. Results 3xTgQ-/- mice showed similar amounts of fibrillar amyloid, reactive glia and hyperphosphorylated tau as the C1q-sufficient 3xTg at the ages analyzed. However, 3xTg and 3xTgQ-/- on the BUB background developed pathology earlier than on the original 3xTg background, although the presence of C1q had no effect on neuropathological and pro-inflammatory markers. In contrast to that seen in other transgenic models of AD, C1q, C4 and C3 immunoreactivity was undetectable on the plaques of 3xTg in any background, although C3 was associated with reactive astrocytes surrounding the plaques. Importantly, properdin a component of the alternative complement pathway was associated with plaques in all models. Conclusions In contrast to

  19. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    complement pathway regulator MAP-1. Furthermore, we found that complex formation between recombinant collectin-11 and recombinant MASP-2 on Candida albicans leads to deposition of C4b. Native collectin-11 in serum mediated complement activation and deposition of C4b and C3b, and formation of the terminal...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway...

  20. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Kidmose, Rune Thomas; Petersen, Steen Vang;

    2015-01-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface...... for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details...... of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our...

  1. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    Science.gov (United States)

    Garcia, Brandon L; Zhi, Hui; Wager, Beau; Höök, Magnus; Skare, Jon T

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.

  2. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    Directory of Open Access Journals (Sweden)

    Brandon L Garcia

    2016-01-01

    Full Text Available Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.

  3. 补体替代途径中相关因子的激活与年龄相关性黄斑变性的关系%Relationship between some relative factors of the complement alternative pathway and age-related macular degeneration

    Institute of Scientific and Technical Information of China (English)

    葛慧敏; 李芳

    2014-01-01

    年龄相关性黄斑变性( age related macular dengeneration, AMD)是一种与年龄相关的黄斑区退行性病变,最终可导致视力模糊甚至丧失。 AMD的发生受到环境和体内炎症反应综合影响,但其具体发病机制至今仍不清楚,目前研究发现由补体替代途径所介导的炎症反应可能起到关键作用。 C3( complement component 3)、H因子(complement factor H,CFH)、H因子相关蛋白1和3(complement factor H-related 1 and 3,CFHR1 and CFHR3)、B因子(complement factor B,CFB)、I因子(complement factor I,CFI)在替代途径的激活过程中起到了重要的调节作用。CFH可协同由CFI介导的C3 b的裂解过程从而抑制C3转化酶形成,阻滞替代途径的激活。 CFHR1和CFHR3作为CFH竞争性因子与CFH争夺C3 b上的靶位点并可与CFI协同作用影响补体替代途径的激活。 CFB和C3是补体替代途径中的关键因子与AMD中补体替代途径的激活有着密不可分的关系。本文就上述因子的激活在AMD发病过程中的作用进行综述。%Age related macular degeneration ( AMD) is a degenerative disease with the pathological changes in macula lutea and finally leads to the blurred vision even blindness.Environmental and inflammatory reaction may be related with its development.However the exact etiology of the diseases is not clear.AMD is likely a local response of complement alterna-tive pathway which responds to certain systemic inflammatory diseases.Complement component 3 ( C3 ) , complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), and complement factor I ( CFI) are important components in the complement system and also the keys to the pathogenesis of AMD.This re-view is aiming to clarify possible functions of these factors based on recent research.

  4. A zebrafish model for uremic toxicity: role of the complement pathway.

    Science.gov (United States)

    Berman, Nathaniel; Lectura, Melisa; Thurman, Joshua M; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p 50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement.

  5. IgG4 anti-phospholipase A2 receptor might activate lectin and alternative complement pathway meanwhile in idiopathic membranous nephropathy: an inspiration from a cross-sectional study.

    Science.gov (United States)

    Yang, Yang; Wang, Chao; Jin, Liping; He, Fagui; Li, Changchun; Gao, Qingman; Chen, Guanglei; He, Zhijun; Song, Minghui; Zhou, Zhuliang; Shan, Fujun; Qi, Ka; Ma, Lu

    2016-08-01

    The deposition of IgG4 of antibodies against phospholipase A2 receptor (anti-PLA2R) is predominating in the kidneys of patients with idiopathic membranous nephropathy, while its predictive value has not been determined. It was a retrospective study, and 438 patients were included. Serum samples of two time points [before intervention (baseline) and after 1.5-year treatment (endpoint)] were detected for total and IgG4 anti-PLA2R. IgG4 PLA2R was a useful predictor for achieving CR, but there was a high heterogeneity; (2) there was significant correlation between the baseline and decrease in IgG4 subclass and the achievement of CR; (3) bi-negativity of IgG4 has a high accuracy of predicting CR compared with total antibodies; (4) in patients of bi-positivity, those achieving CR showed lower MASP-1/2, MBL, C3a, C5a, FB, Ba and Bb than patients failing to achieve CR; (5) the titers of endpoint and decrease in Ba and Bb were associated with improvement of 24 h-UP in those of bi-positivity; and (6) the decrease in Ba was a significant factor for achieving CR in those of bi-positivity. Continuous IgG4 negativity was a useful tool to predict the achievement of CR; however, in patients of continuous IgG4 positivity, those with lower activation of lectin and alternative pathways would still more probably achieve CR.

  6. Molecular interplay between bacteria and the terminal complement pathway

    NARCIS (Netherlands)

    Berends, E.T.M.

    2015-01-01

    The plasma proteins of the complement system fulfill important immune defense functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via assembly of the Membrane Attack Complex (MAC or C5b-9 complex). The terminal complement pathw

  7. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...

  8. C1q, the classical complement pathway protein binds Hirano bodies in Pick's disease.

    Science.gov (United States)

    Singhrao, Sim K

    2013-06-01

    Haematoxylin/Eosin staining was performed to screen for Hirano bodies from the temporal lobe including the hippocampus in 10 Pick's disease cases containing Pick bodies. Although the inclusions were confirmed in 9 out of 10 cases, only 4 out of 10 were particularly enriched with the eosinophilic bodies. These were subjected to immunostaining with anticomplement antibodies and astrocyte marker antiglial fibrillary acidic protein antibody and the HLA class II CR3/43 antibody to visualize microglia. An intraneuronal Hirano body was observed in one case that otherwise contained mainly the extracellular inclusions. In all cases, the extracellular Hirano bodies were seen lying adjacent to soma of neurons within CA1 region of the hippocampus. The extracellular Hirano bodies stained intensely with C1q, the first component of the classical pathway of activation but remained unreactive against antibodies to C4 and the C3 activation products (C3b and iC3b) and the alternative complement pathway component factor B. Hirano bodies also remained negative with the antiglial fibrillary acidic protein for astrocytes and HLA class II antibody CR3/43 for microglia. The results demonstrate that Hirano bodies have strong immunoreactivity to C1q; however, whether other complement components are associated with these inclusions remains to be further investigated.

  9. Deficiency of terminal complement pathway inhibitor promotes neuronal tau pathology and degeneration in mice

    OpenAIRE

    Britschgi Markus; Takeda-Uchimura Yoshiko; Rockenstein Edward; Johns Hudson; Masliah Eliezer; Wyss-Coray Tony

    2012-01-01

    Abstract Background The neuronal microtubule-associated protein tau becomes hyperphosphorylated and forms aggregates in tauopathies but the processes leading to this pathological hallmark are not understood. Because tauopathies are accompanied by neuroinflammation and the complement cascade forms a key innate immune pathway, we asked whether the complement system has a role in the development of tau pathology. Finding...

  10. Alternative Certification Pathways: Filling a Gap?

    Science.gov (United States)

    Ludlow, Carlyn

    2013-01-01

    The purpose of this article is to examine the proliferation of alternative certification pathways through an analysis of the role and history of teacher certification and supply followed by a synthesis of national, regional, and state research studies on alternative routes to certification programs and a review of studies conducted on well-known…

  11. Solution Structures of Complement C2 and its C4 Complexes Propose Pathway Specific Mechanisms for Control and Activation of the Complement Proconvertases

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Jensen, Jan Kristian; Andersen, Gregers Rom

    2016-01-01

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4...

  12. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L;

    2001-01-01

    The mannan-binding lectin (MBL) pathway of complement activation has been established as the third pathway of complement activation. MBL is a carbohydrate-binding serum protein, which circulates in complex with serine proteases known as mannan-binding lectin associated serine proteases (MASPs...... activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt...... the C1 complex, whereas the carbohydrate-binding activity of MBL and the integrity of the MBL complex is maintained under hypertonic conditions. In the assay described here, the specific C4b-depositing capacity of the MBL pathway was determined by incubating serum diluted in buffer containing 1 M Na...

  13. Distinct Polymer Architecture Mediates Switching of Complement Activation Pathways at the Nanosphere-Serum Interface: Implications for Stealth Nanoparticle Engineering

    DEFF Research Database (Denmark)

    Hamad, I.; Al-Hanbali, O.; Hunter, A.C.;

    2010-01-01

    Nanoparticles with surface projected polyethyleneoxide (PEO) chains in 'mushroom-brush' and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site specific targeting for controlled drug delivery and release as well as diagnostic Imaging. W...... engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.......Nanoparticles with surface projected polyethyleneoxide (PEO) chains in 'mushroom-brush' and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site specific targeting for controlled drug delivery and release as well as diagnostic Imaging. We...... switches complement activation from C1q dependent classical to lectin pathway but also reduces the level of generated complement activation, products C4d, Bb, C5a, and SC5b-9. Also changes In adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators...

  14. The Competitiveness of Alternative Hydrogen Pathways

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.

    The paper surveys the literature on the competitiveness of alternative hydrogen pathways in the transport sector. The competitiveness of the alternative systems can be differentiated in the “well-to-tank (WtT)” and “tank-to-wheel (TtW)” sections of the pathway transforming primary energy to trans......The paper surveys the literature on the competitiveness of alternative hydrogen pathways in the transport sector. The competitiveness of the alternative systems can be differentiated in the “well-to-tank (WtT)” and “tank-to-wheel (TtW)” sections of the pathway transforming primary energy...... to transport services and in market competitiveness and societal competitiveness. The major societal competitive advantage of hydrogen is its convertibility to electricity and from any other source of energy. This enables a flexible use of natural gas and primary electricity as transport fuels. The major...... advantage in market competitiveness is the energy efficiency of the fuel cell. This advantage is, however, to some extent balanced by the costs associated with conversion, transport, and storage. The balance between these factors required for market competitiveness is identified....

  15. Deficiency of terminal complement pathway inhibitor promotes neuronal tau pathology and degeneration in mice

    Directory of Open Access Journals (Sweden)

    Britschgi Markus

    2012-09-01

    Full Text Available Abstract Background The neuronal microtubule-associated protein tau becomes hyperphosphorylated and forms aggregates in tauopathies but the processes leading to this pathological hallmark are not understood. Because tauopathies are accompanied by neuroinflammation and the complement cascade forms a key innate immune pathway, we asked whether the complement system has a role in the development of tau pathology. Findings We tested this hypothesis in two mouse models, which expressed either a central inhibitor of complement or lacked an inhibitor of the terminal complement pathway. Complement receptor-related gene/protein y is the natural inhibitor of the central complement component C3 in rodents. Expressing a soluble variant (sCrry reduced the number of phospho-tau (AT8 epitope positive neurons in the brain stem, cerebellum, cortex, and hippocampus of aged P301L mutant tau/sCrry double-transgenic mice compared with tau single-transgenic littermates (JNPL3 line. CD59a is the major inhibitor of formation of the membrane attack complex in mice. Intrahippocampal injection of adeno-associated virus encoding mutant human P301L tau into Cd59a−/− mice resulted in increased numbers of AT8-positive cells compared with wild-type controls. This was accompanied by neuronal and synaptic loss and reduced dendritic integrity. Conclusions Our data in two independent mouse models with genetic changes in key regulators of the complement system support the hypothesis that the terminal pathway has an active role in the development of tau pathology. We propose that inhibition of the terminal pathway may be beneficial in tauopathies.

  16. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, J C; Christensen, Ib Jarle

    2004-01-01

    BACKGROUND: Postoperative bacterial infectious complications are frequent in patients with colorectal cancer (CRC), with subsequent increased recurrence rates and poor prognosis. Deficiency of the mannan-binding lectin (MBL) complement activation pathway may cause increased risk of infection...... with colorectal cancer compared with healthy persons. However, similar frequencies of MBL pathway deficiency are observed in patients and healthy persons....... in certain patient groups. It is hypothesized that a deficient MBL pathway might be more frequent among patients with CRC than in healthy individuals. The MBL pathway was therefore evaluated in serum obtained preoperatively from 193 patients with primary CRC and in serum from 150 healthy volunteers. METHODS...

  17. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Ingrid Evans-Osses

    2013-01-01

    Full Text Available The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.

  18. Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.

    Science.gov (United States)

    Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans

    2015-07-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia.

  19. Toward a structure-based comprehension of the lectin pathway of complement

    DEFF Research Database (Denmark)

    Kjaer, Troels R; Thiel, Steffen; Andersen, Gregers R

    2013-01-01

    To initiate the lectin pathway of complement pattern recognition molecules bind to surface-linked carbohydrates or acetyl groups on pathogens or damaged self-tissue. This leads to activation of the serine proteases MASP-1 and MASP-2 resulting in deposition of C4 on the activator and assembly...

  20. Depressed activation of the lectin pathway of complement in hereditary angioedema

    DEFF Research Database (Denmark)

    Varga, L; Széplaki, G; Laki, J

    2008-01-01

    ) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured...

  1. Ficolin-3-mediated lectin complement pathway activation in patients with subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Zanier, Elisa R; Zangari, Rosalia; Munthe-Fog, Lea

    2014-01-01

    OBJECTIVES: To assess the involvement of ficolin-3, the main initiator of the lectin complement pathway (LCP), in subarachnoid hemorrhage (SAH) pathology and outcome. METHODS: In this preliminary exploratory study, plasma concentration of ficolin-3 and of ficolin-3-mediated functional LCP activit...

  2. Ficolins and the lectin pathway of complement in patients with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Hein, Estrid; Nielsen, Louise Aas; Nielsen, Christoffer T

    2015-01-01

    The complement system plays a pathophysiological role in systemic lupus erythematosus (SLE). This study aims to investigate whether an association exists between the ficolins that are part of the lectin complement pathway and SLE. EDTA plasma samples from 68 Danish SLE patients and 29 healthy...... Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology (ACR) Damage Index] (SDI) (Rho=0.27, P=0.026). The Ficolin-1 concentration was also associated with the occurrence of arterial (P=0.0053) but not venous thrombosis (P=0.42). Finally, deposition of C4, C3 and TCC...

  3. Complement in autoimmune diseases.

    Science.gov (United States)

    Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit

    2017-02-01

    The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity.

  4. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, Jens Christian; Christensen, I J

    2004-01-01

    in the colon or rectum, and disease stages according to Dukes' classification. No statistical difference (P=0.20) in frequency of MBL deficiency was found between the patients (20%) and the donors (27%). CONCLUSIONS: Overall, the MBL complement activation pathway is significantly increased in patients......BACKGROUND: Postoperative bacterial infectious complications are frequent in patients with colorectal cancer (CRC), with subsequent increased recurrence rates and poor prognosis. Deficiency of the mannan-binding lectin (MBL) complement activation pathway may cause increased risk of infection......: Serum MBL concentrations and MBL/MASP activity were determined using immunofluorometric assays. The levels are presented as the median, inter-quartile range and range. RESULTS: Serum MBL levels were significantly (P

  5. Role of complement in glomerular diseases.

    Science.gov (United States)

    Mao, Song; Zhang, Jianhua

    2016-01-01

    The complement system, composed of nearly 30 proteins, is a key regulator of immunity. The complement system is critical for protecting hosts from invading pathogens. Dysregulation of this system is associated with susceptibility to infection and various autoimmune diseases. Furthermore, complement activation due to the defective regulation of the alternative pathway will induce glomerular diseases. Anti-complement therapy has been applied in various glomerular diseases. Signaling pathways might be very important in the pathogenesis of glomerular diseases. This review will give a relatively complete signaling pathway flowchart for complement and a comprehensive understanding of the underlying role of complement in glomerular diseases.

  6. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection

    DEFF Research Database (Denmark)

    Ali, Youssif M; Lynch, Nicholas J; Haleem, Kashif S;

    2012-01-01

    to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse...

  7. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2.

    Science.gov (United States)

    Keizer, Mischa P; Pouw, Richard B; Kamp, Angela M; Patiwael, Sanne; Marsman, Gerben; Hart, Margreet H; Zeerleder, Sacha; Kuijpers, Taco W; Wouters, Diana

    2015-02-01

    The lectin pathway (LP) of complement has a protective function against invading pathogens. Recent studies have also shown that the LP plays an important role in ischemia/reperfusion (I/R)-injury. MBL-associated serine protease (MASP)-2 appears to be crucial in this process. The serpin C1-inhibitor is the major inhibitor of MASP-2. In addition, aprotinin, a Kunitz-type inhibitor, was shown to inhibit MASP-2 activity in vitro. In this study we investigated whether the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI) is also able to inhibit MASP-2. Ex vivo LP was induced and detected by C4-deposition on mannan-coated plates. The MASP-2 activity was measured in a fluid-phase chromogenic assay. rTFPI in the absence or presence of specific monoclonal antibodies was used to investigate which TFPI-domains contribute to MASP-2 inhibition. Here, we identify TFPI as a novel selective inhibitor of MASP-2, without affecting MASP-1 or the classical pathway proteases C1s and C1r. Kunitz-2 domain of TFPI is required for the inhibition of MASP-2. Considering the role of MASP-2 in complement-mediated I/R-injury, the inhibition of this protease by TFPI could be an interesting therapeutic approach to limit the tissue damage in conditions such as cerebral stroke, myocardial infarction or solid organ transplantation.

  8. A journey through the lectin pathway of complement-MBL and beyond

    DEFF Research Database (Denmark)

    Garred, Peter; Genster, Ninette; Pilely, Katrine;

    2016-01-01

    . They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature......, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway....

  9. Neurons express proteins of the classical complement pathway in Alzheimer disease.

    Science.gov (United States)

    Terai, K; Walker, D G; McGeer, E G; McGeer, P L

    1997-09-26

    Occurrence of the classical pathway complement proteins C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8 and C9 was studied in human hippocampus and temporal cortex by immunohistochemistry and Western blotting. In Alzheimer disease (AD) cases, positive staining for all of these proteins was observed in pyramidal neurons and senile plaques. In control cases, weaker pyramidal neuron staining was observed except for C1q and C1s which were not detected. On Western blots of AD hippocampal extracts, bands corresponding to those detected in normal serum were found for each of the complement proteins. Comparable bands were also detected in normal hippocampal extracts with the exception of C1s which was not observed. The intensity of the bands was generally stronger in AD than in normal extracts, but, in the latter, there was considerable variability between cases and between bands in a single case. These data suggest that pyramidal neurons may be a source of the complement components known to be associated with Alzheimer lesions.

  10. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin.

    Science.gov (United States)

    Sosoniuk, Eduardo; Vallejos, Gerardo; Kenawy, Hany; Gaboriaud, Christine; Thielens, Nicole; Fujita, Teizo; Schwaeble, Wilhelm; Ferreira, Arturo; Valck, Carolina

    2014-07-01

    Trypanosoma cruzi, the agent of Chagas' disease, the sixth neglected tropical disease worldwide, infects 10-12 million people in Latin America. Differently from T. cruzi epimastigotes, trypomastigotes are complement-resistant and infective. CRPs, T-DAF, sialic acid and lipases explain at least part of this resistance. In vitro, T. cruzi calreticulin (TcCRT), a chaperone molecule that translocates from the ER to the parasite surface: (a) Inhibits the human classical complement activation, by interacting with C1, (b) As a consequence, an increase in infectivity is evident and, (c) It inhibits angiogenesis and tumor growth. We report here that TcCRT also binds to the L-Ficolin collagenous portion, thus inhibiting approximately between 35 and 64% of the human complement lectin pathway activation, initiated by L-Ficolin, a property not shared by H-Ficolin. While L-Ficolin binds to 60% of trypomastigotes and to 24% of epimastigotes, 50% of the former and 4% of the latter display TcCRT on their surfaces. Altogether, these data indicate that TcCRT is a parasite inhibitory receptor for Ficolins. The resulting evasive activities, together with the TcCRT capacity to inhibit C1, with a concomitant increase in infectivity, may represent T. cruzi strategies to inhibit important arms of the innate immune response.

  11. Mutations of complement lectin pathway genes MBL2 and MASP2 associated with placental malaria

    Directory of Open Access Journals (Sweden)

    Holmberg Ville

    2012-03-01

    Full Text Available Abstract Background Innate immunity plays a crucial role in the host defense against malaria including Plasmodium falciparum malaria in pregnancy, but the roles of the various underlying genes and mechanisms predisposing to the disease are poorly understood. Methods 98 single-nucletoide polymorphisms were genotyped in a set of 17 functionally related genes of the complement system in 145 primiparous Ghanaian women with placental malaria, defined by placental parasitaemia or malaria pigment, and as a control, in 124 non-affected primiparae. Results Placental malaria was significantly associated with SNPs in the lectin pathway genes MBL2, MASP2, FCN2 and in properdin. In particular, the main African mannose-binding lectin deficiency variant (MBL2*G57E, rs1800451 increased the odds of placental malaria (OR 1.6; permuted p-value 0.014. In contrast, a common MASP2 mutation (R439H, rs12085877, which reduces the activity of MBL-MASP2 complexes occurred in 33% of non-affected women and in 22% primiparae with placental malaria (OR 0.55, permuted p-value 0.020. Conclusions Excessive complement activation is of importance in the pathogenesis of placental malaria by mediating inflammation, coagulation, and endothelial dysfunction. Mutated MBL and MASP2 proteins could have direct intrinsic effects on the susceptibility to placental malaria, in addition to their roles in regulation of downstream complement activation.

  12. Alternate pathways of thyroid hormone metabolism.

    Science.gov (United States)

    Wu, Sing-Yung; Green, William L; Huang, Wen-Sheng; Hays, Marguerite T; Chopra, Inder J

    2005-08-01

    The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and

  13. Molluskan Hemocyanins Activate the Classical Pathway of the Human Complement System through Natural Antibodies

    Science.gov (United States)

    Pizarro-Bauerle, Javier; Maldonado, Ismael; Sosoniuk-Roche, Eduardo; Vallejos, Gerardo; López, Mercedes N.; Salazar-Onfray, Flavio; Aguilar-Guzmán, Lorena; Valck, Carolina; Ferreira, Arturo; Becker, María Inés

    2017-01-01

    Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting

  14. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Directory of Open Access Journals (Sweden)

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  15. Peptide inhibitor of complement C1 (PIC1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    2014-08-01

    Full Text Available The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses as well as an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease (CAD, acute intravascular hemolytic transfusion reaction (AIHTR and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH, is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema (HAE, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibit complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these Peptide Inhibitors of Complement C1 (PIC1 bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of fifteen amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro as well as inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR.

  16. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.;

    2009-01-01

    Complete deficiency of complement inhibitor factor I (FI) results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation leading to susceptibility to infections. Current genetic examination of two patients with near complete FI deficiency and three...

  17. Toward a structure-based comprehension of the lectin pathway of complement.

    Science.gov (United States)

    Kjaer, Troels R; Thiel, Steffen; Andersen, Gregers R

    2013-12-15

    To initiate the lectin pathway of complement pattern recognition molecules bind to surface-linked carbohydrates or acetyl groups on pathogens or damaged self-tissue. This leads to activation of the serine proteases MASP-1 and MASP-2 resulting in deposition of C4 on the activator and assembly of the C3 convertase. In addition MASP-3 and the non-catalytic MAp19 and MAp44 presumably play regulatory functions, but the exact function of the MASP-3 protease remains to be established. Recent functional studies have significantly advanced our understanding of the molecular events occurring as activation progresses from pattern recognition to convertase assembly. Furthermore, atomic structures derived by crystallography or solution scattering of most proteins acting in the lectin pathway and two key complexes have become available. Here we integrate the current functional and structural knowledge concerning the lectin pathway proteins and derive overall models for their glycan bound complexes. These models are used to discuss cis- versus trans-activation of MASP proteases and the geometry of C4 deposition occurring on glycans in the lectin pathway.

  18. Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis.

    Science.gov (United States)

    Mo, SangJoon; Yoon, Yeo Joon

    2016-01-01

    PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

  19. Review on complement analysis method and the roles of glycosaminoglycans in the complement system.

    Science.gov (United States)

    Li, Lian; Li, Yan; Ijaz, Muhammad; Shahbaz, Muhammad; Lian, Qianqian; Wang, Fengshan

    2015-12-10

    Complement system is composed of over 30 proteins and it plays important roles in self-defence and inflammation. There are three activation pathways, including classical pathway, alternative pathway and lectin pathway, in complement system, and they are associated with many diseases such as osteoarthritis and age-related macular degeneration. Modulation of the complement system may be a promising strategy in the treatment of related diseases. Glycosaminoglycans are anionic linear polysaccharides without branches. They are one kind of multi-functional macromolecules which have great potential in regulating complement system. This review is organized around two aspects between the introduction of complement system and the interaction of glycosaminoglycans with complement system. Three complement activation pathways and the biological significance were introduced first. Then functional analysis methods were compared to provide a strategy for potential glycosaminoglycans screen. Finally, the roles of glycosaminoglycans played in the complement system were summed up.

  20. Businesses Partner with Schools, Community to Create Alternative Career Pathways

    Science.gov (United States)

    Overman, Stephenie

    2012-01-01

    Business, education and community leaders are working together to create alternative career pathways for young people who are not profiting from the four-year college track. The new Pathways to Prosperity Network brings together the Pathways to Prosperity Project at Harvard Graduate School of Education (HGSE), Jobs for the Future (JFF) and six…

  1. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Katherine eLintner

    2016-02-01

    Full Text Available The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP, has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE. Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy number variation, and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low gene copy numbers of total C4, heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein alterations for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.

  2. Complement in hemolytic anemia.

    Science.gov (United States)

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD.

  3. Alternative Education and Pathways to Success

    Science.gov (United States)

    Pharo, Reilly

    2012-01-01

    Colorado's traditional public school system cannot meet the needs of many students with unique, and often challenging, life circumstances. For many of these students, alternative education campuses (AECs) are a valuable way to earn a high school diploma and acquire the skills and knowledge they need to succeed in postsecondary education or the…

  4. DMPD: Complement-mediated phagocytosis--the role of Syk. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16754322 Complement-mediated phagocytosis--the role of Syk. Tohyama Y, Yamamura H. ...IUBMB Life. 2006 May-Jun;58(5-6):304-8. (.png) (.svg) (.html) (.csml) Show Complement-mediated phagocytosis-...-the role of Syk. PubmedID 16754322 Title Complement-mediated phagocytosis--the role of Syk. Authors Tohyama

  5. Alternative pathway for atmospheric particles growth.

    Science.gov (United States)

    Monge, Maria Eugenia; Rosenørn, Thomas; Favez, Olivier; Müller, Markus; Adler, Gabriela; Abo Riziq, Ali; Rudich, Yinon; Herrmann, Hartmut; George, Christian; D'Anna, Barbara

    2012-05-01

    Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth's radiative balance due to direct interaction with radiation and because they modify clouds' properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models.

  6. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  7. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection.

    Science.gov (United States)

    Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Torrentes-Carvalho, Amanda; Marins-Dos-Santos, Alessandro; Kubelka, Claire Fernandes; de Souza, Luiz José; Cunha, Rivaldo Venâncio; de-Oliveira-Pinto, Luzia Maria

    2014-01-01

    In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.

  8. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection.

    Directory of Open Access Journals (Sweden)

    Cintia Ferreira Marinho

    Full Text Available In dengue virus (DENV infection, complement system (CS activation appears to have protective and pathogenic effects. In severe dengue fever (DF, the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b, CR4 (CD11c and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b or CR3 (CD11b/CD18 reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b or CR3 (CD11b/CD18 blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.

  9. Lectin Pathway of Complement Activation Is Associated with Vulnerability of Atherosclerotic Plaques

    Science.gov (United States)

    Fumagalli, Stefano; Perego, Carlo; Zangari, Rosalia; De Blasio, Daiana; Oggioni, Marco; De Nigris, Francesca; Snider, Francesco; Garred, Peter; Ferrante, Angela M. R.; De Simoni, Maria-Grazia

    2017-01-01

    Inflammatory mechanisms may be involved in atherosclerotic plaque rupture. By using a novel histology-based method to quantify plaque instability here, we assess whether lectin pathway (LP) of complement activation, a major inflammation arm, could represent an index of plaque instability. Plaques from 42 consecutive patients undergoing carotid endarterectomy were stained with hematoxylin-eosin and the lipid core, cholesterol clefts, hemorrhagic content, thickness of tunica media, and intima, including or not infiltration of cellular debris and cholesterol, were determined. The presence of ficolin-1, -2, and -3 and mannose-binding lectin (MBL), LP initiators, was assessed in the plaques by immunofluorescence and in plasma by ELISA. LP activation was assessed in plasma by functional in vitro assays. Patients presenting low stenosis (≤75%) had higher hemorrhagic content than those with high stenosis (>75%), indicating increased erosion. Increased hemorrhagic content and tunica media thickness, as well as decreased lipid core and infiltrated content were associated with vulnerable plaques and therefore used to establish a plaque vulnerability score that allowed to classify patients according to plaque vulnerability. Ficolins and MBL were found both in plaques’ necrotic core and tunica media. Patients with vulnerable plaques showed decreased plasma levels and intraplaque deposition of ficolin-2. Symptomatic patients experiencing a transient ischemic attack had lower plasma levels of ficolin-1. We show that the LP initiators are present within the plaques and their circulating levels change in atherosclerotic patients. In particular, we show that decreased ficolin-2 levels are associated with rupture-prone vulnerable plaques, indicating its potential use as marker for cardiovascular risk assessment in atherosclerotic patients. PMID:28360913

  10. Alternative pathway dysfunction in kidney disease: a case report and review of dense deposit disease and C3 glomerulopathy.

    Science.gov (United States)

    Hawfield, Amret; Iskandar, Samy S; Smith, Richard J H

    2013-05-01

    Dysfunction of the alternative pathway of complement activation provides a pathophysiologic link between the C3 glomerulopathies dense deposit disease and glomerulonephritis with C3 deposition and the clinically and histologically distinct atypical hemolytic uremic syndrome. Previously, dense deposit disease was known as membranoproliferative glomerulonephritis type II, but paucity or complete lack of immunoglobulin deposition on immunofluorescence staining and advances in our understanding of alternative pathway dysregulation have separated it from immune complex-mediated membranoproliferative glomerulonephritis types I and III. We discuss a case of dense deposit disease and review the current pathologic classification, clinical course, treatment options, and related conditions.

  11. New perspectives on mannan-binding lectin-mediated complement activation

    DEFF Research Database (Denmark)

    Degn, Søren Egedal; Thiel, Steffen; Jensenius, Jens Christian

    2007-01-01

    The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP...... picture of the complement system is more that of a small "scale-free" network where C3 acts as the main hub, than that of three linear pathways converging in a common terminal pathway....

  12. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Science.gov (United States)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  13. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system.

    Science.gov (United States)

    Jusko, Monika; Potempa, Jan; Karim, Abdulkarim Y; Ksiazek, Miroslaw; Riesbeck, Kristian; Garred, Peter; Eick, Sigrun; Blom, Anna M

    2012-03-01

    Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.

  14. The complement system in human cardiometabolic disease.

    Science.gov (United States)

    Hertle, E; Stehouwer, C D A; van Greevenbroek, M M J

    2014-10-01

    The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to

  15. JAK2-STAT3 pathway regulates the expression of complement factor B in autosomal dominant polycystic kidney disease

    Institute of Scientific and Technical Information of China (English)

    周晨晨

    2014-01-01

    Objective To investigate the role of JAK2-STAT3pathway in the expression of complement factor B(CFB)in autosomal dominant polycystic kidney disease(ADP KD).Methods Renal tissue samples of patients with ADPKD after nephrectomy were collected.Normal rena tissue samples as control were taken from patients afte radical nephrectomy.Renal tissue samples of Han:SPRD Cy/+rats(ADPKD model)and wild-type Han:

  16. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase.

    Science.gov (United States)

    Woehl, Jordan L; Stapels, Daphne A C; Garcia, Brandon L; Ramyar, Kasra X; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2014-12-15

    The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.

  17. The salivary scavenger and agglutinin (SALSA binds MBL and regulates the lectin pathway of complement in solution and on surfaces

    Directory of Open Access Journals (Sweden)

    Martin eParnov Reichhardt

    2012-07-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR protein SALSA, also known as gp340, salivary agglutinin (SAG and deleted in malignant brain tumor 1 (DMBT1, is a 340 kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A (SP-D and SP-A and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan binding lectin (MBL as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit C. albicans-induced complement activation. Thus, SALSA has a dual complement regulatory function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid-phase. These activities are mediated via a direct interaction with MBL.

  18. Evolution of the complement system.

    Science.gov (United States)

    Nonaka, Masaru

    2014-01-01

    The mammalian complement system constitutes a highly sophisticated body defense machinery comprising more than 30 components. Research into the evolutionary origin of the complement system has identified a primitive version composed of the central component C3 and two activation proteases Bf and MASP in cnidaria. This suggests that the complement system was established in the common ancestor of eumetazoa more than 500 million years ago. The original activation mechanism of the original complement system is believed to be close to the mammalian lectin and alternative activation pathways, and its main role seems to be opsonization and induction of inflammation. This primitive complement system has been retained by most deuterostomes without major change until the appearance of jawed vertebrates. At this stage, duplication of the C3, Bf and MASP genes as well as recruitment of membrane attack components added the classical and lytic pathways to the primitive complement system, converting it to the modern complement system. In contrast, the complement system was lost multiple times independently in the protostome lineage.

  19. Synthesis and classical pathway Complement inhibitory activity of C7-functionalized filifolinol derivatives, inspired in K-76 COOH.

    Science.gov (United States)

    Larghi, Enrique L; Operto, María A; Torres, Rene; Kaufman, Teodoro S

    2012-09-01

    A series of carboxylic acids carrying various functionalization on C-7 of their common 3H-spiro[benzofuran-2,1'-cyclohexane] skeleton were synthesized from filifolinol, as analogs of the natural Complement inhibitor K-76 COOH. In order to probe the relevance of the C-7 functionalization on their bioactivity, the ability of the analogs to inhibit Complement activation through the classical pathway was determined. The observed results suggest that functionalization of C-7 can modulate the inhibitory activity of the tested compounds. The 7-trifluoromethyl derivative was the compound with the lowest IC(50) value among the tested analogs (IC(50) = 100 μM), being more potent than K-76 COOH (IC(50) = 570 μM).

  20. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain.

    Science.gov (United States)

    Shen, Y; Li, R; McGeer, E G; McGeer, P L

    1997-09-26

    To determine possible sources of complement proteins in the brain, we investigated by in situ hybridization expression of the mRNAs of C1q, C2, C3, C4, C5, C6, C7, C8 and C9 in postmortem Alzheimer disease (AD) and control brain tissue. We found detectable hybridization for all these components in the temporal cortex and hippocampus, with significantly higher levels being found in AD tissue. Hybridization signals were strongest over pyramidal neurons. Low or absent hybridization was seen in the visual cortex or cerebellum. These results suggest that the activated complement components found in association with AD lesions may be, in part, derived from neurons.

  1. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H;

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...

  2. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Karim, Abdulkarim Y

    2012-01-01

    complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more...... inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T...

  3. Age-related macular degeneration: Complement in action.

    Science.gov (United States)

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD.

  4. Alternative endocytosis pathway for productive entry of hepatitis C virus.

    Science.gov (United States)

    Matsuda, Mami; Suzuki, Ryosuke; Kataoka, Chikako; Watashi, Koichi; Aizaki, Hideki; Kato, Nobuyuki; Matsuura, Yoshiharu; Suzuki, Tetsuro; Wakita, Takaji

    2014-12-01

    Previous studies have shown that hepatitis C virus (HCV) enters human hepatic cells through interaction with a series of cellular receptors, followed by clathrin-mediated, pH-dependent endocytosis. Here, we investigated the mechanisms of HCV entry into multiple HCV-permissive human hepatocyte-derived cells using trans-complemented HCV particles (HCVtcp). Knockdown of CD81 and claudin-1, or treatment with bafilomycin A1, reduced infection in Huh-7 and Huh7.5.1 cells, suggesting that HCV entered both cell types via receptor-mediated, pH-dependent endocytosis. Interestingly, knockdown of the clathrin heavy chain or dynamin-2 (Dyn2), as well as expression of the dominant-negative form of Dyn2, reduced infection of Huh-7 cells with HCVtcp, whereas infectious entry of HCVtcp into Huh7.5.1 cells was not impaired. Infection of Huh7.5.1 cells with culture-derived HCV (HCVcc) via a clathrin-independent pathway was also observed. Knockdown of caveolin-1, ADP-ribosylation factor 6 (Arf6), flotillin, p21-activated kinase 1 (PAK1) and the PAK1 effector C-terminal binding protein 1 of E1A had no inhibitory effects on HCVtcp infection into Huh7.5.1 cells, thus suggesting that the infectious entry pathway of HCV into Huh7.5.1 cells was not caveolae-mediated, or Arf6- and flotillin-mediated endocytosis and macropinocytosis, but rather may have occurred via an undefined endocytic pathway. Further analysis revealed that HCV entry was clathrin- and dynamin-dependent in ORL8c and HepCD81/miR122 cells, but productive entry of HCV was clathrin- and dynamin-independent in Hep3B/miR122 cells. Collectively, these data indicated that HCV entered different target cells through different entry routes.

  5. Structural Basis for Eculizumab-Mediated Inhibition of the Complement Terminal Pathway

    DEFF Research Database (Denmark)

    Schatz-Jakobsen, Janus Asbjørn; zhang, yuchun; Johnson, Krista

    2016-01-01

    the proinflammatory metabolite C5a and formation of the membrane attack complex via C5b. Here we present the crystal structure of the complex between C5 and a Fab fragment with the same sequence as eculizumab at a resolution of 4.2 Å. Five complementarity determining regions (CDRs) contact the C5 MG7 domain, which......Eculizumab is a humanized monoclonal antibody approved for treatment of patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uraemic syndrome. Eculizumab binds complement component C5 and prevents its cleavage by C5 convertases, inhibiting release of both...... contains the entire epitope. A complete mutational scan of the sixty-six CDR residues identified twenty-eight residues as important for the C5-eculizumab interaction, and the structure of the complex offered an explanation for the reduced C5-binding observed for these mutant antibodies. Furthermore...

  6. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    Science.gov (United States)

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  7. The complement system in systemic autoimmune disease.

    Science.gov (United States)

    Chen, Min; Daha, Mohamed R; Kallenberg, Cees G M

    2010-05-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via the classical pathway has long been recognized in immune complex-mediated diseases such as cryoglobulinemic vasculitis and systemic lupus erythematosus (SLE). In SLE, the role of complement is somewhat paradoxical. It is involved in autoantibody-initiated tissue damage on the one hand, but, on the other hand, it appears to have protective features as hereditary deficiencies of classical pathway components are associated with an increased risk for SLE. There is increasing evidence that the alternative pathway of complement, even more than the classical pathway, is involved in many systemic autoimmune diseases. This is true for IgA-dominant Henoch Schönlein Purpura, in which additional activation of the lectin pathway contributes to more severe disease. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis the complement system was considered not to be involved since immunoglobulin deposition is generally absent in the lesions. However, recent studies, both in human and animal models, demonstrated complement activation via the alternative pathway as a major pathogenic mechanism. Insight into the role of the various pathways of complement in the systemic autoimmune diseases including the vasculitides opens up new ways of treatment by blocking effector pathways of complement. This has been demonstrated for monoclonal antibodies to C5 or C5a in experimental anti-phospholipid antibody syndrome and ANCA-associated vasculitis.

  8. Laboratory tests for disorders of complement and complement regulatory proteins.

    Science.gov (United States)

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  9. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Armano, MT; Ferriani, VP; Florido, MP

    2008-01-01

    Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of C1r has been observed to occur concomitantly with deficiency in C1s and 9 out of 15 reported cases presented systemic lupus erythematosus (SLE). Here, we...

  10. The role of complement in AMD.

    Science.gov (United States)

    Zipfel, Peter F; Lauer, Nadine; Skerka, Christine

    2010-01-01

    Age related macular degeneration (AMD) is a common form of blindness in the western world and genetic variations of several complement genes, including the complement regulator Factor H, the central complement component C3, Factor B, C2, and also Factor I confer a risk for the disease. However deletion of a chromosomal segment in the Factor H gene cluster on human chromosome 1, which results in the deficiency of the terminal pathway regulator CFHR1, and of the putative complement regulator CFHR3 has a protective effect for development of AMD. The Factor H gene encodes two proteins Factor H and FHL1 which are derived from alternatively processed transcripts. In particular a sequence variation at position 402 of both Factor H and FHL1 is associated with a risk for AMD. A tyrosine residue at position 402 represents the protective and a histidine residue the risk variant. AMD is considered a chronic inflammatory disease, which can be caused by defective and inappropriate regulation of the continuously activated alternative complement pathway. This activation generates complement effector products and inflammatory mediators that stimulate further inflammatory reactions. Defective regulation can lead to formation of immune deposits, drusen and ultimately translate into damage of retinal pigment epithelial cells, rupture of the interface between these epithelial cells and the Bruch's membrane and vision loss. Here we describe the role of complement in the retina and summarize the current concept how defective or inappropriate local complement control contributes to inflammation and the pathophysiology of AMD.

  11. Complement regulators in human disease: lessons from modern genetics.

    Science.gov (United States)

    K Liszewski, M; Atkinson, J P

    2015-03-01

    First identified in human serum in the late 19th century as a 'complement' to antibodies in mediating bacterial lysis, the complement system emerged more than a billion years ago probably as the first humoral immune system. The contemporary complement system consists of nearly 60 proteins in three activation pathways (classical, alternative and lectin) and a terminal cytolytic pathway common to all. Modern molecular biology and genetics have not only led to further elucidation of the structure of complement system components, but have also revealed function-altering rare variants and common polymorphisms, particularly in regulators of the alternative pathway, that predispose to human disease by creating 'hyperinflammatory complement phenotypes'. To treat these 'complementopathies', a monoclonal antibody against the initiator of the membrane attack complex, C5, has received approval for use. Additional therapeutic reagents are on the horizon.

  12. Molecules Great and Small: The Complement System.

    Science.gov (United States)

    Mathern, Douglas R; Heeger, Peter S

    2015-09-04

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  13. Alternative Pathways out of Rural Poverty in Mexico

    Directory of Open Access Journals (Sweden)

    Darcy Victor Tetreault

    2010-04-01

    Full Text Available This paper critically analyses the three pathways out of rural poverty proposed by the World Bank in its 2008 World Development report (farming, labour and migration, with the following questions in mind: Has there been a reduction in the incidence of income poverty in rural Mexico during the neoliberal era and, if so, what are the main contributing factors? Is labour migration (national and international the best pathway out of poverty, taking into consideration the labour conditions faced by rural migrants? To what extent does fair trade and organic production represent a pathway out of poverty for Mexico’s peasantry? Should the Mexican government (and Mexico’s trading partners pursue policies that would make farming a more viable alternative for Mexico’s rural poor? If so, what would these policies be? With regards to these last two questions, this paper highlights the proposals of independent peasant organizations, in particular the ones associated with the movement ‘sin maíz no hay país’. It is argued that these proposals point towards an alternative pathway out of rural poverty, one that creates favourable conditions for small-scale farming in Mexico.  Resumen: Rutas alternativas para salir de la pobreza rural en MéxicoEn este artículo se analizan las tres vías para salir de la pobreza rural propuestas por el Banco Mundial en su informe Desarrollo Mundial 2008 (agricultura, trabajo y emigración, con las siguientes preguntas en mente: ¿Ha habido una reducción en la incidencia de pobreza de ingresos en el México rural durante la era neoliberal y, si fuese el caso, cuáles fueron los principales factores que contribuyeron a ello? ¿Es la emigración laboral la mejor vía para salir de la pobreza, tomando en cuenta las condiciones laborales a las que deben adaptarse los emigrantes de zonas rurales? ¿En qué medida representan el comercio justo y la producción orgánica una vía de salida de la pobreza para el campesinado

  14. Humoral pattern recognition and the complement system.

    Science.gov (United States)

    Degn, S E; Thiel, S

    2013-08-01

    In the context of immunity, pattern recognition is the art of discriminating friend from foe and innocuous from noxious. The basis of discrimination is the existence of evolutionarily conserved patterns on microorganisms, which are intrinsic to these microorganisms and necessary for their function and existence. Such immutable or slowly evolving patterns are ideal handles for recognition and have been targeted by early cellular immune defence mechanisms such as Toll-like receptors, NOD-like receptors, RIG-I-like receptors, C-type lectin receptors and by humoral defence mechanisms such as the complement system. Complement is a proteolytic cascade system comprising around 35 different soluble and membrane-bound proteins. It constitutes a central part of the innate immune system, mediating several major innate effector functions and modulating adaptive immune responses. The complement cascade proceeds via controlled, limited proteolysis and conformational changes of constituent proteins through three activation pathways: the classical pathway, the alternative pathway and the lectin pathway, which converge in common effector functions. Here, we review the nature of the pattern recognition molecules involved in complement activation, as well as their close relatives with no or unknown capacity for activating complement. We proceed to examine the composition of the pattern recognition complexes involved in complement activation, focusing on those of the lectin pathway, and arrive at a new model for their mechanism of operation, supported by recently emerging evidence.

  15. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III

    Directory of Open Access Journals (Sweden)

    Hiroshi Arakawa

    2015-06-01

    Full Text Available Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1, DNA ligase 3 (Lig3 and DNA ligase 4 (Lig4. While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER, homologous recombination repair (HRR and nucleotide excision repair (NER. Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ. Lig3 is implicated in a short-patch base excision repair (BER pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche

  16. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    Science.gov (United States)

    Arakawa, Hiroshi; Iliakis, George

    2015-06-23

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a

  17. Genome-wide pathway-based association study implicates complement system in the development of Kashin-Beck disease in Han Chinese.

    Science.gov (United States)

    Zhang, Feng; Wen, Yan; Guo, Xiong; Zhang, Yingang; Wang, Sen; Yang, Tielin; Shen, Hui; Chen, Xiangding; Tan, Lijun; Tian, Qing; Deng, Hong-Wen

    2015-02-01

    Kashin-Beck disease (KBD) is a chronic osteochondropathy. The pathogenesis of KBD remains unknown. To identify relevant biological pathways for KBD, we conducted a genome-wide pathway-based association study (GWPAS) following by replication analysis, totally using 2743 Chinese Han adults. A modified gene set enrichment algorithm was used to detect association between KBD and 963 biological pathways. Cartilage gene expression analysis and serum complement measurement were performed to evaluate the functional relevance of identified pathway with KBD. We found that the Complement and Coagulation Cascades (CACC) pathway was significantly associated with KBD (P value=3.09×10(-5), false-discovery rate=0.042). Within the CACC pathway, the most significant association was observed at rs1656966 (P value=1.97×10(-4)) of KNG1 gene. Further replication study observed that rs1656966 (P value=0.037) was significantly associated with KBD in an independent validation sample of 1026 subjects. Gene expression analysis observed that CFD (ratio=3.39±2.68), A2M (ratio=3.67±5.63), C5 (ratio=2.65±2.52) and CD46 (ratio=2.29±137) genes of the CACC pathway were up-regulated in KBD articular cartilage compared to healthy articular cartilage. The serum level of complement C5 in KBD patients were significantly higher than that in healthy controls (P value=0.038). Our study is the first to suggest that complement system-related CACC pathway contributed to the development of KBD.

  18. Association between lectin complement pathway initiators, C-reactive protein and left ventricular remodeling in myocardial infarction-a magnetic resonance study

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole;

    2013-01-01

    Lectin complement pathway (LP) activation is an important mechanism in myocardial ischemia reperfusion injury (IRI). LP is activated via the recognition molecules mannose-binding lectin (MBL), ficolins-2 and-3 and is regulated by MBL/Ficolin-associated Protein-1 (MAP-1). Also, C-reactive protein...

  19. Land-use and alternative bioenergy pathways for waste biomass.

    Science.gov (United States)

    Campbell, J E; Block, E

    2010-11-15

    Rapid escalation in biofuels consumption may lead to a trade regime that favors exports of food-based biofuels from tropical developing countries to developed countries. There is growing interest in mitigating the land-use impacts of these potential biofuels exports by converting biorefinery waste streams into cellulosic ethanol, potentially reducing the amount of land needed to meet production goals. This increased land-use efficiency for ethanol production may lower the land-use greenhouse gas emissions of ethanol but would come at the expense of converting the wastes into bioelectricity which may offset fossil fuel-based electricity and could provide a vital source of domestic electricity in developing countries. Here we compare these alternative uses of wastes with respect to environmental and energy security outcomes considering a range of electricity production efficiencies, ethanol yields, land-use scenarios, and energy offset assumptions. For a given amount of waste biomass, we found that using bioelectricity production to offset natural gas achieves 58% greater greenhouse gas reductions than using cellulosic ethanol to offset gasoline but similar emissions when cellulosic ethanol is used to offset the need for more sugar cane ethanol. If bioelectricity offsets low-carbon energy sources such as nuclear power then the liquid fuels pathway is preferred. Exports of cellulosic ethanol may have a small impact on the energy security of importing nations while bioelectricity production may have relatively large impacts on the energy security in developing countries.

  20. Properdin in complement activation and tissue injury.

    Science.gov (United States)

    Lesher, Allison M; Nilsson, Bo; Song, Wen-Chao

    2013-12-15

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: (1) its role as a pattern recognition molecule to direct and trigger complement activation, (2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and (3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases.

  1. Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies.

    OpenAIRE

    Vanguri, P; Koski, C L; Silverman, B.; Shin, M L

    1982-01-01

    Many pathological conditions of the central nervous system involve damage to and removal of myelin membrane. Very little is known about initiation of this membrane damage and the mechanisms of disposal of the damaged tissue. We are interested in the interaction between complement (the components of complement are designated C1, C2, C3, etc.) and myelin membranes and the possible role of complement in amplifying myelin damage and in the disposal of damaged myelin in vivo, because activation of...

  2. Complement system in zebrafish.

    Science.gov (United States)

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  3. Education Direct: An Alternative Entry Pathway to Pre-Service Teacher Education

    Science.gov (United States)

    Pilkington, Kevin; Lock, Graeme

    2012-01-01

    Universities in Australia are offering alternative entrance pathways to attract students from a range of backgrounds. These alternative pathways will undoubtedly be reviewed due to the recommendation in the Review of Australian Higher Education (Bradley, Noonan, Nugent & Scales, 2008) concerning increasing the diversity of university entrants.…

  4. Alternative end-joining pathway(s): bricolage at DNA breaks.

    Science.gov (United States)

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.

  5. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future.

    Science.gov (United States)

    Risitano, Antonio M; Marotta, Serena

    2016-06-01

    The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias

  6. The Role of Complement System in Septic Shock

    Directory of Open Access Journals (Sweden)

    Jean Charchaflieh

    2012-01-01

    Full Text Available Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3 and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2 in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.

  7. The UMKC medical education experiment. An alternative pathway to physicianhood.

    Science.gov (United States)

    Dimond, E G

    1988-08-19

    The UMKC plan for medical education offers an alternative pathway for motivated high achievers with early evidence of health care commitment. Essentially, such a program is an honors program for the academically elite. The UMKC plan makes a large, sustained effort to influence attitude. In our descriptive literature and in our curriculum content, we have emphasized that we seek health care talent at the earliest age possible and that we use these formative years to enhance, to influence, and to inculcate the qualities of compassion, sensitivity, honesty, integrity, dependability, and responsibility. The reason for early admission is to influence attitude. We hold to the national standards in terms of science and technology, and all graduates have been required to pass Parts I and II of the National Board of Medical Examiners examinations. The graduate of this program, using performance in the first postgraduate year as a measure, is comparable with the product of the traditional eight-year concept, with a dividend of two extra years of career time. The UMKC program is not for all students; it is not offered as a replacement for the traditional American system. However, a proper distribution of medical admissions spaces should be made that takes advantage of the high level of ability, commitment, and dedication already present in the best of our high school students. A program such as the UMKC plan offers the prospect of educating American physicians, fully prepared technically but especially concerned with the important attitudinal values sought by the American public. Ward Darley, MD, was a consultant and guide during the founding years of this medical school. In his words, "The UMKC program is aimed at humanizing medicine, lowering the cost per student for education, providing a pool of dedicated physicians educated broadly enough to provide community leadership for future changes in the function and structure of society." Dr Darley's anticipation that this six

  8. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo.

    Science.gov (United States)

    Hein, E; Munthe-Fog, L; Thiara, A S; Fiane, A E; Mollnes, T E; Garred, P

    2015-02-01

    The complement system can be activated via the lectin pathway by the recognition molecules mannose-binding lectin (MBL) and the ficolins. Ficolin-2 exhibits binding against a broad range of ligands, including biomaterials in vitro, and low ficolin-2 levels are associated with increased risk of infections. Thus, we investigated the biocompatibility of the recognition molecules of the lectin pathway in two different types of cardiopulmonary bypass circuits. Bloods were drawn at five time-points before, during and postoperatively from 30 patients undergoing elective cardiac surgery. Patients were randomized into two groups using different coatings of cardiopulmonary bypass circuits, Phisio® (phosphorylcholine polymer coating) and Bioline® (albumin-heparin coating). Concentrations of MBL, ficolin-1, -2 and -3 and soluble C3a and terminal complement complex (TCC) in plasma samples were measured. Ficolin-3-mediated complement activation potential was evaluated with C4, C3 and TCC as output. There was no significant difference between the two circuit materials regarding MBL, ficolin-1 and -3. In the Bioline® group the ficolin-2 levels decreased significantly after initiation of surgery (P circuits. Ficolin-3-mediated complement activation potential was reduced significantly in both groups after start of operation (P circuits and did not reach baseline level 24 h postoperation. These findings may have implications for the postoperative susceptibility to infections in patients undergoing extracorporeal circulation procedures.

  9. Sundanese Complementation

    Science.gov (United States)

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  10. Ataxia-telangiectasia group D complementing gene (ATDC promotes lung cancer cell proliferation by activating NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Zhong-Ping Tang

    Full Text Available Previous studies suggested Ataxia-telangiectasia group D complementing gene (ATDC as an oncogene in many types of cancer. However, its expression and biological functions in non-small cell lung cancer (NSCLC remain unclear. Herein, we investigated its expression pattern in 109 cases of human NSCLC samples by immunohistochemistry and found that ATDC was overexpressed in 62 of 109 NSCLC samples (56.88%. ATDC overexpression correlated with histological type (p<0.0001, tumor status (p = 0.0227 and histological differentiation (p = 0.0002. Next, we overexpressed ATDC in normal human bronchial epithelial cell line HBE and depleted its expression in NSCLC cell lines A549 and H1299. MTT and colony formation assay showed that ATDC overexpression promoted cell proliferation while its depletion inhibited cell growth. Furthermore, cell cycle analysis showed that ATDC overexpression decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase, while ATDC siRNA treatment increased the G1 phase percentage and decreased the S phase percentage. Further study revealed that ATDC overexpression could up-regulate cyclin D1 and c-Myc expression in HBE cells while its depletion down-regulated cyclin D1 and c-Myc expression in A549 and H1299 cells. In addition, ATDC overexpression was also associated with an increased proliferation index, cyclin D1 and c-Myc expression in human NSCLC samples. Further experiments demonstrated that ATDC up-regulated cyclin D1 and c-Myc expression independent of wnt/β-catenin or p53 signaling pathway. Interestingly, ATDC overexpression increased NF-κB reporter luciferase activity and p-IκB protein level. Correspondingly, NF-κB inhibitor blocked the effect of ATDC on up-regulation of cyclin D1 and c-Myc. In conclusion, we demonstrated that ATDC could promote lung cancer proliferation through NF-κB induced up-regulation of cyclin D1 and c-Myc.

  11. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo

    DEFF Research Database (Denmark)

    Hein, Estrid; Munthe-Fog, L; Thiara, A S;

    2015-01-01

    The complement system can be activated via the lectin pathway by the recognition molecules mannose-binding lectin (MBL) and the ficolins. Ficolin-2 exhibits binding against a broad range of ligands, including biomaterials in vitro, and low ficolin-2 levels are associated with increased risk...... of infections. Thus, we investigated the biocompatibility of the recognition molecules of the lectin pathway in two different types of cardiopulmonary bypass circuits. Bloods were drawn at five time-points before, during and postoperatively from 30 patients undergoing elective cardiac surgery. Patients were...

  12. Current Understanding of the Role of Complement in IgA Nephropathy

    Science.gov (United States)

    Maillard, Nicolas; Wyatt, Robert J.; Julian, Bruce A.; Kiryluk, Krzysztof; Gharavi, Ali; Fremeaux-Bacchi, Veronique

    2015-01-01

    Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan–binding lectin–associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome–wide association studies identified deletion of complement factor H–related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1–containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease. PMID:25694468

  13. A systematic analysis of the complement pathways in patients with neuromyelitis optica indicates alteration but no activation during remission

    DEFF Research Database (Denmark)

    Veszeli, Nóra; Füst, György; Csuka, Dorottya;

    2014-01-01

    Neuromyelitis optica (NMO) is an autoimmune demyelinating inflammatory disorder, mediated by pathogenic autoantibodies against aquaporin 4 (AQP4), the main water channel of the central nervous system (CNS). NMO is characterized by local IgG deposition and complement activation within the CNS...

  14. Cold activation of serum complement in patients with chronic hepatitis C: study on activating pathway and involvement of IgG.

    Directory of Open Access Journals (Sweden)

    Ishii Y

    2001-08-01

    Full Text Available It has been documented that the serum complement activities measured by hemolytic assay (CH50 are decreased after storage of sera at a low temperature in some patients with chronic hepatitis C. However, the mechanism of this phenomenon has not been identified yet. Here, we tried to elucidate factors involved in the cold activation of complement (CAC. To clarify what pathway is activated in CAC, we measured complement cleavage products after cold storage of sera. C4d increased significantly after 12 h-storage at cold temperatures in 5 CAC (+ sera compared with 5 CAC (- (P < 0.01 and 3 control sera (P < 0.05, while Bb did not increase in any of the groups. In order to determine whether IgG or IgG complex is necessary for CAC, 8 CAC (+ sera were incubated with Protein G Sepharose gel beads, and all of them retained hemolytic activities to some extent after cold storage. Column chromatography through Superose 6HR of CAC-positive serum identified the fractions containing molecules that induced CAC in normal serum, which were depleted by treatment with protein G Sepharose. In conclusion, CAC in hepatitis C seems to occur via a classical or lectin pathway, and the IgG complex produced in hepatitis C virus infection may be an important factor in inducing CAC, a common extrahepatic manifestation of hepatitis C.

  15. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  16. Alternative autophagy, brefeldin A and viral trafficking pathways

    Science.gov (United States)

    Grose, Charles; Klionsky, Daniel J.

    2016-01-01

    ABSTRACT Two topics that have attracted recent attention in the field of autophagy concern the source of the membrane that is used to form the autophagosome during macroautophagy and the role of noncanonical autophagic pathways. The 2 topics may converge when considering the intersection of autophagy with viral infection. We suggest that noncanonical autophagy, which is sensitive to treatment with brefeldin A, may converge with the infectious cycles of certain DNA and RNA viruses that utilize membrane from the ER and cis-Golgi. PMID:27439673

  17. Characterization of the complement inhibitory function of rhesus rhadinovirus complement control protein (RCP).

    Science.gov (United States)

    Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M

    2009-01-02

    Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.

  18. Complement activation promotes muscle inflammation during modified muscle use

    Science.gov (United States)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  19. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces.

  20. Complement activation patterns in atypical haemolytic uraemic syndrome during acute phase and in remission

    NARCIS (Netherlands)

    Volokhina, E.B.; Westra, D.; Velden, T.J.A.M. van der; Kar, N.C.A.J. van de; Mollnes, T.E.; Heuvel, B. van den

    2015-01-01

    Atypical haemolytic uraemic syndrome (aHUS) is associated with (genetic) alterations in alternative complement pathway. Nevertheless, comprehensive evidence that the complement system in aHUS patients is more prone to activation is still lacking. Therefore, we performed a thorough analysis of comple

  1. Metamorphosis and neoteny: alternative pathways in an extinct amphibian clade.

    Science.gov (United States)

    Schoch, Rainer R; Fröbisch, Nadia B

    2006-07-01

    The Branchiosauridae was a clade of small amphibians from the Permo-Carboniferous with an overall salamander-like appearance. The clade is distinguished by an extraordinary fossil record that comprises hundreds of well-preserved specimens, representing a wide range of ontogenetic stages. Branchiosaurids had external gills and weakly ossified skeletons, and due to this larval appearance their status as neotenic (perennibranchiate) forms has long been accepted. Despite their extensive fossil record large specimens with an adult morphology appeared to be lacking altogether, but recently two adult specimens were identified in a rich sample of Apateon gracilis collected in the 19th century from a locality near Dresden, Saxony. These specimens are unique among branchiosaurids in showing a high level of ossification, including bones that have never been reported in a branchiosaur. These highlight the successive formation of features believed to indicate terrestrial locomotion, as well as feeding on larger prey items. Moreover, these transformations occurred in a small time window (whereas the degree of size increase is used as a proxy of time) and the degree of concentration of developmental events in branchiosaurids is unique among tetrapods outside the lissamphibians. These specimens are compared with large adults of the neotenic branchiosaurid Apateon caducus from the Saar-Nahe Basin, which despite their larger body size lack the features found in the adult A. gracilis specimens. These specimens give new insight into patterns of metamorphosis (morphological transformation) in branchiosaurids that are believed to be correlated to a change of habitat, and clearly show that different life-history pathways comparable to those of modern salamanders were already established in this Paleozoic clade.

  2. Meningococcal surface fibril (Msf) binds to activated vitronectin and inhibits the terminal complement pathway to increase serum resistance.

    Science.gov (United States)

    Griffiths, Natalie J; Hill, Darryl J; Borodina, Elena; Sessions, Richard B; Devos, Nathalie I; Feron, Christiane M; Poolman, Jan T; Virji, Mumtaz

    2011-12-01

    Complement evasion is an important survival strategy of Neisseria meningitidis (Nm) during colonization and infection. Previously, we have shown that Nm Opc binds to serum vitronectin to inhibit complement-mediated killing. In this study, we demonstrate meningococcal interactions with vitronectin via a novel adhesin, Msf (meningococcal surface fibril, previously NhhA or Hsf). As with Opc, Msf binds preferentially to activated vitronectin (aVn), engaging at its N-terminal region but the C-terminal heparin binding domain may also participate. However, unlike Opc, the latter binding is not heparin-mediated. By binding to aVn, Msf or Opc can impart serum resistance, which is further increased in coexpressers, a phenomenon dependent on serum aVn concentrations. The survival fitness of aVn-binding derivatives was evident from mixed population studies, in which msf/opc mutants were preferentially depleted. In addition, using vitronectin peptides to block Msf-aVn interactions, aVn-induced inhibition of lytic C5b-9 formation and of serum killing could be reversed. As Msf-encoding gene is ubiquitous in the meningococcal strains examined and is expressed in vivo, serum resistance via Msf may be of significance to meningococcal pathogenesis. The data imply that vitronectin binding may be an important strategy for the in vivo survival of Nm for which the bacterium has evolved redundant mechanisms.

  3. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  4. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  5. Gene array analysis of a rat model of liver transplant tolerance identifies increased complement C3 and the STAT-1/IRF-1 pathway during tolerance induction.

    Science.gov (United States)

    Cordoba, Shaun P; Wang, Chuanmin; Williams, Rohan; Li, Jian; Smit, Lynn; Sharland, Alexandra; Allen, Richard; McCaughan, Geoffrey; Bishop, Alex

    2006-04-01

    This study aimed to define the molecular mechanism during induction of spontaneous liver transplant tolerance using microarrays and to focus on molecular pathways associated with tolerance by meta-analysis with published studies. The differences in the early immune response between PVG to DA liver transplant recipients that are spontaneously tolerant (TOL) and PVG to Lewis liver transplants that reject (REJ) were examined. Spleens from TOL and REJ on days 1 and 3 were compared by 2 color microarray. Forty-six of 199 genes differentially expressed between TOL and REJ had an immunological function. More immune genes were increased in TOL vs. REJ on day 1, including STAT-1, IRF-1 and complement C3. Differential expression of selected genes was confirmed by quantitative RT-PCR. The results were compared to two published high-throughput studies of rat liver transplant tolerance and showed that C3 was increased in all three models, while STAT-1 and IRF-1 were increased in two models. The early increases in immune genes in TOL confirmed previous reports of an active early immune response in TOL. In conclusion, the increase in STAT-1, IRF-1 and complement component C3 in several models of liver transplant tolerance suggests that the STAT-1/IRF-1 apoptotic pathway and C3 may be involved in the tolerogenic mechanism.

  6. Structural and functional characterization of human complement factor P

    DEFF Research Database (Denmark)

    Pedersen, Dennis

    2016-01-01

    The complement system is of great importance for the innate immune response, which can lead to opsonization and removal of invading pathogens, as well as immune complexes and damaged self-cells. Factor P (FP), also known as properdin, acts as a positive regulator of the alternative pathway...

  7. Defining the complement biomarker profile of c3 glomerulopathy

    DEFF Research Database (Denmark)

    Zhang, Yuzhou; Nester, Carla M; Martin, Bertha;

    2014-01-01

    BACKGROUND AND OBJECTIVES: C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway...

  8. Activation of Complement Following Total Hip Replacement.

    Science.gov (United States)

    Thordardottir, S; Vikingsdottir, T; Bjarnadottir, H; Jonsson, H; Gudbjornsson, B

    2016-03-01

    The aim of this study was to investigate whether complement activation, via the classical and alternative pathways, occurs following a cemented total hip replacement (THR) surgery due to osteoarthritis. Blood samples were collected systematically from 12 patients - six male and six women, with a median age of 75 (range: 59-90 years) - preoperatively, 6 h post-operatively and on the first, second and third post-operative day. Total function of classical (CH50) and alternative pathways (AH50) was evaluated, along with the determination of serum concentrations of the complement proteins C3, C4, C3d, the soluble terminal complement complex (sTCC) sC5b-9, as well as C-reactive protein (CRP) and albumin. Measurements of CRP and albumin levels elucidated a marked inflammatory response following the operation. The CH50, AH50 and C3 and C4 levels were significantly lower 6 h after the surgery compared with the preoperative levels, but elevated above the preoperative levels during the following 3 days. The complement activation product C3d levels increased continually during the whole observation period, from 13.5 AU/ml (range: 8-19 AU/ml) preoperative to 20 AU/ml (range: 12-34 AU/ml) on the third post-operative day. Furthermore, we observed an increase in the sC5b-9 levels between the preoperative and the third post-operative day. These results demonstrate a significant activation of the complement system following cemented THR. Further studies are needed to elucidate the time frame and the pathogenic role of this observed complement activation.

  9. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control.

    Science.gov (United States)

    Prohászka, Zoltán; Nilsson, Bo; Frazer-Abel, Ashley; Kirschfink, Michael

    2016-11-01

    In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins

  10. Substituting complements

    OpenAIRE

    Dari-Mattiacci, G.; Parisi, F.; Heller, M.

    2009-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently popularized in the legal literature as the tragedy of the anticommons. We ask the following question: how many substitutes for each complement are necessary to render the presence of multiple sell...

  11. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2

    Science.gov (United States)

    Angert, Alon; Rachmilevitch, Shimon; Barkan, Eugeni; Luz, Boaz

    2003-03-01

    The triple isotopic composition of atmospheric O2 is a new tracer used to estimate changes in global productivity. To estimate such changes, knowledge of the relationship between the discrimination against 17O and the discrimination against 18O is needed. This relationship is presented as θ = ln(17α)/ln(18α). Here, the value of theta was evaluated for the most important processes that affect the isotopic composition of oxygen. Similar values were found for dark respiration through the cytochrome pathway (0.516 ± 0.001) and the alternative pathway (0.514 ± 0.001), and slightly higher value was found for diffusion in air (0.521 ± 0.001). The combined effect of diffusion and respiration on the atmosphere was shown to be close to that of dark respiration. The value we found for photorespiration (0.506 ± 0.005) is considerably lower than that of dark respiration. Our results clearly show that the triple isotopic composition of the atmosphere is affected by the relative rates of photorespiration and dark respiration. Also, we show that closing the current global isotopic balance will enable the estimation of the current global rate of photorespiration. Using the Last Glacial Maximum as a case study, we show that variations in global rate of photorespiration affected the triple isotopic composition in the past. Strong fractionations measured in illuminated plants indicated that the alternative pathway is activated in the same conditions that favor high rate of photorespiration. This activation suggests that the global rate of the alternative pathway is higher than believed thus far, and may help to close the gap between the calculated and measured Dole Effect.

  12. Alternative Pathways to Talent Development in Music: The Narrative of an Eminent Filipino Singer-Songwriter

    Science.gov (United States)

    Garces-Bacsal, Rhoda Myra

    2014-01-01

    The narrative of an eminent Filipino singer-songwriter, Noel Cabangon, provides a description of an alternative pathway to musical talent development. Most theories on talent development assume that a young artist would have access to the resources required for one to advance in the domain. The results of multiple in-depth interviews suggested…

  13. Systemic complement activation in age-related macular degeneration.

    Science.gov (United States)

    Scholl, Hendrik P N; Charbel Issa, Peter; Walier, Maja; Janzer, Stefanie; Pollok-Kopp, Beatrix; Börncke, Florian; Fritsche, Lars G; Chong, Ngaihang V; Fimmers, Rolf; Wienker, Thomas; Holz, Frank G; Weber, Bernhard H F; Oppermann, Martin

    2008-07-02

    Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (pAMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  14. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  15. Complement and membrane-bound complement regulatory proteins as biomarkers and therapeutic targets for autoimmune inflammatory disorders, RA and SLE.

    Science.gov (United States)

    Das, Nibhriti

    2015-11-01

    Complement system is a major effecter system of the innate immunity that bridges with adaptive immunity. The system consists of about 40 humoral and cell surface proteins that include zymogens, receptors and regulators. The zymogens get activated in a cascade fashion by antigen-antibody complex, antigen alone or by polymannans, respectively, by the classical, alternative and mannose binding lectin (MBL) pathways. The ongoing research on complement regulators and complement receptors suggest key role of these proteins in the initiation, regulation and effecter mechanisms of the innate and adaptive immunity. Although, the complement system provides the first line of defence against the invading pathogens, its aberrant uncontrolled activation causes extensive self tissue injury. A large number of humoral and cell surface complement regulatory protein keep the system well-regulated in healthy individuals. Complement profiling had brought important information on the pathophysiology of several infectious and chronic inflammatory disorders. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases that affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This brief review discusses on the complement system, its functions and its importance as biomarkers and therapeutic targets for autoimmune diseases with focus on SLE and RA.

  16. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase.

    Science.gov (United States)

    Yoo, Heejin; Widhalm, Joshua R; Qian, Yichun; Maeda, Hiroshi; Cooper, Bruce R; Jannasch, Amber S; Gonda, Itay; Lewinsohn, Efraim; Rhodes, David; Dudareva, Natalia

    2013-01-01

    Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.

  17. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  18. Complement factor H deficiency and endocapillary glomerulonephritis due to paternal isodisomy and a novel factor H mutation

    DEFF Research Database (Denmark)

    Schejbel, L; Schmidt, I M; Kirchhoff, Eva Maria;

    2011-01-01

    Complement factor H (CFH) is a regulator of the alternative complement activation pathway. Mutations in the CFH gene are associated with atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II and C3 glomerulonephritis. Here, we report a 6-month-old CFH-deficient child...

  19. Mouse Ficolin B Has an Ability to Form Complexes with Mannose-Binding Lectin-Associated Serine Proteases and Activate Complement through the Lectin Pathway

    Directory of Open Access Journals (Sweden)

    Yuichi Endo

    2012-01-01

    Full Text Available Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP- recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs, most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs, leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway.

  20. Microglia, Alzheimer's Disease, and Complement

    Directory of Open Access Journals (Sweden)

    Helen Crehan

    2012-01-01

    Full Text Available Microglia, the immune cell of the brain, are implicated in cascades leading to neuronal loss and cognitive decline in Alzheimer’s disease (AD. Recent genome-wide association studies have indicated a number of risk factors for the development of late-onset AD. Two of these risk factors are an altered immune response and polymorphisms in complement receptor 1. In view of these findings, we discuss how complement signalling in the AD brain and microglial responses in AD intersect. Dysregulation of the complement cascade, either by changes in receptor expression, enhanced activation of different complement pathways or imbalances between complement factor production and complement cascade inhibitors may all contribute to the involvement of complement in AD. Altered complement signalling may reduce the ability of microglia to phagocytose apoptotic cells and clear amyloid beta peptides, modulate the expression by microglia of complement components and receptors, promote complement factor production by plaque-associated cytokines derived from activated microglia and astrocytes, and disrupt complement inhibitor production. The evidence presented here indicates that microglia in AD are influenced by complement factors to adopt protective or harmful phenotypes and the challenge ahead lies in understanding how this can be manipulated to therapeutic advantage to treat late onset AD.

  1. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2006-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  2. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2009-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  3. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Igor Cestari

    Full Text Available The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1 which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2 the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3 whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.

  4. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner.

    Science.gov (United States)

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-03-01

    beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.

  5. Alzheimer's β-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner

    Science.gov (United States)

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-01-01

    β-Amyloid (β-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of β-A in particular aggregates seems to be crucial, soluble non-fibrillar β-A may also be involved. Non-fibrillar β-A does not bind C1q, so we investigated alternative mechanisms of β-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar β-A 1-42, and truncated peptide 1–28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS–PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar β-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5–10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8–15%) β-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar β-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain. PMID:10193429

  6. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.

    Science.gov (United States)

    Reichman, Rivka; Roghani, Mohammadyousef; Willett, Evan J; Shirazi, Elham; Pennell, Kelly G

    2016-11-12

    Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.

  7. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia.

    Directory of Open Access Journals (Sweden)

    Santosh K Panda

    Full Text Available Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has

  8. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity.

    Science.gov (United States)

    Kirkman, Laura A; Lawrence, Elizabeth A; Deitsch, Kirk W

    2014-01-01

    Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-homologous end joining (C-NHEJ) pathway were identified. To better understand how malaria parasites repair DSBs and maintain genome integrity, we modified the yeast I-SceI endonuclease system to generate inducible, site-specific DSBs within the parasite's genome. Analysis of repaired genomic DNA showed that parasites possess both a typical HR pathway resulting in gene conversion events as well as an end joining (EJ) pathway for repair of DSBs when no homologous sequence is available. The products of EJ were limited in number and identical products were observed in multiple independent experiments. The repair junctions frequently contained short insertions also found in the surrounding sequences, suggesting the possibility of a templated repair process. We propose that an alternative end-joining pathway rather than C-NHEJ, serves as a primary method for repairing DSBs in malaria parasites.

  9. Entamoeba histolytica and E. dispar Calreticulin: Inhibition of Classical Complement Pathway and Differences in the Level of Expression in Amoebic Liver Abscess

    Directory of Open Access Journals (Sweden)

    Cecilia Ximénez

    2014-01-01

    Full Text Available The role of calreticulin (CRT in host-parasite interactions has recently become an important area of research. Information about the functions of calreticulin and its relevance to the physiology of Entamoeba parasites is limited. The present work demonstrates that CRT of both pathogenic E. histolytica and nonpathogenic E. dispar species specifically interacted with human C1q inhibiting the activation of the classical complement pathway. Using recombinant EhCRT protein, we demonstrate that CRT interaction site and human C1q is located at the N-terminal region of EhCRT. The immunofluorescence and confocal microscopy experiments show that CRT and human C1q colocalize in the cytoplasmic vesicles and near to the surface membrane of previously permeabilized trophozoites or are incubated with normal human serum which is known to destroy trophozoites. In the presence of peripheral mononuclear blood cells, the distribution of EhCRT and C1q is clearly over the surface membrane of trophozoites. Nevertheless, the level of expression of CRT in situ in lesions of amoebic liver abscess (ALA in the hamster model is different in both Entamoeba species; this molecule is expressed in higher levels in E. histolytica than in E. dispar. This result suggests that EhCRT may modulate some functions during the early moments of the host-parasite relationship.

  10. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein.

    Science.gov (United States)

    Azimzadeh, Agnes M; Kelishadi, Sean S; Ezzelarab, Mohamed B; Singh, Avneesh K; Stoddard, Tiffany; Iwase, Hayato; Zhang, Tianshu; Burdorf, Lars; Sievert, Evelyn; Avon, Chris; Cheng, Xiangfei; Ayares, David; Horvath, Keith A; Corcoran, Philip C; Mohiuddin, Muhammad M; Barth, Rolf N; Cooper, David K C; Pierson, Richard N

    2015-01-01

    We describe the incidence of early graft failure (EGF, defined as loss of function from any cause within 3 days after transplant) in a large cohort of GalTKO pig organs transplanted into baboons in three centers, and the effect of additional expression of a human complement pathway-regulatory protein, CD46 or CD55 (GalTKO.hCPRP). Baboon recipients of life-supporting GalTKO kidney (n = 7) or heterotopic heart (n = 14) grafts received either no immunosuppression (n = 4), or one of several partial or full immunosuppressive regimens (n = 17). Fourteen additional baboons received a GalTKO.hCPRP kidney (n = 5) or heart (n = 9) and similar treatment regimens. Immunologic, pathologic, and coagulation parameters were measured at frequent intervals. EGF of GalTKO organs occurred in 9/21 baboons (43%). hCPRP expression reduced the GalTKO EGF incidence to 7% (1/14; P organs in which EGF developed (P organ failure, and (iii) the expression of a hCPRP reduces EGF but does not prevent systemic coagulation activation. Additional strategies will be required to control coagulation activation.

  11. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE)

    DEFF Research Database (Denmark)

    Marquart, H V; Svendsen, Anders Jørgen; Rasmussen, J M;

    1995-01-01

    It has previously been reported that the expression of the complement receptors, CR1 on erythrocytes and blood leucocytes and CR2 on B cells, is reduced in patients with SLE, and that the reduced expression of CR1 on erythrocytes is related to disease activity. We have earlier demonstrated...... that normal B cells are capable of activating the alternative pathway (AP) of complement in a CR2-dependent fashion. In this study we have investigated whether disturbances in this activity may be related to the altered phenotype of SLE B cells. Flow cytometry was used to measure expression of complement...... activation by B cells in homologous serum. Finally, we demonstrated an inverse relationship between SLE disease activity index (SLEDAI) and the expression of complement receptor 2 (CR2) on SLE B cells. Thus, determination of CR2 on B cells may emerge as an additional laboratory tool in the assessment of SLE...

  12. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    Uncontrolled complement activation can induce many inflammatory and life threatening conditions. Accordingly, the role of complement in initiation of adverse reactions to polymers and nanoparticulate drug carriers is receiving increasing attention and has prompted extensive ‘structure......-immune performance’ relationship studies in nanomedicine research at many fronts. The interaction between nanomaterials and the complement system is complex and regulated by inter-related factors that include nanoscale size, morphology and surface characteristics. Each of these parameters may affect complement...... activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  13. Role of complement in IgA nephropathy.

    Science.gov (United States)

    Daha, Mohamed R; van Kooten, Cees

    2016-02-01

    Immunoglobulin A nephropathy (IgAN) is characterized by the deposition of IgA in the mesangium of glomeruli. This mesangial IgA has been found to consist mainly of polymeric IgA1 which drives the activation of the mesangial cells and results in excessive production of several inflammatory mediators. The activation of mesangial cells is amplified by the ability of IgA to activate the complement system, originally thought to occur mainly via the alternative pathway of complement. However more recent studies indicate that lectin pathway involvement has a strong association with progression of renal disease. In this review we summarize the contribution of complement to the IgA- mediated inflammatory process.

  14. Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake

    DEFF Research Database (Denmark)

    Inturi, Swetha; Wang, Guankui; Chen, Fangfang

    2015-01-01

    Notwithstanding rapid advances of nanotechnology in diagnostic imaging and drug delivery, the engineered nanocarriers still exhibit substantial lack of hemocompatibility. Thus, when injected systemically, nanoparticles are avidly recognized by blood leukocytes and platelets, but the mechanisms of...... alternative pathway and by nanoparticle surface coating. These results provide important insights into the mechanisms of hemocompatibility of nanomedicines....... demonstrated that neutrophils, monocytes, lymphocytes and eosinophils took up SPIO NWs, and the uptake was prevented by EDTA (a general complement inhibitor) and by antiproperdin antibody (an inhibitor of the alternative pathway of the complement system). Cross-linking and hydrogelation of SPIO NWs surface...

  15. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    Science.gov (United States)

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  16. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R; Gibbons, Richard J

    2015-07-06

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers.

  17. Complement factor B expression profile in a spontaneous uveitis model.

    Science.gov (United States)

    Zipplies, Johanna K; Kirschfink, Michael; Amann, Barbara; Hauck, Stefanie M; Stangassinger, Manfred; Deeg, Cornelia A

    2010-12-01

    Equine recurrent uveitis serves as a spontaneous model for human autoimmune uveitis. Unpredictable relapses and ongoing inflammation in the eyes of diseased horses as well as in humans lead to destruction of the retina and finally result in blindness. However, the molecular mechanisms leading to inflammation and retinal degeneration are not well understood. An initial screening for differentially regulated proteins in sera of uveitic cases compared to healthy controls revealed an increase of the alternative pathway complement component factor B in ERU cases. To determine the activation status of the complement system, sera were subsequently examined for complement split products. We could demonstrate a significant higher concentration of the activation products B/Ba, B/Bb, Bb neoantigen, iC3b and C3d in uveitic condition compared to healthy controls, whereas for C5b-9 no differences were detected. Additionally, we investigated complement activation directly in the retina by immunohistochemistry, since it is the main target organ of this autoimmune disease. Interestingly, infiltrating cells co-expressed activated factor Bb neoantigen, complement split product C3d as well as CD68, a macrophage marker. In this study, we could demonstrate activation of the complement system both systemically as well as in the eye, the target organ of spontaneous recurrent uveitis. Based on these novel findings, we postulate a novel role for macrophages in connection with complement synthesis at the site of inflammation.

  18. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Yang Kui

    2008-09-01

    Full Text Available Abstract Background Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC specifically, the standard isoform (CD44s has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. Methods In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. Results MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. Conclusion The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.

  19. Herbal complement inhibitors in the treatment of neuroinflammation: future strategy for neuroprotection.

    Science.gov (United States)

    Kulkarni, Amod P; Kellaway, Laurie A; Kotwal, Girish J

    2005-11-01

    The upregulated complement system plays a damaging role in disorders of the central nervous system (CNS). The classical and alternate pathways are two major pathways activated in neuroinflammatory disorders such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, spinal cord injury, HIV-associated dementia, Parkinson's disease, and mad cow disease. Failure of currently available anti-inflammatory agents, especially cyclooxygenase inhibitors, in offering significant neuroprotection in large epidemiologic clinical trials of CNS disorders suggests an urgent need for the development of new neuroprotective agents. The positive preclinical outcomes in treating CNS disorders by complement regulatory molecules, such as vaccinia virus complement control protein, suggest the possibility of using complement-inhibitory molecules as neuroprotective agents. Several active ingredients of herbal origin are found to have complement-inhibitory activity. These herbal ingredients along with other anti-inflammatory roles might be useful in treating neuroinflammation associated with CNS disorders. Active ingredients of herbal origin with complement inhibitory ingredients are summarized and classified according to their chemical nature and specificity towards the major pathways activating the complement system. The structure activity relationship of some specific examples is also discussed in this report. This information might be helpful in formulating a natural panacea against complement-mediated neuroinflammation.

  20. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  1. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli

    DEFF Research Database (Denmark)

    Sahagún-Ruiz, Alfredo; Breda, Leandro Carvalho Dantas; Valencia, Mónica Marcela Castiblanco

    2015-01-01

    ficolins, ficolin-2 and ficolin-3 with different Gram-negative bacteria. We used recombinant ficolin molecules and normal human serum, which were detected with anti-ficolin monoclonal antibodies. In addition we investigated the capacity of these pathogens to activate the lectin pathway of complement system......, enteropathogenic Escherichia coli (EPEC) serotype O111ab:H2 and enteroaggregative E. coli (EAEC) serogroup O71 but not four enterohemorrhagic E. coli, three EPEC, three EAEC and two nonpathogenic E. coli strains (DH5α and HB101). The lectin pathway was activated by Pasteurella pneumotropica, EPEC O111ab:H2...

  2. Using animal models to determine the significance of complement activation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Loeffler David A

    2004-10-01

    Full Text Available Abstract Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present, and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood.

  3. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus.

    Science.gov (United States)

    Michalovicz, Lindsay T; Lally, Brent; Konat, Gregory W

    2015-08-15

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene encoding complement factor B (CfB) exhibited the highest response, and its upregulation was commensurate with the development of hyperexcitability. Collectively, these results suggest that the induction of hippocampal hyperexcitability may be mediated by the alternative complement cascades.

  4. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  5. Immune complex modulation by plasma proteins. With special reference to the complement system and autoimmune diseases

    DEFF Research Database (Denmark)

    Baatrup, G

    1989-01-01

    The complement (C) system consists of two activation pathways, the classical and the alternative, which may both be activated by immune complexes (IC). C activation products become attached to the IC during activation leading to profound changes in the properties of the complexes. The common term...

  6. Relationship Between Stimulated Ethylene Production and Alternative Respiration Pathway in "Royal Gala" Apple Fruit

    Institute of Scientific and Technical Information of China (English)

    LEI Xiaoyong(雷晓勇); TIAN M.S.; HU Xiaosong(胡小松); DAI Yaoren(戴尧仁)

    2003-01-01

    Endogenous ethylene production and alternative oxidase (AOX) protein expression in "Royal Gala" apple fruits were investigated after treatments with cold (0℃ for 1 week) and heat (38℃ for 1 h).A monoclonal antibody to the terminal oxidase of the alternative pathway from Sauromatum guttatum was used to identify the AOX protein in apple fruits.The molecular mass of AOX in "Royal Gala" apple fruits is approximately 38 kDa, similar to those reported in tobacco and tomato.The cold treatment depressed the release of endogenous ethylene production before the climacteric ethylene production and obviously induced the expression of AOX protein expression.The heat treatment had the opposite effects on the ethylene production and AOX protein expression.In addition, the climax of endogenous ethylene production preceded the maximum AOX expression after the cold temperature treatment.It is therefore proposed that in climacteric fruits the production of induced ethylene is not coordinated with the level of AOX protein.

  7. Decarbonizing Europe's power sector by 2050. Analyzing the implications of alternative decarbonization pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jaegemann, Cosima; Fuersch, Michaela; Hagspiel, Simeon; Nagl, Stephan

    2012-09-15

    In this paper, the implications of alternative decarbonization pathways for Europe's power sector up until the year 2050 are analyzed. In specific, an electricity system optimization model is used to investigate the minimal costs of decarbonization under a stand-alone CO{sub 2} reduction target and to quantify the excess costs associated with renewable energy targets and politically implemented restrictions on alternative lowcarbon technologies, such as nuclear power. Our numerical simulations confirm the theoretical argumentation concerning counterproductive overlapping regulation. The decarbonization of Europe's power sector is found to be achieved at minimal costs under a stand-alone CO{sub 2} reduction target (171 bn Euro{sub 2010}). Additionally implemented RES-E targets lead to significant excess costs of at least 237 bn Euro{sub 2010}. Excess costs of a complete nuclear phase-out in Europe by 2050 are of the same order of magnitude (274 bn Euro{sub 2010}).

  8. Current evidence for the role of complement in the pathogenesis of Shiga toxin haemolytic uraemic syndrome.

    Science.gov (United States)

    Keir, Lindsay S; Saleem, Moin A

    2014-10-01

    Shiga toxin-associated haemolytic uraemic syndrome (Stx HUS) is the leading cause of paediatric acute kidney injury. This toxin-mediated disease carries a significant morbidity and mortality but has no direct treatments. Rare familial atypical HUS (aHUS) is now understood to result from over-activation of the alternative complement pathway causing glomerular endothelial damage. By understanding the pathogenic mechanisms of this disease, the monoclonal antibody eculizumab, which blocks the final common pathway of complement, is now being used to treat aHUS. For this reason, clinicians and scientists are studying the role of the alternative complement pathway in Stx HUS with the aim of targeting treatment in a similar way. There is some evidence suggesting that complement plays a role in the pathogenesis of Stx HUS, but other mechanisms may also be important. Clinically, modulating the complement system using plasma exchange provides no proven benefit in Stx HUS, and the use of eculizumab has provided conflicting results. Understanding the local effect of Stx on the glomerulus, in particular regulation of the complement and coagulation systems, may lead to advances in defining the precise pathogenesis of this disease. Then, targeted treatment strategies could be devised and clinical trials undertaken.

  9. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection.

    Science.gov (United States)

    Kennedy, Alexander T; Schmidt, Christoph Q; Thompson, Jennifer K; Weiss, Greta E; Taechalertpaisarn, Tana; Gilson, Paul R; Barlow, Paul N; Crabb, Brendan S; Cowman, Alan F; Tham, Wai-Hong

    2016-02-01

    The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.

  10. Complement: an overview for the clinician.

    Science.gov (United States)

    Varela, Juan Carlos; Tomlinson, Stephen

    2015-06-01

    The complement system is an essential component of the immune system. It is a highly integrative system and has a number of functions, including host defense, removal of injured cells and debris, modulation of metabolic and regenerative processes, and regulation of adaptive immunity. Complement is activated via different pathways and it is regulated tightly by several mechanisms to prevent host injury. Imbalance between complement activation and regulation can manifest in disease and injury to self. This article provides an outline of complement activation pathways, regulatory mechanisms, and normal physiologic functions of the system.

  11. Alternative mating type configurations (a/α versus a/a or α/α of Candida albicans result in alternative biofilms regulated by different pathways.

    Directory of Open Access Journals (Sweden)

    Song Yi

    2011-08-01

    Full Text Available Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α, C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs, and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2-|→Tpk2(Tpk1→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1→Ste11→Hst7→Cek2(Cek1→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration.

  12. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    Science.gov (United States)

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  13. Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma.

    Directory of Open Access Journals (Sweden)

    Orit Itzhaki

    Full Text Available Vasculogenic mimicry (VM describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin, which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin, which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies.

  14. Release of lungworm larvae from snails in the environment: potential for alternative transmission pathways.

    Directory of Open Access Journals (Sweden)

    Alessio Giannelli

    2015-04-01

    Full Text Available Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis. In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host.Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior. Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior.Results of this study

  15. The complement system and adverse pregnancy outcomes.

    Science.gov (United States)

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.

  16. Evolution of the complement system in protostomes revealed by de novo transcriptome analysis of six species of Arthropoda.

    Science.gov (United States)

    Sekiguchi, Reo; Nonaka, Masaru

    2015-05-01

    To elucidate the evolutionary history of the complement system in Arthropoda, de novo transcriptome analysis was performed with six species among the Chelicerata, Myriapoda, and Crustacea, and complement genes were identified based on their characteristic domain structures. Complement C3 and factor B (FB) were identified from a sea spider, a jumping spider, and a centipede, but not from a sea firefly or two millipede species. No additional complement components identifiable by their characteristic domain structures were found from any of these six species. These results together with genome sequence information for several species of the Hexapoda suggest that the common ancestor of the Arthropoda possessed a simple complement system comprising C3 and FB, and thus resembled the alternative pathway of the mammalian complement system. It was lost at least twice independently during the evolution of Arthropoda in the millipede lineage and in the common ancestor of Crustacea and Hexapoda.

  17. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    Science.gov (United States)

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells.

  18. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum

    DEFF Research Database (Denmark)

    Banda, Nirmal K; Mehta, Gaurav; Chao, Ying

    2014-01-01

    BACKGROUND: The complement system is a key component of innate immunity implicated in the neutralization and clearance of invading pathogens. Dextran coated superparamagnetic iron oxide (SPIO) nanoparticle is a promising magnetic resonance imaging (MRI) contrast agent. However, dextran SPIO has...... pathway (LP) or alternative pathway (AP) components were used to study mechanisms of mouse complement activation. In vitro measurements of fluid phase markers of complement activation C4d and Bb and the terminal pathway marker SC5b-C9 in normal and genetically deficient sera were used to study...... the CP, but that did not affect the total level of C3 deposition on the particles. CONCLUSIONS: There were important differences and similarities in the complement activation by SPIO NW in mouse versus human sera. Understanding the mechanisms of immune recognition of nanoparticles in mouse and human...

  19. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis

    NARCIS (Netherlands)

    Pakharukova, Natalia; Garnett, J.A.; Tuittila, Minna; Paavilainen, Sari; Diallo, Mamou; Xu, Yingqi; Matthews, S.J.; Zavialov, A.V.

    2015-01-01

    Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution an

  20. ALTERNATE PATHWAY TO LUNG CANCER INDICATED BY KRAS AND P53 MUTATIONS IN NONSMOKERS EXPOSED TO INDOOR SMOKY COAL EMISSIONS

    Science.gov (United States)

    Alternate Pathway to Lung Cancer Indicated by KRAS and P53 Mutations in Nonsmokers Exposed to Indoor Smoky Coal Emissions Use of smoky coal in unvented homes in Xuan Wei County, Yunnan Province, China, is associated with lung cancer among nonsmoking females. Such wome...

  1. Complement in Lupus Nephritis: New Perspectives

    Science.gov (United States)

    Bao, Lihua; Cunningham, Patrick N.; Quigg, Richard J.

    2015-01-01

    Background Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Summary Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. Key Messages SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical

  2. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis.

    Science.gov (United States)

    Pires, Marcel V; Pereira Júnior, Adilson A; Medeiros, David B; Daloso, Danilo M; Pham, Phuong Anh; Barros, Kallyne A; Engqvist, Martin K M; Florian, Alexandra; Krahnert, Ina; Maurino, Veronica G; Araújo, Wagner L; Fernie, Alisdair R

    2016-06-01

    During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.

  3. Protein engineering to target complement evasion in cancer.

    Science.gov (United States)

    Carter, Darrick; Lieber, André

    2014-01-21

    The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.

  4. A novel Lyn-protein kinase Cδ/ε-protein kinase D axis is activated in B cells by signalosome-independent alternate pathway BCR signaling.

    Science.gov (United States)

    Guo, Benchang; Rothstein, Thomas L

    2013-06-01

    BCR signaling initiates multiple activities critical for B-cell function. Recently, we identified an alternate BCR signaling pathway, induced by IL-4, that is signalosome-independent, unlike the classical signalosome-dependent pathway, and that leads to activation of the MAP kinase, ERK. Here we questioned whether alternate pathway signaling extends to other key downstream events, especially protein kinase D (PKD) activation. We found that in murine spleen-derived B cells the IL-4-induced alternate pathway for BCR signaling results in PKD and PKD substrate phosphorylation, and that alternate pathway phosphorylation of HDAC5/7 and other key substrates requires PKD. Furthermore, we found that tyrosine phosphorylation of PKCδ/ε occurs as a result of alternate but not classical pathway signaling and is required for phosphorylation of PKD and PKD substrates. This result identifies PKCδ/ε tyrosine phosphorylation as a unique outcome of the alternate pathway. The alternate pathway is mediated by Lyn that is not required for classical pathway signaling and we found that Lyn associates directly with PKCδ/ε and is required for phosphorylation of PKCδ/ε and of PKD. These findings indicate that IL-4 influences B-cell activation by inducing a novel signaling pathway from BCR to Lyn to PKCδ/ε to PKD.

  5. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide.

    Science.gov (United States)

    Bradt, B M; Kolb, W P; Cooper, N R

    1998-08-03

    Large numbers of neuritic plaques (NP), largely composed of a fibrillar insoluble form of the beta-amyloid peptide (Abeta), are found in the hippocampus and neocortex of Alzheimer's disease (AD) patients in association with damaged neuronal processes, increased numbers of activated astrocytes and microglia, and several proteins including the components of the proinflammatory complement system. These studies address the hypothesis that the activated complement system mediates the cellular changes that surround fibrillar Abeta deposits in NP. We report that Abeta peptides directly and independently activate the alternative complement pathway as well as the classical complement pathway; trigger the formation of covalent, ester-linked complexes of Abeta with activation products of the third complement component (C3); generate the cytokine-like C5a complement-activation fragment; and mediate formation of the proinflammatory C5b-9 membrane attack complex, in functionally active form able to insert into and permeabilize the membrane of neuronal precursor cells. These findings provide inflammation-based mechanisms to account for the presence of complement components in NP in association with damaged neurons and increased numbers of activated glial cells, and they have potential implications for the therapy of AD.

  6. Different host complement systems and their interactions with saliva from Lutzomyia longipalpis (Diptera, Psychodidae and Leishmania infantum promastigotes.

    Directory of Open Access Journals (Sweden)

    Antonio Ferreira Mendes-Sousa

    Full Text Available BACKGROUND: Lutzomyia longipalpis is the vector of Leishmania infantum in the New World, and its saliva inhibits classical and alternative human complement system pathways. This inhibition is important in protecting the insect´s midgut from damage by the complement. L. longipalpis is a promiscuous blood feeder and must be protected against its host's complement. The objective of this study was to investigate the action of salivary complement inhibitors on the sera of different host species, such as dogs, guinea pigs, rats and chickens, at a pH of 7.4 (normal blood pH and 8.15 (the midgut pH immediately after a blood meal. We also investigated the role of the chicken complement system in Leishmania clearance in the presence and absence of vector saliva. RESULTS: The saliva was capable of inhibiting classical pathways in dogs, guinea pigs and rats at both pHs. The alternative pathway was not inhibited except in dogs at a pH of 8.15. The chicken classical pathway was inhibited only by high concentrations of saliva and it was better inhibited by the midgut contents of sand flies. Neither the saliva nor the midgut contents had any effect on the avian alternative pathway. Fowl sera killed L. infantum promastigotes, even at a low concentration (2%, and the addition of L. longipalpis saliva did not protect the parasites. The high body temperature of chickens (40°C had no effect on Leishmania viability during our assays. CONCLUSION: Salivary inhibitors act in a species-specific manner. It is important to determine their effects in the natural hosts of Leishmania infantum because they act on canid and rodent complements but not on chickens (which do not harbour the parasite. Moreover, we concluded that the avian complement system is the probable mechanism through which chickens eliminate Leishmania and that their high body temperature does not influence this parasite.

  7. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  8. Discrimination between Host and Pathogens by the Complement System

    OpenAIRE

    Pangburn, Michael K.; Ferreira, Viviana P.; Cortes, Claudio

    2008-01-01

    Pathogen-specific complement activation requires direct recognition of pathogens and/or the absence of complement control mechanisms on their surfaces. Antibodies direct complement activation to potential pathogens recognized by the cellular innate and adaptive immune systems. Similarly, the plasma proteins MBL and ficolins direct activation to microorganisms expressing common carbohydrate structures. The absence of complement control proteins permits amplification of complement by the altern...

  9. Inhibition of aberrant complement activation by a dimer of acetylsalicylic acid.

    Science.gov (United States)

    Lee, Moonhee; Wathier, Matthew; Love, Jennifer A; McGeer, Edith; McGeer, Patrick L

    2015-10-01

    We here report synthesis for the first time of the acetyl salicylic acid dimer 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS). DAS inhibits aberrant complement activation by selectively blocking factor D of the alternative complement pathway and C9 of the membrane attack complex. We have previously identified aurin tricarboxylic and its oligomers as promising agents in this regard. DAS is much more potent, inhibiting erythrocyte hemolysis by complement-activated serum with an IC50 in the 100-170 nanomolar range. There are numerous conditions where self-damage from the complement system has been implicated in the pathology, including such chronic degenerative diseases of aging as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and age-related macular degeneration. Consequently, there is a high priority for the discovery and development of agents that can successfully treat such conditions. DAS holds considerable promise for being such an agent.

  10. Complement defects in patients with chronic rhinosinusitis

    DEFF Research Database (Denmark)

    Gaunsbaek, Maria Quisgaard; Lange, Bibi; Kjeldsen, Anette D;

    2012-01-01

    The complement system is an important part of our immune system, and complement defects lead generally to increased susceptibility to infections and autoimmune diseases. We have studied the role of complement activity in relation with chronic rhinosinusitis (CRS), and more specifically studied...... whether complement defects collectively predispose individuals for CRS or affect CRS severity. The participants comprised 87 CRS patients randomly selected from the general population, and a control group of 150 healthy blood donors. The CRS patients were diagnosed according to the European Position Paper...... on Rhinosinusitis and nasal Polyps criteria, and severity was evaluated by the Sino-nasal Outcome Test-22. Serum samples were analysed by ELISA for activity of the respective pathways of complement, and subsequently for serum levels of relevant components. We found that the frequency of complement defects...

  11. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death.

    Science.gov (United States)

    Vanlerberghe, Greg C; Robson, Christine A; Yip, Justine Y H

    2002-08-01

    Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.

  12. Identifying alternate pathways for climate change to impact inland recreational fishers

    Science.gov (United States)

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  13. Interaction between human complement and a pectin type polysaccharide fraction, PMII, from the leaves of Plantago major L.

    Science.gov (United States)

    Michaelsen, T E; Gilje, A; Samuelsen, A B; Høgåsen, K; Paulsen, B S

    2000-11-01

    The interaction between a pectin type polysaccharide fraction, PMII, isolated from the leaves of Plantago major, and human complement was tested in two different hemolytic complement-fixation tests and in addition by two ELISA methods detecting complement-activation products. Sera were used as a complement source of 10 arbitrary human volunteers, individually and as a pool. The complement-fixation tests were designed to measure the concentration of the pectin necessary to inhibit 50% of the hemolysis (ICH(50)). The ELISA tests for complement-activation products were measured in AU/mg using a fully activated serum as a standard. We observed a more than 200-fold difference in ICH(50) activity of the PMII pectin in one of the hemolytic tests by varying the individual sera used as complement-source. On the other hand, the ELISA complement-activation tests showed no significant variation in activity of the PMII depending on the complement-serum used. The level of antibodies against PMII detected in the complement-sera did not correlate with the ICH(50) activity of PMII. The results show that PMII is a potent complement activator with an activity of the same order of magnitude on a weight basis as that of aggregated human immunoglobulin (Ig)G. This activation leads to a complement consumption probably explaining the PMII's effect in the complement-fixation tests. PMII seems to be an activator both on the classical and the alternative pathway of activation. The results might be related to the reported wound-healing effect of the leaves of Plantago major.

  14. Microbes bind complement inhibitor factor H via a common site.

    Directory of Open Access Journals (Sweden)

    T Meri

    Full Text Available To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH. FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19-20 (FH19-20. We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii. We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a "superevasion site."

  15. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    Science.gov (United States)

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D100), IV (F220) and V (F264) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  16. Complement and autoimmunity.

    Science.gov (United States)

    Ballanti, Eleonora; Perricone, Carlo; Greco, Elisabetta; Ballanti, Marta; Di Muzio, Gioia; Chimenti, Maria Sole; Perricone, Roberto

    2013-07-01

    The complement system is a component of the innate immune system. Its main function was initially believed to be limited to the recognition and elimination of pathogens through direct killing or stimulation of phagocytosis. However, in recent years, the immunoregulatory functions of the complement system were demonstrated and it was determined that the complement proteins play an important role in modulating adaptive immunity and in bridging innate and adaptive responses. When the delicate mechanisms that regulate this sophisticated enzymatic system are unbalanced, the complement system may cause damage, mediating tissue inflammation. Dysregulation of the complement system has been involved in the pathogenesis and clinical manifestations of several autoimmune diseases, such as systemic lupus erythematosus, vasculitides, Sjögren's syndrome, antiphospholipid syndrome, systemic sclerosis, dermatomyositis, and rheumatoid arthritis. Complement deficiencies have been associated with an increased risk to develop autoimmune disorders. Because of its functions, the complement system is an attractive therapeutic target for a wide range of diseases. Up to date, several compounds interfering with the complement cascade have been studied in experimental models for autoimmune diseases. The main therapeutic strategies are inhibition of complement activation components, inhibition of complement receptors, and inhibition of membrane attack complex. At present, none of the available agents was proven to be both safe and effective for treatment of autoimmune diseases in humans. Nonetheless, data from preclinical studies and initial clinical trials suggest that the modulation of the complement system could constitute a viable strategy for the treatment of autoimmune conditions in the decades to come.

  17. Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking

    DEFF Research Database (Denmark)

    Wang, Guankui; Chen, Fangfang; Banda, Nirmal K

    2016-01-01

    While having tremendous potential as therapeutic and imaging tools, the clinical use of engineered nanoparticles has been associated with serious safety concerns. Activation of the complement cascade and the release of proinflammatory factors C3a and C5a may contribute to infusion-related reactions......, whereas opsonization with C3 fragments promotes rapid recognition and clearance of nanomaterials by mononuclear phagocytes. We used dextran-coated superparamagnetic iron oxide nanoparticles (SPIO), which are potent activators of the complement system, to study the role of nanoparticle surface chemistry...... in inciting complement in human serum. Using complement inhibitors and measuring levels of fluid phase markers (sC5b-9, C5a, and Bb), we found that the majority of human complement activation by SPIO is through the alternative pathways (AP). SPIO prepared with high dextran/iron ratio showed some complement...

  18. Complement associated pathogenic mechanisms in myasthenia gravis.

    Science.gov (United States)

    Tüzün, Erdem; Christadoss, Premkumar

    2013-07-01

    The complement system is profoundly involved in the pathogenesis of acetylcholine receptor (AChR) antibody (Ab) related myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG). The most characteristic finding of muscle pathology in both MG and EAMG is the abundance of IgG and complement deposits at the nerve-muscle junction (NMJ), suggesting that AChR-Ab induces muscle weakness by complement pathway activation and consequent membrane attack complex (MAC) formation. This assumption has been supported with EAMG resistance of complement factor C3 knockout (KO), C4 KO and C5 deficient mice and amelioration of EAMG symptoms following treatment with complement inhibitors such as cobra venom factor, soluble complement receptor 1, anti-C1q, anti-C5 and anti-C6 Abs. Moreover, the complement inhibitor decay accelerating factor (DAF) KO mice exhibit increased susceptibility to EAMG. These findings have brought forward improvisation of novel therapy methods based on inhibition of classical and common complement pathways in MG treatment.

  19. Direct evidence of complement activation in HELLP syndrome: A link to atypical hemolytic uremic syndrome.

    Science.gov (United States)

    Vaught, Arthur J; Gavriilaki, Eleni; Hueppchen, Nancy; Blakemore, Karin; Yuan, Xuan; Seifert, Sara M; York, Sarah; Brodsky, Robert A

    2016-05-01

    HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets) is a severe variant of pre-eclampsia whose pathogenesis remains unclear. Recent evidence and clinical similarities suggest a link to atypical hemolytic uremic syndrome, a disease of excessive activation of the alternative complement pathway effectively treated with a complement inhibitor, eculizumab. Therefore, we used a functional complement assay, the modified Ham test, to analyze sera of women with classic or atypical HELLP syndrome, pre-eclampsia with severe features, normal pregnancies, and healthy nonpregnant women. Sera were also evaluated using levels of the terminal product of complement activation (C5b-9). We tested the in vitro ability of eculizumab to inhibit complement activation in HELLP serum. Increased complement activation was observed in participants with classic or atypical HELLP compared with those with normal pregnancies and nonpregnant controls. Mixing HELLP serum with eculizumab-containing serum resulted in a significant decrease in cell killing compared with HELLP serum alone. We found that HELLP syndrome is associated with increased complement activation as assessed with the modified Ham test. This assay may aid in the diagnosis of HELLP syndrome and could confirm that its pathophysiology is related to that of atypical hemolytic uremic syndrome.

  20. Development of a large scale human complement source for use in bacterial immunoassays.

    Science.gov (United States)

    Brookes, Charlotte; Kuisma, Eeva; Alexander, Frances; Allen, Lauren; Tipton, Thomas; Ram, Sanjay; Gorringe, Andrew; Taylor, Stephen

    2013-05-31

    The serum bactericidal assay is the correlate of protection for meningococcal disease but the use and comparison of functional immunological assays for the assessment of meningococcal vaccines is complicated by the sourcing of human complement. This is due to high levels of immunity in the population acquired through natural meningococcal carriage and means that many individuals must be screened to find donors with suitably low bactericidal titres against the target strain. The use of different donors for each meningococcal strain means that comparisons of assay responses between strains and between laboratories is difficult. We have developed a method for IgG-depletion of 300 ml batches of pooled human lepirudin-derived plasma using Protein G sepharose affinity chromatography that retains complement activity. However, IgG-depletion also removed C1q. This was also eluted from the affinity matrix, concentrated and added to the complement source. The final complement source retained mean alternative pathway activity of 96.8% and total haemolytic activity of 84.2% in four batches. Complement components C3, C5, properdin and factor H were retained following the process and the IgG-depleted complement was shown to be suitable for use in antibody-mediated complement deposition and serum bactericidal activity assays against serogroup B meningococci. The generation of large IgG-depleted batches of pooled human plasma allows for the comparison of immunological responses to diverse meningococcal strain panels in large clinical trials.

  1. Alternative energy production pathways in Taenia crassiceps cysticerci in vitro exposed to a benzimidazole derivative (RCB20).

    Science.gov (United States)

    Fraga, Carolina Miguel; Da Costa, Tatiane Luiza; De Castro, Ana Maria; Reynoso-Ducoing, Olivia; Ambrosio, Javier; Hernández-Campos, Alicia; Castillo, Rafael; Vinaud, Marina Clare

    2016-04-01

    Biochemical studies of benzimidazole derivatives are important to determine their mode of action and activity against parasites. The lack of antihelminthic alternatives to treat parasitic infections and albendazole resistance cases make the search for new antiparasitary drugs of utmost importance. The 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole (RCB20) is a benzimidazole derivative with promising effect. This study evaluated the effect of different concentrations of RCB20 in the alternative energetic pathway of in vitro Taenia crassiceps cysticerci. The parasites were in vitro exposed to 6.5 and 13 µM of RCB20 and albendazole sulfoxide (ABZSO). The quantification of acetate, acetoacetate, β-hydroxybutyrate, fumarate and propionate was performed by high-performance liquid chromatography. The quantification of urea, creatinine and total proteins was performed by spectrophotometry. The increase in β-hydroxybutyrate reflects the enhancement of the fatty acid oxidation in the treated groups. Volatile fatty acids secretion, acetate and propionate, was increased in the treated groups. The secretion mechanisms of the treated parasites were impaired due to organic acids increased concentrations in the cysticerci. It is possible to conclude that the metabolic effect on alternative energetic pathways is slightly increased in the parasites treated with RCB20 than the ones treated with ABZSO.

  2. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome.

    Science.gov (United States)

    Orth, Dorothea; Khan, Abdul Basit; Naim, Asma; Grif, Katharina; Brockmeyer, Jens; Karch, Helge; Joannidis, Michael; Clark, Simon J; Day, Anthony J; Fidanzi, Sonja; Stoiber, Heribert; Dierich, Manfred P; Zimmerhackl, Lothar B; Würzner, Reinhard

    2009-05-15

    Infections with enterohemorrhagic Escherichia coli (EHEC) are a major cause of hemolytic uremic syndrome (HUS). Shiga toxins (Stxs), especially Stx2, are believed to represent major virulence factors of EHEC, contributing to HUS pathogenesis. Beside EHEC-associated HUS, there are hereditary atypical forms of HUS, which are mostly caused by mutations of complement regulators. The aim of the present study was to investigate whether or not complement is also involved in the pathogenesis of EHEC-induced typical HUS, by being activated either directly or indirectly by involvement of its inhibitors. Purified Stx2 markedly activated complement via the alternative pathway and was found to bind to factor H (FH), however, only when it was active. No apparent cleavage or destruction of FH was visible, and cofactor activity in fluid phase was unaffected, but clearly delayed for surface-attached FH, where it is essential for host cell protection. Binding studies using FH constructs revealed that Stx2 binds to short consensus repeats (SCRs) 6-8 and SCRs18-20, but not to SCRs16-17, i.e., to regions involved in the surface recognition function of FH. In conclusion, complement, and in particular FH, not only plays an important role in atypical HUS, but most probably also in EHEC-induced HUS.

  3. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain...... requires activation of complement via the alternative pathway, as indicated by total inhibition upon neutralization of factor D, and is abrogated by combined blockade of CR1 and CR2, but not of either receptor alone. The membrane depolarization is not associated with the apoptosis of B cells, as examined...... by co-staining with APO-2.7 or by the TdT-mediated biotin-dUTP nick-end labelling (TUNEL) assay. Confocal microscopy revealed that depolarization and C3 deposition, unlike MAC deposition, are limited to restricted areas on the B-cell surface. Double staining revealed a close association between the C3...

  4. Complement defects in patients with chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Maria Q Gaunsbaek

    Full Text Available The complement system is an important part of our immune system, and complement defects lead generally to increased susceptibility to infections and autoimmune diseases. We have studied the role of complement activity in relation with chronic rhinosinusitis (CRS, and more specifically studied whether complement defects collectively predispose individuals for CRS or affect CRS severity. The participants comprised 87 CRS patients randomly selected from the general population, and a control group of 150 healthy blood donors. The CRS patients were diagnosed according to the European Position Paper on Rhinosinusitis and nasal Polyps criteria, and severity was evaluated by the Sino-nasal Outcome Test-22. Serum samples were analysed by ELISA for activity of the respective pathways of complement, and subsequently for serum levels of relevant components. We found that the frequency of complement defects was significantly higher among CRS patients than among healthy control subjects. A majority of Mannan-binding lectin deficient CRS patients was observed. The presence of complement defects had no influence on the severity of subjective symptoms. Our studies show that defects in the complement system collectively may play an immunological role related to the development of CRS. However, an association between severity of symptoms and presence of complement defects could not be demonstrated.

  5. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    Science.gov (United States)

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  6. What Videogame Making Can Teach Us about Literacy and Learning: Alternative Pathways into Participatory Culture

    Science.gov (United States)

    Peppler, Kylie A.; Kafai, Yasmin B.

    2007-01-01

    In this paper we articulate an alternative approach to look at video games and learning to become a creator and contributor in the digital culture. Previous discussions have focused mostly on playing games and learning. Here, we discuss game making approaches and their benefits for illuminating game preferences and learning both software design…

  7. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    White, Eric S., E-mail: docew@umich.edu [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Ritzenthaler, Jeffrey D.; Roman, Jesse [Department of Medicine, University of Louisville School of Medicine, Louisville, KY (United States); Muro, Andres F. [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  8. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva;

    Nitrate present or generated in any benthic ecosystem can be reduced by a number of microbial pathways, most notably denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA). The first two processes remove of biologically available N from...... the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...... ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from...

  9. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity

    OpenAIRE

    2013-01-01

    Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-hom...

  10. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways.

    Science.gov (United States)

    Hirota, Yuko; Yamashita, Shun-ichi; Kurihara, Yusuke; Jin, Xiulian; Aihara, Masamune; Saigusa, Tetsu; Kang, Dongchon; Kanki, Tomotake

    2015-01-01

    In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways.

  11. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

    Science.gov (United States)

    Chrysostomou, Constantine; Quandt, Erik M; Marshall, Nicholas M; Stone, Everett; Georgiou, George

    2015-03-20

    Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.

  12. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  13. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway.

    Directory of Open Access Journals (Sweden)

    Courtney A Lovejoy

    Full Text Available The Alternative Lengthening of Telomeres (ALT pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

  14. Development of an alternate pathway for materials destined for disposition to WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

  15. Radioimmunoassay for anaphylatoxins: a sensitive method for determining complement activation products in biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.L.; Hugli, T.E.

    1984-01-01

    Activation of the blood complement system generates bioactive fragments called anaphylatoxins. The three anaphylatoxins C3a, C4a, and C5a are released during classical pathway activation while only C3a and C5a are released when the alternative pathway of complement is activated. Radioimmunoassays were designed to individually detect and quantitate the activation fragments C3a, C4a, and C5a in biological fluids without interference from the precursor molecules C3, C4, and C5. Kinetics of complement activation in fresh human serum exposed to the activators zymosan, heat-aggregated immunoglobulin, or cobra venom factor were monitored using the radioimmunoassay technique. For the first time, activation of components C3, C4, and C5 was followed simultaneously in a single serum sample. Analysis of the patterns and extent of anaphylatoxin formation during activation in serum may be used to screen for deficiencies or defects in the complement cascade. Levels of the anaphylatoxins in freshly drawn serum were much higher than levels detected in EDTA-plasma. Detection of low-level complement activation in patient's blood, urine, or synovial fluid, using anaphylatoxin formation as an indicator, may prove useful in signaling numerous forms of inflammatory reactions. The demonstration of anaphylatoxins in clinical samples is being recognized as a valuable diagnostic tool in monitoring the onset of immune disease.

  16. Noun complement clauses as referential modifiers

    Directory of Open Access Journals (Sweden)

    Carlos de Cuba

    2017-01-01

    Full Text Available A number of recent analyses propose that so-called noun complement clauses should be analyzed as a type of relative clause. In this paper, I present a number of complications for any analysis that equates noun complement clauses to relative clauses, and conclude that this type of analysis is on the wrong track. I present cross-linguistic evidence showing that the syntactic behavior of noun complement clauses does not pattern with relative clauses. Patterns of complementizer choice and complementizer drop as well as patterns involving main clause phenomena and extraction differ in the two constructions, which I argue is unexpected under a relative clause analysis that involves operator movement. Instead I present an alternative analysis in which I propose that the referentiality of a noun complement clause is linked to its syntactic behavior. Following recent work, I claim that referential clauses have a syntactically truncated left-periphery, and this truncation can account for the lack of main clause phenomena in noun complement clauses. I argue that the truncation analysis is also able to accommodate complementizer data patterns more easily than relative clause analyses that appeal to operator movement.

  17. Variation in levels of enzymes related to energy metabolism in alternative developmental pathways of Blastocladiella emersonii.

    Science.gov (United States)

    Ingebretsen, O C; Sanner, T

    1976-06-01

    The activities of phosphofructokinase (PFK), fructose diphosphatase (FDP), nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP)-linked isocitrate dehydrogenases (IDHNAD, IDHNADP), two NAD-linked glutamate dehydrogenases (GDH1, GDH2), and isocitrate lyase were studied during the development of the two phenotypes, ordinary colorless and resistant sporangia (OC and RS plants), of water mold Blastocladiella emersonii in synchronized liquid cultures. The OC plants had a generation time of about 12 h, whereas the RS plants required 3.5 days to reach maturity. All the enzymes were present throughout the development of both phenotypes. In zoospores, PFK, FDP, and GDH2 were localized in the cytosol. The IDHNADP activity was distributed with two-thirds in the soluble and one-third in the particulate fraction. GDH1 and IDHNAD showed the same distribution and were predominantly present in the particulate fraction, presumably in the mitochondria. Isocitrate lyase was found in the particulate fraction. The enzyme levels changed considerably during development. FDP and IDHNADP varied in a parallel manner. Similarly, the three enzymes PFK, IDHNAD and GDH1 showed parallel variations. The activity patterns for all enzymes were different for the OC and RS pathways. Isocitrate lyase exhibited the largest changes in activity during development. Thus, during OC plant formation, its activity decreased by a factor of 20. GDH2 varied similarly to PFK and IDHNADP during OC plant development, whereas it behaved like isocitrate lyase during RS plant development. The ratios between anabolic and catabolic enzymes were higher in mature plants than in zoospores and higher in RS plants than in OC plants. The results indicate that the variations in the enzyme levels are secondary to the critical changes involved in the transition from one developmental pathway to the other.

  18. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway.

    Science.gov (United States)

    Vidal, Berta; Serrano, Antonio L; Tjwa, Marc; Suelves, Mònica; Ardite, Esther; De Mori, Roberta; Baeza-Raja, Bernat; Martínez de Lagrán, María; Lafuste, Peggy; Ruiz-Bonilla, Vanessa; Jardí, Mercè; Gherardi, Romain; Christov, Christo; Dierssen, Mara; Carmeliet, Peter; Degen, Jay L; Dewerchin, Mieke; Muñoz-Cánoves, Pura

    2008-07-01

    In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.

  19. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  20. Interplay Between Amphioxus Complement with Sea Bass Macrophages: Opsonic Activity of Amphioxus Humoral Fluids

    Institute of Scientific and Technical Information of China (English)

    PAN Junli; LIU Min; ZHANG Shicui

    2011-01-01

    Previous studies have shown the existence of a complement system in the amphioxus Branchiostoma japonicum.However,whether it has an opsonic activity similar to that of vertebrates remains unknown.We demonstrated that the humoral fluid (HF)of amphioxus promoted the phagocytosis of yeast cells with sea bass (Lateolabraxjaponicus) macrophages,whereas the C3-depleted and heated HF significantly lost the phagocytosis-promoting capacity.In addition,the precipitation of factor B (Bf) led to a marked loss of opsonic activity.Moreover,C3 fragments in the HF were found to bind to yeast cell surfaces.The results indicate that the amphioxus complement system is an important element involved in the opsonic activity,which promotes the sea bass macrophage phagocytosis by tagging yeast cells with C3 fragments via the activation of alternative complement pathway.

  1. Role of complement and complement regulatory proteins in the complications of diabetes.

    Science.gov (United States)

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  2. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans.

    Science.gov (United States)

    Jang, Heeun; Kim, Kyuhyung; Neal, Scott J; Macosko, Evan; Kim, Dongshin; Butcher, Rebecca A; Zeiger, Danna M; Bargmann, Cornelia I; Sengupta, Piali

    2012-08-23

    Pheromone responses are highly context dependent. For example, the C. elegans pheromone ascaroside C9 (ascr#3) is repulsive to wild-type hermaphrodites, attractive to wild-type males, and usually neutral to "social" hermaphrodites with reduced activity of the npr-1 neuropeptide receptor gene. We show here that these distinct behavioral responses arise from overlapping push-pull circuits driven by two classes of pheromone-sensing neurons. The ADL sensory neurons detect C9 and, in wild-type hermaphrodites, drive C9 repulsion through their chemical synapses. In npr-1 mutant hermaphrodites, C9 repulsion is reduced by the recruitment of a gap junction circuit that antagonizes ADL chemical synapses. In males, ADL sensory responses are diminished; in addition, a second pheromone-sensing neuron, ASK, antagonizes C9 repulsion. The additive effects of these antagonistic circuit elements generate attractive, repulsive, or neutral pheromone responses. Neuronal modulation by circuit state and sex, and flexibility in synaptic output pathways, may permit small circuits to maximize their adaptive behavioral outputs.

  3. Bone marrow derived cells and alternative pathways of oogenesis in adult rodents.

    Science.gov (United States)

    Bukovsky, Antonin; Ayala, Maria E; Dominguez, Roberto; Svetlikova, Marta; Selleck-White, Rachel

    2007-09-15

    Oocyte generation in adult mouse ovaries by putative germ cells (PGCs) in bone marrow and peripheral blood has recently been proposed. It, however, remains unclear whether in laboratory rodents the PGCs reside in BM or the BM cells stimulate oogenesis from ovarian stem cells. We utilized immunoperoxidase staining to localize PGCs, oocytes, and BM derived cells in ovaries of adult (age 45-60 days) control and neonatally estrogenized rat females. In controls, BM derived cells accompanied emergence of PGCs from the ovarian surface epithelium (OSE) cells. The PGCs divided symmetrically, separated, and formed primordial follicles. A proportion (50%) of adult neonatally estrogenized rats lacked OSE. They exhibited occurrence of numerous BM derived cells and appearance of PGC precursors in the medulla. In juxtaposed deep ovarian cortex the emerging PGCs exhibited distinct pseudopodia and apparently migrated toward the mid cortex, where numerous primordial follicles were found. These observations indicate that BM derived cells accompany origination of PGCs from the OSE stem cells in normal adult rat females and from the medullary precursors in the adult neonatally estrogenized rats lacking OSE. An alternative origin of PGCs from the medullary region may explain why ovaries with destructed OSE are still capable of forming new primordial follicles.

  4. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart.

    Science.gov (United States)

    Yacobi-Sharon, Keren; Namdar, Yuval; Arama, Eli

    2013-04-15

    In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.

  5. Activation of the alternative NFκB pathway improves disease symptoms in a model of Sjogren's syndrome.

    Directory of Open Access Journals (Sweden)

    Adi Gilboa-Geffen

    Full Text Available The purpose of our study was to understand if Toll-like receptor 9 (TLR9 activation could contribute to the control of inflammation in Sjogren's syndrome. To this end, we manipulated TLR9 signaling in non-obese diabetic (NOD and TLR9(-/- mice using agonistic CpG oligonucleotide aptamers, TLR9 inhibitors, and the in-house oligonucleotide BL-7040. We then measured salivation, inflammatory response markers, and expression of proteins downstream to NF-κB activation pathways. Finally, we labeled proteins of interest in salivary gland biopsies from Sjogren's syndrome patients, compared to Sicca syndrome controls. We show that in NOD mice BL-7040 activates TLR9 to induce an alternative NF-κB activation mode resulting in increased salivation, elevated anti-inflammatory response in salivary glands, and reduced peripheral AChE activity. These effects were more prominent and also suppressible by TLR9 inhibitors in NOD mice, but TLR9(-/- mice were resistant to the salivation-promoting effects of CpG oligonucleotides and BL-7040. Last, salivary glands from Sjogren's disease patients showed increased inflammatory and decreased anti-inflammatory biomarkers, in addition to decreased levels of alternative NF-κB pathway proteins. In summary, we have demonstrated that activation of TLR9 by BL-7040 leads to non-canonical activation of NF-κB, promoting salivary functioning and down-regulating inflammation. We propose that BL-7040 could be beneficial in treating Sjogren's syndrome and may be applicable to additional autoimmune syndromes.

  6. Factor H-related proteins determine complement-activating surfaces.

    Science.gov (United States)

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  7. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  8. Aurin tricarboxylic acid self-protects by inhibiting aberrant complement activation at the C3 convertase and C9 binding stages.

    Science.gov (United States)

    Lee, Moonhee; Guo, Jian-Ping; McGeer, Edith G; McGeer, Patrick L

    2013-05-01

    Aberrant complement activation is known to exacerbate the pathology in a spectrum of degenerative diseases of aging. We previously reported that aurin tricarboxylic acid (ATA) is an orally effective agent which prevents formation of the membrane attack complex of complement. It inhibits C9 attachment to tissue bound C5b678 and thus prevents bystander lysis of host cells. In this study, we investigated the effects of ATA on the alternative complement pathway. We found that ATA prevented cleavage of the tissue bound properdin-C3b-Factor B complex into the active C3 convertase enzyme properdin-C3b-Factor Bb. This inhibition was reversed by adding Factor D to the serum. Using enzyme-linked immunosorbent type assays, we established that ATA binds directly to Factor D and C9 but not to properdin or other complement proteins. We conclude that ATA, by inhibiting at two stages of the alternative pathway, might be a particularly effective therapeutic agent in conditions such as macular degeneration, paroxysmal nocturnal hemoglobinemia, and rheumatoid arthritis, in which activation of the alternative complement pathway initiates self damage.

  9. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chapman, Stephen P; Paget, Caroline M; Johnson, Giles N; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential-impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism.

  10. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney.

    Science.gov (United States)

    Java, Anuja; Liszewski, M Kathryn; Hourcade, Dennis E; Zhang, Fan; Atkinson, John P

    2015-10-01

    The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney.

  11. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  12. RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of 'alternative NHEJ'.

    Science.gov (United States)

    Gigi, Vered; Lewis, Susanna; Shestova, Olga; Mijušković, Martina; Deriano, Ludovic; Meng, Wenzhao; Luning Prak, Eline T; Roth, David B

    2014-06-01

    DNA double-stranded breaks (DSBs) can be repaired by several mechanisms, including classical NHEJ (c-NHEJ) and a poorly defined, error-prone process termed alternative NHEJ (a-NHEJ). How cells choose between these alternatives to join physiologic DSBs remains unknown. Here, we show that deletion of RAG2's C-terminus allows a-NHEJ to repair RAG-mediated DSBs in developing lymphocytes from both c-NHEJ-proficient and c-NHEJ-deficient mice, demonstrating that the V(D)J recombinase influences repair pathway choice in vivo. Analysis of V(D)J junctions revealed that, contrary to expectation, junctional characteristics alone do not reliably distinguish between a-NHEJ and c-NHEJ. These data suggest that a-NHEJ is not necessarily mutagenic, and may be more prevalent than previously appreciated. Whole genome sequencing of a lymphoma arising in a p53(-/-) mouse bearing a C-terminal RAG2 truncation reveals evidence of a-NHEJ and also of aberrant recognition of DNA sequences resembling RAG recognition sites.

  13. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L. seedlings response to abiotic stress

    Directory of Open Access Journals (Sweden)

    Lijie eWei

    2015-11-01

    Full Text Available Effects of brassinosteroids (BRs on cucumber (Cucumis sativus L. abiotic stresses resistance to salt, polyethylene glycol (PEG, cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 µM brassinolide (BL, the most active BRs relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (CSACS1, ripening-related ACC synthase2 (CSACS2, ripening-related ACC synthase3 (CSACS3, 1-aminocyclopropane-1-carboxylate oxidase1 (CSACO1, 1-aminocyclopropane-1-carboxylate oxidase2 (CSACO2 and CSAOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings.

  14. Infections Revealing Complement Deficiency in Adults

    Science.gov (United States)

    Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; Auvinet, H.; Valla, F.; Lechiche, C.; Davido, B.; Martinot, M.; Biron, C.; Lucht, F.; Asseray, N.; Froissart, A.; Buzelé, R.; Perlat, A.; Boutboul, D.; Fremeaux-Bacchi, V.; Isnard, S.; Bienvenu, B.

    2016-01-01

    Abstract Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies. A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis. Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15–67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1–10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35

  15. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways.

    Directory of Open Access Journals (Sweden)

    Aishwarya G Jacob

    Full Text Available MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.

  16. Experiencias de profesionales de enfermería en terapias alternativas y complementarias aplicadas a personas en situaciones de dolor Experiences of nursing professionals in alternative and complementing therapies applied to people in pain situations

    Directory of Open Access Journals (Sweden)

    BLANCA CECILIA VANEGAS DE AHOGADO

    2008-07-01

    Full Text Available Para conocer las experiencias de profesionales de enfermería en el uso de terapias alternativas y complementarias aplicadas durante el cuidado de la salud a personas en situación de dolor, se realizó un estudio cualitativo, como trabajo de grado de un grupo de estudiantes -de pregrado- de Enfermería de la Uni-versidad El Bosque, entre los años 2005 y 2007, en el que participaron cuatro profesionales de enfermería, con varios años de experiencia en la utilización de Terapia Floral, Acupuntura, Homeopatía, Quiromasaje y Naturopatía; es decir, aquellas terapias que, además permiten una acción sinérgica al combinarse con los procedimientos terapéuticos médico-farmacológicos-quirúrgicos convencionales, a los cuales complementan; la selección de participantes se hizo mediante la técnica de bola de nieve. La información se recogió a través de entrevistas profundas semiestructuradas. El análisis de los resultados, permitió conocer que dichas experiencias no tienen como único propósito aliviar determinado tipo de dolor, sino, por lo general, valorar el estado de salud y hacer las intervenciones con enfoque integral, considerando a la persona como un ser holístico; por otra parte, este trabajo les ha proporcionado a las participantes gran satisfacción y posibilidades de desarrollo personal.To know the experiences of nursing professionals on the use of alternative and complementing therapies applied during health care to people in pain situations, a qualitative study was carried out, as a graduation project for a group of nursing students -undergraduates- from the Universidad del Bosque, between 2005 and 2007, in which four nursing professionals took part. They had several years of experience in the use of floral therapy, acupuncture, homeopathy, chiropractic massage therapy and naturopathy; in other words, those therapies that also enable a synergic action when combined with the conventional therapeutic medical

  17. Experiences of nursing professionals in alternative and complementing therapies applied to people in pain situations Experiencias de profesionales de enfermería en terapias alternativas y complementarias aplicadas a personas en situaciones de dolor

    Directory of Open Access Journals (Sweden)

    MARÍN ARIZA DIEGO ANDRÉS

    2008-07-01

    Full Text Available To know the experiences of nursing professionals on the use of alternative and complementing therapies applied during health care to people in pain situations, a qualitative study was carried out, as a graduation project for a group of nursing students –undergraduates– from the Universidad del Bosque, between 2005 and 2007, in which four nursing professionals took part. They had several years of experience in the use of floral therapy, acupuncture, homeopathy, chiropractic massage therapy and naturopathy; in other words, those therapies that also enable a synergic action when combined with the conventional therapeutic medical-pharmacologic-surgical procedures, which they complement; the selection of participants wasmadeusing the "snow ball" technique. The information was gathered by means of semi-structured deep interviews. The analysis of the results enabled us to learn that said experiences do not have as sole purpose to relieve a determined type of pain, but, generally, to evaluate the health condition and to intervene with an integral focus, considering the individual as a holistic human being; on the other hand, this work has given the students great satisfaction and possibilities for personal development.Para conocer las experiencias de profesionales de enfermería en el uso de terapias alternativas y complementarias aplicadas durante el cuidado de la salud a personas en situación de dolor, se realizó un estudio cualitativo, como trabajo de grado de un grupo de estudiantes –de pregrado– de Enfermería de la Uni-versidad El Bosque, entre los años 2005 y 2007, en el que participaron cuatro profesionales de enfermería, con varios años de experiencia en la utilización de Terapia Floral, Acupuntura, Homeopatía, Quiromasaje y Naturopatía; es decir, aquellas terapias que, además permiten una acción sinérgica al combinarse con los procedimientos terapéuticos médico-farmacológicos-quirúrgicos convencionales, a los cuales

  18. Atypical hemolytic uremic syndrome: update on the complement system and what is new.

    Science.gov (United States)

    Hirt-Minkowski, Patricia; Dickenmann, Michael; Schifferli, Jürg A

    2010-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disease of microangiopathic hemolytic anemia, thrombocytopenia, and predominant renal impairment. It is characterized by the absence of Shiga toxin-producing bacteria as a triggering factor. During the last decade, aHUS has been demonstrated to be a disorder of the complement alternative pathway dysregulation, as there is a growing list of mutations and polymorphisms in the genes encoding the complement regulatory proteins that alone or in combination may lead to aHUS. Approximately 60% of aHUS patients have so-called 'loss-of-function' mutations in the genes encoding the complement regulatory proteins, which normally protect host cells from complement activation: complement factor H (CFH), factor I (CFI) and membrane cofactor protein (MCP or CD46), or have 'gain-of-function' mutations in the genes encoding the complement factor B or C3. In addition, approximately 10% of aHUS patients have a functional CFH deficiency due to anti-CFH antibodies. Recent advances in understanding the pathogenesis of aHUS have led to a revised classification of the syndrome. Normal plasma levels of CFH and CFI do not preclude the presence of a mutation in these genes. Further, genotype-phenotype correlations of aHUS have clinical significance in predicting renal recovery and transplant outcome. Therefore, it is important to make a comprehensive analysis and perform genetic screening of the complement system in patients with aHUS to allow a more precise approach, especially before transplantation. This may also provide opportunities for more specific treatments in the near future, as complement inhibition could represent a therapeutic target in these patients who have a considerably poor prognosis in terms of both mortality and progression to end-stage renal disease and a great risk of disease recurrence after transplantation.

  19. Finite Complements in English

    Institute of Scientific and Technical Information of China (English)

    Ronald W. Langacker

    2008-01-01

    This paper explores the conceptual basis of finite complimentation in English.It first considem the distinguishing property of a finite clause,namely grounding,effeeted by tense and the modals.Notions crucial for clausal grounding--including a reality conception and the striving for control at the effective and epistemic levelsalso figure in the semantic import of eomplementation.An essential feature of complement constructions is the involvement of multiple conceptualizers,each with their own conception of reality.The different types of complement and their grammatical markings can be characterized on this basis.Finite complements differ from other types by virtue of expressing an autonomous proposition capable of being apprehended by multiple conceptualizers,each from their own vantage point.Acognitive model representing phases in the striving for epistemic control provides a partial basis for the semantic description of predicates taking finite complements.The same model supports the description of both personal and impersonal complement constructions.

  20. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Pedersen, Morten Løbner; Marquart, Hanne Vibeke

    2002-01-01

    Normal human B lymphocytes are known to activate the alternative pathway (AP) of complement, leading to C3-fragment deposition and membrane attack complex (MAC) formation. The process is mediated via complement receptor type 2 (CR2, CD21), with complement receptor type 1 (CR1, CD35) playing...... a subsidiary role. In this study, we examine the relative contributions of CR1 and CR2 to the deposition of C3 fragments and MAC on B lymphocytes under circumstances where all complement pathways are operational. C3-fragment deposition and MAC formation were assessed on human peripheral B lymphocytes......) bearing CR1, however, markedly reduced both C3-fragment deposition and MAC formation. Our data suggest that C3-fragment deposition and MAC formation on B lymphocytes in vivo may involve both AP and classical pathway activation, with CR1 contributing significantly to the latter. On the other hand...

  1. Efficacy of Targeted Complement Inhibition in Experimental C3 Glomerulopathy

    Science.gov (United States)

    Ruseva, Marieta M.; Peng, Tao; Lasaro, Melissa A.; Bouchard, Keith; Liu-Chen, Susan; Sun, Fang; Yu, Zhao-Xue; Marozsan, Andre; Wang, Yi

    2016-01-01

    C3 glomerulopathy refers to renal disorders characterized by abnormal accumulation of C3 within the kidney, commonly along the glomerular basement membrane (GBM). C3 glomerulopathy is associated with complement alternative pathway dysregulation, which includes functional defects in complement regulator factor H (FH). There is no effective treatment for C3 glomerulopathy. We investigated the efficacy of a recombinant mouse protein composed of domains from complement receptor 2 (CR2) and FH (CR2-FH) in two models of C3 glomerulopathy with either preexisting or triggered C3 deposition along the GBM. FH-deficient mice spontaneously develop renal pathology associated with abnormal C3 accumulation along the GBM and secondary plasma C3 deficiency. CR2-FH partially restored plasma C3 levels in FH-deficient mice 2 hours after intravenous injection. CR2-FH specifically targeted glomerular C3 deposits, reduced the linear C3 reactivity assessed with anti-C3 and anti-C3b/iC3b/C3c antibodies, and prevented further spontaneous accumulation of C3 fragments along the GBM. Reduction in glomerular C3d and C9/C5b-9 reactivity was observed after daily administration of CR2-FH for 1 week. In a second mouse model with combined deficiency of FH and complement factor I, CR2-FH prevented de novo C3 deposition along the GBM. These data show that CR2-FH protects the GBM from both spontaneous and triggered C3 deposition in vivo and indicate that this approach should be tested in C3 glomerulopathy. PMID:26047789

  2. The role of activation of the lectin pathway of complement in pathogenesy of IgA nephropathy%补体活化的凝集素途径在IgA肾病发病中的作用

    Institute of Scientific and Technical Information of China (English)

    张伟; 王墨; 李秋

    2011-01-01

    To investigate the mechanism of activation the lectin pathway of complement in IgA nephropathy,enzyme-linked immunosorbent assay was performed to detect mining level of serumal mannose-binding lectin (MBL); immunohistochemical method was performed to detect expression of MBL、MASP-1、C3、Clq、IgA and C5b-9 on renal specimens. Patients of IgAN were characterized into MBL-positive cases and MBL-negative cases by glomerular co-deposition of MBL and MASP, and were analyzed distinction of couch expressionition retrospectively. Glomerular deposition of MBL was observed in 22 of 53 cases (41.5%) with IgAN and showed a mesangial pattern. All MBL-positive cases, but none of the MBL-negative cases showed glomerular co-deposition of MBLassociated serine proteases, C3 and C5b-9. Among patients of IgAN, serum level of MBL did not show significant difference than unimpaired patients. Patients of IgAN with glomerular MBL deposition, pathology classification was not correlation with intension of MBL deposition. Intension of MBL deposition was positive correlation with IgA in patients of IgAN. MBL-positive cases have significantly more proteinuria and more attacking macroscopic hematuria as MBL-negative cases, which shows activation of the mero-lectin pathway of complement is significant in IgA nephropathy.%目的 探讨补体活化的凝集素途径在IgA1肾病发病中的作用.方法 用ELISA方法 检测20例IgAN患儿和正常儿童血清的MBL水平,免疫组化检测53例IgA肾病、23例非IgA沉积肾小球疾病患儿1肾组织甘露聚糖结合凝集素(MBL)、MBL相关的丝氨酸蛋白酶(MASP-1)、C3、C1q、IgA和C5b-9的表达,了解有无MBL-MASP-1途径补体活化参与IgAN发病;回顾性分析MBL-MASP-1沉积阳性组和MBL-MASP-1沉积阴性组患儿不同临床表现的差异;分析IgAN的MBL沉积强度与病理分级的相关性,了解不同程度补体活化与IgAN病理损害的关系.结果 22例IgAN患儿肾小球有MBL、MASP-1、C3和C5b-9

  3. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    Science.gov (United States)

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J; Rogers, N C; Smith, J M; Stark, G R; Gardiner, K; Mogensen, K E

    1995-10-16

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two are transmembrane proteins with identical extracellular and transmembrane domains but divergent cytoplasmic tails of 67 and 251 amino acids. A mutant cell line U5A, completely defective in IFN-alpha beta binding and response, has been isolated and characterized. Expression in U5A cells of the polypeptide with the long cytoplasmic domain reconstitutes a functional receptor that restores normal interferon binding, activation of the JAK/STAT signal transduction pathway, interferon-inducible gene expression and antiviral response. The IFNAR2 gene maps at 0.5 kb from the CRFB4 gene, establishing that together IFNAR2, CRFB4, IFNAR1 and AF1 form a cluster of class II cytokine receptor genes on human chromosome 21.

  4. Re-assessing H and C Isotope Signatures of Biogenic Methane in Coalbeds and Shales: Metabolic Pathways and Alternative Influences

    Science.gov (United States)

    Vinson, D. S.; McIntosh, J. C.; Blair, N. E.; Martini, A. M.

    2013-12-01

    Hydrogen and carbon isotopes of microbial methane have long been applied to distinguish metabolic pathways of methanogenesis (utilization of acetate vs. H2+CO2 by methanogens). However, application of isotopic tools in hydrocarbon and biodegradation systems requires improved understanding of what is actually recorded by C and H isotopes of biogenic methane. Unlike culture studies where the fractionation factors of methanogenic pathways have been defined, field-collected gas or water samples represent net apparent isotope signatures influenced by a variety of overlapping water-rock-microbial interaction processes. Understanding these processes is important for modeling subsurface carbon cycling and biostimulation efforts for enhanced microbial gas production. Briefly, trends are apparent from a re-analysis of recently published water and gas isotope data from biogenic coalbed methane and shale gas systems: (1) δ13C-CH4 and the relationship between δ13C-CH4 and δ13C-CO2 (α13CCO2-CH4=(δ13C-CO2 + 1000)/(δ13C-CH4 +1000)), can also record the competition between methanogenesis and non-methanogenic processes (e.g. sulfate reduction), rather than simply recording the pathways of methanogenesis itself; and (2) Interpretation of δ2H-CH4 and δ2H-H2O can be inconsistent with δ13C-based fingerprinting techniques and indeed could be highly influenced by isotope exchange between water and methane precursors. This study provides an alternative approach for interpreting δ13C in shallow biogenic gas which considers that Corg may be consumed by competing, highly-fractionating and less-fractionating processes (e.g. methanogenesis and sulfate reduction, respectively). Whereas variation in apparent α13CCO2-CH4 could be inferred to indicate variation of metabolic pathways (that is, acetate fermentation vs. CO2 reduction) in some coalbed methane systems such as the Powder River Basin, the influx of sulfate relative to the overall Corg biodegradation rate could also be an

  5. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    Science.gov (United States)

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  6. Phenylbutyrate improves nitrogen disposal via alternative pathway without eliciting an increase in protein breakdown and catabolism in control and ornithine transcarbamylace-deficient patients

    Science.gov (United States)

    Phenylbutyrate (PB) is a drug used in urea cycle disorder patients to elicit alternative pathways for nitrogen disposal. However, PB decreases plasma branched chain amino acid (BCAA) concentrations and prior research suggests that PB may increase leucine oxidation, indicating increased protein degra...

  7. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach.

    Science.gov (United States)

    Grumach, Anete Sevciovic; Kirschfink, Michael

    2014-10-01

    Complement deficiencies comprise between 1 and 10% of all primary immunodeficiencies (PIDs) according to national and supranational registries. They are still considered rare and even of less clinical importance. This not only reflects (as in all PIDs) a great lack of awareness among clinicians and general practitioners but is also due to the fact that only few centers worldwide provide a comprehensive laboratory complement analysis. To enable early identification, our aim is to present warning signs for complement deficiencies and recommendations for diagnostic approach. The genetic deficiency of any early component of the classical pathway (C1q, C1r/s, C2, C4) is often associated with autoimmune diseases whereas individuals, deficient of properdin or of the terminal pathway components (C5 to C9), are highly susceptible to meningococcal disease. Deficiency of C1 Inhibitor (hereditary angioedema, HAE) results in episodic angioedema, which in a considerable number of patients with identical symptoms also occurs in factor XII mutations. New clinical entities are now reported indicating disease association with partial complement defects or even certain polymorphisms (factor H, MBL, MASPs). Mutations affecting the regulators factor H, factor I, or CD46 and of C3 and factor B leading to severe dysregulation of the alternative pathway have been associated with renal disorders, such as atypical hemolytic uremic syndrome (aHUS) and - less frequent - with membranoproliferative glomerulonephritis (MPGN). We suggest a multi-stage diagnostic protocol starting based on the recognition of so called warning signs which should aid pediatricians and adult physicians in a timely identification followed by a step-wise complement analysis to characterize the defect at functional, protein and molecular level.

  8. Characterization and expression analysis of a complement component gene in sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-12-01

    The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.

  9. The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b.

    Directory of Open Access Journals (Sweden)

    Katrin Haupt

    2008-12-01

    Full Text Available The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1 from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG as a ligand that interacts with Factor H by a-to our knowledge-new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite SbiratioC3ratioFactor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and beta(2-glycoprotein I and interferes with innate immune recognition.

  10. Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice.

    Science.gov (United States)

    Takeshita, Ai; Kusakabe, Ken Takeshi; Hiyama, Masato; Kuniyoshi, Nobue; Kondo, Tomohiro; Kano, Kiyoshi; Kiso, Yasuo; Okada, Toshiya

    2014-05-01

    The complement system is one component of innate immunity that could participate in fetal loss. We have already reported that adipsin, a complement activator in the alternative pathway, is stably expressed in the placenta and that an increase in this expression is related to spontaneous abortion. However, complement inhibitor Crry was concurrently expressed in the placenta, and the role of complement factors during pregnancy was not clear. In the present study, we examined the endogenous regulation of complement factors in placenta and serum by using another model mouse for spontaneous abortion and studied the effect of exogenous complement disruption on pregnancy. Compared to control mice, the CBA/J×DBA/2 model mice had higher expression levels of adipsin in the placenta and serum. Adipsin and complement C3 were localized in the metrial gland and labyrinth regions, and both positive reactive ranges were limited in the maternal blood current in normal implantation sites. These results suggest that extrauterine adipsin hematogenously reaches the placenta, activates complement C3, and promotes destruction of the feto-maternal barrier in aborted implantation sites. Crry was consistently expressed in the placenta and serum and reduced in the resorption sites of CBA/J×DBA/2 mice as compared to normal sites. Injection of recombinant adipsin increased the resorption rate and changed the expression of Th-type cytokines toward a Th1 bias. The present study indicates that adipsin could induce the fetal loss that accompanies the Th1 bias and may be a crucial cause of spontaneous abortion. In addition, the local expression of Crry prevents complement activation in placenta in response to a systemic increase of adipsin.

  11. The Complement System in Lupus Nephritis.

    Science.gov (United States)

    Birmingham, Daniel J; Hebert, Lee A

    2015-09-01

    The complement system is composed of a family of soluble and membrane-bound proteins that historically has been viewed as a key component of the innate immune system, with a primary role of providing a first-line defense against microorganisms. Although this role indeed is important, complement has many other physiological roles, including the following: (1) influencing appropriate immune responses, (2) disposing of waste in the circulation (immune complexes, cellular debris), and (3) contributing to damage of self-tissue through inflammatory pathways. These three roles are believed to be significant factors in the pathogenesis of systemic lupus erythematosus, particularly its renal manifestation (lupus nephritis), contributing both protective and damaging effects. In this review, we provide an overview of the human complement system and its functions, and discuss its intricate and seemingly contradictory roles in the pathogenesis of lupus nephritis.

  12. Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eBohrer

    2015-01-01

    Full Text Available Plants assimilate inorganic sulfate into sulfur-containing vital metabolites. ATP sulfurylase (ATPS is the enzyme catalyzing the key entry step of the sulfate assimilation pathway in both plastids and cytosol in plants. Arabidopsis thaliana has four ATPS genes (ATPS1, -2, -3 and -4 encoding ATPS pre-proteins containing N-terminal transit peptide sequences for plastid targeting, however, the genetic identity of the cytosolic ATPS has remained unverified. Here we show that Arabidopsis ATPS2 dually encodes plastidic and cytosolic ATPS isoforms, differentiating their subcellular localizations by initiating translation at AUGMet1 to produce plastid-targeted ATPS2 pre-proteins or at AUGMet52 or AUGMet58 within the transit peptide to have ATPS2 stay in cytosol. Translational initiation of ATPS2 at AUGMet52 or AUGMet58 was verified by expressing a tandem-fused synthetic gene, ATPS2(5’UTR-His12:Renilla luciferase:ATPS2(Ile13-Val77:firefly luciferase, under a single constitutively active CaMV 35S promoter in Arabidopsis protoplasts and examining the activities of two different luciferases translated in-frame with split N-terminal portions of ATPS2. Introducing missense mutations at AUGMet52 and AUGMet58 significantly reduced the firefly luciferase activity, while AUGMet52 was a relatively preferred site for the alternative translational initiation. The activity of luciferase fusion protein starting at AUGMet52 or AUGMet58 was not modulated by changes in sulfate conditions. The dual localizations of ATPS2 in plastids and cytosol were further evidenced by expression of ATPS2-GFP fusion proteins in Arabidopsis protoplasts and transgenic lines, while they were also under control of tissue-specific ATPS2 promoter activity found predominantly in leaf epidermal cells, guard cells, vascular tissues and roots.

  13. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice

    Science.gov (United States)

    Becari, Christiane; Durand, Marina T.; Guimaraes, Alessander O.; Lataro, Renata M.; Prado, Cibele M.; de Oliveira, Mauro; Candido, Sarai C. O.; Pais, Paloma; Ribeiro, Mauricio S.; Bader, Michael; Pesquero, Joao B.; Salgado, Maria C. O.; Salgado, Helio C.

    2017-01-01

    In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice. PMID:28386233

  14. Sensitivity of Borrelia genospecies to serum complement from different animals and human: a host-pathogen relationship.

    Science.gov (United States)

    Bhide, Mangesh R; Travnicek, Milan; Levkutova, Maria; Curlik, Jan; Revajova, Viera; Levkut, Mikulas

    2005-02-01

    Different Borrelia species and serotypes were tested for their sensitivity to serum complement from various animals and human. Complement-mediated Borrelia killing in cattle, European bison and deer was higher irrespective of the Borrelia species whereas in other animals and human it was intermediate and Borrelia species-dependent. Activation of the alternative complement pathway by particular Borrelia strain was in correlation with its sensitivity or resistance. These results support the incompetent reservoir nature of cattle, European bison, red, roe and fallow deer, at the same time present the probable reservoir nature of mouflon, dog, wolf, cat and lynx. In short, this study reviews Borrelia-host relationship and its relevance in reservoir competence nature of animals.

  15. Expression, purification, cocrystallization and preliminary crystallographic analysis of sucrose octasulfate/human complement regulator factor H SCRs 6–8

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, Beverly E.; Johnson, Steven; Roversi, Pietro [The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Clark, Simon J. [Faculty of Life Sciences, Manchester University, Michael Smith Building, Oxford Road, Manchester M13 9PT (United Kingdom); Tarelli, Edward [Medical Biomics Centre, St George’s, University of London, Cranmer Terrace, London SW17 0RE (United Kingdom); Sim, Robert B. [The MRC Immunochemistry Unit, The University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Day, Antony J. [Faculty of Life Sciences, Manchester University, Michael Smith Building, Oxford Road, Manchester M13 9PT (United Kingdom); Lea, Susan M., E-mail: susan.lea@bnc.ox.ac.uk [The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom)

    2007-06-01

    The crystallization of human complement regulator FH-678{sub 402H} with a glycosaminoglycan analogue is described. Human plasma protein complement factor H (FH) is an inhibitor of the spontaneously activated alternative complement pathway. An allotypic variant of FH, 402His, has been associated with age-related macular degeneration, the leading cause of blindness in the elderly. Crystals of FH domains 6–8 (FH678) containing 402His have been grown in the presence of a polyanionic sucrose octasulfate ligand (an analogue of the natural glycosaminoglycan ligands of FH) using both native and selenomethionine-derivatized protein. Native data sets diffracting to 2.3 Å and SeMet data sets of up to 2.8 Å resolution have been collected. An anomalous difference Patterson map reveals self- and cross-peaks from two incorporated Se atoms. The corresponding selenium substructure has been solved.

  16. Complement system regulation and C3 glomerulopathy%补体系统调控异常与C3肾小球病

    Institute of Scientific and Technical Information of China (English)

    肖慧捷; 何瑞娟

    2013-01-01

    Complement system is a key system for immune surveillance and homeostasis. Excessive activation of complement system, especially the activation of alternative pathway may play a very important role in the pathogenesis of primary and secondary glomerulonephritis. C3 glomerulopathy is a newly named disease characterized by evident C3 deposition in the glomeruli with little or no immunoglobulin under immunofluorescence (IF). Its clinical and pathological manifestations vary a lot. The decreased plasma C3 and Factor H( FH) suggest that abnormal regulation of complement system plays an importment role in its pathogenesis. C3 glomerulopathy varies a lot as to its clinical manifestation, treatment and prognosis. The inhibition of excessive complement activation might be the key to treating C3 glomerulopathy.

  17. Neuroprotection from complement-mediated inflammatory damage.

    Science.gov (United States)

    Kulkarni, Amod P; Kellaway, Laurie A; Lahiri, Debomoy K; Kotwal, Girish J

    2004-12-01

    Several neurodegenerative disorders, such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease, are associated with inflammatory damage. The complex process of neuroinflammation involves various components of the immune system and the central nervous system. Particularly, brain astrocytes and microglial cells generate several inflammatory mediators like cytokines, leukotrienes, superoxide radicals, eicasonoids, and the components of the complement cascade. Complement plays an important role in the etiology of most of the neuroinflammatory disorders. To prevent long-term dysfunction inflammation in the central nervous system must be modulated with neuroprotective agents such as nonsteroidal anti-inflammatory drugs, steroids, phenolic thiazoles, nitrones, catechins, nitric oxide synthetase inhibitors, flavonoids, and phosphodiesterase inhibitors. Few drugs are found to be effective and their therapeutic benefit is hampered by side effects. Most of the neuroprotective agents are free radical scavengers and many inhibit only one or two aspects of inflammation. The complement inhibitory activity of most of these agents is either unknown or not established. Thus, there is doubt regarding their therapeutic value in most of the inflammatory disorders in which complement plays a major role. In this context the role of a multifunctional protein, vaccinia virus complement control protein (VCP), is quite significant as it may play a pivotal role in the treatment of several neuroinflammatory disorders. VCP is known to inhibit both complement pathways involved in inflammation. It is also known to inhibit cytokines and chemokines in inflammation. Our recent studies on rats demonstrate that VCP administration inhibits macrophage infiltration, reduces spinal cord destruction, and improves motor skills associated with spinal cord injury, establishing VCP as a strong candidate for neuroprotection. Thus, complement inhibitors such as VCP can serve as neuroprotective

  18. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    Science.gov (United States)

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.

  19. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  20. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis

    Science.gov (United States)

    Maekawa, Tomoki; Krauss, Jennifer L.; Abe, Toshiharu; Jotwani, Ravi; Triantafilou, Martha; Triantafilou, Kathy; Hashim, Ahmed; Hoch, Shifra; Curtis, Michael A.; Nussbaum, Gabriel; Lambris, John D.; Hajishengallis, George

    2014-01-01

    SUMMARY Certain low-abundance bacterial species, such as the periodontitis-associated oral bacterium Porphyromonas gingivalis can subvert host immunity to remodel a normally symbiotic microbiota into a dysbiotic, disease-provoking state. However, such pathogens also exploit inflammation to thrive in dysbiotic conditions. How these bacteria evade immunity while maintaining inflammation is unclear. As previously reported, P. gingivalis remodels the oral microbiota into a dysbiotic state by exploiting complement. Now we show that in neutrophils P. gingivalis disarms a host-protective TLR2-MyD88 pathway via proteasomal degradation of MyD88, whereas it activates an alternate TLR2-Mal-PI3K pathway. This alternate TLR2-Mal-PI3K pathway blocks phagocytosis, provides ‘bystander’ protection to otherwise susceptible bacteria, and promotes dysbiotic inflammation in vivo. This mechanism to disengage bacterial clearance from inflammation required an intimate crosstalk between TLR2 and the complement receptor C5aR, and can contribute to the persistence of microbial communities that drive dysbiotic diseases. PMID:24922578

  1. Complement activation in chromosome 13 dementias

    DEFF Research Database (Denmark)

    Rostagno, A.; Revesz, T.; Lashley, T.;

    2002-01-01

    stable complexes in physiological conditions. Activation proceeds ∼70–75% through the classical pathway while only ∼25–30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptides in vivo might be a contributing factor...

  2. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.

    Science.gov (United States)

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M

    2014-05-30

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.

  3. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation.

    Directory of Open Access Journals (Sweden)

    Ran Sun

    2015-12-01

    Full Text Available Trichinella spiralis expresses paramyosin (Ts-Pmy as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated.The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration.Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.

  4. How antibodies use complement to regulate antibody responses.

    Science.gov (United States)

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  5. Complement-dependent transport of antigen into B cell follicles

    DEFF Research Database (Denmark)

    Gonzalez, Santiago F.; Lukacs-Kornek, Veronika; Kuligowski, Michael P.

    2010-01-01

    an additional novel pathway in which complement C3 and its receptors enhance humoral immunity through delivery of Ag to the B cell compartment. In this review, we discuss this pathway and highlight several novel exceptions recently found with a model influenza vaccine, such as mannose-binding lectin...

  6. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida

    Directory of Open Access Journals (Sweden)

    Angela ePoole

    2016-04-01

    _Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.

  7. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  8. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH.

    Science.gov (United States)

    Kenawy, Hany Ibrahim; Boral, Ismet; Bevington, Alan

    2015-01-01

    The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD.

  9. Effect of the extract of the tamarind (Tamarindus indica) fruit on the complement system: studies in vitro and in hamsters submitted to a cholesterol-enriched diet.

    Science.gov (United States)

    Landi Librandi, Ana Paula; Chrysóstomo, Taís Nader; Azzolini, Ana Elisa C S; Recchia, Carem Gledes Vargas; Uyemura, Sérgio Akira; de Assis-Pandochi, Ana Isabel

    2007-08-01

    This work evaluated a crude hydroalcoholic extract (ExT) from the pulp of the tamarind (Tamarindus indica) fruit as a source of compounds active on the complement system (CS) in vitro. ExT, previously characterized by other authors, had time and concentration dependent effects on the lytic activity of the CS. The activity of 0.8 mg/mL of the extract on the classical/lectin pathways (CP/LP) increased after 30 min of pre-incubation, while that of the alternative pathway (AP) decreased after 15 min at 1mg/mL. Since the CS is a mediator of inflammation, studies were also made in vivo, taking advantage of a model of hypercholesterolemia in hamsters to investigate the role of CS in the phase preceding the inflammatory process of atherosclerosis. Hamsters submitted to a diet rich in cholesterol showed increased lytic activity of the CP/LP and AP after 45 days. The activity levels of C2 and factor B components on respectively, classical/lectin and alternative pathways of the CS also increased. Early events cooperating to trigger the process of atherosclerotic lesions are not completely understood, and these alterations of complement may participate in these events. When treatment with a diet rich in cholesterol was associated to the furnishing of ExT, evaluation of complement components and complement lytic activity showed values similar to those of the controls, showing that treatment with ExT blocked the increase of complement activity caused by the cholesterol-rich diet. By itself, ExT had no effect on the complement system in vivo. ExT activity on the CS may be of interest for therapy and research purposes.

  10. Complement system in lung disease.

    Science.gov (United States)

    Pandya, Pankita H; Wilkes, David S

    2014-10-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.

  11. Keeping It All Going-Complement Meets Metabolism.

    Science.gov (United States)

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also

  12. The complement system in ischemia-reperfusion injuries.

    Science.gov (United States)

    Gorsuch, William B; Chrysanthou, Elvina; Schwaeble, Wilhelm J; Stahl, Gregory L

    2012-11-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.

  13. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-11-01

    Full Text Available Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer’s disease. The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset Alzheimer’s disease. This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing.

  14. The complement cascade in kidney disease: from sideline to center stage.

    Science.gov (United States)

    McCaughan, Jennifer A; O'Rourke, Declan M; Courtney, Aisling E

    2013-09-01

    Activation of the complement pathway is implicated in the pathogenesis of many kidney diseases. The pathologic and clinical features of these diseases are determined in part by the mechanism and location of complement activation within the kidney parenchyma. This review describes the physiology, action, and control of the complement cascade and explains the role of complement overactivation and dysregulation in kidney disease. There have been recent advances in the understanding of the effects of upregulation of the complement cascade after kidney transplantation. Complement plays an important role in initiating and propagating damage to transplanted kidneys in ischemia-reperfusion injury, antibody-mediated rejection, and cell-mediated rejection. Complement-targeting therapies presently are in development, and the first direct complement medication for kidney disease was licensed in 2011. The potential therapeutic targets for anticomplement drugs in kidney disease are described. Clinical and experimental studies are ongoing to identify further roles for complement-targeting therapy.

  15. Gamma Rossi-alpha, Feynman-alpha and Gamma Differential Die-Away concepts as a potential alternative/complement to the traditional thermal neutron based analysis in Safeguards

    CERN Document Server

    Chernikova, Dina; Trnjanin, Nermin; Axell, Kåre; Nordlund, Anders

    2015-01-01

    A new concept for thermal neutron based correlation and multiplicity measurements is proposed in this paper. The main idea of the concept consists of using 2.223 MeV gammas (or 1.201 MeV, DE) originating in the 1H(n,gamma)2D-reaction instead of using traditional thermal neutron counting. Results of investigations presented in this paper indicate that gammas from thermal neutron capture reaction preserve the information about the correlation characteristics of thermal (fast) neutrons in the same time scale. Therefore, instead of thermal neutron detectors (or as a complement) one may use traditional and inexpensive gamma detectors, such NaI, BGO, CdZnTe or any other gamma detectors. In this work we used D8x8 cm2 NaI scintillator to test the concept. Thus, the new approach helps to address the problem of replacement of 3He-counters and problems related to the specific measurements of spent nuclear fuel directly in the spent fuel pool. It has a particular importance for nuclear safeguards and security. Overall, t...

  16. Tanker avionics and aircrew complement evaluation.

    Science.gov (United States)

    Moss, R W; Barbato, G J

    1982-11-01

    This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.

  17. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    NARCIS (Netherlands)

    Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Fleury Rey, Y.; Bel-Rhlid, R.; Van den Broek, M.; Maleki Seifar, R.; Ten Pierick, A.; Thompson, M.; Müller, V.; Wahl, S.A.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were clon

  18. Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways

    NARCIS (Netherlands)

    Chuwah, C.; van Noije, T.; van Vuuren, D.P.; Hazeleger, W.; Strunk, A.; Deetman, S.; Beltran, A.M.; van Vliet, J.

    2013-01-01

    The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control pol

  19. 78 FR 3005 - Creating an Alternative Approval Pathway for Certain Drugs Intended to Address Unmet Medical Need...

    Science.gov (United States)

    2013-01-15

    ... requests to speak and will determine the amount of time allotted for each oral presentation, and the... the level of public participation. Attendance, Presentations, and Comments: Individuals who wish to..., fast- track designation), would this new pathway increase the therapeutic options for serious or...

  20. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  1. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    OpenAIRE

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J.; Rogers, N C; J. M. Smith; Stark, G R; Gardiner, K.; Mogensen, K E

    1995-01-01

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two ...

  2. Complement evasion by Staphylococcus aureus

    NARCIS (Netherlands)

    Jongerius, I.

    2010-01-01

    The complement system is the first line of defense against invading microorganisms. Activation of the complement system results in the coverage of bacteria with C3b, resulting in phagocytosis, and formation of C5a which is important for chemotaxis of neutrophils towards the site of infection. Staphy

  3. Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition.

    Science.gov (United States)

    Fan, Rong; DeFilippis, Kelly; Van Nostrand, William E

    2007-09-18

    The deposition of amyloid beta-protein (A beta) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the A beta peptide have been linked to the increase of vascular A beta deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-beta precursor protein transgenic mice harboring two CAA A beta mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular A beta deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase A beta production. In these Tg-SwDI mice, we have reported predominant fibrillar A beta along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular A beta in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular A beta. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular A beta deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular A beta deposition

  4. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  5. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Shuru; Dai, Fang; Gordin, Mikhail L; Yu, Zhaoxin; Gao, Yue; Song, Jiangxuan; Wang, Donghai

    2016-03-18

    Lithium-sulfur (Li-S) batteries have recently received great attention because they promise to provide energy density far beyond current lithium ion batteries. Typically, Li-S batteries operate by conversion of sulfur to reversibly form different soluble lithium polysulfide intermediates and insoluble lithium sulfides through multistep redox reactions. Herein, we report a functional electrolyte system incorporating dimethyl disulfide as a co-solvent that enables a new electrochemical reduction pathway for sulfur cathodes. This pathway uses soluble dimethyl polysulfides and lithium organosulfides as intermediates and products, which can boost cell capacity and lead to improved discharge-charge reversibility and cycling performance of sulfur cathodes. This electrolyte system can potentially enable Li-S batteries to achieve high energy density.

  6. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  7. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles and an alternative pathway with DMSO

    Directory of Open Access Journals (Sweden)

    Marilena Carbone

    2016-03-01

    In the process of searching a pathway to augment the intracellular uptake of proton caged compounds, we probed the association of 1-(2-nitrophenyl-ethylhexadecyl sulfonate (HDNS with DMSO, an agent to enhance the membrane permeability. We found out a different UV-induced protonation mechanism that opens up to new conduits of employing of proton caged compounds. Here, we report the infrared data we collected in this set of experiments.

  8. Inhibition of complement activation by natural sulfated polysaccharides (fucans) from brown seaweed.

    Science.gov (United States)

    Blondin, C; Fischer, E; Boisson-Vidal, C; Kazatchkine, M D; Jozefonvicz, J

    1994-03-01

    In the present study, we demonstrate that natural sulfated polysaccharides (fucans) isolated from brown seaweed are potent inhibitors of human complement activation. A fucan fraction of chromatographic molecular weight 22,600, termed BS8, was found to inhibit classical and alternative pathway activation in whole serum in a dose-dependent fashion. Fucan BS8 inhibited formation of the classical pathway C3 convertase by interfering with C1 activation or by inhibiting C4 cleavage and the interaction between C4b and C2. The fucan also inhibited formation/function of the alternative pathway C3 convertase by suppressing the binding of B to C3b and by interfering with the stabilizing function of Properdin. The inhibitory effect of fucans on formation of the C3 convertases was dependent on the molecular weight of the polysaccharide for compounds of chromatographic molecular weight below 16,600. Fucan had no effect on the function of the terminal complex. Since fucans were more efficient than heparin in inhibiting activation of the classical pathway in whole serum and exhibited a lesser specific anticoagulant activity on a molar basis, our results suggest that these natural sulfated polysaccharides have a potential for use as anti-complementary and anti-inflammatory agents.

  9. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death.

    Science.gov (United States)

    Robson, Christine A; Vanlerberghe, Greg C

    2002-08-01

    The plant mitochondrial electron transport chain is branched such that electrons at ubiquinol can be diverted to oxygen via the alternative oxidase (AOX). This pathway does not contribute to ATP synthesis but can dampen the mitochondrial generation of reactive oxygen species. Here, we establish that transgenic tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells lacking AOX (AS8 cells) show increased susceptibility to three different death-inducing compounds (H(2)O(2), salicylic acid [SA], and the protein phosphatase inhibitor cantharidin) in comparison with wild-type cells. The timing and extent of AS8 cell death are very similar among the three treatments and, in each case, are accompanied by the accumulation of oligonucleosomal fragments of DNA, indicative of programmed cell death. Death induced by H(2)O(2) or SA occurs by a mitochondria-dependent pathway characterized by cytochrome c release from the mitochondrion. Conversely, death induced by cantharidin occurs by a pathway without any obvious mitochondrial involvement. The ability of AOX to attenuate these death pathways may relate to its ability to maintain mitochondrial function after insult with a death-inducing compound or may relate to its ability to prevent chronic oxidative stress within the mitochondrion. In support of the latter, long-term treatment of AS8 cells with an antioxidant compound increased the resistance of AS8 cells to SA- or cantharidin-induced death. The results indicate that plants maintain both mitochondria-dependent and -independent pathways of programmed cell death and that AOX may act as an important mitochondrial "survival protein" against such death.

  10. Complement in health and disease.

    Science.gov (United States)

    Carroll, Maria V; Sim, Robert B

    2011-09-16

    The complement system consists of about 35-40 proteins and glycoproteins present in blood plasma or on cell surfaces. Its main biological function is to recognise "foreign" particles and macromolecules, and to promote their elimination either by opsonisation or lysis. Although historically complement has been studied as a system for immune defence against bacteria, it has an important homeostatic role in which it recognises damaged or altered "self" components. Thus complement has major roles in both immune defence against microorganisms, and in clearance of damaged or "used" host components. Since complement proteins opsonise or lyse cells, complement can damage healthy host cells and tissues. The system is regulated by many endogenous regulatory proteins. Regulation is sometimes imperfect and both too much and too little complement activation is associated with many diseases. Excessive or inappropriate activation can cause tissue damage in diseases such as rheumatoid arthritis, age-related macular degeneration (AMD), multiple sclerosis, ischemia-reperfusion injury (e.g. ischemic stroke). Insufficient complement activity is associated with susceptibility to infection (mainly bacterial) and development of autoimmune disease, like SLE (systemic lupus erythematosus).

  11. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  12. Keeping It All Going—Complement Meets Metabolism

    Science.gov (United States)

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions

  13. In Silico study for diversing the molecular pathway of pigment formation: An alternative to manual coloring in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Ammara eAhad

    2015-09-01

    Full Text Available Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR is a vibrant enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/ anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII, sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132-157 was tested. Results showed that proline rich region position 12, 26 and 132-157 plays an important role in selective attachment of DFRs with respective substrates. Further, ‘Expasy ProtParam tool’ results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23 favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21 hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake.Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species.

  14. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG.

    Science.gov (United States)

    Cerezo-Guisado, María Isabel; Zur, Rafal; Lorenzo, María Jesús; Risco, Ana; Martín-Serrano, Miguel A; Alvarez-Barrientos, Alberto; Cuenda, Ana; Centeno, Francisco

    2015-10-01

    We investigated apoptosis induced by the green tea component the epigallocatechin-3-gallate (EGCG) and the pathways underlying its activity in a colon cancer cell line. A complete understanding of the mechanism(s) and molecules targeted by green tea polyphenols could be useful in developing novel therapeutic approaches for cancer treatment. EGCG, which is the major polyphenol in green tea, has cytotoxic effects and induced cell death in HT-29 cell death. In this study, we evaluated the effect EGCG on mitogen-activated protein kinase (MAPK) and Akt pathways. EGCG treatment increased phospho-ERK1/2, -JNK1/2 and -p38α, -p38γ and -p38δ, as well as phospho-Akt levels. Using a combination of kinase inhibitors, we found that EGCG-induced cell death is partially blocked by inhibiting Akt, ERK1/2 or alternative p38MAPK activity. Our data suggest that these kinase pathways are involved in the anti-cancer effects of EGCG and indicate potential use of this compound as chemotherapeutic agent for colon cancer treatment.

  15. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway.

    Science.gov (United States)

    Della-Maria, Julie; Zhou, Yi; Tsai, Miaw-Sheue; Kuhnlein, Jeff; Carney, James P; Paull, Tanya T; Tomkinson, Alan E

    2011-09-30

    Recent studies have implicated a poorly defined alternative pathway of nonhomologous end joining (alt-NHEJ) in the generation of large deletions and chromosomal translocations that are frequently observed in cancer cells. Here, we describe an interaction between two factors, hMre11/hRad50/Nbs1 (MRN) and DNA ligase IIIα/XRCC1, that have been linked with alt-NHEJ. Expression of DNA ligase IIIα and the association between MRN and DNA ligase IIIα/XRCC1 are altered in cell lines defective in the major NHEJ pathway. Most notably, DNA damage induced the association of these factors in DNA ligase IV-deficient cells. MRN interacts with DNA ligase IIIα/XRCC1, stimulating intermolecular ligation, and together these proteins join incompatible DNA ends in a reaction that mimics alt-NHEJ. Thus, our results provide novel mechanistic insights into the alt-NHEJ pathway that not only contributes to genome instability in cancer cells but may also be a therapeutic target.

  16. Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration.

    Science.gov (United States)

    Richards, Anna; Kavanagh, David; Atkinson, John P

    2007-01-01

    In this chapter, we examine the role of complement regulatory activity in atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). These diseases are representative of two distinct types of complement-mediated injury, one being acute and self-limited, the other reflecting accumulation of chronic damage. Neither condition was previously thought to have a pathologic relationship to the immune system. However, alterations in complement regulatory protein genes have now been identified as major predisposing factors for the development of both diseases. In aHUS, heterozygous mutations leading to haploinsufficiency and function-altering polymorphisms in complement regulators have been identified, while in AMD, polymorphic haplotypes in complement genes are associated with development of disease. The basic premise is that a loss of function in a plasma or membrane inhibitor of the alternative complement pathway allows for excessive activation of complement on the endothelium of the kidney in aHUS and on retinal debris in AMD. These associations have much to teach us about the host's innate immune response to acute injury and to chronic debris deposition. We all experience cellular injury and, if we live long enough, will deposit debris in blood vessel walls (atherosclerosis leading to heart attacks and strokes), the brain (amyloid proteins leading to Alzheimer's disease), and retina (lipofuscin pigments leading to AMD). These are three common causes of morbidity and mortality in the developed world. The clinical, genetic, and immunopathologic understandings derived from the two examples of aHUS and AMD may illustrate what to anticipate in related conditions. They highlight how a powerful recognition and effector system, the alternative complement pathway, reacts to altered self. A response to acute injury or chronic debris accumulation must be appropriately balanced. In either case, too much activation or too little regulation promotes

  17. Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds.

    Science.gov (United States)

    Zvyagintseva, T N; Shevchenko, N M; Nazarova, I V; Scobun, A S; Luk'yanov, P A; Elyakova, L A

    2000-07-01

    Fucoidans and laminarans from Laminaria cichorioides, Laminaria japonica, Fucus evanescens, laminaran from Laminaria gurjanovae, other beta-D-glucans (translam, pustulan and zymosan) and lambda-carrageenan from Chondrus armatus were used to study the effect of water-soluble polysaccharides from seaweeds on the alternative pathway of complement (APC). beta-D-Glucans and fucoidans under study differed appreciably from each other by structural characteristics, and also by degree of purification. beta-D-glucans, on ability to bind complement, ranked in a line according to a degree of their purification. Highly purified beta-D-glucans under study did not reveal an ability to bind complement. The fucoidans were divided conventionally into three groups according to their action on APC. Highly sulfated alpha-L-fucan from L. cichorioides with the greatest activity toward APC and caused 50% inhibition of reaction of activation (RA) of APC in a concentration of 0.5-0.7 mg/ml. Opposite 50% of inhibition of lysis of erythrocytes by sulfated heterogeneous fucoidan from L. japonica was achieved with 20 mg/ml. All other fucoidans and lambda-carrageenan have activity at 6-10 mg/ml concentration. Decreasing the sulfate content from 36% up to 9% in sample fucoidans under study was not reflected practically in the 50% inhibition concentration. Apparently, the degree of sulfating of fucoidans did not influence their action on APC. But the positive influence of fucose in structure of polysaccharide was obvious.

  18. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  19. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein.

    Science.gov (United States)

    Koenigs, Arno; Stahl, Julia; Averhoff, Beate; Göttig, Stephan; Wichelhaus, Thomas A; Wallich, Reinhard; Zipfel, Peter F; Kraiczy, Peter

    2016-05-01

    Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii.

  20. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  1. Heat differentiated complement factor profiling.

    Science.gov (United States)

    Hamsten, Carl; Skattum, Lillemor; Truedsson, Lennart; von Döbeln, Ulrika; Uhlén, Mathias; Schwenk, Jochen M; Hammarström, Lennart; Nilsson, Peter; Neiman, Maja

    2015-08-03

    Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.

  2. Complement factor I deficiency: a not so rare immune defect. Characterization of new mutations and the first large gene deletion

    Directory of Open Access Journals (Sweden)

    Alba-Domínguez María

    2012-06-01

    Full Text Available Abstract Background Complement Factor I (CFI is a serine protease with an important role in complement alternative pathway regulation. Complete factor I deficiency is strongly associated with severe infections. Approximately 30 families with this deficiency have been described worldwide. Patients and methods We have studied five new Spanish families suffering from CFI deficiency. From 19 screened people, 7 homozygous, 10 heterozygous and 2 healthy subjects were identified. Clinical, biochemical and genetic descriptions are included. Results Molecular studies demonstrated 4 novel mutations in the screened individuals; amongst them, we describe here the first great gene deletion reported in the CFI locus, which includes full exon 2 and part of the large intron 1. Conclusion CFI deficiency is possibly an underestimated defect and the eventual existence of this deficiency should be tested in those patients exhibiting low C3 and recurrent bacterial infections. We propose a simple diagnostic flowchart to help clinicians in the identification and correct diagnosis of such patients.

  3. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles and an alternative pathway with DMSO.

    Science.gov (United States)

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-03-01

    Proton caged compounds exhibit a characteristic behavior when directly dosed into cells or being coupled to gold nanoparticles prior to the dosing. When irradiated in the near ultraviolet region, they release protons that interact with intracellular HCO3 (-) to yield H2CO3. The dissociation of carbonic acid, then, releases CO2 that can be distinctively singled out in infrared spectra. In the process of searching a pathway to augment the intracellular uptake of proton caged compounds, we probed the association of 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) with DMSO, an agent to enhance the membrane permeability. We found out a different UV-induced protonation mechanism that opens up to new conduits of employing of proton caged compounds. Here, we report the infrared data we collected in this set of experiments.

  4. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles and an alternative pathway with DMSO

    Science.gov (United States)

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-01-01

    Proton caged compounds exhibit a characteristic behavior when directly dosed into cells or being coupled to gold nanoparticles prior to the dosing. When irradiated in the near ultraviolet region, they release protons that interact with intracellular HCO3− to yield H2CO3. The dissociation of carbonic acid, then, releases CO2 that can be distinctively singled out in infrared spectra. In the process of searching a pathway to augment the intracellular uptake of proton caged compounds, we probed the association of 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) with DMSO, an agent to enhance the membrane permeability. We found out a different UV-induced protonation mechanism that opens up to new conduits of employing of proton caged compounds. Here, we report the infrared data we collected in this set of experiments. PMID:26870760

  5. Functional analysis of Ficolin-3 mediated complement activation

    DEFF Research Database (Denmark)

    Hein, Estrid; Honoré, Christian Le Fèvre; Skjoedt, Mikkel-Ole;

    2010-01-01

    The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating...... Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation...... assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition...

  6. Staphylococcal Proteases Aid in Evasion of the Human Complement System

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz

    2014-01-01

    by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease...... lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component...... in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found...

  7. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita.

    Science.gov (United States)

    Iqbal, Sadia; Fosu-Nyarko, John; Jones, Michael G K

    2016-07-01

    The discovery of RNA interference (RNAi) as an endogenous mechanism of gene regulation in a range of eukaryotes has resulted in its extensive use as a tool for functional genomic studies. It is important to study the mechanisms which underlie this phenomenon in different organisms, and in particular to understand details of the effectors that modulate its effectiveness. The aim of this study was to identify and compare genomic sequences encoding genes involved in the RNAi pathway of four parasitic nematodes: the plant parasites Meloidogyne hapla and Meloidogyne incognita and the animal parasites Ascaris suum and Brugia malayi because full genomic sequences were available-in relation to those of the model nematode Caenorhabditis elegans. The data generated was then used to identify some potential targets for control of the root knot nematode, M. incognita. Of the 84 RNAi pathway genes of C. elegans used as model in this study, there was a 42-53 % reduction in the number of effectors in the parasitic nematodes indicating substantial differences in the pathway between species. A gene each from six functional groups of the RNAi pathway of M. incognita was downregulated using in vitro RNAi, and depending on the gene (drh-3, tsn-1, rrf-1, xrn-2, mut-2 and alg-1), subsequent plant infection was reduced by up to 44 % and knockdown of some genes (i.e. drh-3, mut-2) also resulted in abnormal nematode development. The information generated here will contribute to defining targets for more robust nematode control using the RNAi technology.

  8. Functional analysis of Ficolin-3 mediated complement activation.

    Directory of Open Access Journals (Sweden)

    Estrid Hein

    Full Text Available The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA was acetylated (acBSA and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway.

  9. Factor H-related protein 5 interacts with pentraxin 3 and the extracellular matrix and modulates complement activation.

    Science.gov (United States)

    Csincsi, Ádám I; Kopp, Anne; Zöldi, Miklós; Bánlaki, Zsófia; Uzonyi, Barbara; Hebecker, Mario; Caesar, Joseph J E; Pickering, Matthew C; Daigo, Kenji; Hamakubo, Takao; Lea, Susan M; Goicoechea de Jorge, Elena; Józsi, Mihály

    2015-05-15

    The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C-reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease.

  10. Complement sentences - complementizers of causative-manipulative verbs

    Directory of Open Access Journals (Sweden)

    Alanović Milivoj B.

    2015-01-01

    Full Text Available This paper presents the key structural and semantic features of the complement sentences that have the primary function of direct or indirect objects of one type of causative verbs - causative-manipulative verbs. Since the syntactic literature frequently discusses the structural characteristics of the complement sentences, the main objective of this article is focused on the semantic diversity of this type of sentences. The goal of the article is to determine the dependence of the realized meaning of a sentence on the semantic type of the main verb. Although the conjunction da is a typical subordinator of these sentences, a series of communicative verbs allows the use of complement sentences with interrogative adverbs and pronouns in the function of conjunctions. [Projekat Ministarstva nauke Republike Srbije, br.178004: Standardni srpski jezik - sintaksička, semantička i pragmatička istraživanja

  11. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Directory of Open Access Journals (Sweden)

    Daniela Tiemi Myamoto

    Full Text Available The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB, the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP, a von Willebrand Factor domain (vWFA, and a serine protease domain (SP. The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43% and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3 from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  12. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Science.gov (United States)

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  13. Structural Analysis and Anti-Complement Activity of Polysaccharides from Kjellmaniella crsaaifolia

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    2015-03-01

    Full Text Available Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3. Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW displayed lower activity levels than the crude polysaccharides (KCA and KCW, indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway.

  14. Functional analysis of Ficolin-3 mediated complement activation

    DEFF Research Database (Denmark)

    Hein, Estrid; Honoré, Christian; Skjoedt, Mikkel-Ole;

    2010-01-01

    The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating...

  15. Complement monitoring of Pluronic 127 gel and micelles

    DEFF Research Database (Denmark)

    Hamad, Islam; Hunter, A Christy; Moghimi, Seyed Moien

    2013-01-01

    transformations from gel to the solution state further incite complement through calcium-sensitive pathways, where a role for C1q and antibodies has been eliminated. Poloxamer addition to plasma/serum (at levels above its critical micelle concentration, cmc) induced formation of large and diffused structures...

  16. Complement inhibitory and anticoagulant activities of fractionated heparins

    NARCIS (Netherlands)

    Hennink, W.E.; Klerx, J.P.A.M.; Dijk, H. van; Feijen, J.

    1984-01-01

    Almost monodisperse heparin fractions (w/n < 1.1) were obtained by gel filtration of a commercial heparin. These fractions were assayed for anticoagulant activity (thrombin times and APTT), chromogenic anti-factor Xa activity, inhibitory activity for the human classical complement pathway, carboxyl

  17. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians.

    Science.gov (United States)

    Roberty, Stéphane; Bailleul, Benjamin; Berne, Nicolas; Franck, Fabrice; Cardol, Pierre

    2014-10-01

    Photosynthetic organisms have developed various photoprotective mechanisms to cope with exposure to high light intensities. In photosynthetic dinoflagellates that live in symbiosis with cnidarians, the nature and relative amplitude of these regulatory mechanisms are a matter of debate. In our study, the amplitude of photosynthetic alternative electron flows (AEF) to oxygen (chlororespiration, Mehler reaction), the mitochondrial respiration and the Photosystem I (PSI) cyclic electron flow were investigated in strains belonging to three clades (A1, B1 and F1) of Symbiodinium. Cultured Symbiodinium strains were maintained under identical environmental conditions, and measurements of oxygen evolution, fluorescence emission and absorption changes at specific wavelengths were used to evaluate PSI and PSII electron transfer rates (ETR). A light- and O2 -dependent ETR was observed in all strains. This electron transfer chain involves PSII and PSI and is insensitive to inhibitors of mitochondrial activity and carbon fixation. We demonstrate that in all strains, the Mehler reaction responsible for photoreduction of oxygen by the PSI under high light, is the main AEF at the onset and at the steady state of photosynthesis. This sustained photosynthetic AEF under high light intensities acts as a photoprotective mechanism and leads to an increase of the ATP/NADPH ratio.

  18. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation.

    Science.gov (United States)

    Holers, V Michael; Rohrer, Bärbel; Tomlinson, Stephen

    2013-01-01

    Recent approval of the first human complement pathway-directed therapeutics, along with high-profile genetic association studies, has catalyzed renewed biopharmaceutical interest in developing drugs that modulate the complement system. Substantial challenges remain, however, that must be overcome before widespread application of complement inhibitors in inflammatory and autoimmune diseases becomes possible. Among these challenges are the following: (1) defining the complement pathways and effector mechanisms that cause tissue injury in humans and determining whether the relative importance of each varies by disease, (2) blocking or modulating, using traditional small molecule or biologic approaches, the function of complement proteins whose circulating levels are very high and whose turnover rates are relatively rapid, especially in the setting of acute and chronic autoimmune diseases, and (3) avoiding infectious complications or impairment of other important physiological functions of complement when using systemically active complement-blocking agents. This chapter will review data that address these challenges to therapeutic development, with a focus on the development of a novel strategy of blocking specific complement pathways by targeting inhibitors using a recombinant portion of the human complement receptor type 2 (CR2/CD21) which specifically targets to sites of local complement C3 activation where C3 fragments are covalently fixed. Recently, the first of these CR2-targeted proteins has entered human phase I studies in the human disease paroxysmal nocturnal hemoglobinuria. The results of murine translational studies using CR2-targeted inhibitors strongly suggest that a guiding principle going forward in complement therapeutic development may well be to focus on developing strategies to modulate the pathway as precisely as possible by physically localizing therapeutic inhibitory effects.

  19. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.

    Science.gov (United States)

    Peckmann, Klaus; von Willert, Dieter J; Martin, Craig E; Herppich, Werner B

    2012-05-01

    Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their role in the control of the diurnal rhythm of malic and citric acids to a differential degree. In plants of both CAM types, the oxidative capacity of mitochondria, as well as the activity of CAM-linked mitochondrial enzymes, and of the alternative and the rotenone-resistant pathways of substrate oxidation were compared. Furthermore, a C₃ succulent was included, as well as both C₃ and CAM forms of Mesembryanthemum crystallinum during a salt-induced C₃-to-CAM shift. Mitochondria of PEPCK-type CAM plants exhibited a lower activity of malate oxidation, ratio of malate to succinate oxidation, and activity of mitochondrial NAD-ME. With the exception of Kalanchoë daigremontiana, leaf mitochondria of all other CAM species were highly sensitive to cyanide (80-100%), irrespective of the oxidant used. This indicates that the alternative oxidase is not of general importance in CAM. By contrast, rotenone-insensitive substrate oxidation was very high (50-90%) in all CAM species. This is the first comparison of the rotenone-insensitive pathway of respiration in plants with different CAM-types. The results of this study confirm that mitochondria are involved in the control of CAM to different degrees in the two CAM types, and they highlight the multiple roles of mitochondria in CAM.

  20. The Interleukin-13 Receptor-α1 Chain Is Essential for Induction of the Alternative Macrophage Activation Pathway by IL-13 but Not IL-4.

    Science.gov (United States)

    Sheikh, Faruk; Dickensheets, Harold; Pedras-Vasconcelos, Joao; Ramalingam, Thirumalai; Helming, Laura; Gordon, Siamon; Donnelly, Raymond P

    2015-01-01

    Macrophages coexpress both the interleukin (IL)-2Rγ chain (γ(c)) and IL-13Rα1. These receptor chains can heterodimerize with IL-4Rα to form type I or type II IL-4 receptor complexes, respectively. We used macrophages derived from Il2rg and Il13ra1 knockout (KO) mice to evaluate the requirements for these receptor chains for induction of the alternative macrophage activation (AMA) pathway by IL-4 and IL-13. Absence of γ(c) significantly decreased activation of STAT6 by IL-4 but not IL-13. However, although activation of STAT6 by IL-4 was markedly reduced in γ(c) KO macrophages, it was not abolished, indicating that IL-4 can still signal through type II IL-4 receptors via the IL-13Rα1 chain. IL-13 failed to activate STAT6 in macrophages derived from Il13ra1 KO mice; however, these cells remained fully responsive to IL-4. The inability of IL-13 but not IL-4 to signal in Il13ra1(-/-) macrophages correlated with the inability of IL-13 but not IL-4 to induce expression of genes such as Arg1, Retnla and Ccl11 that are characteristically expressed by alternatively activated macrophages. In addition, IL-13 but not IL-4 failed to induce membrane fusion and giant cell formation by Il13ra1 KO macrophages. These findings demonstrate that the IL-13Rα1 chain is essential for induction of the AMA pathway by IL-13 but not IL-4.

  1. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways.

    Science.gov (United States)

    Gsandtner, Ingrid; Freissmuth, Michael

    2006-08-01

    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.

  2. Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry forest region

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2016-12-01

    Full Text Available The design of strategies aimed at sustainable resource management requires an understanding of the trade-offs between the ecosystem services at stake, to determine appropriate ways in which to navigate them. We assess trade-offs between forage production for cattle ranching and the maintenance of carbon stocks or tree diversity in a Mexican tropical dry forest. Trade-offs between pairs of services were assessed by identifying their efficiency frontiers at both site and landscape scales. We also estimated service outcomes under current and hypothetical land-management conditions. We found stark trade-offs between fodder and carbon stocks and between fodder and tree species richness at the site scale. At the landscape scale, the efficiency frontier was concave, with a much less pronounced trade-off in the fodder-species richness case. Our estimates of current service supply levels showed a reduction of 18-21% for C stock and 41-43% for fodder biomass, relative to the maximum feasible values along the efficiency frontier. Choice of the optimum management strategy to reduce such inefficiency depended on deforestation level: secondary forest regeneration was most suitable when deforestation is low, whereas increased fodder productivity in the pastures is best when deforestation is high. Pasture enrichment with forage trees and secondary forest growth are potential management alternatives for achieving sustainability given the range of enabling ecological factors and to balance ecological and social sustainability given the requirements and preferences of local stakeholders. Given that analogous trade-offs are found across the tropics, this work contributes to reconciling tropical forest maintenance and its use for sustainable rural livelihoods.

  3. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia;

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM...... represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role...... for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid...

  4. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    Directory of Open Access Journals (Sweden)

    Anastazja Grabarz

    2013-10-01

    Full Text Available The choice of the appropriate double-strand break (DSB repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp generated by alternative end-joining (A-EJ. BLM represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role for BLM that influences the DSB repair pathway choice: (1 protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2 promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid unscheduled resection that might jeopardize genome integrity.

  5. Force Dynamics of Verb Complementation

    Directory of Open Access Journals (Sweden)

    Jacek Woźny

    2015-12-01

    Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.

  6. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...... in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses....

  7. Homocysteine, an indicator of methylation pathway alternation in Down syndrome and its regulation by folic acid therapy

    Directory of Open Access Journals (Sweden)

    Hala M El-Gendy

    2007-06-01

    Full Text Available

    BACKGROUND: Down syndrome (DS is a complex genetic disease. Some clinical features of patients with this syndrome could be related to functional folate deficiency. The purpose of this study was to evaluate the total homocysteine (T-Hcy metabolism in DS children and to determine whether the supplementation with folic acid therapy would shift the genetically induced metabolic imbalance or not.

    METHODS: Thirty-five infants with DS, with the mean age of 17.66 ± 12.24 months were included in this study. They were selected from those attending the Genetic Outpatients Clinic in Children hospital.

    RESULTS: Our results revealed that Down syndrome children had a significant decrease in serum plasma T-Hcy level after the treatment with folic acid [11.79 ± 0.92 vs. 14.41 ± 4.93 μmol/L]. A significant negative correlation was found between T-Hcy and folic acid serum levels [r = -0.112; P<0.05].

    CONCLUSIONS: We concluded that the regulation of methylation pathways in Down syndrome patients becomes important in the light of possible normalization of the metabolic imbalance and the detection of increased sensitivity to therapeutic interventions.

    KEY WORDS: Down syndrome, hyperhomocysteine, folic acid, vitamin B-12.

  8. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.

    Science.gov (United States)

    Gad, Ahmed; Hoelker, Michael; Besenfelder, Urban; Havlicek, Vitezslav; Cinar, Ulas; Rings, Franca; Held, Eva; Dufort, Isabelle; Sirard, Marc-André; Schellander, Karl; Tesfaye, Dawit

    2012-10-01

    Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.

  9. Complement levels in Brazilian children during and after meningococcal meningitis Níveis de complemento em crianças brasileiras durante e após meningite meningocócica

    OpenAIRE

    Pérsio Roxo Júnior; Virgínia Paes Leme Ferriani; José Eduardo Teixeira; José Elpídio Barbosa

    2005-01-01

    PURPOSE: To evaluate the functional activity of the classical and alternative pathways of the complement system and the levels of C3, C4, and factor B during the first episode of meningococcal infection and during the convalescence period. PATIENTS AND METHODS: Ten Brazilian children ranging in age from 8 months to 8 years, admitted from 1991 to 1993 with a clinical-laboratory diagnosis of meningococcal meningitis, were studied during acute infection (up to 7 days from diagnosis) and during t...

  10. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    Science.gov (United States)

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  11. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  12. Complement: Alive and Kicking Nanomedicines

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Hashemi, S.H.; Andresen, Thomas Lars;

    2009-01-01

    Administration of liposome- and polymer-based clinical nanomedicines, as well as many other proposed multifunctional nanoparticles, often triggers hypersensitivity reactions without the involvement of IgE. These anaphylactic reactions are believed to be secondary to activation of the complement s...

  13. Role of complement in xenotransplantation.

    Science.gov (United States)

    Mollnes, Tom Eirik; Fiane, A E

    2002-01-01

    The xenotransplantation research is driven by the increasing gap between the number of patients with end-stage organ failure on waiting lists for transplantation and the supply of allografts. The lack of success in developing suitable artificial organs for permanent treatment of organ failure has further strengthened the need for xenotransplantation research. Pigs are now generally accepted to be the source animal of choice. Transplantation of pig organs to humans faces several barriers which have to be overcome before it comes to clinical application: (1) anatomical and physiological conditions; (2) immunological rejection mechanisms; (3) molecular compatibility between signal molecules of the two species; (4) risk of transmission of microorganisms, particularly pig endogenous retroviruses; and (5) legal and ethical aspects both with respect to the animal and the recipient. Here we will focus on the role of the complement system in the rejection of immediately vascularized pig-to-primate xenografts. The hyperacute rejection occurring within minutes after transplantation is mediated by binding of natural antibodies to the Galalpha(l-3)Gal epitope on the endothelial cells with subsequent complement activation. Whereas inhibition of complement activation protects against hyperacute rejection, the role of complement in the later rejection phases is less clarified.

  14. 21 CFR 866.4100 - Complement reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Complement reagent. (a) Identification. A complement reagent is a device that consists of complement,...

  15. Reincarnation of ancient links between coagulation and complement.

    Science.gov (United States)

    Conway, E M

    2015-06-01

    Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.

  16. [The changes of complement activities in sera of mice after subcutaneous administration of beryllium chloride].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kudo, Y

    1996-02-01

    We studied changes of the complement pathway activities and the content of C3 in sera of mice, administered BeCl2 (containing 5 micrograms of Be per mouse) or CuCl2 (containing 5 micrograms of Cu per mouse) by a single subcutaneous injection. The value of the classical complement pathway activity (CH50) of the Be group 3 days after administration was significantly higher than that of the control group (P < 0.001). It was significantly lower than in the control group after 7 days (P < 0.001). On the other hand, the CH50 value of the Cu group 3 hr after administration tended to increase, however, it was significantly lower than in the control group after 7 days (P < 0.01). The change of the alternative complement pathway activity (ACH50) value of the Be group was similar to the change of the CH50 value of the group. The ACH50 value of the Cu group 3 days after administration tended to increase but it was the same as the ACH50 value of the control group after 7 days. The C3 contents of both the Be and Cu groups 3 days after administration were significantly higher than in the control group (P < 0.001). The aspartate aminotransferase (AST) activity of the Be group 7 days after administration was significantly higher than that of the control group (P < 0.01). By contrast, AST activity of the Cu group 3 hr after administration was significantly higher than in the control group (P < 0.05). The value of the alanine aminotransferase (ALT) activity of the Be group was low (P < 0.01), but that of the Cu group was high (P < 0.05), 3 hr after administration. These values of both groups after 7 days, however, were significantly higher than in the control group (P < 0.05). The AST/ALT ratio in mice was very high at 3 hr, and it remained high by 7 days after Be injection. On the other hand, the ratio of the Cu group was almost constant for 7 days after Cu injection. Thus, these values changed with relative expedition after Be injection. Therefore, we confirmed that measurements of

  17. Role of complement in in vitro and in vivo lung inflammatory reactions

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1998-01-01

    requirement for full expression of lung injury is demonstrated, as are the involved intracellular signal transduction pathways. Understanding the mechanisms of complement-induced proinflammatory effects may provide a basis for future therapeutic blockade of complement and/or its activation products....

  18. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  19. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model

    NARCIS (Netherlands)

    B.H.M. Heijnen; I.H. Straatsburg; N.D. Padilla; G.J. Mierlo; C.E. Hack; T.M. van Gulik

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 10

  20. Expression of human complement factor H prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged Cfh knockout mice.

    Science.gov (United States)

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh(-/-)) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh(-/-) mice, and transgenics had a thicker outer nuclear layer and less sub-retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets.

  1. The Role of Properdin in Zymosan- and Escherichia coli-Induced Complement Activation

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Lindstad, Julie K

    2012-01-01

    Properdin is well known as an enhancer of the alternative complement amplification loop when C3 is activated, whereas its role as a recognition molecule of exogenous pathogen-associated molecular patterns and initiator of complement activation is less understood. We therefore studied the role of ...

  2. Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella.

    Directory of Open Access Journals (Sweden)

    Derek K Ho

    Full Text Available Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH, we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP. Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.

  3. Structure and function of complement protein C1q and its role in the development of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Katarzyna Smykał-Jankowiak

    2009-09-01

    Full Text Available Complement plays an important role in the immune system. Three different pathways of complement activation are known: the classical, alternative, and lectin dependent. They involve more than 30 serum peptides. C1q is the first subcomponent of the classical pathway of complement activation. It is composed of three types of chains, A, B, and C, which form a molecule containing 18 peptides. Each of the chains has a short amino-terminal region followed by a collagen-like region (playing a role in the activation of C1r2C1s2 and a carboxy-terminal head, which binds to immune complexes. Recent studies have shown a great number of ligands for C1q, including aggregated IgG, IgM, human T-cell lymphotropic virus-I (HTLV-I, gp21 peptide, human immunodeficiency virus-1 (HIV-1 gp21 peptide, β-amyloid, fragments of bacterial walls, apoptotic cells, and many others. However, the role of C1q is not only associated with complement activation. It also helps in the removal of immune complexes and necrotic cells, stimulates the production of some cytokines, and modulates the function of lymphocytes. Complete C1q deficiency is a rare genetic disorder. The C1q gene is located on the short arm of chromosome 1. So far, only a few mutations in C1q gene have been reported. The presence of these mutations is strongly associated with recurrent bacterial infections and the development of systemic lupus erythematosus (SLE. Recent clinical studies point to the significance of anti-C1q antibodies in the diagnosis and assessment of lupus nephritis activity.

  4. Complement Activation Alters Platelet Function

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet Function PRINCIPAL INVESTIGATOR: George Tsokos, M.D. CONTRACTING...Activation Alters Platelet Function 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0523 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) George Tsokos, M.D...a decreased level of disease. Further studies will expand upon these observations better outlining the function of platelets in the injury associated

  5. Complement evasion by Plasmodium falciparum

    OpenAIRE

    Holopainen, Saila

    2008-01-01

    Patologian oppiaine Malaria remains one of the major health problems in many tropical countries, especially in sub-Saharan Africa. Among the most characteristic features of the malaria pathogens, protozoan parasites of the genus Plasmodium, is their ability to evade the immune defences of the host for extended periods of time. The complement system (C) is an essential part of the innate system in the first line of defense. It consists of over 30 soluble or membrane-bound components. C...

  6. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways.

  7. Role of complement in host-microbe homeostasis of the periodontium.

    Science.gov (United States)

    Hajishengallis, George; Abe, Toshiharu; Maekawa, Tomoki; Hajishengallis, Evlambia; Lambris, John D

    2013-02-01

    Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.

  8. Coagulation and complement system in critically ill patients.

    Science.gov (United States)

    Helling, H; Stephan, B; Pindur, G

    2015-01-01

    Activation of coagulation and inflammatory response including the complement system play a major role in the pathogenesis of critical illness. However, only limited data are available addressing the relationship of both pathways and its assessment of a predictive value for the clinical outcome in intense care medicine. Therefore, parameters of the coagulation and complement system were studied in patients with septicaemia and multiple trauma regarded as being exemplary for critical illness. 34 patients (mean age: 51.38 years (±16.57), 15 females, 19 males) were investigated at day 1 of admittance to the intensive care unit (ICU). Leukocytes, complement factors C3a and C5a were significantly (p complement system as part of the inflammatory response is a significant mechanism in septicaemia, whereas loss and consumption of blood components including parts of the coagulation and complement system is more characteristic for multiple trauma. Protein C in case of severe reduction might be of special concern for surviving in sepsis. Activation of haemostasis was occurring in both diseases, however, overt DIC was not confirmed in this study to be a leading mechanism in critically ill patients. MOF score, lactate, C1-inhibitor and prothrombin time have been the only statistically significant predictors for lethal outcome suggesting that organ function, microcirculation, haemostasis and inflammatory response are essential elements of the pathomechanism and clinical course of diseases among critically ill patients.

  9. Function of Serum Complement in Drinking Water Arsenic Toxicity

    Directory of Open Access Journals (Sweden)

    Laila N. Islam

    2012-01-01

    Full Text Available Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4±5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216±211 and 223±302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P<0.01, but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P<0.001. Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P=0.014. Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity.

  10. Complement C3c as a Biomarker in Heart Failure

    Directory of Open Access Journals (Sweden)

    A. Frey

    2013-01-01

    Full Text Available Introduction. Experimental data indicates an important role of the innate immune system in cardiac remodeling and heart failure (HF. Complement is a central effector pathway of the innate immune system. Animals lacking parts of the complement system are protected from adverse remodeling. Based on these data, we hypothesized that peripheral complement levels could be a good marker for adverse remodeling and prognosis in patients with HF. Methods and Results. Since complement activation converges on the complement factor C3, we measured serum C3c, a stable C3-conversion product, in 197 patients with stable systolic HF. Subgroups with normal and elevated C3c levels were compared. C3c levels were elevated in 17% of the cohort. Patients with elevated C3c levels exhibited a trend to better survival, slightly higher LVEF, and lower NTpro-BNP values in comparison to patients with normal C3c values. No differences were found regarding NYHA functional class. Significantly more patients with elevated C3c had preexisting diabetes. The prevalence of CAD, arterial hypertension, and atrial fibrillation was not increased in patients with elevated C3c. Conclusion. Elevated C3c levels are associated with less adverse remodeling and improved survival in patients with stable systolic heart failure.

  11. Complement Biomarkers as Predictors of Disease Progression in Alzheimer's Disease.

    Science.gov (United States)

    Hakobyan, Svetlana; Harding, Katharine; Aiyaz, Mohammed; Hye, Abdul; Dobson, Richard; Baird, Alison; Liu, Benjamine; Harris, Claire Louise; Lovestone, Simon; Morgan, Bryan Paul

    2016-09-06

    There is a critical unmet need for reliable markers of disease and disease course in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). The growing appreciation of the importance of inflammation in early AD has focused attention on inflammatory biomarkers in cerebrospinal fluid or plasma; however, non-specific inflammation markers have disappointed to date. We have adopted a targeted approach, centered on an inflammatory pathway already implicated in the disease. Complement, a core system in innate immune defense and potent driver of inflammation, has been implicated in pathogenesis of AD based on a confluence of genetic, histochemical, and model data. Numerous studies have suggested that measurement of individual complement proteins or activation products in cerebrospinal fluid or plasma is useful in diagnosis, prediction, or stratification, but few have been replicated. Here we apply a novel multiplex assay to measure five complement proteins and four activation products in plasma from donors with MCI, AD, and controls. Only one complement analyte, clusterin, differed significantly between control and AD plasma (controls, 295 mg/l; AD, 388 mg/l: p converted to dementia one year later compared to non-converters; a model combining these three analytes with informative co-variables was highly predictive of conversion. The data confirm the relevance of complement biomarkers in MCI and AD and build the case for using multi-parameter models for disease prediction and stratification.

  12. Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement.

    Directory of Open Access Journals (Sweden)

    Brian Stevenson

    Full Text Available The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts' alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM components. The LenA outer surface protein (formerly called LfhA and Lsa24 was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1. We now demonstrate that infectious L. interrogans contain five additional paralogs of lenA, which we designated lenB, lenC, lenD, lenE and lenF. All six genes encode domains predicted to bear structural and functional similarities with mammalian endostatins. Sequence analyses of genes from seven infectious L. interrogans serovars indicated development of sequence diversity through recombination and intragenic duplication. LenB was found to bind human factor H, and all of the newly-described Len proteins bound laminin. In addition, LenB, LenC, LenD, LenE and LenF all exhibited affinities for fibronectin, a distinct host extracellular matrix protein. These characteristics suggest that Len proteins together facilitate invasion and colonization of host tissues, and protect against host immune responses during mammalian infection.

  13. Complements and the Wound Healing Cascade: An Updated Review

    Directory of Open Access Journals (Sweden)

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  14. Complement activation in experimental human malaria infection.

    NARCIS (Netherlands)

    Roestenberg, M.; McCall, M.B.B.; Mollnes, T.E.; Deuren, M. van; Sprong, T.; Klasen, I.S.; Hermsen, C.C.; Sauerwein, R.W.; Ven, A.J.A.M. van der

    2007-01-01

    The objective of this study was to investigate complement activation in uncomplicated, early phases of human malaria. Fifteen healthy volunteers were experimentally infected with Plasmodium falciparum malaria. Parasitemia and complement activation products were assessed. During blood stage parasitem

  15. Vaccinia complement control protein: Multi-functional protein and a potential wonder drug

    Indian Academy of Sciences (India)

    Purushottam Jha; Girish J Kotwal

    2003-04-01

    Vaccinia virus complement control protein (VCP) was one of the first viral molecules demonstrated to have a role in blocking complement and hence in the evasion of host defense. Structurally it is very similar to the human C4b-BP and the other members of complement control protein. Functionally it is most similar to the CR1 protein. VCP blocks both major pathways of complement activation. The crystal structure of VCP was determined a little over a year ago and it is the only known structure of an intact and complete complement control protein. In addition to binding complement, VCP also binds to heparin. These two binding abilities can take place simultaneously and contribute to its many function and to its potential use in several inflammatory diseases, e.g. Alzheimer’s disease (AD), CNS injury, xenotransplantation, etc. making it a truly fascinating molecule and potential drug.

  16. ON COMPLEMENTED SUBGROUPS OF FINITE GROUPS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A subgroup H of a finite group G is said to be complemented in G if there exists a subgroup K of G such that G = HK and H ∩ K = 1. In this case, K is called a complement of H in G.In this note some results on complemented subgroups of finite groups are obtained.

  17. A pathogenic role of complement in arterial hypertension and hypertensive end organ damage.

    Science.gov (United States)

    Wenzel, Ulrich O; Bode, Marlies; Köhl, Jörg; Ehmke, Heimo

    2017-03-01

    The self-amplifying cascade of messenger and effector molecules of the complement system serves as a powerful danger-sensing system that protects the host from a hostile microbial environment, while maintaining proper tissue and organ function through effective clearance of altered or dying cells. As an important effector arm of innate immunity, it also plays important roles in the regulation of adaptive immunity. Innate and adaptive immune responses have been identified as crucial players in the pathogenesis of arterial hypertension and hypertensive end organ damage. In line with this view, complement activation may drive the pathology of hypertension and hypertensive injury through its impact on innate and adaptive immune responses. It is well known that complement activation can cause tissue inflammation and injury and complement-inhibitory drugs are effective treatments for several inflammatory diseases. In addition to these proinflammatory properties, complement cleavage fragments of C3 and C5 can exert anti-inflammatory effects that dampen the inflammatory response to injury. Recent experimental data strongly support a role for complement in arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical hemolytic uremic syndrome, which is driven by complement activation, suggest a role for complement also in the development of malignant nephrosclerosis. Herein, we will review canonical and noncanonical pathways of complement activation as the framework to understand the multiple roles of complement in arterial hypertension and hypertensive end organ damage.

  18. Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d.

    Science.gov (United States)

    Yamada, T; Akiyama, H; McGeer, P L

    1990-05-04

    Clusters of oligodendroglial fibers were identified immunohistochemically in human brain tissue with antibodies to the complement proteins C3d and C4d in several neurological disorders. These included Pick's, Huntington's, Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, progressive supranuclear palsy and Shy-Drager syndrome. These complement-activated oligodendroglia occurred in selected areas of gray and white matter. They were rarely observed in control tissue. Immunogold electron microscopy established that the C4d antibody was attached to degenerating myelin sheaths. These data indicate attachment of classical complement pathway proteins to selective oligodendroglia in several neurological disorders.

  19. Isolation and characterization of a novel rat factor H-related protein that is up-regulated in glomeruli under complement attack.

    Science.gov (United States)

    Ren, Guohui; Doshi, Mona; Hack, Bradley K; Alexander, Jessy J; Quigg, Richard J

    2002-12-13

    The factor H family in humans is composed of seven distinct proteins, including factor H-related proteins (FHR) 1-5. All members contain tandemly arranged short consensus repeats (SCR) typical of the regulators of complement activation gene family. FHR-5 is unusual for this group of proteins, as it was initially identified as a component of immune deposits in glomerular diseases. During our cloning of the cDNA for rat factor H from glomerular epithelial cells (GEC), we identified an alternative 2729-bp cDNA transcript. The translated sequence encoded a protein containing 11 SCRs, most similar to SCRs 7-15 and 19-20 in native rat factor H, which is the same basic structure of human FHR-5. As such, this rat protein was termed FHR. Recombinant rat FHR produced in a eukaryotic expression system had a molecular mass of 78 kDa. In functional studies, recombinant FHR bound C3b and inhibited the complement alternative pathway in a dose-dependent fashion. Given the prominent expression of FHR-5 in human membranous nephropathy, a disease in which complement activation occurs in the vicinity of GEC, the expression of FHR in a rat model of this disease was evaluated. In both in vitro and in vivo models of complement activation on the GEC, FHR mRNA was up-regulated by a factor of 3-6-fold compared with controls in which complement could not be activated. Thus, we have identified a novel factor H family member in rats. This FHR protein is analogous to human FHR-5, both in structure and in potential involvement in glomerular immune complex diseases.

  20. Complement the hemostatic system: an intimate relationship.

    Science.gov (United States)

    Weitz, Ilene Ceil

    2014-05-01

    The complement system is important part of our innate immune system and interacts directly with the hemostatic system. Disorders of complement activation or dysregulation resulting in excess complement generation, such as Paroxysmal Nocturnal Hemoglobinuria (PNH), atypical Hemolytic uremic Syndrome (aHUS) and antiphospholipid syndrome (APLS) have been associated with significant thrombophilia. Terminal Complement (C5b-9) deposition on endothelial and tumor cell membranes has also been reported in a variety of cancer. Recent developments in complement inhibition have given us new insights into the mechanism of thrombosis in these disorders.

  1. The Complement System in Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Xuebin Qin; Bin Gao

    2006-01-01

    The complement system plays an important role in mediating both acquired and innate responses to defend against microbial infection, and in disposing immunoglobins and apoptotic cells. The liver (mainly hepatocytes) is responsible for biosynthesis of about 80-90% of plasma complement components and expresses a variety of complement receptors.Recent evidence from several studies suggests that the complement system is also involved in the pathogenesis of a variety of liver disorders including liver injury and repair, fibrosis, viral hepatitis, alcoholic liver disease, and liver ischemia/reperfusion injury. In this review, we will discuss the potential role of the complement system in the pathogenesis of liver diseases.

  2. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  3. The Semantics of Complementation in English: A Cognitive Semantic Account of Two English Complement Constructions

    Science.gov (United States)

    Smith, Michael B.

    2009-01-01

    Studies on complementation in English and other languages have traditionally focused on syntactic issues, most notably on the constituent structures of different complement types. As a result, they have neglected the role of meaning in the choice of different complements. This paper investigates the semantics of complementation within the…

  4. Modulating Effects of Arabinogalactans from Plant Gum Exudates on Human Complement System.

    Science.gov (United States)

    Bovo, F; Lenzi, R M; Yamassaki, F T; Messias-Reason, I J; Campestrini, L H; Stevan, F R; Zawadzki-Baggio, S F; Maurer, J B B

    2016-05-01

    Gum arabic and cashew nut tree gum exudate polysaccharide (CNTG) are plant polysaccharides composed of galactose and arabinose known as arabinogalactans (AGs). Although these fractions are used in food and pharmaceutical industry, cases of allergic reactions were described in clinical reports. As AGs were reported as modulators of the classical (CP) and alternative pathways (AP) of complement system (CS), in the present work, we investigate whether gum arabic and CNTG have an effect on both CS pathways. The complement fixation tests were performed with (CP-30 and AP-30) and without pre-incubation (CP-0 and AP-0). For CP-30, CNTG and gum arabic (833 μg/ml) showed a reduction of 28.0% (P = 0.000174) and 48.5% (P = 0.000143), respectively, on CP-induced haemolysis. However, no effect was observed for CP-0 in the CP-induced haemolysis. For AP-30, both CNTG and gum arabic (833 μg/ml) showed 87% reduction on the CP-induced haemolysis, with IC50 values of 100 and 7 μg/ml, respectively. For AP-0, a reduction of 11.3% for gum arabic and no effect for the CNTG on the CP-induced haemolysis were observed. These results suggested that gum arabic and CNTG could be acting as activators of the CS. Thus, this effect on the CS, especially on the AP, which accounts for up to 80-90% of total CS activation, indicates that both fractions may be harmful because of their potential pro-inflammatory action. Considering that CS activation induces inflammatory response, further studies confirming this immunomodulatory effect of these fractions are required to insure their safe use.

  5. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  6. Hypothesis: an alternative pathway for the regulation of inflammation Hipótesis: una vía alternativa de regulación de procesos inflamatorios

    Directory of Open Access Journals (Sweden)

    Martín A. Isturiz

    2004-06-01

    Full Text Available Regulation of inflammation is a crucial event since its alteration, such as in sepsis and chronic autoimmune (i.e. rheumatoid arthritis, lupus erythematosus or infectious diseases (i.e. tuberculosis, leprosy, determines severe tissue damage. Although there is a general consensus that regulation of inflammation results from a balance between proinflammatory and antiinflammatory pathways, we arrived at the conclusion that well known chemoattractants/proinflammatory molecules such as bacterial formyl peptides or immune complexes (IC, could induce, paradoxically, strong antiinflammatory effects. Thus, we demonstrated that N-formyl-methionyl-leucyl-phenylalanine (FMLP exerted a drastic antiinflammatory effect, inhibiting the secretion of tumor necrosis alpha (TNF-a induced by lipopolysaccharides, a potent TNF-a inducer. We also determined that in human neutrophils FMLP and IC induced the downregulation of receptors for the Fc portion of IgG (FcgRII and FcgRIIIB. Moreover, FMLP inhibited interferon gamma (IFN-g-induced FcgRI expression and IC downregulate class II molecules of the major histocompatibility complex on monocytes. Part of these effects were mediated by the release of aspartic-, serin-, or metalloproteases. All these results favor the postulation of a new concept on the regulation of inflammation carried out through an alternative and non conventional pathway, in which a chemoattractant/proinflammatory agent could, under certain circumstances, act as an antiinflammatory molecule.La regulación de mecanismos inflamatorios es un evento crucial debido a que una alteración de los mismos, como sucede por ejemplo, en la sepsis, en enfermedades autoinmunes crónicas (artritis reumatoidea, lupus eritematoso o en enfermedades infecciosas (tuberculosis, lepra, genera daños tisulares severos. Aunque hay un consenso general de que la regulación de procesos inflamatorios resulta de un balance entre vías proinflamatorias y antiinflamatorias

  7. Complement factor H interferes with Mycobacterium bovis BCG entry into macrophages and modulates the pro-inflammatory cytokine response.

    Science.gov (United States)

    Abdul-Aziz, Munirah; Tsolaki, Anthony G; Kouser, Lubna; Carroll, Maria V; Al-Ahdal, Mohammed N; Sim, Robert B; Kishore, Uday

    2016-09-01

    Mycobacterium tuberculosis is an accomplished intracellular pathogen, particularly within the macrophage and this is of the utmost importance in the host-pathogen stand-off observed in the granuloma during latent tuberculosis. Contact with innate immune molecules is one of the primary interactions that can occur with the pathogen M. tuberculosis once inhaled. Complement proteins may play a role in facilitating M. tuberculosis interactions with macrophages. Here, we demonstrate that factor H, a complement regulatory protein that down-regulates complement alternative pathway activation, binds directly to the model organism M. bovis BCG. Binding of factor H reaches saturation at 5-10μg of factor H/ml, well below the plasma level. C4 binding protein (C4BP) competed with factor H for binding to mycobacteria. Factor H was also found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Real-time qPCR analysis showed stark differential responses of pro- and anti-inflammatory cytokines during the early stages of phagocytosis, as evident from elevated levels of TNF-α, IL-1β and IL-6, and a concomitant decrease in IL-10, TGF-β and IL-12 levels, when THP-1:BCG interaction took place in the presence of factor H. Our results suggest that factor H can interfere with mycobacterial entry into macrophages and modulate inflammatory cytokine responses, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. Our results offer novel insights into complement activation-independent functions of factor H during the host-pathogen interaction in tuberculosis.

  8. The role of complement activation in atherogenesis: the first 40 years.

    Science.gov (United States)

    Vlaicu, Sonia I; Tatomir, Alexandru; Rus, Violeta; Mekala, Armugam P; Mircea, Petru A; Niculescu, Florin; Rus, Horea

    2016-02-01

    The pathogenesis of atherosclerotic inflammation is a multi-step process defined by the interweaving of excess modified lipid particles, monocyte-macrophages populations, and innate immune and adaptive immunity effectors. A part of innate immunity, the complement system, is an important player in the induction and progression of atherosclerosis. The accumulation of either oxidized or enzymatically modified LDL-bound to C-reactive protein or not-prompts complement activation leading to the assembly of the terminal complement C5b-9 complex in the atherosclerotic lesion. The sublytic C5b-9 assembly leads to the activation and proliferation of smooth muscle and endothelial cells, accompanied by the release of various chemotactic, pro-adhesion, and procoagulant cytokines from these cells. Response gene to complement (RGC)-32, an essential effector of the terminal complement complex C5b-9, also affects atherogenesis, propelling vascular smooth muscle cell proliferation and migration, stimulating endothelial proliferation, and promoting vascular lesion formation. A substantial amount of experimental work has suggested a role for the complement system activation during atherosclerotic plaque formation, with the proximal classical complement pathway seemingly having a protective effect and terminal complement contributing to accelerated atherogenesis. All these data suggest that complement plays an important role in atherogenesis.

  9. Altmetrics - a complement to conventional metrics.

    Science.gov (United States)

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science--Article-Level Metrics, Altmetric, Impactstory and Plum.

  10. Altmetrics – a complement to conventional metrics

    Science.gov (United States)

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum. PMID:26110028

  11. EFFECTS OF MECHANICAL AGITATION AND OF TEMPERATURE UPON COMPLEMENT.

    Science.gov (United States)

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    1. Under certain conditions, mechanical agitation destroys the complementary activity of guinea pig serum. It is most injurious when carried out constantly at a temperature of 37 degrees C., but it is extremely insignificant at 10 degrees C. After the first few hours at 37 degrees C., the destruction of complement proceeded much more rapidly, and after six hours it was almost complete. On the other hand, within one hour shaking had almost no destructive effect on complement, even at 37 degrees C. From this we may conclude that the several shakings which are necessary for fixation experiments during incubation do not modify perceptibly the outcome of the reactions. 2. The rate of destruction of the complement of guinea pig serum at temperatures above 45 degrees C. is progressively greater as it approaches 55 degrees C., at which temperature the activity is reduced in thirty minutes to one-thirtieth to one-fortieth of the original strength of the unheated serum; but it is not completely destroyed, as is commonly assumed. The velocity of destruction of guinea pig complement when exposed to 55 degrees C. for various lengths of time is found to be quite irregular, and not proportional to the length of time. This irregularity, however, presents a certain rhythm, a period of greater destruction alternating with one of less destruction.

  12. Complement diagnostics: concepts, indications, and practical guidelines.

    Science.gov (United States)

    Nilsson, Bo; Ekdahl, Kristina Nilsson

    2012-01-01

    Aberrations in the complement system have been shown to be direct or indirect pathophysiological mechanisms in a number of diseases and pathological conditions such as autoimmune disease, infections, cancer, allogeneic and xenogeneic transplantation, and inflammation. Complement analyses have been performed on these conditions in both prospective and retrospective studies and significant differences have been found between groups of patients, but in many diseases, it has not been possible to make predictions for individual patients because of the lack of sensitivity and specificity of many of the assays used. The basic indications for serological diagnostic complement analysis today may be divided into three major categories: (a) acquired and inherited complement deficiencies; (b) disorders with complement activation; (c) inherited and acquired C1INH deficiencies. Here, we summarize indications, techniques, and interpretations for basic complement analyses and present an algorithm, which we follow in our routine laboratory.

  13. Complement Diagnostics: Concepts, Indications, and Practical Guidelines

    Directory of Open Access Journals (Sweden)

    Bo Nilsson

    2012-01-01

    Full Text Available Aberrations in the complement system have been shown to be direct or indirect pathophysiological mechanisms in a number of diseases and pathological conditions such as autoimmune disease, infections, cancer, allogeneic and xenogeneic transplantation, and inflammation. Complement analyses have been performed on these conditions in both prospective and retrospective studies and significant differences have been found between groups of patients, but in many diseases, it has not been possible to make predictions for individual patients because of the lack of sensitivity and specificity of many of the assays used. The basic indications for serological diagnostic complement analysis today may be divided into three major categories: (a acquired and inherited complement deficiencies; (b disorders with complement activation; (c inherited and acquired C1INH deficiencies. Here, we summarize indications, techniques, and interpretations for basic complement analyses and present an algorithm, which we follow in our routine laboratory.

  14. Role of Complement in Autoimmune Hemolytic Anemia.

    Science.gov (United States)

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed.

  15. Pasteurella pneumotropica Evades the Human Complement System by Acquisition of the Complement Regulators Factor H and C4BP

    Science.gov (United States)

    Sahagún-Ruiz, Alfredo; Granados Martinez, Adriana Patricia; Breda, Leandro Carvalho Dantas; Fraga, Tatiana Rodrigues; Castiblanco Valencia, Mónica Marcela; Barbosa, Angela Silva; Isaac, Lourdes

    2014-01-01

    Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections. PMID:25347183

  16. Role of Complement in Autoimmune Hemolytic Anemia

    OpenAIRE

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorder...

  17. Local inflammation induces complement crosstalk which amplifies the antimicrobial response.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2009-01-01

    Full Text Available By eliciting inflammatory responses, the human immunosurveillance system notably combats invading pathogens, during which acute phase proteins (CRP and cytokines are elevated markedly. However, the Pseudomonas aeruginosa is a persistent opportunistic pathogen prevalent at the site of local inflammation, and its acquisition of multiple antibiotic-resistance factors poses grave challenges to patient healthcare management. Using blood samples from infected patients, we demonstrate that P. aeruginosa is effectively killed in the plasma under defined local infection-inflammation condition, where slight acidosis and reduced calcium levels (pH 6.5, 2 mM calcium typically prevail. We showed that this powerful antimicrobial activity is provoked by crosstalk between two plasma proteins; CRPratioL-ficolin interaction led to communication between the complement classical and lectin pathways from which two amplification events emerged. Assays for C4 deposition, phagocytosis, and protein competition consistently proved the functional significance of the amplification pathways in boosting complement-mediated antimicrobial activity. The infection-inflammation condition induced a 100-fold increase in CRPratioL-ficolin interaction in a pH- and calcium-sensitive manner. We conclude that the infection-induced local inflammatory conditions trigger a strong interaction between CRPratioL-ficolin, eliciting complement-amplification pathways which are autonomous and which co-exist with and reinforce the classical and lectin pathways. Our findings provide new insights into the host immune response to P. aeruginosa infection under pathological conditions and the potential development of new therapeutic strategies against bacterial infection.

  18. Differences in complement activation between complement-resistant and complement-sensitive Moraxella (Branhamella) catarrhalis strains occur at the level of membrane attack complex formation.

    OpenAIRE

    Verduin, C.M.; Jansze, M.; Hol, C; Mollnes, T E; Verhoef, J; Van Dijk, H.

    1994-01-01

    The mechanism of resistance to human complement-mediated killing in Moraxella catarrhalis was studied by comparing different complement-sensitive and complement-resistant M. catarrhalis strains in a functional bystander hemolysis assay and an enzyme-linked immunosorbent assay (ELISA) for soluble terminal complement complexes. Complement-resistant stains appeared to activate complement to the same extent as, or even slightly better than, complement-sensitive strains. This indicates that comple...

  19. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    Science.gov (United States)

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  20. On distribution of complementizers in contemporary Serbian

    Directory of Open Access Journals (Sweden)

    Moskovljević Jasmina

    2004-01-01

    Full Text Available The paper investigates the principles governing the distribution of complementizers in contemporary Serbian. Evidence is presented that the distribution of da, što, kako, gde, da li, and numerous interrogative pronouns and adverbials which may function as complementizers is determined not only by matrix-verb subcategorization properties and semantic co-occurrence restrictions which hold between the predicate and its complement, but by the lexical an syntactic properties of the particular verb class (or subclass to which matrix predicate belongs as well. According to their ability to govern a particular complementizer, ten major verb subclasses are identified in contemporary Serbian, and their specific properties are signaled.

  1. Complement and microglia mediate early synapse loss in Alzheimer mouse models.

    Science.gov (United States)

    Hong, Soyon; Beja-Glasser, Victoria F; Nfonoyim, Bianca M; Frouin, Arnaud; Li, Shaomin; Ramakrishnan, Saranya; Merry, Katherine M; Shi, Qiaoqiao; Rosenthal, Arnon; Barres, Ben A; Lemere, Cynthia A; Selkoe, Dennis J; Stevens, Beth

    2016-05-06

    Synapse loss in Alzheimer's disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3, or the microglial complement receptor CR3 reduces the number of phagocytic microglia, as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble β-amyloid (Aβ) oligomers on synapses and hippocampal long-term potentiation. Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aβ oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.

  2. The complement cascade as a mediator of tissue growth and regeneration.

    Science.gov (United States)

    Rutkowski, Martin J; Sughrue, Michael E; Kane, Ari J; Ahn, Brian J; Fang, Shanna; Parsa, Andrew T

    2010-11-01

    Recent evidence has demonstrated that the complement cascade is involved in a variety of physiologic and pathophysiologic processes in addition to its role as an immune effector. Research in a variety of organ systems has shown that complement proteins are direct participants in maintenance of cellular turnover, healing, proliferation and regeneration. As a physiologic housekeeper, complement proteins maintain tissue integrity in the absence of inflammation by disposing of cellular debris and waste, a process critical to the prevention of autoimmune disease. Developmentally, complement proteins influence pathways including hematopoietic stem cell engraftment, bone growth, and angiogenesis. They also provide a potent stimulus for cellular proliferation including regeneration of the limb and eye in animal models, and liver proliferation following injury. Here, we describe the complement cascade as a mediator of tissue growth and regeneration.

  3. Evaluation of Serum Complement C3 and C4 Levels as biomarkers for Systemic Lupus Erythromatosus

    Directory of Open Access Journals (Sweden)

    Fayez Muhammad Shaldoum*, Yousra Refaey Abdo Mohammed, Naglaa Mohamed El Wakeel and Abeer Saad Gawish

    2012-10-01

    .Conclusions: Patients showed different degrees of oral and systemic manifestations, which exacerbate and become acute with decreased level of complement C4 and instability of C3 level. Accordingly, the low level of C4 was associated with the development and exacerbation of SLE. Increased C3 levels is solely due to activity through the alternative pathway in SLE patients

  4. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited.

    Science.gov (United States)

    Anderson, Don H; Radeke, Monte J; Gallo, Natasha B; Chapin, Ethan A; Johnson, Patrick T; Curletti, Christy R; Hancox, Lisa S; Hu, Jane; Ebright, Jessica N; Malek, Goldis; Hauser, Michael A; Rickman, Catherine Bowes; Bok, Dean; Hageman, Gregory S; Johnson, Lincoln V

    2010-03-01

    During the past ten years, dramatic advances have been made in unraveling the biological bases of age-related macular degeneration (AMD), the most common cause of irreversible blindness in western populations. In that timeframe, two distinct lines of evidence emerged which implicated chronic local inflammation and activation of the complement cascade in AMD pathogenesis. First, a number of complement system proteins, complement activators, and complement regulatory proteins were identified as molecular constituents of drusen, the hallmark extracellular deposits associated with early AMD. Subsequently, genetic studies revealed highly significant statistical associations between AMD and variants of several complement pathway-associated genes including: Complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3). In this article, we revisit our original hypothesis that chronic local inflammatory and immune-mediated events at the level of Bruch's membrane play critical roles in drusen biogenesis and, by extension, in the pathobiology of AMD. Secondly, we report the results of a new screening for additional AMD-associated polymorphisms in a battery of 63 complement-related genes. Third, we identify and characterize the local complement system in the RPE-choroid complex - thus adding a new dimension of biological complexity to the role of the complement system in ocular aging and AMD. Finally, we evaluate the most salient, recent evidence that bears directly on the role of complement in AMD pathogenesis and progression. Collectively, these recent findings strongly re-affirm the importance of the complement system in AMD. They lay the groundwork for further studies that may lead to the identification of a transcriptional disease signature of AMD, and hasten the development of new therapeutic approaches that will restore the complement-modulating activity that

  5. New insights of an old defense system: structure, function, and clinical relevance of the complement system.

    Science.gov (United States)

    Ehrnthaller, Christian; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2011-01-01

    The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, "friendly fire" is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.

  6. Interactions of the humoral pattern recognition molecule PTX3 with the complement system

    DEFF Research Database (Denmark)

    Doni, Andrea; Garlanda, Cecilia; Bottazzi, Barbara

    2012-01-01

    The innate immune system comprises a cellular and a humoral arm. The long pentraxin PTX3 is a fluid phase pattern recognition molecule, which acts as an essential component of the humoral arm of innate immunity. PTX3 has antibody-like properties including interactions with complement components....... PTX3 interacts with C1q, ficolin-1 and ficolin-2 as well as mannose-binding lectin, recognition molecules in the classical and lectin complement pathways. The formation of these heterocomplexes results in cooperative pathogen recognition and complement activation. Interactions with C4b binding protein...

  7. Therapeutic targeting of the complement system in age-related macular degeneration: a review.

    Science.gov (United States)

    Troutbeck, Robyn; Al-Qureshi, Salmaan; Guymer, Robyn H

    2012-01-01

    The last decade has produced pivotal change in our understanding of the molecular mechanisms underlying age-related macular degeneration (AMD), a leading cause of global blindness. In this time, the complement system has featured as a unifying theme for several elements of new evidence: initially, the discovery of complement proteins within drusen and subsequently, the association between AMD and mutations in various complement pathway genes, most notably complement factor H. Increasingly, a wealth of data are pointing towards a role for chronic local inflammation and complement activation in the patho-aetiology of AMD. These findings have paved the way for the exploration of a new paradigm of therapy in AMD management; targeting of specific molecular constituents in the complement pathway thus producing dampening or inhibition of the inflammatory response. Such an approach has the potential to intervene earlier in the disease process and ideally before vision is compromised. In this review we discuss the role of the complement system in AMD, novel therapies in preclinical evaluation and clinical trial, and whether these have a part to play in reducing the burden of disease.

  8. Cloning and expression of the complement receptor glycoprotein C from Herpesvirus simiae (herpes B virus): protection from complement-mediated cell lysis.

    Science.gov (United States)

    Huemer, Hartwig P; Wechselberger, Christian; Bennett, Alice M; Falke, Dietrich; Harrington, Lesley

    2003-05-01

    Simian herpes B virus (SHBV) is the herpes simplex virus (HSV) homologue for the species MACACA: Unlike in its natural host, and unlike other animal herpesviruses, SHBV causes high mortality in accidentally infected humans. SHBV-infected cells, like those infected with HSV-1 and equine herpesvirus types 1 and 4, express complement C3 receptor activity. To study immunoregulatory functions involved in susceptibility/resistance against interspecies transmission, the SHBV glycoprotein C (gC(SHBV)) gene (encoding 467 aa) was isolated. Sequence analysis revealed amino acid identity with gC proteins from HSV-2 (46.9 %), HSV-1 (44.5 %) and pseudorabies virus (21.2 %). Highly conserved cysteine residues were also noted. Similar to gC(HSV-2), gC(SHBV) is less glycosylated than gC(HSV-1), resulting in a molecular mass of 65 kDa if expressed in replication-deficient vaccinia virus Ankara. Stable transfectants expressing full-length gC(SHBV) on the cell surface induced C3 receptor activity and were substantially protected from complement-mediated lysis; no protection was observed with control constructs. This suggests that expression of the gC homologues on infected cell surfaces might also contribute to the survival of infected cells in addition to decreased virion inactivation. Interestingly, soluble gC(SHBV) isolated from protein-free culture supernatants did not interfere with the binding of the alternative complement pathway activator properdin to C3b, which is similar to our findings with gC(HSV-2) and could be attributed to major differences in the amino-terminal portion of the protein with extended deletions in both gC(SHBV) and gC(HSV-2). Binding of recombinant gC(SHBV) to polysulphates was observed. This, together with the heparin-sensitivity of the gC(SHBV)-C3 interaction on the infected cell surface, suggests a role in adherence to heparan sulphate, similar to the gC proteins of other herpesviruses.

  9. Crosstalk between Complement and Toll-like Receptor Activation in Relation to Donor Brain Death and Renal Ischemia-Reperfusion Injury

    NARCIS (Netherlands)

    Damman, Jeffrey; Daha, Mohamed R.; van Son, Willem J.; Leuvenink, Henri G.; Ploeg, Rutger J.; Seelen, Marc A.

    2011-01-01

    Two central pathways of innate immunity, complement and Toll-like receptors (TLRs), play an important role in the pathogenesis of renal injury inherent to kidney transplantation. Recent findings indicate close crosstalk between complement and TLR signaling pathways. It is suggested that mitogen acti

  10. The complement system in systemic autoimmune disease

    NARCIS (Netherlands)

    Chen, Min; Daha, Mohamed R.; Kallenberg, Cees G. M.

    2010-01-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via

  11. Hyperbolic structures on a toric arrangement complement

    NARCIS (Netherlands)

    Shen, Dali

    2015-01-01

    This thesis studies the geometric structures on toric arrangement complements. Inspired by the special hypergeometric functions associated with a root system, we consider a family of connections on a total space which is the product of the complement of a toric arrangement (=finite union of hypertor

  12. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    Complement is part of the innate immune defence and not only recognizes microbes but also unwanted host molecules to enhance phagocytosis and clearance. This process of opsonisation must be tightly regulated to prevent immunopathology. Endogenous ligands such as dying cells, extracellular matrix...... proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...... activation. Disturbances to the complement regulation on endogenous ligands can lead to diseases such as age-related macular degeneration, neurological and rheumatic disorders. A thorough understanding of these processes might be crucial to developing new therapeutic strategies....

  13. Complement modulation of T cell immune responses during homeostasis and disease.

    Science.gov (United States)

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.

  14. Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases.

    Science.gov (United States)

    Happonen, Kaisa E; Heinegård, Dick; Saxne, Tore; Blom, Anna M

    2012-11-01

    Rheumatoid arthritis (RA) is a highly disabling disease affecting all structures of the joint. Understanding the pathology behind the development of RA is essential for developing targeted therapeutic strategies as well as for developing novel markers to predict disease onset. Several molecules normally hidden within the cartilage tissue are exposed to complement components in the synovial fluid upon cartilage breakdown. Some of these have been shown to activate complement and toll-like receptors, which may enhance an already existing inflammatory response, thereby worsening the course of disease. Other cartilage-resident molecules have in contrast shown to possess complement-inhibitory properties. Knowledge about mechanisms behind pathological complement activation in the joints will hopefully lead to methods which allow us to distinguish patients with pathological complement activation from those where other inflammatory pathways are predominant. This will help to elucidate which patients will benefit from complement inhibitory therapies, which are thought to aid a specific subset of patients or patients at a certain stage of disease. Future challenges are to target the complement inhibition specifically to the joints to minimize systemic complement blockade.

  15. Complement system part II: role in immunity

    Directory of Open Access Journals (Sweden)

    Nicolas S. Merle

    2015-05-01

    Full Text Available The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS, C3 glomerulopathies (C3G and systemic lupus erythematosus (SLE. Age related macular degeneration (AMD and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.

  16. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  17. Human pathogenic Borrelia spielmanii sp. nov. resists complement-mediated killing by direct binding of immune regulators factor H and factor H-like protein 1.

    Science.gov (United States)

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; van Dam, Alje; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2007-10-01

    Borrelia spielmanii sp. nov. has recently been shown to be a novel human pathogenic genospecies that causes Lyme disease in Europe. In order to elucidate the immune evasion mechanisms of B. spielmanii, we compared the abilities of isolates obtained from Lyme disease patients and tick isolate PC-Eq17 to escape from complement-mediated bacteriolysis. Using a growth inhibition assay, we show that four B. spielmanii isolates, including PC-Eq17, are serum resistant, whereas a single isolate, PMew, was more sensitive to complement-mediated lysis. All isolates activated complement in vitro, as demonstrated by covalent attachment of C3 fragments; however, deposition of the later activation products C6 and C5b-9 was restricted to the moderately serum-resistant isolate PMew and the serum-sensitive B. garinii isolate G1. Furthermore, serum adsorption experiments revealed that all B. spielmanii isolates acquired the host alternative pathway regulators factor H and factor H-like protein (FHL-1) from human serum. Both complement regulators retained their factor I-mediated C3b inactivation activities when bound to spirochetes. In addition, two distinct factor H and FHL-1 binding proteins, BsCRASP-1 and BsCRASP-2, were identified, which we estimated to be approximately 23 to 25 kDa in mass. A further factor H binding protein, BsCRASP-3, was found exclusively in the tick isolate, PC-Eq17. This is the first report describing an immune evasion mechanism utilized by B. spielmanii sp. nov., and it demonstrates the capture of human immune regulators to resist complement-mediated killing.

  18. Complement activation by cholesterol crystals triggers a subsequent cytokine response

    DEFF Research Database (Denmark)

    Niyonzima, Nathalie; Halvorsen, Bente; Sporsheim, Bjørnar

    2017-01-01

    may under certain circumstances drive processes leading to adverse inflammation. One example is cholesterol crystals (CC) that accumulate in the vessel wall during early phases of atherogenesis and represent an important endogenous danger signal promoting inflammation. CC is recognized by the lectin...... of inflammation processes before downstream release of cytokines including IL-1β. Another therapeutic candidate can be broad-acting 2-hydroxypropyl-β-cyclodextrin, a compound that targets several mechanisms such as cholesterol efflux, complement gene expression, and the NLRP3 pathway. In summary, emerging...

  19. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    John Bernet; Jayati Mullick; Akhilesh K Singh; Arvind Sahu

    2003-04-01

    The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.

  20. A Preliminary Study on Hemolytic Activity of the Complement B Factor ofApostichopusjaponicusin vivo%仿刺参补体B因子溶血活性初步研究

    Institute of Scientific and Technical Information of China (English)

    钟磊; 张峰; 毕颖

    2011-01-01

    本文应用高等哺乳动物血清补体B因子溶血检测技术检测仿刺参个体体内补体B因子。通过溶血法检测了健康仿刺参以及人工诱导化皮仿刺参体腔液补体B因子活性。结果显示仿刺参体腔液有补体B因子存在,且含补体B因子仿刺参体腔液溶血活性明显高于去补体B因子体腔液的溶血活性。实验对仿刺参体腔液进行加热处理结果显示其补体B因子是对热不稳定的分子,此特性与高等哺乳动物B因子特征相同。仿刺参体内存在补体B因子,它与脊椎动物补体B因子性质相似,在免疫旁路途径中起重要作用。%In this paper, the method of mammals hemolytic serum for complement factor B test was used to detect the complement B factor of Apostichopus japonicusin vivo. The complement factor B activity in celomocytes fluid of health and skin ulcers of Apostichopus japonicus was detected. The results showed that the sea cucumber body fluid with the existence of complement factor B, containing the sea cucumber complement factor B hemolytic activity of body fluid was higher than that and to complement factor B hemolytic activity of body fluid. Experiments on sea cucumber body fluid to heat treatment showed that its complement factor B is the thermal instability of the molecule, this characteristic and higher mammals, B factor are identical. Complement B factors exists in sea cucumber body, and it play an important role in alternative pathway of complement, similar as vertebrate Complement B factor.

  1. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.

  2. Heterogeneity in rhesus macaque complement factor H binding to meningococcal factor H binding protein (FHbp) informs selection of primates to assess immunogenicity of FHbp-based vaccines.

    Science.gov (United States)

    Beernink, Peter T; Shaughnessy, Jutamas; Stefek, Heather; Ram, Sanjay; Granoff, Dan M

    2014-11-01

    Neisseria meningitidis causes disease only in humans. An important mechanism underlying this host specificity is the ability of the organism to resist complement by recruiting the complement downregulator factor H (FH) to the bacterial surface. In previous studies, binding of FH to one of the major meningococcal FH ligands, factor H binding protein (FHbp), was reported to be specific for human FH. Here we report that sera from 23 of 73 rhesus macaques (32%) tested had high FH binding to FHbp. Similar to human FH, binding of macaque FH to the meningococcal cell surface inhibited the complement alternative pathway by decreasing deposition of C3b. FH contains 20 domains (or short consensus repeats), with domains 6 and 7 being responsible for binding of human FH to FHbp. DNA sequence analyses of FH domains 6 and 7 from macaques with high or low FH binding showed a polymorphism at residue 352 in domain 6, with Tyr being associated with high binding and His with low binding. A recombinant macaque FH 6,7/Fc fragment with Tyr352 showed higher binding to FHbp than the corresponding fragment with His352. In previous studies in human FH transgenic mice, binding of FH to FHbp vaccines decreased protective antibody responses, and mutant FHbp vaccines with decreased FH binding elicited serum antibodies with greater protective activity. Thus, macaques with high FH binding to FHbp represent an attractive nonhuman primate model to investigate further the effects of FH binding on the immunogenicity of FHbp vaccines.

  3. Role of complement in neurodegeneration and neuroinflammation.

    Science.gov (United States)

    Bonifati, Domenico Marco; Kishore, Uday

    2007-02-01

    The complement system provides an innate defence mechanism against pathogenic microorganisms. Although viewed for many years as an immune-privileged organ, the central nervous system contains many components of the immune system, including components of the complement system that are synthesized by astrocytes, microglia, and neurons. During the past two decades, a wide range of inflammatory markers, typically absent in the normal elderly population, have been reported in Alzheimer's disease brains. It is becoming evident that sustained brain inflammation might be an essential cofactor in Alzheimer disease and other neurodegenerative disorders such as Parkinson disease, dementia with Lewy bodies, Huntington's and prion diseases. The complement system may be useful in eliminating aggregated and toxic proteins associated with these neurological disorders and thus have a protective effect. However, an exaggerated or insufficient activation of the complement system can have deleterious effect through the activation of microglia, secretion of many proinflammatory cytokines, and generation of oxidative products. The role of complement-mediated inflammation in Alzheimer disease has drawn greater attention recently in view of new therapeutic advances made in the management of the disease. This review is meant to update the role of complement in Alzheimer's disease and other neurodegenerative disorders in view of recent vaccination and immunotherapeutic approaches.

  4. Complement and thrombosis in the antiphospholipid syndrome.

    Science.gov (United States)

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies.

  5. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function.

    Science.gov (United States)

    Mastellos, Dimitrios C

    2014-11-01

    Growing evidence points to a previously elusive role of complement-modulated pathways in CNS development, neurogenesis and synaptic plasticity. Distinct complement effectors appear to play a multifaceted role in brain homeostasis by regulating synaptic pruning in the retinogeniculate system and sculpting functional neural circuits both in the developing and adult mammalian brain. A recent study by Perez-Alcazar et al. (2014) provides novel insights into this intricate interplay between complement and the dynamically regulated brain synaptic circuitry, by reporting that mice deficient in C3 exhibit enhanced hippocampus-dependent spatial learning and cognitive performance. This behavioral pattern is associated with an impact of C3 on the functional capacity of glutamatergic synapses, supporting a crucial role for complement in excitatory synapse elimination in the hippocampus. These findings add a fresh twist to this rapidly evolving research field, suggesting that discrete complement components may differentially modulate synaptic connectivity by wiring up with diverse neural effectors in different regions of the brain. The emerging role of complement in synaptogenesis and neural network plasticity opens new conceptual avenues for considering complement interception as a potential therapeutic modality for ameliorating progressive cognitive impairment in age-related, debilitating brain diseases with a prominent inflammatory signature.

  6. Dimerization of complement factor H-related proteins modulates complement activation in vivo.

    Science.gov (United States)

    Goicoechea de Jorge, Elena; Caesar, Joseph J E; Malik, Talat H; Patel, Mitali; Colledge, Matthew; Johnson, Steven; Hakobyan, Svetlana; Morgan, B Paul; Harris, Claire L; Pickering, Matthew C; Lea, Susan M

    2013-03-19

    The complement system is a key component regulation influences susceptibility to age-related macular degeneration, meningitis, and kidney disease. Variation includes genomic rearrangements within the complement factor H-related (CFHR) locus. Elucidating the mechanism underlying these associations has been hindered by the lack of understanding of the biological role of CFHR proteins. Here we present unique structural data demonstrating that three of the CFHR proteins contain a shared dimerization motif and that this hitherto unrecognized structural property enables formation of both homodimers and heterodimers. Dimerization confers avidity for tissue-bound complement fragments and enables these proteins to efficiently compete with the physiological complement inhibitor, complement factor H (CFH), for ligand binding. Our data demonstrate that these CFHR proteins function as competitive antagonists of CFH to modulate complement activation in vivo and explain why variation in the CFHRs predisposes to disease.

  7. The epidermal growth factor receptor is a regulator of epidermal complement component expression and complement activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar;

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...... wounds in vivo and in cultured keratinocytes after exposure to supernatant from stimulated mononuclear cells. In contrast, the epidermal expression of complement components was downregulated in ex vivo injured skin lacking the stimulation from infiltrating inflammatory cells but with intact injury......-induced epidermal growth factor receptor (EGFR)-mediated growth factor response. In cultured primary keratinocytes, stimulation with the potent EGFR ligand, TGF-α, yielded a significant downregulation of complement component expression. Indeed, EGFR inhibition significantly enhanced the induction of complement...

  8. Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Doni, Andrea; Hummelshøj, Tina;

    2009-01-01

    The long pentraxin 3 (PTX3) is a multifunctional soluble pattern recognition molecule that is crucial in innate immune protection against opportunistic fungal pathogens such as Aspergillus fumigatus. The mechanisms that mediate downstream effects of PTX3 are largely unknown. However, PTX3 interacts...... with C1q from the classical pathway of the complement. The ficolins are recognition molecules of the lectin complement pathway sharing structural and functional characteristics with C1q. Thus, we investigated whether the ficolins (Ficolin-1, -2, and -3) interact with PTX3 and whether the complexes....... fumigatus directly, but this binding was enhanced by PTX3 and vice versa. Ficolin-2-dependent complement deposition on the surface of A. fumigatus was enhanced by PTX3. A polymorphism in the FCN2 gene causing a T236M amino acid change in the fibrinogen-like binding domain of Ficolin-2, which affects...

  9. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics.

    Science.gov (United States)

    Melis, Joost P M; Strumane, Kristin; Ruuls, Sigrid R; Beurskens, Frank J; Schuurman, Janine; Parren, Paul W H I

    2015-10-01

    Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.

  10. Pathway analysis of bladder cancer genome-wide association study identifies novel pathways involved in bladder cancer development

    Science.gov (United States)

    Chen, Meng; Rothman, Nathaniel; Ye, Yuanqing; Gu, Jian; Scheet, Paul A.; Huang, Maosheng; Chang, David W.; Dinney, Colin P.; Silverman, Debra T.; Figueroa, Jonine D.; Chanock, Stephen J.; Wu, Xifeng

    2016-01-01

    Genome-wide association studies (GWAS) are designed to identify individual regions associated with cancer risk, but only explain a small fraction of the inherited variability. Alternative approach analyzing genetic variants within biological pathways has been proposed to discover networks of susceptibility genes with additional effects. The gene set enrichment analysis (GSEA) may complement and expand traditional GWAS analysis to identify novel genes and pathways associated with bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer susceptibility in a Texas GWAS population. The candidate genetic polymorphisms from the significant pathway selected by GSEA were validated in an independent NCI GWAS. We identified 18 novel pathways (P < 0.05) significantly associated with bladder cancer risk. Five of the most promising pathways (P ≤ 0.001 in any of the three GSEA methods) among the 18 pathways included two cell cycle pathways and neural cell adhesion molecule (NCAM), platelet-derived growth factor (PDGF), and unfolded protein response pathways. We validated the candidate polymorphisms in the NCI GWAS and found variants of RAPGEF1, SKP1, HERPUD1, CACNB2, CACNA1C, CACNA1S, COL4A2, SRC, and CACNA1C were associated with bladder cancer risk. Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed the strongest associations; the CCNE1 signal at 19q12 has already been reported in previous GWAS. These findings offer additional etiologic insights highlighting the specific genes and pathways associated with bladder cancer development. GSEA may be a complementary tool to GWAS to identify additional loci of cancer susceptibility.

  11. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    Science.gov (United States)

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role.

  12. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour;

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  13. Co-option of the piRNA Pathway for Germline-Specific Alternative Splicing of C. elegans TOR

    Directory of Open Access Journals (Sweden)

    Sergio Barberán-Soler

    2014-09-01

    Full Text Available Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363 is associated with (1 accumulation of endo-small interfering RNAs (siRNAs against an embedded Helitron transposon and (2 activation of an alternative 3′ splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3′ splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a “nonself” intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  14. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Wiegant, Wouter W. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Waisfisz, Quinten [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Medhurst, Annette L. [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N. Copernicus University, Bydgoszcz (Poland)]. E-mail: m.z.zdzienicka@lumc.nl

    2006-02-22

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.

  15. Complement factor H related proteins (CFHRs).

    Science.gov (United States)

    Skerka, Christine; Chen, Qian; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T

    2013-12-15

    Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases.

  16. Inhibition of Complement Retards Ankylosing Spondylitis Progression

    Science.gov (United States)

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  17. Supramolecular Control over Split-Luciferase Complementation.

    Science.gov (United States)

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  18. Applying complement therapeutics to rare diseases.

    Science.gov (United States)

    Reis, Edimara S; Mastellos, Dimitrios C; Yancopoulou, Despina; Risitano, Antonio M; Ricklin, Daniel; Lambris, John D

    2015-12-01

    Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis.

  19. Thermal complementation in integrated power systems; Complementacao termica em sistemas integrados

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Dorel Soares; Paula, Claudio Paiva de [Companhia Energetica de Sao Paulo, SP (Brazil)

    1998-12-31

    The Electric Sector supply expansion is based on new hydro and thermal power plants installation. Emphasis is enforced at thermal complementation as a tool of supply expansion improvement. This alternative, established on efficiency improvement, integrates independent power systems, such gas and electricity industries. (author) 8 refs., 2 figs., 5 tabs.

  20. ACE-inhibitor induced angio-oedema treated with complement C1-inhibitor concentrate

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Bygum, Anette

    2013-01-01

    severe angio-oedema of the tongue and floor of the mouth. He was successfully treated with complement C1-concentrate causing the swelling to regress within 20 min. This treatment option can be an effective alternative to bradykinin antagonists, which might not be available in the emergency room, or more...

  1. Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle.

    Science.gov (United States)

    Yang, Y; Huang, J M; Ju, Z H; Li, Q L; Zhou, L; Li, R L; Li, J B; Shi, F X; Zhong, J F; Wang, C F

    2012-08-29

    The complement system helps in the direct lysis of invading pathogens and modulates phagocytic, humoral and cellular immune responses. Complement 4 is a critical component in complement activity and protection against many bacterial pathogens because it is essential to classical and lectin activation pathways. We used reverse transcription and PCR to investigate alternative splicing and expression of the complement component 4 (C4A) gene in Chinese Holstein cattle. The PCR products were cloned and sequenced. A novel splice variant involving intron 10 was identified, which we named C4A-AS. To examine how C4A gene activity is affected by bovine mastitis, six Chinese Holstein cattle were divided into healthy (non-mastitic) and Staphylococcus aureus-induced mastitic groups. Real-time quantitative PCR (qRT-PCR) revealed that the C4A-complete and C4A-AS transcripts are expressed at significantly different levels in healthy cows, while there were no significant differences in the mastitic group (P = 0.257). Expression of C4A-AS increased significantly when mastitis developed. We also examined the expression of C4A-complete and C4A-AS in several tissues (liver, heart, spleen, lung, kidney, tongue, and muscle). The two transcripts were expressed in all of these tissues but there were no significant differences in expression between healthy and mastitic cows. We therefore conclude that the C4A-complete transcript is the main transcript under normal physiological conditions, while C4A-AS is augmented when mastitis develops.

  2. Complement-mediated solubilization of immune complexes. Solubilization inhibition and complement factor levels in SLE patients

    DEFF Research Database (Denmark)

    Baatrup, Gunnar; Petersen, Ivan; Kappelgaard, E;

    1984-01-01

    Thirty-two of 36 serum samples from 19 SLE patients showed reduced capacity to mediate complement-dependent solubilization of immune complexes (IC). SLE patients with nephritis exerted the lowest complement-mediated solubilization capacity (CMSC) whereas sera from patients with inactive disease g...

  3. HUS and the case for complement.

    Science.gov (United States)

    Conway, Edward M

    2015-10-29

    Hemolytic-uremic syndrome (HUS) is a thrombotic microangiopathy that is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Excess complement activation underlies atypical HUS and is evident in Shiga toxin-induced HUS (STEC-HUS). This Spotlight focuses on new knowledge of the role of Escherichia coli-derived toxins and polyphosphate in modulating complement and coagulation, and how they affect disease progression and response to treatment. Such new insights may impact on current and future choices of therapies for STEC-HUS.

  4. L^2-Betti numbers of hypersurface complements

    CERN Document Server

    Maxim, Laurentiu

    2012-01-01

    In \\cite{DJL07} it was shown that if $\\scra$ is an affine hyperplane arrangement in $\\C^n$, then at most one of the $L^2$--Betti numbers $b_i^{(2)}(\\C^n\\sm \\scra,\\id)$ is non--zero. In this note we prove an analogous statement for complements of complex affine hyperurfaces in general position at infinity. Furthermore, we recast and extend to this higher-dimensional setting results of \\cite{FLM,LM06} about $L^2$--Betti numbers of plane curve complements.

  5. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  6. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  7. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2016-10-01

    Full Text Available To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC fixation, community composition (16S rRNA sequencing and community gene expression (metatranscriptomics in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e. pyruvate plus acetate were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates —assumed to be related to autotrophic metabolisms— were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  8. Activation of serum complement in Posner-Schlossman syndrome patients%青光眼睫状体炎综合征患者血液中补体系统活化状态的分析

    Institute of Scientific and Technical Information of China (English)

    陈文杰; 赵军; 祝天辉; 彭诗茗; 黄晓生

    2016-01-01

    Background Activation of serum complement system is involved in the pathological process of uveitis and open angle glaucoma.Pathogenesis and pathological characteristics of Posner-Schlossman syndrome (PSS) are similar to uveitis and open angle glaucoma.However,etiology of PSS remains unelucidated.The activation complement in PSS patients' serum is rarely reported.Objective The aim of this study was to investigate the activation of serum complement in PSS patients for PSS pathogenesis.Methods A prospective case-controlled study was designed.The peripheral blood simples of 79 PSS patients were collected from Shenzhen Eye Hospital during December 2013 to December 2015,and the peripheral blood simples were obtained from 83 unrelated healthy blood donors as healthy control group.Immuno-scatter turbidmetry was adopted to detect the common activated components in complement pathway in each group including complement C3 (a vital intersection molecule in the three pathways),C4 (the vital molecule both the complement classical and lectin pathways),split products C3a,soluble membrane attack complex (sC5b-9),C 1q (complement classical pathway),L-ficolin (complement lectin pathway),complement factor Bb (complement alternative pathway),IgG,IgA and IgM.The correlation between serum C3a content and sC5b-9 content in PSS group was analyzed.The serum contents of fabric binding protein 2 (FCN2) (a marker of serum classical pathway),factor Bb (a marker of complement alternative pathway),C3a (the common activation products of three complement activation pathways),and sC5b-9 were assayed by ELISA.This research protocal was approved by Shenzhen Eye Hospital and written informed consent was obtained from each PSS patient prior to any medical examination.Results Compared with normal control group,the serum levels of C3,C4,C3a,sC5b-9,C1q,FCN2,IgG,IgA and IgM were significantly higher in PSS group (Z =-4.743,-2.913,-1.985,-2.620,-2.062,-2.500,-7.010,-6.327,-3.652,all at P < 0.05).The serum

  9. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, W.; Jaspers, N.G.J.; Bootsma, D.; Hoeijmakers, J.H.J. (Erasmus Univ., Rotterdam (Belgium)); Jaeken, J. (Univ. Hospital Gasthuisberg, Leuven (Belgium))

    1993-07-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both [open quotes]preferential[close quotes] and [open quotes]overall[close quotes] NER modalities. Here the authors report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, they assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. It is concluded that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. The authors suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes. 33 refs., 5 tabs.

  10. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    Science.gov (United States)

    Xiao, Xiaoping; Liu, Yang; Zhang, Xiaoyan; Wang, Jing; Li, Zuofeng; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2014-04-01

    The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE)-containing proteins (TEPs), which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR), belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C), which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs), which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  11. Complement Activation: An Emerging Player in the Pathogenesis of Cardiovascular Disease

    Science.gov (United States)

    Carter, Angela M.

    2012-01-01

    A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis. PMID:24278688

  12. Complement Activation: An Emerging Player in the Pathogenesis of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Angela M. Carter

    2012-01-01

    Full Text Available A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD, contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis.

  13. SALSA: a regulator of the early steps of complement activation on mucosal surfaces

    Directory of Open Access Journals (Sweden)

    Martin eReichhardt

    2016-03-01

    Full Text Available Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway, is the salivary scavenger and agglutinin (SALSA. SALSA is also known as DMBT1 (deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose binding lectin (MBL and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA and lactoferrin. Ulcerative colitis and Crohn’s disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.

  14. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Xiaoping Xiao

    2014-04-01

    Full Text Available The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE-containing proteins (TEPs, which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR, belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C, which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs, which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  15. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  16. Graphs whose complement and square are isomorphic

    DEFF Research Database (Denmark)

    Milanic, M.; Pedersen, Anders Sune; Pellicer, D.;

    2014-01-01

    We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square...

  17. Cross-Cultural Analysis on Complements

    Institute of Scientific and Technical Information of China (English)

    刘恒

    2014-01-01

    Nativized varieties of English must reflect native pragmatic norms and cultural conventions. Complements, as a polite social behavior, is analyzed from the perspective of Chinese English speaker and American English speaker to emphasize the im-portance of the cross-cultural differences in pragmatic uses.

  18. Spacelab carrier complement thermal design and performance

    Science.gov (United States)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  19. 21 CFR 866.5240 - Complement components immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement components immunological test system....5240 Complement components immunological test system. (a) Identification. A complement components... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  20. Complement Constructions in English: Fairly Difficult for EFL Language Learners

    Science.gov (United States)

    Fazeli, Fatemeh; Shokrpour, Nasrin

    2012-01-01

    Complement constructions vary significantly in English and Persian. There are more complementation structures in English than in Persian and a complement structure in Persian might have more than one equivalent in English. Producing complement structures (CSs) in English is very difficult for native speakers of Persian, especially in an EFL…

  1. A Preliminary Genetic Analysis of Complement 3 Gene and Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jianliang Ni

    Full Text Available Complement pathway activation was found to occur frequently in schizophrenia, and complement 3 (C3 plays a major role in this process. Previous studies have provided evidence for the possible role of C3 in the development of schizophrenia. In this study, we hypothesized that the gene encoding C3 (C3 may confer susceptibility to schizophrenia in Han Chinese. We analyzed 7 common single nucleotide polymorphisms (SNPs of C3 in 647 schizophrenia patients and 687 healthy controls. Peripheral C3 mRNA expression level was measured in 23 drug-naïve patients with schizophrenia and 24 controls. Two SNPs (rs1047286 and rs2250656 that deviated from Hardy-Weinberg equilibrium were excluded for further analysis. Among the remaining 5 SNPs, there was no significant difference in allele and genotype frequencies between the patient and control groups. Logistic regression analysis showed no significant SNP-gender interaction in either dominant model or recessive model. There was no significant difference in the level of peripheral C3 expression between the drug-naïve schizophrenia patients and healthy controls. In conclusion, the results of this study do not support C3 as a major genetic susceptibility factor in schizophrenia. Other factors in AP may have critical roles in schizophrenia and be worthy of further investigation.

  2. Identification of the Fanconi Anemia Complementation Group I Gene, FANCI

    Directory of Open Access Journals (Sweden)

    Josephine C. Dorsman

    2007-01-01

    Full Text Available To identify the gene underlying Fanconi anemia (FA complementation group I we studied informative FA-I families by a genome-wide linkage analysis, which resulted in 4 candidate regions together encompassing 351 genes. Candidates were selected via bioinformatics and data mining on the basis of their resemblance to other FA genes/proteins acting in the FA pathway, such as: degree of evolutionary conservation, presence of nuclear localization signals and pattern of tissue-dependent expression. We found a candidate, KIAA1794 on chromosome 15q25-26, to be mutated in 8 affected individuals previously assigned to complementation group I. Western blots of endogenous FANCI indicated that functionally active KIAA1794 protein is lacking in FA-I individuals. Knock-down of KIAA1794 expression by siRNA in HeLa cells caused excessive chromosomal breakage induced by mitomycin C, a hallmark of FA cells. Furthermore, phenotypic reversion of a patient-derived cell line was associated with a secondary genetic alteration at the KIAA1794 locus. These data add up to two conclusions. First, KIAA1794 is a FA gene. Second, this gene is identical to FANCI, since the patient cell lines found mutated in this study included the reference cell line for group I, EUFA592.

  3. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  4. Association of Low Ficolin-Lectin Pathway Parameters with Cardiac Syndrome X.

    Science.gov (United States)

    Horváth, Z; Csuka, D; Vargova, K; Leé, S; Varga, L; Garred, P; Préda, I; Zsámboki, E T; Prohászka, Z; Kiss, R G

    2016-09-01

    In patients with typical angina pectoris, inducible myocardial ischaemia and macroscopically normal coronaries (cardiac syndrome X (CSX)), a significantly elevated plasma level of terminal complement complex (TCC), the common end product of complement activation, has been observed without accompanying activation of the classical or the alternative pathways. Therefore, our aim was to clarify the role of the ficolin-lectin pathway in CSX. Eighteen patients with CSX, 37 stable angina patients with significant coronary stenosis (CHD) and 54 healthy volunteers (HC) were enrolled. Serum levels of ficolin-2 and ficolin-3, ficolin-3/MASP-2 complex and ficolin-3-mediated TCC deposition (FCN3-TCC) were determined. Plasma level of TCC was significantly higher in the CSX than in the HC or CHD group (5.45 versus 1.30 versus 2.04 AU/ml, P TCC deposition was significantly lower in the CSX group compared to the HC and CHD groups (67.8% versus 143.3% or 159.7%, P TCC and FCN3-TCC level (r = 0.507, P = 0.032) and between ficolin-3/MASP-2 complex level and FCN3-TCC deposition (r = 0.651, P = 0.003). In conclusion, in patients with typical angina and myocardial ischaemia despite macroscopically normal coronary arteries, low levels of several lectin pathway parameters were observed, indicating complement activation and consumption. Complement activation through the ficolin-lectin pathway might play a role in the complex pathomechanism of CSX.

  5. Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica.

    Science.gov (United States)

    Gomez-Casano