WorldWideScience

Sample records for alternative adhesion mechanisms

  1. Mechanical strength of adhesive-bonding

    International Nuclear Information System (INIS)

    In order to meet the prospective application of a GFRP dewar for energy storage system using a large superconducting magnet, the dewar with a complex structure together with a large size are desired to be made. It is difficult to manufacture such a type of the dewars in one united body. These dewars can be manufactured by the adhesive-bonding method. In the present study, the mechanical strength of adhesive-bonding is studied from this point of view. The mechanical strength of the adhesive-bonding has been investigated by the static tensile method and the impact loading method using small test samples. From the static tensile tests, the following results have been obtained. For the sample adhesive-bonded with insertion structure, the mechanical strength of the adhesive-bonding is found to depend on the adhesives used and on the difference of the thermal contraction between the materials which are adhesive-bonded each other. Using a soft adhesive as Araldite 106, the mechanical strength of the adhesive-bonding is small at room temperature, but it remarkably increases at cryogenic temperatures. For a hard adhesive as Araldite 103 and Stycast 2850 FT, it is large at room temperature, and it further increases at cryogenic temperatures. The dewar has to be strong enough not only at cryogenic temperatures but also at room temperature. A soft adhesive is not suitable for constructing the dewar. For the sample adhesive-bonded with screwing structure, the mechanical strength of the adhesive-bonding depends on the shear strength of GFRP itself. The mechanical strength of the adhesive-bonded part increases with the decreasing temperature. Therefore, this screwing method is advantageous for the construction of the dewar. According to the impact loading tests, it is found that the adhesive-bonding of screwing structure is not brittle at cryogenic temperature. This is due to inherent property of GFRP. (J.P.N.)

  2. Adhesive mechanisms in cephalopods: a review.

    Science.gov (United States)

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  3. The effects on tensile, shear, and adhesive mechanical properties when recycled epoxy/fiberglass is used as an alternative for glass microballoons in fiberglass foam core sandwiches

    Science.gov (United States)

    Wilson, Dru Matthew

    The problem of this study was to determine whether fiberglass foam core sandwiches made with recycled epoxy/fiberglass have equal or better flatwise tension, shear, and peel (adhesion) mechanical properties when compared with composite sandwiches made with industry standard glass microballoons. Recycling epoxy/fiberglass could save money by: (1) reusing cured composite materials, (2) consuming less virgin composite materials, (3) spending less on transportation and disposing of unusable composites, and (4) possibly enabling companies to sell their recycled composite powder to other manufacturers. This study used three mechanical property tests, which included: flatwise tensile test, shear test, and peel (adhesion) test. Each test used 300 samples for a combined total of 900 sandwich test samples for this study. A factorial design with three independent variables was used. The first variable, filler type, had three levels: no filler, microballoon filler, and recycled epoxy/fiberglass filler. The second variable, foam density, had four levels: 3 lb/ft³, 4 lb/ft³, 5 lb/ft³, and 6 lb/ft³. The third variable, filler percentage ratio, had eight levels: 0%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%. The results of this study revealed two primary conclusions. The first conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly better in tensile, shear, and peel (adhesion) strength than sandwiches produced with hollow glass microballoons. The second conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly lighter in weight than sandwiches produced with hollow glass microballoons.

  4. Critical length scale controls adhesive wear mechanisms

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  5. Alternative conformal quantum mechanics

    OpenAIRE

    Ho, Shih-Hao

    2011-01-01

    We investigate a one dimensional quantum mechanical model, which is invariant under translations and dilations but does not respect the conventional conformal invariance. We describe the possibility of modifying the conventional conformal transformation such that a scale invariant theory is also invariant under this new conformal transformation.

  6. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Science.gov (United States)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  7. Mechanically Robust, Negative-Swelling, Mussel-Inspired Tissue Adhesives

    OpenAIRE

    Barrett, Devin G.; Grace G. Bushnell; Messersmith, Phillip B.

    2012-01-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. Herein, we describe the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties o...

  8. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    Science.gov (United States)

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples. PMID:18197367

  9. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiangJun; LIU Yuan; LIU YongHe; AHMED S.I.-U.

    2009-01-01

    Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag-nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia-meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.

  10. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  11. Mechanics of Cellular Adhesion to Artificial Artery Templates

    OpenAIRE

    Knöner, Gregor; Rolfe, Barbara E.; Campbell, Julie H.; Parkin, Simon J.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135...

  12. Alternative castor oil-based polyurethane adhesive used in the production of plywood

    Directory of Open Access Journals (Sweden)

    Fabricio Moura Dias

    2004-09-01

    Full Text Available Plywood is normally produced with urea-formaldehyde and/or phenol-formaldehyde adhesives. However, the former is considerably toxic and environmentally damaging, while the latter is expensive, thus motivating the search for alternative raw materials in plywood production. The castor oil-based polyurethane adhesive developed at the São Carlos Institute of Chemistry, University of São Paulo, is an environmentally friendly vegetal oil-based polymer that is harmless to humans. The wood species Eucalyptus grandis offers favorable properties for plywood the manufacture. The study reported on here involved the use of castor oil-based polyurethane adhesive to produce plywood with Eucalyptus grandis layers. The plywood's performance was evaluated based on the results of physical and mechanical tests recommended by the Brazilian code, ABNT. Tests results showed higher values than those reported in the literature and recommended by the ABNT, indicating that the castor oil-based polyurethane adhesive is a promising glue for the manufacture of plywood.

  13. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.;

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces is the s...

  14. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects

    International Nuclear Information System (INIS)

    Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push–pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides. (paper)

  15. Mechanics of robust and releasable adhesion in biology

    OpenAIRE

    Yao, Haimin

    2006-01-01

    Nature has found, through billions years of natural evolution, many ingenious ways to produce materials with superior mechanical properties. It would be a convenient and practical way for us to explore the existing biological systems for the ideas of designing novel materials. In this thesis, our attention will be focused on dry adhesion, a specific phenomenon observed frequently in many animal species like gecko, fly and insects. Our goal is to elucidate the adhesion mechanism behind these p...

  16. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives.

    Science.gov (United States)

    Barrett, Devin G; Bushnell, Grace G; Messersmith, Phillip B

    2013-05-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. This paper describes the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties of the resulting thermosensitive gels were characterized. Catechol oxidation at or below room temperature rapidly resulted in a chemically cross-linked network, with subsequent warming to physiological temperature inducing a thermal hydrophobic transition in the PPO domains and providing a mechanism for volumetric reduction and mechanical toughening. The described approach can be easily adapted for other thermally sensitive block copolymers and cross-linking strategies, representing a general approach that can be employed to control swelling and enhance mechanical properties of polymer hydrogels used in a medical context. PMID:23184616

  17. Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin.

    Science.gov (United States)

    Formosa-Dague, Cécile; Feuillie, Cécile; Beaussart, Audrey; Derclaye, Sylvie; Kucharíková, Soňa; Lasa, Iñigo; Van Dijck, Patrick; Dufrêne, Yves F

    2016-03-22

    The development of bacterial biofilms on surfaces leads to hospital-acquired infections that are difficult to fight. In Staphylococci, the cationic polysaccharide intercellular adhesin (PIA) forms an extracellular matrix that connects the cells together during biofilm formation, but the molecular forces involved are unknown. Here, we use advanced force nanoscopy techniques to unravel the mechanism of PIA-mediated adhesion in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain. Nanoscale multiparametric imaging of the structure, adhesion, and elasticity of bacteria expressing PIA shows that the cells are surrounded by a soft and adhesive matrix of extracellular polymers. Cell surface softness and adhesion are dramatically reduced in mutant cells deficient for the synthesis of PIA or under unfavorable growth conditions. Single-cell force spectroscopy demonstrates that PIA promotes cell-cell adhesion via the multivalent electrostatic interaction with polyanionic teichoic acids on the S. aureus cell surface. This binding mechanism rationalizes, at the nanoscale, the well-known ability of PIA to strengthen intercellular adhesion in staphylococcal biofilms. Force nanoscopy offers promising prospects for understanding the fundamental forces in antibiotic-resistant biofilms and for designing anti-adhesion compounds targeting matrix polymers. PMID:26908275

  18. The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers

    OpenAIRE

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both mor...

  19. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    Science.gov (United States)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  20. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species. PMID:23750233

  1. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Directory of Open Access Journals (Sweden)

    Francesca Tramacere

    Full Text Available The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa. In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  2. On the mechanical characterization of carbon nanotube reinforced epoxy adhesives

    International Nuclear Information System (INIS)

    Highlights: • We examine the mechanical properties of carbon nanotube reinforced epoxy adhesives. • We identify a critical nanotube concentration that results in the largest improvements. • Critical concentration is shown to be a result of nanotube agglomeration. • Rheological assessments indicate that agglomeration is due to increased resin viscosity. - Abstract: In this work, the mechanical properties of carbon nanotube reinforced epoxy adhesives are investigated experimentally. The investigations are intended to characterize the physical and mechanical properties of nano-reinforced structural epoxy adhesives and to further highlight some of the complex phenomena associated with these materials. We describe the dispersion methodology used to disperse the carbon nanotubes into the considered adhesive and provide details pertaining to adherent surface preparation, bondline thickness control and adhesive curing conditions. Furthermore, the following tests are described: (i) dogbone tensile testing, (ii) tensile bond testing, (iii) double lap shear and (iv) double cantilever beam fracture toughness testing. The experimental observations indicate a critical carbon nanotube concentration in the vicinity of 1.5 wt% that results in the largest improvements in the measured properties. At concentrations exceeding this critical value, the properties begin to degrade, in some cases, to levels below that of the pure epoxy. Advanced electron microscopy techniques and rheological assessments indicate that this is mainly due to the agglomeration of the carbon nanotubes at higher concentrations as a result of increased resin viscosity and the consequent resistance to dispersion

  3. Alternative castor oil-based polyurethane adhesive used in the production of plywood

    OpenAIRE

    2004-01-01

    Plywood is normally produced with urea-formaldehyde and/or phenol-formaldehyde adhesives. However, the former is considerably toxic and environmentally damaging, while the latter is expensive, thus motivating the search for alternative raw materials in plywood production. The castor oil-based polyurethane adhesive developed at the São Carlos Institute of Chemistry, University of São Paulo, is an environmentally friendly vegetal oil-based polymer that is harmless to humans. The wood species Eu...

  4. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    Science.gov (United States)

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board. PMID:19329303

  5. The Adhesion and Formation Mechanism of Blast Furnace Gunning Layer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Basing on the study of the equilibrium relationship of interfacial tension among gunning particles, repaired surface and atmosphere, this test is in a position to draw a conclusion concerning the adhesion mechanism of the gunning refractory and the repaired surface, which illustrates the formation of the bottom gunning layer by moist fine gunning particles on the repaired surface. Also involved within the scope of discussion and probe are the patterns formed under this contacting effect and the formation mechanism of gunning layer. The analytic research regarding the behavior of gunning interface has ascribed the influence upon adhesion intensity to the quality of furnace gunning refractory, the state of the repaired surface and the gunning techniques.

  6. Mechanical behaviour of adhesive joints such as a concrete epoxy

    OpenAIRE

    Aguiar, J. L. Barroso de; Reymond, M. C.; Paillère, A. M.

    1987-01-01

    The sample DCB is separated in two parts then sticked by epoxy to study adhesion between concrete and epoxy resin. The crack propagation was initiated at a notch in a double cantilever beam. The notch of the test sample was opened by an Instron tensile machin. The crack extension was followed through direct optical observations. The displacement was measured by an extensometer. During the fracture test, mechanical behaviour of the sample was monitored with various techniques: the experimental...

  7. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    Science.gov (United States)

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  8. Dynamic mechanical and thermal properties of seven polyurethane adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M.

    1981-03-01

    Seven polyurethane adhesives have been developed at Lawrence Livermore National Laboratory (LLNL). These adhesives, designated Halthanes were synthesized because of OSHA restrictions on the use of the curing agent methylene bis(2-chloroaniline). Four of the Halthanes were made from LLNL-developed 4,4'-methylene bis(phenylisocyanate) terminated prepolymers cured with a blend of polyols; three were made from an LLNL-developed prepolymer terminated with Hylene W and cured with aromatic diamines. In this paper the dynamic mechanical and thermal behavior of these seven segmented polyurethanes are discussed. The chemical structure of the hard and soft segments, the concentrations of each block, and the presence of tetrafunctional crosslinker determined the dynamic mechanical and thermal properties of the three types of polyurethane adhesives, 73-, 87-, and 88-series Halthanes studied. Aromatic-aliphatic MDI- butanediol urethane hard segments produce lower modulus (10/sup 6/ Pa) materials in the rubbery region than cyclic unsaturated-aromatic urea hard segments. Incorporation of chemical crosslinks in the hard segments extended the rubbery plateau beyond the hard segment transitions up to temperatures where the polymer begins to degrade. Concentration of hard and soft segments can also be used to control the modulus between the glass transition temperatures of the two blocks.

  9. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  10. Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging

    OpenAIRE

    Korin, Christer

    2009-01-01

    A cartonboard package is often sealed and closed with an adhesive – either a hot-melt adhesive (adhesives that are applied in a molten state on the cartonboard) or a dispersion adhesive (adhesives that are applied as water-based dispersions). This thesis focuses on the process of hot-melt gluing, and how material properties and process conditions affect the performance of the adhesive joint. Requirements vary depending on how the package is to be used. A package that is only supposed to prote...

  11. Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion

    Directory of Open Access Journals (Sweden)

    McCann Richard O

    2006-12-01

    Full Text Available Abstract Background Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. Results We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian

  12. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  13. Quantifying adhesion energy of mechanical coatings at atomistic scale

    International Nuclear Information System (INIS)

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  14. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (<2 m in length), consisting of two glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres was...

  15. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    OpenAIRE

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  16. Mechanism of tantalum adhesion on SiLKTM

    International Nuclear Information System (INIS)

    Tantalum adhesion on SiLKTM was investigated using first-principles method based on density functional theory. Phenylene groups were found to play a major role and the adjacent semi-benzene rings also contribute significantly to Ta adhesion on SiLKTM. In addition, the degradation effects of H2/He reactive plasma clean on Ta adhesion on SiLKTM was investigated. Based on our findings, argon plasma treatment was suggested and implemented after reactive plasma cleaning process, which resulted in integration of SiLKTM with Cu up to seven metal layers

  17. The effect of adhesive layer elasticity on the fracture mechanics of a blister test specimen

    Science.gov (United States)

    Updike, D. P.

    1975-01-01

    An analytical model of a blister type specimen for evaluating adhesive bond strength was developed. Plate theory with shear deformation was used to model the deformation of the plate, and elastic deformation of the adhesive layer is taken into account. It is shown that the inclusion of the elastic deformation of the adhesive layer can have a significant influence in the energy balance calculations of fracture mechanics.

  18. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    Science.gov (United States)

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives. PMID:19241096

  19. An adhesion-dependent switch between mechanisms that determine motile cell shape.

    Directory of Open Access Journals (Sweden)

    Erin L Barnhart

    2011-05-01

    Full Text Available Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes.

  20. Nano-mechanics of Tunable Adhesion using Non Covalent Forces

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Liechti

    2012-09-08

    The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

  1. Mechanical pretreatment for improved adhesion of diamond coatings

    International Nuclear Information System (INIS)

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  2. Mechanical Properties and Adhesion of a Micro Structured Polymer Blend

    Directory of Open Access Journals (Sweden)

    Brunero Cappella

    2011-07-01

    Full Text Available A 50:50 blend of polystyrene (PS and poly(n-butyl methacrylate (PnBMA has been characterized with an Atomic Force Microscope (AFM in Tapping Mode and with force-distance curves. The polymer solution has been spin-coated on a glass slide. PnBMA builds a uniform film on the glass substrate with a thickness of @200 nm. On top of it, the PS builds an approximately 100 nm thick film. The PS-film undergoes dewetting, leading to the formation of holes surrounded by about 2 µm large rims. In those regions of the sample, where the distance between the holes is larger than about 4 µm, light depressions in the PS film can be observed. Topography, dissipated energy, adhesion, stiffness and elastic modulus have been measured on these three regions (PnBMA, PS in the rims and PS in the depressions. The two polymers can be distinguished in all images, since PnBMA has a higher adhesion and a smaller stiffness than PS, and hence a higher dissipated energy. Moreover, the polystyrene in the depressions shows a very high adhesion (approximately as high as PnBMA and its stiffness is intermediate between that of PnBMA and that of PS in the rims. This is attributed to higher mobility of the PS chains in the depressions, which are precursors of new holes.

  3. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  4. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  5. Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects

    OpenAIRE

    Song, Zhichao

    2012-01-01

    The main objective of this dissertation was to analyze surface contact interaction at different length scales and to elucidate the effects of material properties (e.g., adhesion and mechanical properties), normal and shear (friction) surface tractions, and topography parameters (e.g., roughness) on contact deformation. To accomplish this objective, a surface adhesion model based on an interatomic potential was incorporated into finite element contact models of rough surfaces exhibiting multi-...

  6. A New Self-Loading Locomotion Mechanism for Wall Climbing Robots Employing Biomimetic Adhesives

    Institute of Scientific and Technical Information of China (English)

    Amirpasha Peyvandi; Parviz Soroushian; Jue Lu

    2013-01-01

    A versatile locomotion mechanism is introduced and experimentally verified.This mechanism comprises four rectangular wheels (legs) with rotational phase difference which enables the application of pressure to each contacting surface for securing it to the surface using bio-inspired or pressure-sensitive adhesives.In this mechanism,the adhesives are applied to two rigid plates attached to each wheel via hinges incorporating torsional springs.The springs force the plates back to their original position after the contact with the surface is lost in the course of locomotion.The wheels are made of low-modulus elastomers,and the pressure applied during contact is controlled by the elastic modulus,geometry and phase difference of wheels.This reliable adhesion system does not rely upon gravity for adhering to surfaces,and provides the locomotion mechanism with the ability to climb walls and transition from horizontal to vertical surfaces.

  7. Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

    Science.gov (United States)

    Chen, Bin; Gao, Huajian

    2010-05-19

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion. PMID:20483323

  8. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  9. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gaharwar, Akhilesh K., E-mail: agaharwa@purdue.edu; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  10. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives. PMID:25244526

  11. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  12. Telomere recombination and alternative telomere lengthening mechanisms

    NARCIS (Netherlands)

    Draskovic, I.; Londono Vallejo, A.

    2013-01-01

    Telomeres are nucleoprotein structures at the ends of linear chromosomes that protect them from being recognized as DNA double stranded breaks. Telomeres shorten with every cell division and in the absence of the checkpoint mechanisms critical telomere shortening leads to chromosome end fusions and

  13. Molecular mechanisms of alternative estrogen receptor signaling

    OpenAIRE

    Björnström, Linda

    2003-01-01

    Estrogen is a key regulator of growth, differentiation and function in a broad range of target tissues, including the male and female reproductive tracts, mammary gland, bone, brain and the cardiovascular system. The biological effects of estrogen are mediated through estrogen receptor a (ERalpha) and estrogen receptor beta (ERbeta), which belong to a large superfamily of nuclear receptors that act as ligand-activated transcription factors. The classical mechanism of ER acti...

  14. Empirical Research of College Students' Alternative Frameworks of Particle Mechanics

    Science.gov (United States)

    Wang, Hongmei

    2010-01-01

    Based on the constructive theory, about 300 college students of grade 05 of the electronic information specialty of Dezhou University are surveyed for their alternative frameworks of particle mechanics in college physics in this article. In the survey, the questionnaires are used to find out college students' alternative frameworks, and the…

  15. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.

    Science.gov (United States)

    Gaharwar, Akhilesh K; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. PMID:23827639

  16. Theory of the mechanical response of focal adhesions to shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Biton, Y Y; Safran, S A, E-mail: yoav.biton@weizmann.ac.i, E-mail: sam.safran@weizmann.ac.i [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  17. Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

    Directory of Open Access Journals (Sweden)

    Maria B. Wieland

    2014-04-01

    Full Text Available We show that thin films of C60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS. This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins.

  18. Simulating the effectiveness of an alternative salary auction mechanism

    OpenAIRE

    Tan, Pei Yin

    2006-01-01

    This research simulates the effectiveness of an alternative auction mechanism for Assignment Incentive Pay (AIP) that has the potential for reducing the U.S. Department of Defense's (DoD's) cost. A recent student thesis studying the application of salary auctions and matching an an assignment setting determined that there arer two major complications in an assignment auction which affect the incentive of bidders to submit a truthful valuation of the jobs. An alternative auction mechanism th...

  19. Structures and host-adhesion mechanisms of lactococcal siphophages

    Directory of Open Access Journals (Sweden)

    ChristianCambillau

    2014-01-01

    Full Text Available The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation processes (e.g. cheese production. As a result, lactococcal phages have become one of the most thoroughly characterized class of phages from a genomic standpoint. They exhibit amazing and intriguing characteristics. First, each phage has a strict specificity towards a unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a large organelle at their tail tip (termed the baseplate, bearing the receptor binding proteins and mediating host adsorption. The recent accumulation of structural and functional data revealed the modular structure of their building blocks, their different mechanisms of activation and the fine specificity of their receptor binding proteins. These results also illustrated similarities and differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.

  20. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Awada, Houssein, E-mail: houssein.awada@uqtr.c [Centre Integre en Pates et Papiers, Universite du Quebec a Trois-Rivieres (UQTR), 3351, boul. des Forges Trois-Rivieres, G9A 5H7, Quebec (Canada); Noel, Olivier [Universite du Maine, Molecular landscapes and biophotonics, CNRS-UMR 6087, Le Mans (France); Hamieh, Tayssir [Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA, CHAMSI) Faculty of Sciences, Lebanese University, Beirut (Lebanon); Kazzi, Yolla [Faculty of Sciences, Lebanese University, Beirut (Lebanon); Brogly, Maurice [Laboratoire LECOB, Universite de Haute-Alsace, 68057 Mulhouse Cedex (France)

    2011-03-31

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  1. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives: Focussing on Bonding Glass

    OpenAIRE

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap length of the epoxy adhesive results in the highest maximum bond stress. However, there is nosignificant difference in maximum bond stresses due to different overlap lengths of the MS polymer. When...

  2. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  3. A room temperature cured low dielectric hyperbranched epoxy adhesive with high mechanical strength

    Indian Academy of Sciences (India)

    Bibekananda De; Niranjan Karak

    2014-05-01

    A low dielectric constant hyperbranched epoxy thermoset with excellent adhesive and mechanical strength is the demand for advanced electronics and engineering applications. The present investigation provided a room temperature, curable hyperbranched epoxy, obtained by an A2 + B3 polycondensation reaction. The synthesized hyperbranched epoxy was cured by a combined hardener system consisting of a commercial poly(amido-amine) and a first generation aliphatic poly(amido-amine) dendrimer (PAD) prepared by Michael addition reaction of methyl acrylate and aliphatic amines. The thermoset exhibited high mechanical strength, excellent adhesive strength, low dielectric constant, good thermal stability and excellent weather resistance along with very good moisture resistance. The results showed the influence of the amount of PAD on the performance of the thermoset. Thus, the study revealed that the combined poly(amido-amine) cured hyperbranched epoxy has high potential in advanced electrical packaging and microelectronic devices.

  4. Tuning the mechanical properties of bioreducible multilayer films for improved cell adhesion and transfection activity

    OpenAIRE

    Blacklock, Jenifer; Vetter, Andreas; Lankenau, Andreas; Oupický, David; Möhwald, Helmuth

    2010-01-01

    A simple approach to the mechanical modulation of layer-by-layer (LbL) films is through manipulation of the film assembly. Here, we report results based on altering the salt concentration during film assembly and its effect on film rigidity. Based on changes in film rigidity, cell adhesion characteristics and transfection activity were investigated in vitro. LbL films consisting of reducible hyperbranched poly(amide amine) (RHB) have been implemented along with DNA for investigating fibroblas...

  5. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heli; Focia, Pamela J.; He, Xiaolin (NWU, MED)

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  6. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  7. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  8. Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands

    Science.gov (United States)

    Roein-Peikar, Mehdi; Xu, Qian; Wang, Xuefeng; Ha, Taekjip

    2016-01-01

    Integrins, a class of membrane proteins involved in cell adhesion, participate in the cell's sensing of the mechanical environments. We previously showed that, for the initial cell adhesion to occur, single integrins need to experience a threshold force of 40 pico-Newton (pN) through their bond with surface-bound ligands. This force requirement was determined using a series of double-stranded DNA tethers called tension gauge tethers (TGTs), each with a different rupture force, linked to the ligand. Here, we performed cell-adhesion experiments using surfaces coated with two different TGTs, one of a strong rupture force (around 54 pN) and the other of a weak rupture force (around 12 pN). When presented with one type of TGT only, cells adhered to the strong TGT-coated surface but not to the weak TGT-coated surface. However, when presented with both, the presence of the strong TGTs transforms the way cells respond to the weak TGTs such that cells treat both TGTs the same, as if the weak TGTs were strong. Furthermore, a subpopulation of cells can adhere to and spread on a surface displaying just a few molecules of the strong TGTs per cell if, and only if, they are presented along with many weak TGTs. This ultrasensitivity to just a few tethers that can withstand strong forces raises a question of how the cells can achieve such remarkable sensitivity to their mechanical environment without amplifying noise.

  9. Improved electro-mechanical performance of gold films on polyimide without adhesion layers

    International Nuclear Information System (INIS)

    Thin metal films on polymer substrates are of interest for flexible electronic applications and often utilize a thin interlayer to improve adhesion of metal films on flexible substrates. This work investigates the effect of a 10 nm Cr interlayer on the electro-mechanical properties of 50 nm Au films on polyimide substrates. Ex situ and in situ fragmentation experiments reveal the Cr interlayer causes brittle electro-mechanical behaviour, and thin Au films without an interlayer can support strains up to 15% without significantly degrading electrical conductivity

  10. Mechanical characterization of particulate aluminum foams. Strain-rate, density and matrix alloy versus adhesive effects

    Energy Technology Data Exchange (ETDEWEB)

    Lehmhus, Dirk [ISIS Sensorial Materials Scientific Centre, University of Bremen (Germany); Baumeister, Joachim; Stutz, Lennart; Stoebener, Karsten [Fraunhofer IFAM Bremen (Germany); Schneider, Eduard [University of Bremen (Germany); Avalle, Massimiliano; Peroni, Lorenzo; Peroni, Marco [Dipartimento di Meccanica, Politecnico di Torino Vercelli (Italy)

    2010-07-15

    The study evaluates mechanical properties of APM particulate aluminum foams built up from adhesively bonded Al foam spheres. Foams of matrix alloy AlSi10 are compared, with PM AlSi7 foams used as reference. The influence of density is studied both for quasi-static and dynamic compressive loading in a range from {proportional_to}0.35 to 0.71 g cm{sup -3}. The effect of varying the bonding agent is evaluated for a single density and both strain rate levels by replacing the standard, high-strength epoxy-based adhesive with a polyamide of greatly increased ductility. The result is a clear shift of fracture events to higher strain levels, as well as the introduction of a strain-rate dependency of strength. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    Science.gov (United States)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  12. Spinodal decomposition: An alternate mechanism of phase conversion

    Indian Academy of Sciences (India)

    P Shukla; A K Mohanty

    2003-05-01

    The scenario of homogeneous nucleation is investigated for a first-order quark–hadron phase transition in a rapidly expanding background of quark gluon plasma. It is found that significant supercooling is possible before hadronization begins. This study also suggests that spinodal decomposition competes with nucleation and may provide an alternative mechanism for phase conversion.

  13. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  14. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  15. Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions

    Science.gov (United States)

    Beningo, Karen A.; Lo, Chun-Min; Wang, Yu-Li

    2002-01-01

    We have described a powerful tool for the study of mechanical interactions between cells and their physical environment. Although the approach has already been used in a variety of ways to measure traction forces and to characterize active and passive responses of cultured cells to mechanical stimulation, it can be extended easily and combined with other microscopic approaches, including fluorescent analog imaging (Beningo et al., 2001), photobleaching, calcium imaging, micromanipulation, and electrophysiology. This method will be particularly useful for studying the functions of various components at focal adhesions, and the effects of mechanical forces on focal adhesion-mediated signal transduction. In addition, the method can be extended to a 3D setting, e.g., by sandwiching cultured cells between two layers of polyacrylamide to create an environment mimicking that in the tissue of a multicellular organism. Whereas chemical interactions between cells and the environment have been investigated extensively, many important questions remain as to the role of physical forces in cellular functions and the interplay between chemical and physical mechanisms of communication. The present approach, as well as other approaches capable of probing physical interactions, should fill in this important gap in the near future.

  16. Polyampholyte- and nanosilicate-based soft bionanocomposites with tailorable mechanical and cell adhesion properties.

    Science.gov (United States)

    Jain, Minkle; Matsumura, Kazuaki

    2016-06-01

    Engineered tissues are excellent substitutes for treating organ failure associated with disease, injury, and degeneration. Designing new biomaterials with controlled release profiles, good mechanical properties, and cell adhesion characteristics can be useful for the formation of specific functional tissues. Here, we report the formulation of nanocomposite hydrogels based on carboxylated poly-l-lysine and synthetic clay laponite XLG in which four-arm polyethylene glycol with N-hydroxy succinimide ester (PEG-NHS) was used as the chemical crosslinker. Interestingly, the degradation of this gel could be adjusted from a few days to a few months. Incorporation of laponite XLG resulted in the formation of mechanically tough hydrogels and conferred cytocompatibility. The mechanical properties of the nanocomposite could be modulated by changing the crosslinking density and laponite concentration. The feasibility of using this system for cellular therapies was investigated by evaluating cell adhesion on the nanocomposite surface. Thus, these nanocomposites can serve as scaffolds with tunable mechanical and degradation properties that also provide structural integrity to tissue constructs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1379-1386, 2016. PMID:26833827

  17. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Directory of Open Access Journals (Sweden)

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  18. Influence of adhesion of silica and ceria abrasive nanoparticles on Chemical-Mechanical Planarization of silica surfaces

    International Nuclear Information System (INIS)

    We report on a direct measurement of adhesion between abrasive nanoparticles of irregular shape, which are used in semiconductor industry in the process of Chemical-Mechanical Planarization (CMP), and silica surface. The adhesion of ceria and silica nanoparticles to silica surface is measured in multiple chemistries of different CMP slurries using a specially developed atomic force microscopy (AFM) method. Using this method, we study the influence of adhesion on the main parameters of CMP, removal rate and defectivity, scratches. While being plausible to expect correlation between these parameters and adhesion, it has not been systematically studied as of yet. We observed direct correlation between adhesion and removal rate. Comparing the measured defectivity and adhesion, we observe the presence of some correlation between these parameters. We conclude that both adhesion and shape of abrasive particles influence defectivity, micro-scratches. Direct measurements of the adhesion between abrasive nano-particles and surface can be used in the screening of new slurries as well as various modeling related to wearing of the surfaces.

  19. A unified framework and an alternative mechanism for allosteric regulation

    CERN Document Server

    Xing, J

    2007-01-01

    Allosteric regulation is an important property for many proteins. Several models have been proposed to explain the allosteric effect, such as the concerted MWC (Monod, Wyman, Changeux) model, the sequential KNF (Koshland, Nemethy, Filmer) model, and recent population shift models. Here we discuss a unified theoretical framework to describe allosteric effects. The existing models appear as special cases of the framework. The theoretical work also reveals an alternative mechanism currently overlooked. Theoretically it is possible that the reactivity of a protein is limited by some internal conformational change step (due to slow effective diffusion along rugged potential surfaces). Effector binding may modify the ruggedness and thus the protein dynamics and reactivity. Compared to conventional models, the new mechanism has less requirements on the mechanical properties of an allosteric protein to propagate mechanical signals over long distances. Thus some signal transduction proteins may adopt the new mechanism...

  20. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms

    OpenAIRE

    1988-01-01

    The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng- CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles t...

  1. Compression Pressure Effect on Mechanical & Combustion Properties of Sawdust Briquette using Styrofoam adhesive as binder.

    Directory of Open Access Journals (Sweden)

    Abdulrasheed A

    2015-08-01

    Full Text Available In this paper, briquettes were produced from sawdust at different compression pressure using Styrofoam (Polystyrene foam adhesive as binding material. The effects of changing the compression pressure used in moulding of briquettes on its combustion and mechanical properties were investigated. In evaluating Combustion properties, 0.940kg of water was boiled using oven-dried sample of briquette in the combustion chamber with air flow velocity supplied to the combustion chamber at 10.2m/s. Combustion properties investigated were afterglow time, burning rate, specific fuel consumption, power output, percentage heat utilized, flame propagation rate and percentage ash content. The mechanical properties investigated included density, compressive strength, impact resistance, water resistance and abrasion resistance. The blends of sieved sawdust and binder were prepared in the ratio of 4:1 and compacted at pressures ranging from 40 – 90 kN/m2 at 10 kN/m2 interval in a hydraulic press machine with a dwell time of 5minutes. The pressures of moulding were varied to evaluate the range that gives the best quality in terms of combustion and mechanical properties of the briquette produced. The potential use of Polystyrene foam adhesive as a binder in production of briquettes was found promising.

  2. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  3. Mixed-Mode Cohesive Damage Model Applied to the Simulation of the Mechanical Behaviour of Laminated Composite Adhesive Joints

    OpenAIRE

    de Moura, MFSF; Campilho, RDSG; Goncalves, JPM

    2009-01-01

    A study of the mechanical behaviour of laminated composite adhesive joints is presented in this paper. The study consists of both numerical simulations and experimental tests. It concentrates on single lap-shear joints made of carbon-epoxy laminated composites and an epoxy adhesive. The main objective is to verify the adequacy of cohesive damage models for the strength prediction of bonded joints. These models are attractive in modelling fracture problems since they do not require the definit...

  4. Mechanical joining and adhesive bonding - basics, technology, applications; Fuegen durch Umformen und Kleben - Grundlagen, Technologie, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Meschut, G. [Volkswagen AG, Konzern-Forschung, Wolfsburg (Germany)

    2001-07-01

    This contribution uses material combinations current in the automotive industry to demonstrate the mutual dependence of joining processes and their implications for the geometric shaping of fasteners in the combined shaping and adhesive bonding joining process. The mechanical properties of joints made using combined and elementary methods are compared taking into consideration quasi static, oscillating and impact-type loads, and ageing characteristics. The results demonstrate that the combination of mechanical and adhesive bonding methods produces joints of technologically high quality which can be implemented in optimised light-weight construction. General information is provided on the use of low-heat hybrid joining technology for project planning of this type of connections in industrial practice. (orig.) [German] Der Beitrag verdeutlicht anhand von aktuellen Werkstoffkombinationen aus dem Fahrzeugbau die gegenseitige Beeinflussung der Fuegeprozesse und die Folgen fuer die Fuegeelementausbildung bei der Verfahrenskombination Fuegen durch Umformen und Kleben. Die mechanischen Eigenschaften von kombiniert gefuegten und elementar gefuegten Verbindungen unter quasistatischer, schwingender und stossartiger Belastung sowie das Alterungsverhalten werden gegenuebergestellt. Die Ergebnisse zeigen, dass mittels der Kombination mechanischer Fuegeverfahren mit dem Kleben technologisch hochwertige Verbindungen fuer den eigenschaftsoptimierten Leichtbau realisierbar sind. Fuer die Projektierung derartiger Verbindungen in der industriellen Praxis werden allgemeingueltige Hinweise zum Einsatz der waermearmen Hybridfuegetechnik gegeben. (orig.)

  5. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    Science.gov (United States)

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  6. The role of penetrant structure in the transport and mechanical properties of a thermoset adhesive

    Science.gov (United States)

    Kwan, Kermit S.

    In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants---n-alkanes and esters---were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters. A series of n-alkanes (C6--C17) and esters (C5--C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process. The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant.

  7. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  8. Adhesion/decalcification mechanisms of acid interactions with human hard tissues.

    Science.gov (United States)

    Yoshioka, M; Yoshida, Y; Inoue, S; Lambrechts, P; Vanherle, G; Nomura, Y; Okazaki, M; Shintani, H; Van Meerbeek, B

    2002-01-01

    In order to study adhesion/decalcification mechanisms of acid interactions with human hard tissues such as bones and teeth, the chemical interaction of five carboxylic acids (acetic, citric, lactic, maleic, and oxalic) and two inorganic acids (hydrochloric and nitric) with enamel and two synthetic hydroxyapatite (HAp) powders with, respectively, a high and a low crystallinity were analyzed using X-ray photoelectron spectroscopy (XPS), atomic absorption spectrophotometry (AAS), and spectrophotometry (S). X-ray diffraction revealed that the crystallinity of the highly crystallized HAp was considerably higher than that of enamel while the crystallinity of the poorly crystallized HAp was similar to that of dentin and bone. XPS of acid-treated enamel demonstrated for all carboxylic acids ionic bonding to calcium of HAp. AAS and S showed for both HAps that all carboxylic and inorganic acids except oxalic acid extracted Ca significantly more than P, leading to a Ca/P ratio close to that of synthetic HAp (2.16 w/w). Oxalic acid extracted hardly any Ca, but substantially more P, leading to a significantly smaller Ca/P ratio than that of HAp. AAS showed that the calcium salt of oxalic acid hardly could be dissolved, whereas the calcium salts of all the other acids were very soluble in their respective acid solution. These results confirm the adhesion/decalcification concept (AD-concept) previously advanced. Depending on the dissolution rate of the respective calcium salts, acids either adhere to or decalcify apatitic substrates. It is concluded that the AD-concept that originally dictated the interaction of carboxylic acids with human hard tissues can be extended to inorganic acids, such as hydrochloric and nitric acid. Furthermore, HAp crystallinity was found not to affect the adhesion/decalcification behavior of acids when interacting with apatitic substrates, so that the AD-concept can be applied to all human hard tissues with varying HAp crystallinity. PMID:11745537

  9. Fracture mechanics applied to the determination of adhesion strength between epoxies and hydraulic mortars

    OpenAIRE

    Aguiar, J. L. Barroso de

    2001-01-01

    The determination of adhesion strength between polymers and mortars always creates problems. The use of traditional tests like direct tension, flexure or shear, normally doesn`t make possible the correct determination of the adhesion strength. If the adhesive is good and the mortar surfaces are well prepared, the failure is in the mortar. With this kind of failures it is possible to say that adhesion strength is higher than the failure stress. But is not possible to give a numerical value of ...

  10. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Directory of Open Access Journals (Sweden)

    Nouzari A

    2016-06-01

    Full Text Available Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow–speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B of 15 and treated by either Clearfil SE Bond (CSEB or Scotch bond. All prepared cavities were filled with a resin composite (Estellite. All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127. Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB, 73% of the group 2-A (hand piece + CSEB, 80% of the group 1-B (Carisolv + Scotch bond, and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv

  11. Millimeter wave detection of nuclear radiation: An alternative detection mechanism

    International Nuclear Information System (INIS)

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  12. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  13. Mono- and multiple TiN(/Ti) coating adhesion mechanism on a Ti-13Nb-13Zr alloy

    Science.gov (United States)

    Li, Jianzhong; Zheng, Hua; Sinkovits, Theo; Hee, Ay Ching; Zhao, Yue

    2015-11-01

    Mono- and multiple TiN(/Ti) coatings deposited on Ti-13Nb-13Zr alloy substrates by the filtered arc deposition system were examined using scratch testing and depth-sensing indentation in terms of the relationship between the coating adhesion, deformation mechanism, and microstructure, and mechanical properties at the film/substrate interface. The results show that multilayer TiN/Ti coatings offer a greater resistance to cracking and delamination than monolithic TiN coatings under the same conditions on the Ti-13Nb-13Zr alloys substrates. And increasing the number of layers for TiN multilayer coating improves the coatings adhesion. In contrast, for the coatings on the Ti-13Nb-13Zr alloys substrates that were heat-treated to a higher hardness, the limited deformation in the substrates improved remarkably the coating adhesion indiscriminately. The substrate mechanical properties play the major roles in controlling the coating adhesion, and increasing thickness and layers of the TiN multilayer have a limited improvement to the adhesion of coating.

  14. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    Science.gov (United States)

    Antal, Andrea; Herrmann, Christoph S.

    2016-01-01

    Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations. PMID:27242932

  15. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  16. Assessment of Alternative Funding Mechanisms for the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Ford, Benjamin E.

    2012-06-15

    While the International Atomic Energy Agency (IAEA) has enjoyed substantial success and prestige in the international community, there is growing concern that global demographic trends, advances in technology and the trend towards austerity in Member State budgets will stretch the Agency’s resources to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As part of an ongoing effort by the Next Generation Safeguards Initiative to evaluate the IAEA’s long-term budgetary concerns , this paper proposes a series of alternate funding mechanisms that have the potential to sustain the IAEA in the long-term, including endowment, charity, and fee-for-service funding models.

  17. Mathematical model of alternative mechanism of telomere length maintenance

    CERN Document Server

    Kollár, Richard; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady state approximation. The detailed treatment of kinetic rates yields explicit formulae f...

  18. Mechanisms of cell-cell adhesion identified by immunofluorescent labelling with quantum dots: A scanning near-field optical microscopy approach

    International Nuclear Information System (INIS)

    Scanning near-field optical microscopy (SNOM) has been employed to simultaneously acquire high-resolution fluorescence images along with shear-force atomic force microscopy from cell membranes. Implementing such a technique overcomes the limits of optical diffraction found in standard fluorescence microscopy and also yields vital topographic information. The application of the technique to investigate cell-cell adhesion has revealed the interactions of filopodia and their functional relationship in establishing adherens junctions. This has been achieved via the selective tagging of the cell adhesion protein, E-cadherin, by immunofluorescence labelling. Two labelling routes were explored; Alexa Fluor 488 and semiconductor quantum dots. The quantum dots demonstrated significantly enhanced photostability and high quantum yield making them a versatile alternative to the conventional organic fluorophores often used in such a study. Analysis of individual cells revealed that E-cadherin is predominantly located along the cell periphery but is also found to extend throughout their filopodia. We have demonstrated that with a fully optimised sample preparation methodology, quantum dot labelling in conjunction with SNOM imaging can be successfully applied to interrogate biomolecular localisation within delicate cellular membranes. -- Research highlights: → Successful development of protocols for the quantum dot tagging of cell membrane proteins. → Successful implementation of scanning near-field optical microscopy to image cell membranes and accurately define the location of the tagged E-cadherin protein. → Compare and contrast data with that in the literature regarding the role of proteins in cell adhesion mechanisms. → Analysis of the data and our experimental experiences have demonstrated the practical benefits of quantum dots over Alexa 488, a conventional fluorophore. → Data highlights the various stages of cell confluency to illustrate the variation in E

  19. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions

    Directory of Open Access Journals (Sweden)

    Katsikogianni M.

    2004-12-01

    Full Text Available This article reviews the mechanisms of bacterial adhesion to biomaterial surfaces, the factors affecting the adhesion, the techniques used in estimating bacteria-material interactions and the models that have been developed in order to predict adhesion. The process of bacterial adhesion includes an initial physicochemical interaction phase and a late molecular and cellular one. It is a complicated process influenced by many factors, including the bacterial properties, the material surface characteristics, the environmental factors, such as the presence of serum proteins and the associated flow conditions. Two categories of techniques used in estimating bacteria-material interactions are described: those that utilize fluid flowing against the adhered bacteria and counting the percentage of bacteria that detach, and those that manipulate single bacteria in various configurations which lend themselves to more specific force application and provide the basis for theoretical analysis of the receptor-ligand interactions. The theories that are reviewed are the Derjaguin-Landau-Verwey-Overbeek (DLVO theory, the thermodynamic approach and the extended DLVO theory. Over the years, significant work has been done to investigate the process of bacterial adhesion to biomaterial surfaces, however a lot of questions still remain unanswered.

  20. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    International Nuclear Information System (INIS)

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region 'collapsed' into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the 'collapse' of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ∼140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments

  1. Effect of variable mechanical resistance on electrodynamic alternator efficiency

    International Nuclear Information System (INIS)

    Highlights: • Quantitative analysis on how the main parameters affect ηEA has been performed. • The significant role of frictional losses on ηEA was demonstrated. • The simulation confirms the analytical model and clarifies the gap impact on Zc. • A new evaluation method of Rm, based on direct measurement of Zc has been proposed. • The new method allows finding the system natural frequency before field operation. - Abstract: The rapidly growing energy market constantly discovers new alternatives for generating environmentally-friendly electricity from sustainable energy sources. An externally-heated traveling wave thermo acoustic Stirling heat engine is a leading candidate, operating using a variety of viable heat sources. Although this engine holds great promise for a low-cost and maintenance-free solution, its current reported efficiency still inhibits its market penetration, probably owing to the friction introduced by the single moving element – the linear alternator. This research quantifies the main parameters affecting the complex thermal–acoustical–electrical system, clarifying the critical role of frictional losses. An analytical model has been developed, enabling examination of the influence of the critical physical parameters on the electro-acoustic conversion efficiency. A measurement method for precise determination of the mechanical friction constant has been developed, which enables measuring the friction at the engine’s working frequency. A direct measurement of an engine’s transfer impedance at room temperature enables to find the exact natural frequency before field operation, and calibrate external hardware accordingly. A detailed simulation using DeltaEC™ indicates that the tight seal gap between the moving piston and its cylinder has a significant impact on the system’s overall efficiency

  2. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  3. Mechanical Strength of Particleboard Produced from Fonio Husk with Gum Arabic Resin Adhesive as Binder

    Directory of Open Access Journals (Sweden)

    Ndububa E. E

    2015-04-01

    Full Text Available Fonio (“Acha” husk passing through a maximum 4mm sieve aperture was blended with an adhesive liquid resin of gum Arabic to form Fonio Husk Particleboard (FHP samples. The resin binder was a product of crushed balls of gum Arabic that was mixed with water at ratio 4:3 by weight. The resin was introduced at percentage levels of 20%, 25%, 30%, 35%, 40% and 45% by weight. After pressing, heat treatments and curing, the particleboard samples were tested for mechanical strengths. The compressive strength ranged from 0.057N/mm2 at 20% level to 0.369N/mm2 at 45% level. Tensile strength increased steadily with increase in resin levels peaking at 0.792 N/mm2 for 45% level. The flexural strength followed the same trend peaking at 45% level with 3.697 N/mm2 . Some of the values met the minimum values prescribed by British, American and European Standards. The boards may not be used as load bearing materials but will be better suited as internal wall partitions and ceiling materials.

  4. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  5. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  6. Motion of an Adhesive Gel in a Swelling Gradient a Mechanism for Cell Locomotion

    CERN Document Server

    Joanny, J F; Prost, J; Joanny, Jean-Francois; Julicher, Frank; Prost, Jacques

    2003-01-01

    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.

  7. Mechanical Principle of Enhancing Cell-Substrate Adhesion via Pre-Tension in the Cytoskeleton

    OpenAIRE

    Chen, Bin; Gao, Huajian

    2010-01-01

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tensi...

  8. Adhesion mechanisms of Vibrio fluvialis to skin mucus of Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    鄢庆枇; 赵敏慧; 王晓露; 邹文政; 陈昌生

    2010-01-01

    Vibrio fluvialis incubated in trypticase soy broth(TSB)showed stronger adhesion to the skin mucus of Epinephelus awoara than V.fluvialis grown on trypticase soy agar(TSA),and this bacterial adhesion was assessed in terms of saturation kinetics.Treating bacteria with antibody against O-antigens resulted in significantly reduced bacterial adhesion.In the early growth stage,the adhering bacteria numbers increased with incubation time,peaked at 24 h,and then dropped sharply.Prior heat treatment of the mucus at ...

  9. Mechanism and Prevention of Intestinal Adhesion%肠粘连的形成机制及其预防

    Institute of Scientific and Technical Information of China (English)

    孔令源

    2013-01-01

    The intestinal adhesion is a common complication of abdominal surgery. It makes troubles to patients and causes severe intestinal obstruction and chronic abdominal pain. So far the mechanism of intestinal adhesion is still not clear. It is generally believed that the overuse injury and inflammation lead to abnormal repair and healing of the tissue. There are many methods for clinical preventions of intestinal adhesion, which could be broadly divided into general surgical procedures, barriers and drugs. Here is to make a review on the definition epidemiology,consequences,mechanisms and preventions of intestinal adhesion.%肠粘连是腹部手术术后的常见并发症,不仅给患者带来不便,严重时还会导致肠梗阻、慢性腹痛等.目前,对肠粘连的形成机制尚无明确的认识,一般认为过度损伤和炎性反应导致组织的异常修复和愈合.临床上预防肠粘连的方法较多,可大致分为一般手术操作、屏障及药物治疗.该文就肠粘连的定义、流行病学与相关后果、肠粘连的机制及预防等方面进行综述.

  10. Adhesions due to peritoneal carcinomatosis caused by a renal carcinoma leading to mechanical gastric outlet obstruction: a case report

    Directory of Open Access Journals (Sweden)

    Gruttadauria Salvatore

    2011-07-01

    Full Text Available Abstract Introduction Gastric outlet obstruction is a clinical syndrome caused by a variety of mechanical obstructions. Peptic ulcer disease used to be responsible for most gastric outlet obstruction, but in the last 40 years the prevalence of malignant tumors has risen significantly. Adhesive disease is an infrequent and insidious cause of mechanical gastric outlet obstruction. Case presentation We report the case of a 78-year-old Caucasian man who had a clinical history of a right nephrectomy for malignancy three years earlier and who was admitted for a severe gastric outlet obstruction (score of 1 confirmed both by an upper endoscopy and by a fluoroscopic view after contrast injection. A computed tomography scan and a laparotomy, with omental biopsies, showed a peritoneal carcinomatosis with the development of abdominal adhesions that prompted an abnormal gastric rotation around the perpendicular axis of his antrum with a dislocation in the empty space of his right kidney. Symptoms disappeared after surgical bypass through a gastrojejunostomy. Conclusions Our patient experienced a very rare complication characterized by the development of adhesions due to peritoneal carcinomatosis caused by a renal carcinoma treated with nephrectomy. These adhesions prompted an abnormal dislocation of his antrum, as an internal hernia, in the empty space of his right kidney.

  11. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond

    Science.gov (United States)

    Evans, Evan; Leung, Andrew; Heinrich, Volkmar; Zhu, Cheng

    2004-08-01

    Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisX produces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.

  12. Lorentz-violating alternative to the Higgs mechanism?

    International Nuclear Information System (INIS)

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without flavor mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, while the vector mass is of the order of the heavy fermion mass. The work presented here may be considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone) speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic models for future work.

  13. A Lorentz-Violating Alternative to Higgs Mechanism?

    CERN Document Server

    Alexandre, Jean

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavour mixing, and to another Abelian vector field with flavour mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale $M$, from which fermions and the flavour-mixing vector get their dynamical masses, whereas the vector coupled without flavour mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, whilst the vector mass is larger than the mass of the heavy fermion. The work presented here may be considered as a Lorentz-symmetry-Violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz Violation, the maximal (light-cone) s...

  14. Alternative splicing: An important mechanism in stem cellbiology

    Institute of Scientific and Technical Information of China (English)

    Kenian Chen; Xiaojing Dai; Jiaqian Wu

    2015-01-01

    Alternative splicing (AS) is an essential mechanismin post-transcriptional regulation and leads to proteindiversity. It has been shown that AS is prevalentin metazoan genomes, and the splicing pattern isdynamically regulated in different tissues and cell types,including embryonic stem cells. These observationssuggest that AS may play critical roles in stem cellbiology. Since embryonic stem cells and inducedpluripotent stem cells have the ability to give rise to alltypes of cells and tissues, they hold the promise of futurecell-based therapy. Many efforts have been devoted tounderstanding the mechanisms underlying stem cell selfrenewaland differentiation. However, most of the studiesfocused on the expression of a core set of transcriptionfactors and regulatory RNAs. The role of AS in stem celldifferentiation was not clear. Recent advances in highthroughputtechnologies have allowed the profilingof dynamic splicing patterns and cis-motifs that areresponsible for AS at a genome-wide scale, and providednovel insights in a number of studies. In this review, wediscuss some recent findings involving AS and stem cells.An emerging picture from these findings is that AS isintegrated in the transcriptional and post-transcriptionalnetworks and together they control pluripotencymaintenance and differentiation of stem cells.

  15. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    OpenAIRE

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s i...

  16. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    OpenAIRE

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with ac...

  17. RNA structure and the mechanisms of alternative splicing

    OpenAIRE

    McManus, C. Joel; Graveley, Brenton R.

    2011-01-01

    Alternative splicing is a widespread means of increasing protein diversity and regulating gene expression in eukaryotes. Much progress has been made in understanding the proteins involved in regulating alternative splicing, the sequences they bind to, and how these interactions lead to changes in splicing patterns. However, several recent studies have identified other players involved in regulating alternative splicing. A major theme emerging from these studies is that RNA secondary structure...

  18. Mathematical model of alternative mechanism of telomere length maintenance

    Science.gov (United States)

    Kollár, Richard; Bod'ová, Katarína; Nosek, Jozef; Tomáška, L'ubomír

    2014-03-01

    Biopolymer length regulation is a complex process that involves a large number of biological, chemical, and physical subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres—nucleoprotein structures at the ends of linear chromosomes consisting of tandemly repeated DNA sequences and a specialized set of proteins. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady-state approximation. The detailed treatment of kinetic rates yields explicit formulas for expected size distributions of telomeres that demonstrate the key role played by the J factor, a quantitative measure of bending of polymers. The results are in agreement with experimental data and point out interesting phenomena: an appearance of very long telomeric circles if the total telomere density exceeds a critical value (excess mass) and a nonlinear response of the telomere size distributions to the amount of telomeric DNA in the system. The results can be of general importance for understanding dynamics of telomeres in telomerase-independent systems as this mode of telomere maintenance is similar to the situation in tumor cells lacking telomerase activity. Furthermore, due to its universality, the model may also serve as a prototype of an interaction between linear and circular DNA structures in various settings.

  19. Carcinogenesis of nasopharyngeal carcinoma: an alternate hypothetical mechanism.

    Science.gov (United States)

    Poh, Sharon Shuxian; Chua, Melvin Lee Kiang; Wee, Joseph T S

    2016-01-01

    Current proposed mechanisms implicate both early and latent Epstein-Barr virus (EBV) infection in the carcinogenic cascade, whereas epidemiological studies have always associated nasopharyngeal carcinoma (NPC) with early childhood EBV infection and with chronic ear, nose, and sinus conditions. Moreover, most patients with NPC present with IgA antibody titers to EBV capsid antigen (VCA-IgA), which can precede actual tumor presentation by several years. If early childhood EBV infection indeed constitutes a key event in NPC carcinogenesis, one would have to explain the inability to detect the virus in normal nasopharyngeal epithelium of patients at a high risk for EBV infection. It is perhaps possible that EBV resides within the salivary glands, instead of the epithelium, during latency. This claim is indirectly supported by observations that the East Asian phenotype shares the characteristics of an increased susceptibility to NPC and immature salivary gland morphogenesis, the latter of which is influenced by the association of salivary gland morphogenesis with an evolutionary variant of the human ectodysplasin receptor gene (EDAR), EDARV370A. Whether the immature salivary gland represents a more favorable nidus for EBV is uncertain, but in patients with infectious mononucleosis, EBV has been isolated in this anatomical organ. The presence of EBV-induced lymphoepitheliomas in the salivary glands and lungs further addresses the possibility of submucosal spread of the virus. Adding to the fact that the fossa of Rosen Müller contains a transformative zone active only in the first decade of life, one might be tempted to speculate the possibility of an alternative carcinogenic cascade for NPC that is perhaps not dissimilar to the model of human papillomavirus and cervical cancer. PMID:26738743

  20. Carcinogenesis ofnasopharyngeal carcinoma:an alternate hypothetical mechanism

    Institute of Scientific and Technical Information of China (English)

    Sharon Shuxian Poh; Melvin Lee Kiang Chua; Joseph TS Wee

    2016-01-01

    Current proposed mechanisms implicate both early and latent Epstein–Barr virus (EBV) infection in the carcinogenic cascade, whereas epidemiological studies have always associated nasopharyngeal carcinoma (NPC) with early child-hood EBV infection and with chronic ear, nose, and sinus conditions. Moreover, most patients with NPC present with IgA antibody titers to EBV capsid antigen (VCA-IgA), which can precede actual tumor presentation by several years. If early childhood EBV infection indeed constitutes a key event in NPC carcinogenesis, one would have to explain the inability to detect the virus in normal nasopharyngeal epithelium of patients at a high risk for EBV infection. It is perhaps possible that EBV resides within the salivary glands, instead of the epithelium, during latency. This claim is indirectly supported by observations that the East Asian phenotype shares the characteristics of an increased sus-ceptibility to NPC and immature salivary gland morphogenesis, the latter of which is inlfuenced by the association of salivary gland morphogenesis with an evolutionary variant of the human ectodysplasin receptor gene (EDAR), EDARV370A. Whether the immature salivary gland represents a more favorable nidus for EBV is uncertain, but in patients with infectious mononucleosis, EBV has been isolated in this anatomical organ. The presence of EBV-induced lymphoepitheliomas in the salivary glands and lungs further addresses the possibility of submucosal spread of the virus. Adding to the fact that the fossa of Rosen Müller contains a transformative zone active only in the ifrst decade of life, one might be tempted to speculate the possibility of an alternative carcinogenic cascade for NPC that is perhaps not dissimilar to the model of human papillomavirus and cervical cancer.

  1. Excellent Adhesion of Carbon Fibers to Polyurethane Matrix and Substantial Improvement of the Mechanical Properties of Polyurethane

    OpenAIRE

    Seydibeyoglu, M. Ozgur

    2011-01-01

    In this study, polyurethane-carbon fiber composites were prepared with excellent interface with perfect adhesion of carbon fibers with the polyurethane matrix. The polyurethane was thermoplastic polyurethane and the carbon fiber was polyacrylonitrile based with 7 micron meter thickness. The composites were prepared with solvent casting technique. The composite materials were characterized with tensile testing, dynamic mechanical analysis, scanning electron microscope, and thermogravimetric an...

  2. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    Science.gov (United States)

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions. PMID:27058377

  3. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    International Nuclear Information System (INIS)

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system

  4. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Murillo L., E-mail: murillolongo@gmail.com [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J. [Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Bordallo, Heloisa N. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system.

  5. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [titanium alloys

    Science.gov (United States)

    Chen, W.; Dwight, D. W.; Wightman, J. P.

    1978-01-01

    Various surface preparations for titanium 6-4 alloy were studied. An anodizing method was investigated, and compared with the results of other chemical treatments, namely, phosphate/fluoride, Pasa-Jell and Turco. The relative durability of the different surface treatments was assessed by monitoring changes in surface chemistry and morphology occasioned by aging at 505 K (450 F). Basic electron spectroscopic data were collected for polyimide and polyphenylquinoxaline adhesives and synthetic precursors. Fractographic studies were completed for several combinations of adherend, adhesive, and testing conditions.

  6. Peritoneal Adhesions as a Cause of Mechanical Small Bowel Obstruction Based on Own Experience

    Directory of Open Access Journals (Sweden)

    Morawski Bartłomiej

    2015-02-01

    Full Text Available Bowel obstruction is a condition which has been known for many years. As time goes by, the problem is still often encountered at surgical emergency rooms. More than 20% of emergency surgical interventions are performed because of symptoms of digestive tract obstruction with the disease mostly situated in the small bowel. Rates of causative factors of the disease have changed over recent years and there have been increasingly more cases of small bowel obstruction caused by peritoneal adhesions, i.e., adhesive small bowel obstruction (ASBO.

  7. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface Ra and Ry values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  8. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  9. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir; Bock, Elisabeth

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...

  10. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region...

  11. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  12. Adhesive thickness effects of a ductile adhesive by optical measurement techniques

    OpenAIRE

    Campilho, Raul; Moura, D.C.; Banea, Mariana D.; Silva, L. F. M. da

    2015-01-01

    Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum ...

  13. Atomistic simulations to micro-mechanisms of adhesion in automotive applications

    Science.gov (United States)

    Sen, Fatih Gurcag

    This study aimed at depicting atomistic and microstructural aspects of adhesion and friction that appear in different automotive applications and manufacturing processes using atomistic simulations coupled with tribological tests and surface characterization experiments. Thin films that form at the contact interfaces due to chemical reactions and coatings that are developed to mitigate or enhance adhesion were studied in detail. The adhesion and friction experiments conducted on diamond-like carbon (DLC) coatings against Al indicated that F incorporation into DLC decreased the coefficient of friction (COF) by 30% -with respect to H-DLC that is known to have low COF and anti-adhesion properties against Al- to 0.14 owing to formation of repulsive F-F interactions at the sliding interface as shown by density functional theory (DFT) calculations. F atoms transferred to the Al surface with an increase in the contact pressure, and this F transfer led to the formation of a stable AlF3 compound at the Al surface as confirmed by XPS and cross-sectional FIB-TEM. The incorporation of Si and O in a F-containing DLC resulted in humidity independent low COF of 0.08 due to the hydration effect of the Si-O-Si chains in the carbonaceous tribolayers that resulted in repulsive OH-OH interactions at the contact interface. At high temperatures, adhesion of Al was found to be enhanced as a result of superplastic oxide fibers on the Al surface. Molecular dynamics (MD) simulations of tensile deformation of Al nanowires in oxygen carried out with ReaxFF showed that native oxide of Al has an oxygen deficient, low density structure and in O2, the oxygen diffusion in amorphous oxide healed the broken Al-O bonds during applied strain and resulted in the superplasticity. The oxide shell also provided nucleation sites for dislocations in Al crystal. In fuel cell applications, where low Pt/carbon adhesion is causing durability problems, spin-polarized DFT showed that metals with unfilled d

  14. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...... surroundings via the extracellular domain and bind to the cytoskeleton via their intracellular domain. In addition, several CAMs induce signaling events via direct interactions with intracellular proteins or via interactions with cell surface receptors. Thus, CAMs are obvious candidates for transmitting...

  15. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms

    OpenAIRE

    Andenmatten, Nicole; Egarter, Saskia; Jackson, Allison J.; JULLIEN, Nicolas; Herman, Jean-Paul; Meissner, Markus

    2012-01-01

    We established a conditional site–specific recombination system based on dimerizable Cre–mediated recombination in the apicomplexan parasite Toxoplasma gondii. Using a novel single vector strategy that allows ligand-dependent, efficient removal of a gene of interest, we generated three knockouts of apicomplexan genes considered essential for host-cell invasion. Our findings uncover the existence of an alternative invasion pathway in apicomplexan parasites.

  16. Mathematical model of alternative mechanism of telomere length maintenance

    OpenAIRE

    Kollár, Richard; Bodova, Katarina; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative...

  17. Adhesion Mechanism of Water Droplets on Hierarchically Rough Superhydrophobic Rose Petal Surface

    OpenAIRE

    Hannu Teisala; Mikko Tuominen; Jurkka Kuusipalo

    2011-01-01

    Extremely hydrophobic surfaces, on which water droplets sit in a spherical shape leaving air entrapped into the roughness of the solid, are often called superhydrophobic. Hierarchically rough superhydrophobic surfaces that possess submicron scale fine structures combined with micron scale structures are generally more hydrophobic, and water droplet adhesion to those surfaces is lower in comparison with surfaces possessing purely micrometric structures. In other words, usually a fine structure...

  18. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    Directory of Open Access Journals (Sweden)

    Huang YT

    2016-03-01

    Full Text Available Yu-ting Huang,1,* Lan Zhao,1,* Zheng Fu,1 Meng Zhao,1 Xiao-meng Song,1 Jing Jia,1 Song Wang,1 Jin-ping Li,1 Zhi-feng Zhu,1 Gang Lin,1,2 Rong Lu,1,2 Zhi Yao1,3 1Department of Immunology, Tianjin Medical University, Tianjin, 2Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, 3Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this paper Abstract: Tyroservatide (YSV can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin ß1 and integrin ß3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. Keywords: tyroservatide, integrin, focal adhesion kinase, FAK, MMP-2, MMP-9

  19. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  20. PVD-Alumina Coatings on Cemented Carbide Cutting Tools: A Study About the Effect on Friction and Adhesion Mechanism

    OpenAIRE

    S.E. Cordes

    2012-01-01

    Crystalline PVD γ-alumina coatings are interesting for machining operations due to their outstanding characteristics, such as high hot hardness, high thermal stability and low tendency to adhesion. In the present work (Ti,Al)N/γ-Al2O3-coatings are deposited on cemented carbide by means of MSIP. Objectives of this work are to study the effects of coating and cutting fluid regarding friction in tribological tests and to study the wear mechanisms and cutting performance of γ-Al2O3-based coated c...

  1. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation. PMID:19429369

  2. Mechanical behavior of alternative multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Teresa Orellana

    2013-05-22

    The usage of more inexpensive silicon feedstock for the crystallization of multicrystalline silicon blocks promises cost reduction for the photovoltaic industry. Less expensive substrates made out of metallurgical silicon (MG-Si) are used as a mechanical support for the epitaxial solar cell. Moreover, conventional inert solar cells can be produced from up-graded metallurgical silicon (UMG-Si). This feedstock has higher content of impurities which influences cell performance and mechanical strength of the wafers. Thus, it is of importance to know these effects in order to know which impurities should be preferentially removed or prevented during the crystallization process. Solar cell processing steps can also exert a change in the values of mechanical strength of processed multicrystalline silicon wafers until the fabrication of a solar cell. Bending tests, fracture toughness and dynamic elastic modulus measurements are performed in this work in order to research the mechanical behavior of multicrystalline silicon crystallized with different qualities of silicon feedstock. Bending tests and residual stress measurements allows the quantification of the mechanical strength of the wafers after every solar cell processing step. The experimental results are compared with theoretical models found in the classical literature about the mechanical properties of ceramics. The influence of second phase particles and thermal processes on the mechanical strength of silicon wafers can be predicted and analyzed with the theoretical models. Metals like Al and Cu can decrease the mechanical strength due to micro-cracking of the silicon matrix and introduction of high values of thermal residual stress. Additionally, amorphous silicon oxide particles (SiOx) lower the mechanical strength of multicrystalline silicon due to thermal residual stresses and elastic mismatch with silicon. Silicon nitride particles (Si3N4) reduce fracture toughness and cause failure by radial cracking in its

  3. Mechanical behavior of alternative multicrystalline silicon for solar cells

    OpenAIRE

    Orellana Pérez, Teresa

    2013-01-01

    The usage of more inexpensive silicon feedstock for the crystallization of multicrystalline silicon blocks promises cost reduction for the photovoltaic industry. Less expensive substrates made out of metallurgical silicon (MG-Si) are used as a mechanical support for the epitaxial solar cell. Moreover, conventional inert solar cells can be produced from up-graded metallurgical silicon (UMG-Si). This feedstock has higher content of impurities which influences cell performance and mechanical str...

  4. Conformal neutrinos: An alternative to the see-saw mechanism

    International Nuclear Information System (INIS)

    We analyze a scenario where the right-handed neutrinos make part of a strongly coupled conformal field theory and acquire an anomalous dimension γ1/2 giving rise to an inverse see-saw mechanism. In this case light sterile neutrinos do appear and neutrino oscillation experiments are able to probe our model.

  5. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.E. [Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road Sudbury, Ontario, P3E 2C6 (Canada)]. E-mail: jgray@laurentian.ca; Norton, P.R. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)]. E-mail: pnorton@uwo.ca; Griffiths, K. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)

    2005-07-22

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers.

  6. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    International Nuclear Information System (INIS)

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers

  7. Small molecules reveal an alternative mechanism of Bax activation.

    Science.gov (United States)

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  8. Mechanical characteristics of antibacterial epoxy resin adhesive wood biocomposites against skin disease.

    Science.gov (United States)

    Chen, Zi-Xiang; Zhang, Zhong-Feng; Aqma, Wan Syaidatul

    2016-01-01

    Moldy wood can cause some skin disease. However epoxy resin adhesive (EP) can inhibit mold growth. Therefore, antibacterial EP/wood biocomposites were reinforced and analyzed by the nonlinear finite element. Results show that glass fiber cloth and aluminum foil have the obvious reinforced effect under flat pressure, but this was not the case under side pressure. And when the assemble pattern was presented in 5A way, the strengthening effect was better. The nonlinear finite element showed that the aluminum foil and glass fiber cloth have the obvious reinforced effect. The mutual influence and effect of span, thickness and length on the ultimate bearing capacity of specimen were studied. And the simulation results agreed with the test. It provided a theoretical basis on the preparation of antibacterial EP/wood biocomposites against skin disease. PMID:26858557

  9. Abdominal Adhesions

    Science.gov (United States)

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  10. INTERFACIAL ADHESION AND MECHANICAL PROPERTIES OF PMMA-COATED CaCO3 NANOPARTICLE-REINFORCED PVC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Xuehua Chen; Chunzhong Li; Shoufang Xu; Ling Zhang; Wei Shao; H. L. Du

    2006-01-01

    Polymethyl methacrylate (PMMA)-coated nano-CaCO3 particles were prepared by in-situ emulsion polymerization. The mechanical properties of nano-CaCO3 particles-reinforced PVC were investigated using an AG-2000A universal testing machine and an XJU-2.75 izod impact tester; interfacial adhesion between CaCO3 nanoparticles and PVC matrix by SEM, and structure of PMMA coated on the surface of CaCO3 by FTIR and 1H-NMR. The results indicate that the PMMA coated on the nano CaCO3 particles consists mainly of syndiotactic structure, and their three tacticity contents were rr 52.8%, mm 7.3% and mr 39.9%, respectively. The interfacial adhesion between CaCO3 nanoparticles and PVC matrix was significantly improved when the CaCO3 nanoparticles were coated with PMMA, which led to increased Young's moduli and tensile strengths of the PMMA-coated CaCO3/PVC composites. The izod impact strengths of the composites were strongly affected by the PMMA coating thickness and increased significantly with increasing the volume fraction of CaCO3 filler in the composites.

  11. Beyond membrane channelopathies: alternative mechanisms underlying complex human disease

    Institute of Scientific and Technical Information of China (English)

    Konstantinos Dean BOUDOULAS; Peter J MOHLER

    2011-01-01

    Over the past fifteen years, our understanding of the molecular mechanisms underlying human disease has flourished in large part due to the discovery of gene mutations linked with membrane ion channels and transporters. In fact, ion channel defects ("channelopathies" - the focus of this review series) have been associated with a spectrum of serious human disease phenotypes including cystic fibrosis, cardiac arrhythmia, diabetes, skeletal muscle defects, and neurological disorders. However, we now know that human disease, particularly excitable cell disease, may be caused by defects in non-ion channel polypeptides including in cellular components residing well beneath the plasma membrane. For example, over the past few years, a new class of potentially fatal cardiac arrhythmias has been linked with cytoplasmic proteins that include sub-membrane adapters such as ankyrin-B (ANK2),ankyrin-G (ANK3), and alpha-1 syntrophin, membrane coat proteins including caveolin-3 (CAV3), signaling platforms including yotiao (AKAPg), and cardiac enzymes (GPD1L). The focus of this review is to detail the exciting role of lamins, yet another class of gene products that have provided elegant new insight into human disease.

  12. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Directory of Open Access Journals (Sweden)

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  13. Mechanical Behaviour and Durability of FRP-to-steel Adhesively-bonded Joints

    OpenAIRE

    Jiang, X.

    2013-01-01

    During the last two decades, fiber-reinforced polymer (FRP) bridge decks have been increasingly used as a competitive alternative for wood, concrete and orthotropic steel decks, due to their various advantages: light-weight, good corrosion resistance, low maintenance cost and rapid installation for minimizing the traffic disturbing time. These advantages meet critical needs for rehabilitation and new construction of pedestrian and highway bridges. To be cost effective, FRP decks are usually s...

  14. Alternative Stable States in Size-Structured Communities : Patterns, Processes, and Mechanisms

    OpenAIRE

    Schröder, Arne

    2008-01-01

    Alternative stable states have been, based on theoretical findings, predicted to be common in ecological systems. Empirical data from a number of laboratory and natural studies strongly suggest that alternative stable states also occur in real populations, communities and ecosystems. Potential mechanisms involve population size-structure and food-dependent individual development. These features can lead to ontogenetic niche shifts, juvenile recruitment bottlenecks and emergent Allee effects; ...

  15. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: jianli83@126.com; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang, E-mail: leizq@nwnu.edu.cn

    2014-01-15

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  16. Lactobacillus Adhesion to Mucus

    Directory of Open Access Journals (Sweden)

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  17. P-Selectin Cross-Links PSGL-1 and Enhances Neutrophil Adhesion to Fibrinogen and ICAM-1 in a Src Kinase-Dependent, but GPCR-Independent Mechanism

    OpenAIRE

    Xu, Tao; Zhang, Lei; Geng, Zhen H; Wang, Hai-Bo; Wang, Jin-Tao; Chen, Ming; Geng, Jian-Guo

    2007-01-01

    Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeri...

  18. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    OpenAIRE

    Yi Zheng; Zhi-Zhu He; Jun Yang; Jing Liu

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, t...

  19. Unbinding and unfolding of adhesion protein complexes through stretching: Interplay between shear and tensile mechanical clamps

    OpenAIRE

    Rozycki, Bartosz; Mioduszewski, Lukasz; Cieplak, Marek

    2015-01-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pull...

  20. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    Science.gov (United States)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  1. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    Science.gov (United States)

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  2. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium

    Institute of Scientific and Technical Information of China (English)

    LUO Ming-Yan; SONG Kun; ZHANG Xu; LEE Imshik

    2009-01-01

    In this work, from the point of calcium ions in the cytosol, we extend a Vm-[Ca2+]cyt model to explain the changes of action potential Vm of the plasma membrane and the calcium concentration in the cytosol [Ca2+]cyt under an alternating electric field in cells. An alternating external electric field may exert an oscillating force to each of the free electrolytes, existing on both sides of the plasma membrane. The mechanism for the alternating electric field induced-effects on Vm and [Ca2+]cyt is elucidated. The simulation results show a correlation between the changes of [Ca2+]cyt and the alternating electric field. When the numerical ratio between the intensity Eo(mV/m) and the frequency ν, (Hz) of the field was about 1-2, the [Ca2+]cyt signal is changed dramatically. The bioactive changes of [Ca2+]cyt appear at low frequency, in the range of 0-100 Hz.

  3. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    OpenAIRE

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we ...

  4. Molecular and Cellular Evidence for the Alternative Lengthening of Telomeres (ALT) Mechanism in Chicken

    OpenAIRE

    O'Hare, T.H.; Delany, M. E.

    2011-01-01

    Telomere maintenance is an important genetic mechanism controlling cellular proliferation. Normally, telomeres are maintained by telomerase which is downregulated upon cellular differentiation in most somatic cell lineages. Telomerase activity is upregulated in immortalized cells and cancers to support an infinite lifespan and uncontrolled cell growth; however, some immortalized and transformed cells lack telomerase activity. Telomerase-negative tumors and immortalized cells utilize an altern...

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  6. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  7. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  8. Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps.

    Science.gov (United States)

    Różycki, Bartosz; Mioduszewski, Łukasz; Cieplak, Marek

    2014-11-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pulling and may take place in several pathways. Interestingly, the CD48-2B4 interface can be divided into three distinct patches that act as units when resisting the pulling forces. At experimentally accessible pulling speeds, the characteristic mechanostability forces are in the range between 100 and 200 pN, depending on the pulling direction. These characteristic forces need not be associated with tensile forces involved in the act of separation of the complex because prior shear-involving unraveling within individual proteins may give rise to a higher force peak. PMID:25142868

  9. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    OpenAIRE

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in me...

  10. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  11. Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model.

    Science.gov (United States)

    Harris, A K; Stopak, D; Warner, P

    1984-04-01

    We have studied the generation of spatial patterns created by mechanical (rather than chemical) instabilities. When dissociated fibroblasts are suspended in a gel of reprecipitated collagen, and the contraction of the gel as a whole is physically restrained by attachment of its margin to a glass fibre meshwork, then the effect of the fibroblasts' traction is to break up the cell-matrix mixture into a series of clumps or aggregations of cells and compressed matrix. These aggregations are interconnected by linear tracts of collagen fibres aligned under the tensile stress exerted by fibroblast traction. The patterns generated by this mechanical instability vary depending upon cell population density and other factors. Over a certain range of cell concentrations, this mechanical instability yields geometric patterns which resemble but are usually much less regular than the patterns which develop normally in the dermis of developing bird skin. We propose that an equivalent mechanical instability, occurring during the embryonic development of this skin, could be the cause not only of the clumping of dermal fibroblasts to form the feather papillae, but also of the alignment of collagen fibres into the characteristic polygonal network of fibre bundles - which interconnect these papillae and which presage the subsequent pattern of the dermal muscles serving to control feather movements. More generally, we suggest that this type of mechanical instability can serve the morphogenetic functions for which Turing's chemical instability and other reaction-diffusion systems have been proposed. Mechanical instabilities can create physical structures directly, in one step, in contrast to the two or more steps which would be required if positional information first had to be specified by chemical gradients and then only secondarily implemented in physical form. In addition, physical forces can act more quickly and at much longer range than can diffusing chemicals and can generate a

  12. Mechanical joining and adhesive bonding. Joining processes with new challenges to materials testing; Umformen und Kleben. Fuegeverfahren mit neuen Herausforderungen fuer die Materialpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Meschut, G. [Volkswagen AG, Wolfsburg (Germany)

    2002-07-01

    This contribution highlights new material combinations in the automotive industry to demonstrate the mutual dependence of joining processes and their implications for the geometric shaping of fasteners in the combined shaping and adhesive bonding joining process. The mechanical properties of joints produced by combined and elementary methods are compared taking into consideration quasi static, oscillating and impact-type loads, and ageing characteristics. The results demonstrate that the combination of mechanical and adhesive bonding methods produces joints of high technological quality which can be implemented in optimised light-weight construction. General information is provided on the use of low-heat hybrid joining technology for project planning of this type of connections in industrial practice. (orig.)

  13. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

    International Nuclear Information System (INIS)

    Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism. Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state

  14. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    OpenAIRE

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The fle...

  15. Characterization of the crystallinity and mechanical properties of CTFE & CTFE copolymeric films as a function of cooling rate and the implications on adhesion

    OpenAIRE

    Longhenry, Joy Ciferri

    1995-01-01

    Polychlorotrifluoroethylene (CTFE) and CTFE copolymeric films are being used in the electronic packaging industry as insulating dielectric layers between microwave circuits. Since these films are semicrystalline and, in this application, are being used as hot melt adhesives, the cooling rate is an important processing variable, affecting the crystallinity of the CTFE films which in turn affect many properties including dielectric characteristics and mechanical properties. In...

  16. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells.

    OpenAIRE

    Nabetani, Akira; Ishikawa, Fuyuki

    2011-01-01

    Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent...

  17. Alternative mechanisms of telomere lengthening: permissive mutations, DNA repair proteins and tumorigenic progression

    OpenAIRE

    Sandy Gocha1, April Renee; Harris, Julia; Groden, Joanna

    2012-01-01

    Telomeres protect chromosome termini to maintain genomic stability and regulate cellular lifespan. Maintenance of telomere length is required for neoplastic cells after the acquisition of mutations that deregulate cell cycle control and increase cellular proliferation, and can occur through expression of the enzyme telomerase or in a telomerase-independent manner termed alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor ...

  18. The PHLAME (Promoting Healthy Lifestyles: Alternative Models’ Effects) Firefighter Study: Testing Mediating Mechanisms

    OpenAIRE

    Ranby, Krista W.; MacKinnon, David P.; Fairchild, Amanda J.; Elliot, Diane L.; Kuehl, Kerry S.; Goldberg, Linn

    2011-01-01

    This paper examines the mechanisms by which PHLAME (Promoting Healthy Lifestyles: Alternative Models’ Effects), a health promotion intervention, improved healthy eating and exercise behavior among firefighters, a population at high risk for health problems due to occupational hazards. In a randomized trial, 397 firefighters participated in either the PHLAME team intervention with their work shift or a control condition. Intervention sessions taught benefits of a healthy diet and regular exerc...

  19. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    Science.gov (United States)

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces. PMID:27412653

  20. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks.

    Science.gov (United States)

    Zant, Erwin; Grijpma, Dirk W

    2016-05-01

    Major drawbacks of synthetic hydrogels are their poor mechanical properties and their limited ability to allow cell attachment and proliferation. By photo-cross-linking mixtures of dimethacrylate-functionalized oligomers (macromers) in a combinatorial manner in solution, synthetic hydrogels with high water uptake and the remarkable ability to promote cell adhesion and proliferation were prepared. A total of 255 different networks based on poly(trimethylene carbonate) (PTMC)-, poly(d,l-lactide) (PDLLA)-, poly(ε-caprolactone) (PCL)- and poly(ethylene glycol) (PEG) macromers were synthesized simultaneously and screened for their ability to allow the adhesion of human mesenchymal stem cells (hMSCs) in a high throughput-like manner. Of these networks, several hydrogels could be identified that were able to take up large amounts of water while at the same time allowed the adhesion of cells. By synthesizing these hydrogel networks anew and analyzing the cell adhesion and proliferation behavior of human mesenchymal stem cells to these synthetic hydrogels in more detail, it was confirmed that mixed-macromer hydrogel networks prepared from equal amounts of PTMC-dMA 4k, PDLLA-dMA 4k, PCL-dMA 4k, PEG-dMA 4k, and PEG-dMA 10k and hydrogel networks prepared from PTMC-dMA 4k, PDLLA 4k, PEG-dMA 4k, PTMC-dMA 10k and PEG-dMA 10k were highly hydrophilic (water uptake was respectively 181 ± 2 and 197 ± 18 wt % water) and allowed very good cell adhesion and proliferation. Furthermore, these networks were extremely resilient in the hydrated state, with tearing energies of respectively 0.64 ± 0.34 and 0.27 ± 0.04 kJ/m(2). This is much higher than other synthetic hydrogels described in literature and close to articular cartilage (1 kJ/m(2)). PMID:27077699

  1. Surgical adhesives

    Directory of Open Access Journals (Sweden)

    I. A. THOMAZINI-SANTOS

    2001-12-01

    Full Text Available The authors have performed a literature review of surgical adhesives, such as cyanoacrylate, collagen gelatin, and fibrin glue. They have included different types of commercial and non-commercial fibrin sealants and have reported on the different components in these adhesives, such as fibrinogen, cryoprecipitate, bovine thrombin, and thrombin-like fraction of snake venom.

  2. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  3. Adhesion of Lunar Dust

    Science.gov (United States)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  4. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow

    OpenAIRE

    Evani, Shankar J.; Prabhu, Rajesh G.; Gnanaruban, V.; Finol, Ender A.; Anand K. Ramasubramanian

    2013-01-01

    Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynam...

  5. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II.

    Science.gov (United States)

    Hasper, Hester E; Kramer, Naomi E; Smith, James L; Hillman, J D; Zachariah, Cherian; Kuipers, Oscar P; de Kruijff, Ben; Breukink, Eefjan

    2006-09-15

    Lantibiotics are polycyclic peptides containing unusual amino acids, which have binding specificity for bacterial cells, targeting the bacterial cell wall component lipid II to form pores and thereby lyse the cells. Yet several members of these lipid II-targeted lantibiotics are too short to be able to span the lipid bilayer and cannot form pores, but somehow they maintain their antibacterial efficacy. We describe an alternative mechanism by which members of the lantibiotic family kill Gram-positive bacteria by removing lipid II from the cell division site (or septum) and thus block cell wall synthesis. PMID:16973881

  6. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism.

    Science.gov (United States)

    Jamwal, Shilpa V; Mehrotra, Parul; Singh, Archana; Siddiqui, Zaved; Basu, Atanu; Rao, Kanury V S

    2016-01-01

    Survival of Mycobacterium tuberculosis (Mtb) within the host macrophage is mediated through pathogen-dependent inhibition of phagosome-lysosome fusion, which enables bacteria to persist within the immature phagosomal compartment. By employing ultrastructural examination of different field isolates supported by biochemical analysis, we found that some of the Mtb strains were in fact poorly adapted for subsistence within endocytic vesicles of infected macrophages. Instead, through a mechanism involving activation of host cytosolic phospholipase A2, these bacteria rapidly escaped from phagosomes, and established residence in the cytoplasm of the host cell. Interestingly, by facilitating an enhanced suppression of host cellular autophagy, this translocation served as an alternate virulence acquisition mechanism. Thus, our studies reveal plasticity in the adaptation strategies employed by Mtb, for survival in the host macrophage. PMID:26980157

  7. The effect of lignin as a natural adhesive on the physico-mechanical properties of Vitis vinifera fiberboards

    OpenAIRE

    Camilo Mancera; Nour-Eddine El Mansouri; Fabiola Vilaseca; Francesc Ferrando; Joan Salvado

    2011-01-01

    Lignin was used as a natural adhesive to manufacture Vitis vinifera fiberboards. The fiberboards were produced at laboratory scale by adding powdered lignin to material that had previously been steam-exploded under optimized pretreatment and pressing conditions. The kraft lignin used was washed several times with an acidic solution to eliminate any contaminants and low molecular weight compounds. This research studied the effects of amounts of lignin ranging from 5% to 20% on the properties o...

  8. Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus pinaster L.) tannin adhesives with cellulose nanofibers

    OpenAIRE

    Cui, Juqing; Lu, Xiaoning; Zhou, Xiaojian; Chrusciel, Laurent; Deng, Yuhe; Zhou, Handong; Zhu, Shangwu; Brosse, Nicolas

    2015-01-01

    Context Condensed tannins have been successfully used as substitutes for phenol in the production of resins for wood products. However, the enhancement of the properties of tannin-based resins with nontoxic and cost effective additives is of great interest.• Methods In the present work, the performance enhancement of tannin-based particleboards with cellulose nanofibers was investigated.• Results In presence of 2 % of cellulose nanofibers, the viscosity of tannin-based adhesives and the inter...

  9. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity

    International Nuclear Information System (INIS)

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min−1 using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing. (paper)

  10. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity.

    Science.gov (United States)

    Zeniou, A; Ellinas, K; Olziersky, A; Gogolides, E

    2014-01-24

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min(-1) using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing. PMID:24346308

  11. Two alternative dural sealing techniques in posterior fossa surgery: (Polylactide-co-glycolide) self-adhesive resorbable membrane versus polyethylene glycol hydrogel

    OpenAIRE

    Marco Schiariti; Francesco Acerbi; Morgan Broggi; Giovanni Tringali; Alberto Raggi; Giovanni Broggi; Paolo Ferroli

    2014-01-01

    Background: Post-operative cerebrospinal fluid (CSF) leak in posterior fossa surgery remains a significant source of morbidity. TissuePatchDural (TPD), a novel impermeable adhesive membrane, was used to reinforce dural closure. A comparison with one of the most commonly used dural sealing devices, DuraSeal, has been made. Methods: A retrospective, single-center study was conducted on 161 patients who underwent elective posterior fossa surgery. On surgeon′s opinion, when a primary watertig...

  12. Surface topography, nano-mechanics and secondary structure of wheat gluten pretreated by alternate dual-frequency ultrasound and the correlation to enzymolysis.

    Science.gov (United States)

    Zhang, Yanyan; Wang, Bei; Zhou, Cunshan; Atungulu, Griffiths G; Xu, Kangkang; Ma, Haile; Ye, Xiaofei; Abdualrahman, Mohammed A Y

    2016-07-01

    The effects of alternate dual-frequency ultrasound (ADFU) pretreatment on the degree of hydrolysis (DH) of wheat gluten (WG) and angiotensin I-converting enzyme (ACE) inhibitory activity were investigated in this research. The surface topography, nano-mechanics and secondary structure of WG were also determined using atomic force microscope (AFM) and circular dichroism (CD). The correlations of ACE inhibitory activity and DH with surface topography, nano-mechanics and secondary structure of WG were determined using Pearson's correlation analysis. The results showed that with an increase in either pretreatment duration or power, the ACE inhibitory activity of the hydrolysate also increases, reaching maximum at 10min and 150W/L, respectively, and then decreases thereafter. Similarly, AFM analysis showed that as the pretreatment duration or power increases, the surface roughness also increase and again a decrease occurs thereafter. As the pretreatment duration or power increased, the Young's modulus and adhesion of WG also increased and then declined. Young's modulus and adhesions average values were compared with ACE inhibitory activity reversely. The result of the CD spectra analysis exhibited losses in the relative percentage of α-helix of WG. Pearson's correlation analysis showed that the average values of Young's modulus and the relative percentage of α-helix correlated with ACE inhibitory activity of the hydrolysates linearly and significantly (P<0.05); the relative percentage of β-sheet correlated linearly with DH of WG significantly (P<0.05). In conclusion, ADFU pretreatment is an efficient method in proteolysis due to its physical and chemical effect on the Young's modulus, α-helix and β-sheet of WG. PMID:26964949

  13. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

    Science.gov (United States)

    Xue, Haiyang; Lv, Guoqiang; Ma, Wenhui; Chen, Daotong; Yu, Jie

    2015-07-01

    Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

  14. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  15. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  16. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  17. Alternative mechanisms of telomere lengthening: Permissive mutations, DNA repair proteins and tumorigenic progression

    Energy Technology Data Exchange (ETDEWEB)

    Gocha, April Renee Sandy; Harris, Julia [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna, E-mail: joanna.groden@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Highlights: ► Neoplastic cells maintain telomeres by telomerase or ALT. ► Genetic mutations in p53, ATRX, DAXX or H3F3A may activate ALT. ► Many DNA repair proteins are involved in ALT. ► Tumor progression is favored by telomerase expression. - Abstract: Telomeres protect chromosome termini to maintain genomic stability and regulate cellular lifespan. Maintenance of telomere length is required for neoplastic cells after the acquisition of mutations that deregulate cell cycle control and increase cellular proliferation, and can occur through expression of the enzyme telomerase or in a telomerase-independent manner termed alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are unknown, although cellular origin may favor one or the other mechanisms. ALT pathways are incompletely understood to date; however, recent publications have increasingly broadened our understanding of how ALT is activated, how it proceeds, and how it influences tumor growth. Specific mutational events influence ALT activation, as mutations in genes that suppress recombination and/or alterations in the regulation of telomerase expression are associated with ALT. Once engaged, ALT uses DNA repair proteins to maintain telomeres in the absence of telomerase; experiments that manipulate the expression of specific proteins in cells using ALT are illuminating some of its mechanisms. Furthermore, ALT may influence tumor growth, as experimental and clinical data suggest that telomerase expression may favor tumor progression. This review summarizes recent findings in mammalian cells and models, as well as clinical data, that identify the genetic mutations permissive to ALT, the DNA repair proteins involved in ALT mechanisms and the importance of telomere maintenance mechanisms for tumor progression. A comprehensive understanding of the mechanisms that permit tumor cell immortalization will be important for identifying

  18. Fabrication and characterization of thermoplastic elastomer dry adhesives with high strength and low contamination.

    Science.gov (United States)

    Bin Khaled, Walid; Sameoto, Dan

    2014-05-14

    Polydimethylsiloxane (PDMS) and polyurethane elastomers have commonly been used to manufacture mushroom shaped gecko-inspired dry adhesives with high normal adhesion strength. However, the thermosetting nature of these two materials severely limits the commercial viability of their manufacturing due to long curing times and high material costs. In this work, we introduce poly(styrene-ethylene/butylene-styrene) (SEBS) thermoplastic elastomers as an alternative for the manufacture of mushroom shaped dry adhesives with both directional and nondirectional performance. These materials are attractive for their potential to be less contaminating via oligomer transfer than thermoset elastomers, as well as being more suited to mass manufacturing. Low material transfer properties are attractive for adhesives that could potentially be used in cleanroom environments for microscale assembly and handling in which device contamination is a serious concern. We characterized a thermoplastic elastomer in terms of oligomer transfer using X-ray photoelectron spectroscopy and found that the SEBS transfers negligible amounts of its own oligomers, during contact with a gold-coated silicon surface, which may be representative of the metallic bond pads found in micro-electro-mechanical systems devices. We also demonstrate the fabrication of mushroom shaped isotropic and anisotropic adhesive fibers with two different SEBS elastomer grades using thermocompression molding and characterize the adhesives in terms of their shear-enhanced normal adhesion strength. The overall adhesion of one of the thermoplastic elastomer adhesives was found to be stronger or comparable to their polyurethane counterparts with identical dimensions. PMID:24712514

  19. Measurement of the mechanical adhesion between a single-walled carbon nanotube and a silicon dioxide substrate

    Science.gov (United States)

    Whittaker, Jed; Minot, Ethan; McEuen, Paul; Davis, Robert

    2003-10-01

    Single-walled carbon nanotubes were grown over a lithographically defined set of trenches, 60 nm deep and 300 nm wide on a pitch of 500 nm. After finding a nanotube that crossed three or more trenches, we used an atomic force microscope (AFM) to measure the amount of force required to make the carbon nanotube slip along the silicon dioxide trench tops. This was done by pushing down on the tube with the AFM probe until slip was observed in the force-distance curve. This measurement allowed us to determine the adhesion force per unit length between a nanotube and a silicon dioxide substrate.

  20. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism

    Science.gov (United States)

    Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer

    2015-03-01

    Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.

  1. A preclinical mouse model of glioma with an alternative mechanism of telomere maintenance (ALT).

    Science.gov (United States)

    Jeitany, Maya; Pineda, Jose Ramon; Liu, Qingyuan; Porreca, Rosa Maria; Hoffschir, Françoise; Desmaze, Chantal; Silvestre, David C; Mailliet, Patrick; Junier, Marie-Pierre; Londoño-Vallejo, Arturo; Ségal-Bendirdjian, Evelyne; Chneiweiss, Hervé; Boussin, François D

    2015-04-01

    Glioblastoma multiforme is the most aggressive primary tumor of the central nervous system. Glioma stem cells (GSCs), a small population of tumor cells with stem-like properties, are supposedly responsible for glioblastoma multiforme relapse after current therapies. In approximately thirty percent of glioblastoma multiforme tumors, telomeres are not maintained by telomerase but through an alternative mechanism, termed alternative lengthening of telomere (ALT), suggesting potential interest in developing specific therapeutic strategies. However, no preclinical model of ALT glioma was available until the isolation of TG20 cells from a human ALT glioma. Herein, we show that TG20 cells exhibit a high level of telomeric recombination but a stable karyotype, indicating that their telomeres retain their protective function against chromosomal instability. TG20 cells possess all of the characteristic features of GSCs: the expression of neural stem cell markers, the generation of intracerebral tumors in NOD-SCID-IL2Rγ (NSG) mice as well as in nude mice, and the ability to sustain serial intracerebral transplantations without expressing telomerase, demonstrating the stability of the ALT phenotype in vivo. Furthermore, we also demonstrate that 360B, a G-quadruplex ligand of the pyridine derivative series that impairs telomere replication and mitotic progression in cancer cells, prevents the development of TG20 tumors. Together, our results show that intracerebral grafts of TG20 cells in immunodeficient mice constitute an efficient preclinical model of ALT glioblastoma multiforme and that G-quadruplex ligands are a potential therapy for this specific type of tumor. PMID:25175359

  2. 变异链球菌黏附机制的研究进展%Research progress on Streptococcus mutans adhesion mechanism

    Institute of Scientific and Technical Information of China (English)

    杨隆强; 周乔

    2011-01-01

    Streptococcus mutans (S.mutans) is one of the most important pathogens in dental caries. In recent years, the studies on the mechanism of S. mutans adhesion focused on the molecular and genetic level, laying the foundation for the further study of dental caries prevention and treatment. The paper mainly reviews mechanism of adhesion and associated regulating factors of S. mutans.%变异链球菌对牙面的黏附,是形成牙菌斑的前提和致龋的重要条件.分子生物学技术的不断进步使针对变异链球菌黏附机制的研究进入了分子水平,旨在更好地诠释变异链球菌在致龋过程中的作用,为龋病的防治奠定基础.本文就黏附、变异链球菌表面成分与黏附的关系、影响变异链球菌黏附的环境因素、变异链球菌黏附研究的前景展望等作一综述.

  3. The Complementary and Alternative Medicine for Endometriosis: A Review of Utilization and Mechanism

    Directory of Open Access Journals (Sweden)

    Sai Kong

    2014-01-01

    Full Text Available Endometriosis (EM is one of the common gynecological conditions causing menstrual and pelvic pain and affects 10%–15% of women of reproductive age. In recent years, the complementary and alternative medical (CAM treatment for EM has become popular due to the few adverse reactions reported. The CAM therapy for EM includes several different treatments such as herbs (herbal prescription, extract, and patent, acupuncture, microwave physiotherapy, and Chinese herb medicine enema (CHM enema. These CAM therapies are effective at relieving dysmenorrhoea, shrinking adnexal masses, and promoting pregnancy, with less unpleasant side effects when compared to hormonal and surgical treatments. In this review, we focus on the status quo of CAM on EM and try to identify therapeutic efficacy and mechanisms based on some clinical and experimental studies. We hope to provide some instructive suggestions for clinical treatment and experimental research in the future.

  4. Tuning the kinetics of cadherin adhesion

    OpenAIRE

    Sivasankar, Sanjeevi

    2013-01-01

    Cadherins are Ca2+ dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particu...

  5. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  6. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Xianqiang Song; Jun Qin; Jun Yang; Jamila Hirbawi; Sheng Ye; H Dhanuja Perera; Esen Goksoy; Pallavi Dwivedi; Edward F Plow; Rongguang Zhang

    2012-01-01

    The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes,including blood coagulation,tissue remodeling,and cancer metastasis.This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail,but how these binding events are spatiotemporally regulated remains obscure.Here we report the crystal structure of a dormant talin,revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface.Unexpectedly,the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane.Such a dual inhibitory topology for talin is consistent with the biochemical and functional data,but differs significantly from a previous model.We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) - a known talin activator,membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS.Such an electrostatic "pull-push" process promotes the relief of the dual inhibition of talin-FERM,which differs from the classic "steric clash" model for conventional PIP2-induced FERM domain activation.These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.

  7. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  8. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    International Nuclear Information System (INIS)

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O2, air and Ar + O2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well as

  9. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  10. The study of composition, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Titanium oxide and titanium nitrogen gradient films were prepared by three different processes using metal plasma immersion ion implantation and deposition (MPIII-D). The mechanical properties of the films synthesized on silicon wafers, Ti6A14V and low temperature isotropic carbon (LTIC) were evaluated by nano-indentation, pin-on-disc wear, and scratching test. The hardness of the film was measured to be 19.5 GPa. Investigation by XRD shows that the surface Ti-O layer possesses a rutile structure and analysis by X-ray photoelectron spectra (XPS) discloses that the surface composition of the synthesized TiN/Ti-O films is non-stoichiometric. The gradient characteristics of the films were corroborated by qualitative analysis of secondary ion mass spectroscopy (SIMS). The thickness of films was 510-940 nm. Platelet adhesion experiments adopted to estimate the blood compatibility of the films show that the adsorption and deformation of platelets on the synthesized TiN/Ti-O gradient films have been significantly suppressed compared to LTIC. Scanning electron microscopy (SEM) used to assess the wear and scratch tracks discloses that the films exhibit good wear resistance and high adhesion strength

  11. The study of composition, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition

    Science.gov (United States)

    Wen, F.; Huang, N.; Sun, H.; Wan, G. J.; Chu, P. K.; Leng, Y.

    2004-07-01

    Titanium oxide and titanium nitrogen gradient films were prepared by three different processes using metal plasma immersion ion implantation and deposition (MPIII-D). The mechanical properties of the films synthesized on silicon wafers, Ti6A14V and low temperature isotropic carbon (LTIC) were evaluated by nano-indentation, pin-on-disc wear, and scratching test. The hardness of the film was measured to be 19.5 GPa. Investigation by XRD shows that the surface Ti-O layer possesses a rutile structure and analysis by X-ray photoelectron spectra (XPS) discloses that the surface composition of the synthesized TiN/Ti-O films is non-stoichiometric. The gradient characteristics of the films were corroborated by qualitative analysis of secondary ion mass spectroscopy (SIMS). The thickness of films was 510-940 nm. Platelet adhesion experiments adopted to estimate the blood compatibility of the films show that the adsorption and deformation of platelets on the synthesized TiN/Ti-O gradient films have been significantly suppressed compared to LTIC. Scanning electron microscopy (SEM) used to assess the wear and scratch tracks discloses that the films exhibit good wear resistance and high adhesion strength.

  12. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation

    Science.gov (United States)

    Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia

    2016-01-01

    A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  13. Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use.

    Science.gov (United States)

    Yee, William; Selvaduray, Guna; Hawkins, Benjamin

    2015-03-01

    In this work, we demonstrate the successful enhancement of breaking strength, adhesive strength, and antibacterial efficacy of ophthalmic tissue adhesive (2-octyl cyanoacrylate) by doping with silver nanoparticles, and investigate the effects of nanoparticle size and concentration. Recent work has shown that silver nanoparticles are a viable antibacterial additive to many compounds, but their efficacy in tissue adhesives was heretofore untested. Our results indicate that doping the adhesive with silver nanoparticles reduced bacterial growth by an order of magnitude or more; nanoparticle size and concentration had minimal influence in the range tested. Tensile breaking strength of polymerized adhesive samples and adhesive strength between a T-shaped support and excised porcine sclera were measured using a universal testing machine according to ASTM (formerly American Society for Testing and Materials) standard techniques. Both tests showed significant improvement with the addition of silver nanoparticles. The enhanced mechanical strength and antibacterial efficacy of the doped adhesive supports the use of tissue adhesives as a viable supplement or alternative to sutures. PMID:26562766

  14. An alternative mechanism for international health aid: evaluating a Global Social Protection Fund.

    Science.gov (United States)

    Basu, Sanjay; Stuckler, David; McKee, Martin

    2014-01-01

    Several public health groups have called for the creation of a global fund for 'social protection'-a fund that produces the international equivalent of domestic tax collection and safety net systems to finance care for the ill and disabled and related health costs. All participating countries would pay into a global fund based on a metric of their ability to pay and withdraw from the common pool based on a metric of their need for funds. We assessed how alternative strategies and metrics by which to operate such a fund would affect its size and impact on health system financing. Using a mathematical model, we found that common targets for health funding in low-income countries require higher levels of aid expenditures than presently distributed. Some mechanisms exist that may incentivize reduction of domestic health inequalities, and direct most funds towards the poorest populations. Payments from high-income countries are also likely to decrease over time as middle-income countries' economies grow. PMID:23335466

  15. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  16. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  17. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  18. Two alternative dural sealing techniques in posterior fossa surgery: (Polylactide-co-glycolide self-adhesive resorbable membrane versus polyethylene glycol hydrogel

    Directory of Open Access Journals (Sweden)

    Marco Schiariti

    2014-01-01

    Conclusions: TPD seems to be a safe tool for use as an adjunct to standard dural closure in posterior fossa surgery, particularly in patients without pre- or post-oper ative risk factors, in those who did not develop hydrocephalus, and who underwent craniectomy. The CSF leak rate in TPD group was found to be lower or within the range of the more advanced alternative dural closure strategies, including polyethylene glycol (PEG-based sealant.

  19. Samples of HDR Soultz Injection Microearthquakes: Mechanism Using Alternative Source Models

    Science.gov (United States)

    Jechumtalova, Z.; Sileny, J.

    2011-12-01

    offered by the seismicity induced during the massive fluid injection experiments at the Hot Dry Rock (HDR) site Soultz-sous-Forêts. The site is located in Alsace (France) within the hottest geothermal surface anomaly of the Upper Rhine Graben. From the bulk of the seismicity recorded, we have processed several microearthquakes with magnitudes between M = 1.4 and 1.5 which occurred during the first phase of 2003 fluid injection, when only the borehole GPK3 was stimulated. Mechanisms resulting from the alternative approaches offer the clue to estimate the reliability of the shear vs. non-shear source components, thus indicating the type of the fracturing.

  20. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  1. Alternative mating tactics in the yellow dung fly: resolving mechanisms of small-male advantage off pasture

    OpenAIRE

    Gress, Brian E.; Waltzer, Ryan J.; Lüpold, Stefan; Droge-Young, Elizabeth M.; Manier, Mollie K.; Pitnick, Scott

    2014-01-01

    Recent work suggests that the yellow dung fly mating system may include alternative patroller–competitor mating tactics in which large males compete for gravid females on dung, whereas small, non-competitive males search for females at foraging sites. Small males obtain most matings off pasture, yet the behavioural mechanism(s) giving rise to this pattern are unknown. We investigated the male and female behaviours that determine mating success in this environment by conducting field mating ex...

  2. Host Selection of Microbiota via Differential Adhesion.

    Science.gov (United States)

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  3. Structural basis of the alternating-access mechanism in a bile acid transporter

    Science.gov (United States)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  4. Application of the Blister Test in Study of Epoxy Adhesive

    Institute of Scientific and Technical Information of China (English)

    Fei Xiong; Ingegerd Annergren

    2000-01-01

    Shaft-loaded blister test technique is used as an effective quantitative tool to measure adhesion strength. Investigation on conductive adhesive was done by modified blister test. It is found that shaftloaded blister test can be a good solution for the debonding of thin film adhesion. The intrinsic stable interface debonding process has been proved an attractive alternative to the conventional adhesion measurement techniques. In our study, epoxy matrix adhesive was studied using blister test technique in comparison with the traditional test-lap shear test. Adhesion strength was studied as a function of surface treatment and the metallization of substrate. It was found that surface conditions of substrate have significant impact on adhesion behaviour. The oxidation of surface is responsible for the poor adhesion. Activating chemical treatment and Plasma cleaning on substrate surface has been found to be a way of dreamatically improving adhesion strength of electronic conductive adhesive.

  5. Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion.

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2010-02-01

    Full Text Available The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte-surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte-surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1 but not LFA1 rebinding (to ICAM1 was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and

  6. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    Science.gov (United States)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  7. Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids

    OpenAIRE

    Müser, Martin H.

    2014-01-01

    In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load FN. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The co...

  8. IMPROVING MICROSTRUCTURE, MECHANICAL PROPERTIES AND ADHESIVE WEAR BEHAVIOUR OF HYPOEUTECTIC Al-Si ALLOY BY ELECTROMAGNETIC STIRRING

    Directory of Open Access Journals (Sweden)

    PRABHKIRAN KAUR

    2011-10-01

    Full Text Available The objective of this work is to present the effect of electromagnetic stirring on microstructure, mechanical properties and wear behaviour of hypoeutectic aluminium silicon alloy 356. An electromagnetic stirring setup was developed to carry out the experiments. Microstructure study of as cast alloy showed dendritic structure of primary aluminium particles. Electromagnetic stirring refined the dendritic structure, leading to an improvement in mechanical properties such as tensile strength and hardness. Wear studies were also carried out for both as cast and electromagnetic stir cast samples in dry sliding reciprocating conditions. The reduction in wear rate was observed with electromagnetic stirring at a constant sliding distance and reciprocating velocity, at normal loads varying from 15N to 75N.

  9. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  10. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  11. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  12. Nanofracture mechanics : scanning force microscopy for the investigation of adhesion and corrosion at solid-solid interfaces

    OpenAIRE

    Kaufmann, André Nicolas

    2013-01-01

    Fracture processes are crucially determined by structural features on the molecular/nanometer scale (cavities, occlusions, cracks, etc.) as well as on the atomic scale (e.g. interstitial, substitutional and vacancy defects). In this work, fracture mechanics experiments were performed with fabricated nanostructures, so-called nanopillars. Furthermore, material interfaces had been introduced into these nanopillars as weak links in order to act as well-defined breaking points. By exerting calibr...

  13. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    Science.gov (United States)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  14. Mechanical pipe couplings. The alternative jointing method for PE gas pipes up to 10 bar; Mechanische Rohrkupplungen. Die alternative Verbindung fuer PE-Gas-Rohre bis 10 bar

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Axel; Johnson, Alexander [PSI Products GmbH, Moessingen (Germany)

    2010-11-15

    Increasing competition nowadays obliges natural gas suppliers to adopt continuous cost-optimization. Many utilities are therefore rethinking their existing methods for jointing of plastic pipes. Around the world, mechanical pipe couplings are becoming established in this field as a rational-cost, safe and easy-to-install alternative to conventional welding methods. For this project, PSI Products GmbH and Elster Perfection are pursuing new routes for the development of solutions to problems in plastic-pipe jointing technology. As a specialist in accessories for the field of pipeline engineering, PSI Products GmbH has now also unveiled, in the form of the Permasert {sup registered} and PermaLock {sup registered} pipe-coupling and jointing systems, a complete product range, with DVGW approval, for mechanical jointing of gas supply pipelines for the German natural gas market. This system has proven its capabilities since its market launch in the USA more than thirty years ago, and is now one of the world's most widely used mechanical PE-pipe jointing methods. Simple and fast installation is the basis of this success. More than 45 million Permasert {sup registered} couplings and PermaLock {sup registered} tapping valves are now in use under virtually all conceivable climatic and soil conditions, and not only in North America and Europe, but also in Asia, Australia, the Middle East, and Central and South America. (orig.)

  15. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    Science.gov (United States)

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  16. 应用于爬壁机器人的静电吸附原理建模及关键因素分析%Principle modeling and key factors analysis of the electrostatic adhesion mechanism used in wall climbing robot

    Institute of Scientific and Technical Information of China (English)

    王黎明; 胡青春

    2012-01-01

    This paper includes an illustration of the electrostatic adhesion mechanism which is applied in the parti cular area of wall climbing robots. The adhesion mechanism of electrostatic adhesion technology will be researched at the beginning, then, the theoretical attraction force model between the electrodes and wall is built. Through the principle of virtual work, the paper obtains a mathematical expression of electrostatic adhesion, and for more com plexity, makes a specific investigation of double electrodes type, which is the base of comb-shaped electrodes. Schwarz-Christoffel transform will be utilized in this part, and it is an effective method in dealing with non-uniform electric field. Next, Matlab software is used to analyze the key factors which affect the adsorption strength in the e lectrodes. To illustrate the problem further, a simulation of voltage between the electrodes is done. Finally, to veri fy this adhesive function, an experiment with comb-shaped electrodes is done, from which it can be concluded that electrostatic adhesion can be a large attraction power in wall-climbing robots application.%本文对应用于静电吸附式爬壁机器人这一特殊领域的静电吸附原理进行分析,对静电力进行数学解析建模,通过施瓦兹-克里斯托菲数学变换重点分析影响梳状电极吸附力的结构因素,并借助Ansoft软件求解出不同占空比下的电极电容矩阵,最后通对设计的柔性板梳状电极进行实际实验测试,验证静电吸附在爬壁机器人应用上的可靠性.

  17. Contact angle anomalies indicate that surface-active eluates from silicone coatings inhibit the adhesive mechanisms of fouling organisms.

    Science.gov (United States)

    Meyer, Anne; Baier, Robert; Wood, Christina Darkangelo; Stein, Judith; Truby, Kathryn; Holm, Eric; Montemarano, Jean; Kavanagh, Christopher; Nedved, Brian; Smith, Celia; Swain, Geoff; Wiebe, Deborah

    2006-01-01

    Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m-1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins. The surfaces of painted steel test panels were characterised both before and after exposure to freshwater, brackish water, and seawater over periods ranging from 9 months to nearly 4 years. Contact angle measurements demonstrated significant surface activity of the oil-amended coatings both before and after long-term underwater exposure. The surface activity of the control (coating without oil) increased as a result of underwater exposure, consistent with mild surface chain scission and hydrolysis imparting a self-surfactancy to the coating and providing a weak boundary layer promoting continuing easy release of attaching foulants. Coatings with additives that most effectively reduced biofouling showed both initial and persistent contact angle anomalies for the test liquid, thiodiglycol, suggesting lower-shear biofouling release mechanisms based upon diminished bioadhesive crosslinking by interfering with hydrogen- and sulfhydryl bonds. Swelling of the silicone elastomeric coatings by hydrocarbon fluids was observed for all four coatings, before and after immersion. PMID:17178574

  18. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  19. The development of an in vitro model for studying mechanisms of nephrotoxicity as an alternative for animal experiments.

    OpenAIRE

    Mertens, J.J.W.M.

    1991-01-01

    SUMMARYPresently in our society animal tests still form the main starting point for the assessment of the possible risks of chemicals with regard to human and animal health. For scientific. economic, and ethical reasons. attempts are undertaken continuously to develop cell models as alternatives to animal testing. However, the predictive value of in vitro test systems is often limited due to the unawareness about the mechanisms of toxicity and the complexity of organisms. As a consequence, a ...

  20. Verisimilitude (or “truthlikeness”) as an alternative to pro and cons: migraine and cluster headache mechanisms

    OpenAIRE

    Tfelt-Hansen, Peer Carsten

    2010-01-01

    Calculating verisimilitude (or “truthlikeness”) ad modum Popper is a quantitative alternative to the usual pros and cons in migraine and cluster headache mechanisms. The following items were evaluated: dilation of large cranial arteries during migraine; CGRP increase during migraine; migraine as a brain disorder; aura and migraine headache; brain stem activation during migraine; rCBF in migraine without aura; NO and pathophysiology of migraine; neurogenic inflammation and migraine; aura in cl...

  1. EFFECTS OF ALTERNATIVE RAW MATERIALS AND VARYING RESIN CONTENT ON MECHANICAL AND FRACTURE MECHANICAL PROPERTIES OF PARTICLE BOARD

    Directory of Open Access Journals (Sweden)

    Jörn Rathke,

    2012-05-01

    Full Text Available Particle boards were produced from different types of wood particles, i.e. spruce, recovered particles, willow, poplar, and locust. Effects of raw material, as well as varying resin content on mechanical and fracture mechanical properties were investigated. For the analysis of mechanical properties, specific fracture energy, stress intensity factors, and the industrial European standard methods internal bond strength according to EN 319 and bending strength according to EN 310 were used. The total fracture energy was measured, and the stress intensity factor was calculated by means of data achieved through finite element simulations. Results of the fracture energy analysis were compared to internal bond strength (IB and bending strength. While IB and the modulus of elasticity (MOE showed a high variability, data scattering for fracture energy tests and modulus of rupture (MOR were smaller, which are due to significant differences between the resin contents of the various board types.

  2. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  3. Measuring the Cost-effectiveness of Conservation Auctions Relative to Alternate Policy Mechanisms

    OpenAIRE

    White, Benedict; Burton, Michael P.

    2010-01-01

    The principle motivation for using price-discriminating conservation auctions is that they are expected to be significantly more cost-effective than fixed-price mechanisms. This paper measures cost effectiveness for tenders from two rounds of the Auction for Landscape Recovery in Western Australia relative to counterfactual fixed-price mechanisms. If we assume that the bid equals the compliance cost, the auction gives a significant cost saving over fixed-price mechanisms. If instead we assume...

  4. Alternative Basic Income Mechanisms: An Evaluation Exercise with a Microeconometric Model

    OpenAIRE

    Colombino, Ugo; Locatelli, Marilena; Narazani, Edlira; Donoghue, Cathal

    2010-01-01

    We develop and estimate a microeconometric model of household labour supply in four European countries representative of different economies and welfare policy regimes: Denmark, Italy, Portugal and the United Kingdom. We then simulate, under the constraint of constant total net tax revenue (fiscal neutrality), the effects of various hypothetical tax-transfer reforms which include alternative versions of a Basic Income policy: Guaranteed Minimum Income, Work Fare, Participation Basic Income an...

  5. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen.

    OpenAIRE

    Papayannopoulou, T; Craddock, C.; Nakamoto, B; Priestley, G V; Wolf, N. S.

    1995-01-01

    Selective lodgement or homing of transplanted hemopoietic stem cells in the recipient's bone marrow (BM) is a critical step in the establishment of long-term hemopoiesis after BM transplantation. However, despite its biologic and clinical significance, little is understood about the process of homing. In the present study, we have concentrated on the initial stages of homing and explored the functional role in vivo of some of the adhesion pathways previously found to mediate in vitro adhesion...

  6. An alternating copolymer of maleimide and atropic acid with narrow molecular weight distribution prepared by radical mechanism

    Institute of Scientific and Technical Information of China (English)

    万德成; 黄兆华; 黄骏廉

    1999-01-01

    Three basic conditions for preparation of alternating copolymer with narrow molecular weight distribution were derived from the element kinetic equations of binary radical copolymerization. Using maleimide (MI) and atropie acid (ATA) as model monomer pairs and dioxane as the solvent the alternating copolymer with molecular weight distribution in the range of 1.09--1.20 was prepared successfully by charger transfer complex (CTC) mechanism in the presence of benzoyl peroxide at 85℃. The monomer reactivity ratioes r1(MI)=0.05±0.01 and r2(ATA)=0.03±0.02 were measured. The alternating eopolymerization was carried out through formation of a contact-type CTG and then alternating addition of MI and ATA monomers. The molecular weight of the copolymers is nearly independent of the feed ratio in a large range and the polymerization rate dropped with an increase in ATA in feed ratio.

  7. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres.

    Science.gov (United States)

    Pickett, Hilda A; Reddel, Roger R

    2015-11-01

    Alternative lengthening of telomeres (ALT) involves homology-directed telomere synthesis. This multistep process is facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture, including altered DNA sequence and decreased TRF2 saturation. Induction of telomere-specific DNA damage triggers homology-directed searches, and NuRD-ZNF827 protein-protein interactions provide a platform for the telomeric recruitment of homologous recombination (HR) proteins. Telomere lengthening proceeds by strand exchange and template-driven DNA synthesis, which culminates in dissolution of HR intermediates. PMID:26581522

  8. Compact Kinetic Mechanisms for Petroleum-Derived and Alternative Aviation Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To be useful for computational combustor design and analysis using tools like the National Combustion Code (NCC), low-dimensional chemical kinetic mechanisms for...

  9. Modifying Matrix Materials to Increase Wetting and Adhesion

    Science.gov (United States)

    Zhong, Katie

    2011-01-01

    In an alternative approach to increasing the degrees of wetting and adhesion between the fiber and matrix components of organic-fiber/polymer matrix composite materials, the matrix resins are modified. Heretofore, it has been common practice to modify the fibers rather than the matrices: The fibers are modified by chemical and/or physical surface treatments prior to combining the fibers with matrix resins - an approach that entails considerable expense and usually results in degradation (typically, weakening) of fibers. The alternative approach of modifying the matrix resins does not entail degradation of fibers, and affords opportunities for improving the mechanical properties of the fiber composites. The alternative approach is more cost-effective, not only because it eliminates expensive fiber-surface treatments but also because it does not entail changes in procedures for manufacturing conventional composite-material structures. The alternative approach is best described by citing an example of its application to a composite of ultra-high-molecular- weight polyethylene (UHMWPE) fibers in an epoxy matrix. The epoxy matrix was modified to a chemically reactive, polarized epoxy nano-matrix to increase the degrees of wetting and adhesion between the fibers and the matrix. The modification was effected by incorporating a small proportion (0.3 weight percent) of reactive graphitic nanofibers produced from functionalized nanofibers into the epoxy matrix resin prior to combining the resin with the UHMWPE fibers. The resulting increase in fiber/matrix adhesion manifested itself in several test results, notably including an increase of 25 percent in the maximum fiber pullout force and an increase of 60-65 percent in fiber pullout energy. In addition, it was conjectured that the functionalized nanofibers became involved in the cross linking reaction of the epoxy resin, with resultant enhancement of the mechanical properties and lower viscosity of the matrix.

  10. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  11. Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate

    Science.gov (United States)

    Khan, Azam; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2014-08-01

    The present research is devoted to understanding the mechanism and causes of variation in the piezoelectric potential generated from vertically aligned zinc oxide (ZnO) nanorods (NRs), which were grown on a conductive textile fabric as an alternative substrate by using the aqueous chemical growth method. The piezoelectric voltage was harvested from vertically aligned ZnO NRs having different physical parameters by using atomic force microscopy in contact mode and the variation in the generated piezoelectricity was investigated. The generated output potential indicates that different physical parameters such aspect ratio, crystal size and lattice internal crystal strain have a strong influence on the piezoelectric properties of vertically aligned ZnO NRs, which were grown on a textile fabric. Presented results indicate that textiles can be used as an alternative substrate just like the other conventional substrates, because our results are similar/better than many reported works on conventional substrates.

  12. Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate

    International Nuclear Information System (INIS)

    The present research is devoted to understanding the mechanism and causes of variation in the piezoelectric potential generated from vertically aligned zinc oxide (ZnO) nanorods (NRs), which were grown on a conductive textile fabric as an alternative substrate by using the aqueous chemical growth method. The piezoelectric voltage was harvested from vertically aligned ZnO NRs having different physical parameters by using atomic force microscopy in contact mode and the variation in the generated piezoelectricity was investigated. The generated output potential indicates that different physical parameters such aspect ratio, crystal size and lattice internal crystal strain have a strong influence on the piezoelectric properties of vertically aligned ZnO NRs, which were grown on a textile fabric. Presented results indicate that textiles can be used as an alternative substrate just like the other conventional substrates, because our results are similar/better than many reported works on conventional substrates. (paper)

  13. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model with the...

  14. A Comparison between Mechanisms of Multi-Alternative Perceptual Decision Making: Ability to Explain Human Behavior, Predictions for Neurophysiology, and Relationship with Decision Theory

    OpenAIRE

    Ditterich, Jochen

    2010-01-01

    While there seems to be relatively wide agreement about perceptual decision making relying on integration-to-threshold mechanisms, proposed models differ in a variety of details. This study compares a range of mechanisms for multi-alternative perceptual decision making, including integration with and without leakage, feedforward and feedback inhibition for mediating the competition between integrators, as well as linear and non-linear mechanisms for combining signals across alternatives. It i...

  15. Thermal Characterization of Adhesive

    Science.gov (United States)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  16. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of...

  17. Corrosion protection of metals by phosphate coatings and ecologically beneficial alternatives. Properties and mechanisms

    International Nuclear Information System (INIS)

    The corrosion and protection characteristics of inorganic zinc and manganese phosphate coatings in aqueous solution have been examined by physical methods, accelerated corrosion tests and electrochemical polarization and impedance measurements. Some water-soluble organic films have been evaluated for the temporary protection of metal parts as the ecologically beneficial alternatives to phosphate coatings. The results show that zinc phosphate is a better insulator than manganese phosphate, but the porosity of the former is inferior to that of the latter. In neutral and alkaline solutions the anodic current of both zinc and manganese phosphates decreases and their open potential moves in a positive direction. In acidic medium both the polarization current and the open potential are close to those of the substrate. Confirmed by the impedance measurements, the corrosion of phosphated steel in acidic solution is controlled by a dissolution reaction, in neutral medium is first reaction controlled then diffusion controlled, and in alkaline environment only diffusion controlled. The insulation of acrylate+copolymer, epoxy and inhibitor+bonding materials is superior to that of zinc or manganese phosphates. In general, most of the alternatives can afford a better temporary protection for metal parts compared to inorganic phosphate coatings. The corrosion failure of inorganic phosphate coatings is mainly induced by the electrochemical dissolution of the substrate. This electrochemical process initiates at the bottom of the pores within the coating. In neutral solution, the hydrolysis of corrosion products decrease the pH value of the solution in the anodic zone, resulting in an acidic dissolution of phosphate coatings. At the same time, the depolarization of oxygen increases the pH value in the cathodic zone, causing an alkaline hydrolysis of phosphates. (author) figs., tabs., 149 refs

  18. Dynamic ranking with n + 1 dimensional vector space models: An alternative search mechanism for world wide web

    Digital Repository Service at National Institute of Oceanography (India)

    Lakshminarayana, S.

    Letters to the Editor Dynamic Ranking with n H11001 1 Dimensional Vector Space Models: An Alternative Search Mechanism for World Wide Web Sir: The World Wide Web (WWW) has grown both in depth and width of technology typically giving scope for new databases.../links based on the algo- rithm characteristics. To optimize the results we need to apply dynamically extendable vector based ranking techniques because of the properties that depend for ranking a page are growing and not finite. Kleinberg (1998) classified...

  19. Structural differences within the loop E motif imply alternative mechanisms of viroid processing

    Science.gov (United States)

    Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multi-branched tetraloop structure to a l...

  20. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  1. Understanding Marine Mussel Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  2. Understanding marine mussel adhesion.

    Science.gov (United States)

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  3. Blandford-Znajek mechanism in black holes in alternative theories of gravity

    CERN Document Server

    Pei, Guancheng; Bambi, Cosimo; Middleton, Matthew J

    2016-01-01

    According to the Blandford-Znajek mechanism, black hole jets are powered by the rotational energy of the compact object. In this work, we consider the possibility that the metric around black holes may not be described by the Kerr solution and we study how this changes the Blandford-Znajek model. If the Blandford-Znajek mechanism is responsible for the formation of jets, the estimate of the jet power in combination with another measurement can test the nature of black hole candidates and constrain possible deviations from the Kerr solution. However, this approach might become competitive with respect to other techniques only when it will be possible to have measurements much more precise than those available today.

  4. Upright position mechanical ventilation: an alternative strategy for ALI/ARDS patients?

    Science.gov (United States)

    Zhu, Min; Zhang, Wei; Wang, Jia-Ning; Yan, Hua; Li, Yang-Kai; Ai, Bo; Fu, Sheng-Lin; Fu, Xiang-Ning

    2009-11-01

    Use of body positioning to improve oxygenation in mechanically ventilated patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) has been well documented. However, neither prone position ventilation nor side lying ventilation has been reported to improve the survival. Whether there is a body position superior to routine supine position or other positions as therapeutic adjunct for ventilated patients with ALI and ARDS? We propose the hypothesis that upright position ventilation may be helpful to improve oxygenation and benefit patients with ALI/ARDS. According to the existing physiologic and pathophysiologic data of upright position investigation, we suppose that improvement of V/Q matching, increased functional residual capacity, alveolar recruitment, accelerated diaphragm recovery, early gastric emptying and enteric feeding may be a potential protect mechanism of upright position ventilation. Whether this can be translated into improvement in patient outcome should be further tested in clinical trial. PMID:19683402

  5. Complex Alternative Splicing

    OpenAIRE

    Park, Jung Woo; Graveley, Brenton R.

    2007-01-01

    Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands, and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 is...

  6. Application of thermo-mechanically treated drill cuttings as an alternative to bentonite in spud muds

    OpenAIRE

    Taghiyev, Farid

    2014-01-01

    Drill cuttings recovered after drilling with OBM today are treated and deposited at onshore facilities. The TWMA Company offers a new technology, which recovers drilled subsurface materials together with oil and water rests. Due to the similarity between subsurface rock mineralogy and conventional bentonite used in the drilling fluid industry an extended laboratory study was carried out to evaluate the possibility of spud mud development using thermo-mechanically treated drill cuttings. Pr...

  7. Mechanical Color Reading of Wood-Staining Fungal Pigment Textile Dyes: An Alternative Method for Determining Colorfastness

    Directory of Open Access Journals (Sweden)

    Eric M. Hinsch

    2016-07-01

    Full Text Available Colorfastness to washing and crocking (color loss due to rubbing are essential qualities for any dye/fabric combination that will be used for garments or upholstery. In this study, colorfastness to washing and crocking of fabrics dyed with wood-staining fungal pigments was compared to colorfastness of commercial dyes using an alternative mechanical testing method. Overall, wood-staining fungal pigments out performed commercial dyes for colorfastness to washing and wet and dry crocking. Xylindein was the most colorfast dye. Draconin red yielded inconsistent results, and the yellow pigment required a mordant to achieve any colorfastness. This study showed that the mechanical color reading method, along with statistical analysis, provided an objective, repeatable gauge of colorfastness, although visual inspection is also needed for practical purposes.

  8. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species.

    Science.gov (United States)

    Igic, Branislav; Braganza, Kim; Hyland, Margaret M; Silyn-Roberts, Heather; Cassey, Phillip; Grim, Tomas; Rutila, Jarkko; Moskát, Csaba; Hauber, Mark E

    2011-11-01

    Obligate brood parasitic birds lay their eggs in nests of other species and parasite eggs typically have evolved greater structural strength relative to host eggs. Increased mechanical strength of the parasite eggshell is an adaptation that can interfere with puncture ejection behaviours of discriminating hosts. We investigated whether hardness of eggshells is related to differences between physical and chemical traits from three different races of the parasitic common cuckoo Cuculus canorus, and their respective hosts. Using tools developed for materials science, we discovered a novel correlate of increased strength of parasite eggs: the common cuckoo's egg exhibits a greater microhardness, especially in the inner region of the shell matrix, relative to its host and sympatric non-host species. We then tested predictions of four potential mechanisms of shell strength: (i) increased relative thickness overall, (ii) greater proportion of the structurally harder shell layers, (iii) higher concentration of inorganic components in the shell matrix, and (iv) elevated deposition of a high density compound, MgCO(3), in the shell matrix. We confirmed support only for hypothesis (i). Eggshell characteristics did not differ between parasite eggs sampled from different host nests in distant geographical sites, suggesting an evolutionarily shared microstructural mechanism of stronger parasite eggshells across diverse host-races of brood parasitic cuckoos. PMID:21561966

  9. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Science.gov (United States)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  10. Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas.

    Science.gov (United States)

    Esmaeel, Qassim; Chevalier, Mickael; Chataigné, Gabrielle; Subashkumar, Rathinasamy; Jacques, Philippe; Leclère, Valérie

    2016-10-01

    Based on the exploration of data generated by genome sequencing, a bioinformatics approach has been chosen to identify the biosynthetic pathway of the siderophores produced by Aeromonas species. The amonabactins, considered as a virulence factor, represent a family of four variants of catechol peptidic siderophores containing Dhb, Lys, Gly, and an aromatic residue either Trp or Phe in a D-configuration. The synthesis operon is constituted of seven genes named amoCEBFAGH and is iron-regulated. The cluster includes genes encoding proteins involved in the synthesis and incorporation of the Dhb monomer, and genes encoding specific nonribosomal peptide synthetases, which are responsible for the building of the peptidic moiety. The amonabactin assembly line displays a still so far not described atypical mode of synthesis that is iterative, alternative, and optional. A disruption mutant in the adenylation domain of AmoG was unable to synthesize any amonabactin and to grow in iron stress conditions while a deletion of amoH resulted in the production of only two over the four forms. The amo cluster is widespread among most of the Aeromonas species, only few species produces the enterobactin siderophore. PMID:27531515

  11. Alternative mating tactics in the yellow dung fly: resolving mechanisms of small-male advantage off pasture.

    Science.gov (United States)

    Gress, Brian E; Waltzer, Ryan J; Lüpold, Stefan; Droge-Young, Elizabeth M; Manier, Mollie K; Pitnick, Scott

    2014-01-01

    Recent work suggests that the yellow dung fly mating system may include alternative patroller-competitor mating tactics in which large males compete for gravid females on dung, whereas small, non-competitive males search for females at foraging sites. Small males obtain most matings off pasture, yet the behavioural mechanism(s) giving rise to this pattern are unknown. We investigated the male and female behaviours that determine mating success in this environment by conducting field mating experiments and found small males to benefit from several attributes specific to the off-pasture mating environment. First, small males from foraging sites exhibited higher mating propensity, indicating that large males away from dung may be depleted of energy and/or sperm. Second, small males were more discriminating, being significantly less likely to attempt with non-gravid females, which are absent on dung but common off pasture. Third, non-gravid females were generally more likely to actively struggle and reject mating attempts; however, such behaviours occurred disproportionately more often with large males. Female Scathophaga stercoraria thus appear to preferentially mate with small males when off pasture. These findings challenge assumptions about male-female interactions in systems with alternative mating tactics and reveal hidden processes that may influence selection patterns in the field. PMID:24225455

  12. A kit for the investigation of live Escherichia coli cell adhesion to glycosylated surfaces

    DEFF Research Database (Denmark)

    Hartmann, M.; Horst, A. K.; Klemm, Per; Lindhorst, T. K.

    2010-01-01

    A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces.......A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces....

  13. 肾小管上皮细胞与基底膜的粘附力学特性%The adhesive mechanical properties of renal tubular epithelial cells on matrigel

    Institute of Scientific and Technical Information of China (English)

    宋关斌; 俞为群; 王东; 吴雄飞

    2000-01-01

    purpose: to investigate the adhesive properties of renal tubular epithelial cells on matrigel and compared with the following three cases: ischemia、hypoxia and ischemia & hypoxia(I/H).materials and methods: A micropipette aspiration technique was adopted to determine the adhesive mechanics of renal tubular epithelial cells on matrige. results: it showed that the adhesion of renal tubular epithelial cells on matrigel was higher than that of those three model, further more, a different factor was followed by different adhesive mechanic. conclusion: the adhesion of I/H is lower, the ischemia is higher, but all were lower compared with control. It suggested that effect of hypoxia on adhesive properties of renal tubular epithelial cells on matrigel is bigger than that of ichemia.%目的:研究模拟缺血、缺氧、缺血缺氧三种条件下肾小管上皮细胞与基底膜的粘附力学特性。材料与方法:利用微管吸吮技术测定肾小管上皮细胞与人工基底膜的粘附力。结果:模拟缺血、缺氧、缺血缺氧三种模型中肾小管上皮细胞与基底膜的粘附力均较正常情况明显降低。结论:不同模拟损伤因素对粘附力的影响不同,其中缺血缺氧组粘附力最小,单纯缺血组的影响较小。这些结果提示,在一定条件下,氧缺乏比缺血情况更能影响肾小管上皮细胞与基底膜的粘附作用。

  14. Crystal structure of A. aeolicus LpxC with bound product suggests alternate deacetylation mechanism.

    Science.gov (United States)

    Miller, Matthew D; Gao, Ning; Ross, Philip L; Olivier, Nelson B

    2015-09-01

    UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is the first committed step to form lipid A, an essential component of the outer membrane of Gram-negative bacteria. As it is essential for the survival of many pathogens, LpxC is an attractive target for antibacterial therapeutics. Herein, we report the product-bound co-crystal structure of LpxC from the acheal Aquifex aeolicus solved to 1.6 Å resolution. We identified interactions by hydroxyl and hydroxymethyl substituents of the product glucosamine ring that may enable new insights to exploit waters in the active site for structure-based design of LpxC inhibitors with novel scaffolds. By using this product structure, we have performed quantum mechanical modeling on the substrate in the active site. Based on our results and published experimental data, we propose a new mechanism that may lead to a better understanding of LpxC catalysis and inhibition. PMID:26177919

  15. Mindfulness-Based Exposure Strategies as a Transdiagnostic Mechanism of Change: An Exploratory Alternating Treatment Design.

    Science.gov (United States)

    Brake, C Alex; Sauer-Zavala, Shannon; Boswell, James F; Gallagher, Matthew W; Farchione, Todd J; Barlow, David H

    2016-03-01

    The present study explored whether distress reduction in response to strong negative emotions, a putative transdiagnostic mechanism of action, is facilitated by mindfulness strategies. Seven patients (mean age=31.14years, SD=12.28, range 19-48 years, 43% female, 86% Caucasian) with heterogeneous anxiety disorders (i.e., panic disorder with or without agoraphobia, social anxiety, generalized anxiety) were assigned a randomized order of weeklong blocks utilizing either mindfulness- or avoidance-based strategies while ascending a 6-week emotion exposure hierarchy. Participants completed three exposures per block and provided distress and avoidance use ratings following each exposure. Anxiety severity, distress aversion, and distraction/suppression tendencies were also assessed at baseline and the conclusion of each block. Visual, descriptive, and effect size results showing exposures utilizing mindfulness were associated with higher overall distress levels, compared with those utilizing avoidance. Within blocks, the majority of participants exhibited declining distress levels when employing mindfulness strategies, as opposed to more static distress levels in the avoidance condition. Systematic changes in anxiety severity, distress aversion, and distraction/suppression were not observed. These results suggest mindfulness strategies may be effective in facilitating emotion exposure; however, a minimum dosage may be necessary to overcome initial distress elevation. Potential transdiagnostic change mechanisms and clinical implications are discussed. PMID:26956654

  16. Evidence for protonic communication at the speed of sound: An alternate mechanism for specific biological signaling

    CERN Document Server

    Fichtl, Bernhard; Schneider, Matthias F

    2015-01-01

    Local changes in pH are known to significantly alter the state and activity of proteins and in particular enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. the lipid bilayer) would therefore constitute an important pillar towards a new physical mechanism of biochemical regulation and biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physiochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification of a lipid monolayer and propagate, in analogy to sound, at velocities controlled by the two-dimensional compressibility of the interface. With transient local pH changes of 0.6 units directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface up to 8 mN/m and 100 mV are detected, exposing the thermodynamic nature of thes...

  17. Bacterial deposition in a parallel plate and a stagnation point flow chamber : microbial adhesion mechanisms depend on the mass transport conditions

    NARCIS (Netherlands)

    Bakker, DP; Busscher, HJ; van der Mei, HC

    2002-01-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanis

  18. Optimisation of industrial production of low-force sensors - adhesive bonding of force-centring ball

    Science.gov (United States)

    Maeder, T.; Jacq, C.; Blot, M.; Ryser, P.

    2016-01-01

    This work addresses the issue of attaching the force-centring part (a round ball) to the load cell of a force sensor, a piezoresistive thick-film Wheatstone bridge deposited onto a ceramic cantilever. As the current soldering process requires expensive metallisation steps for both the ball and the cantilever, and subjects the solder pads used for mounting the cantilever to an additional reflow cycle, an alternative adhesive bonding process was developed, allowing both simpler production and the use of other ball materials such as ceramic and glass. The selfcentring action of solder capillary forces was ensured by structuring the adhesive so as to form a mechanical cuvette allowing centring of the ball by gravity. The selected adhesive materials exhibited good printability and bonding, as well as surviving the subsequent soldering and cleaning process steps.

  19. Coupling of cytoplasm and adhesion dynamics determines cell polarization and locomotion

    CERN Document Server

    Bock, Martin; Möhl, Christoph

    2009-01-01

    Observations of single epidermal cells on flat adhesive substrates have revealed two distinct morphological and functional states, namely a non-migrating symmetric unpolarized state and a migrating asymmetric polarized state. These states are characterized by different spatial distributions and dynamics of important biochemical cell components: F-actin and myosin-II form the contractile part of the cytoskeleton, and integrin receptors in the plasma membrane connect F-actin filaments to the substratum. In this way, focal adhesion complexes are assembled, which determine cytoskeletal force transduction and subsequent cell locomotion. So far, physical models have reduced this phenomenon either to gradients in regulatory control molecules or to different mechanics of the actin filament system in different regions of the cell. Here we offer an alternative and self-organizational model incorporating polymerization, pushing and sliding of filaments, as well as formation of adhesion sites and their force dependent ki...

  20. Adhesion on Nanoorganized Multilayers: Surface Thermodynamics and Local Energy Dissipation

    Directory of Open Access Journals (Sweden)

    Yolla Kazzi

    2010-01-01

    Full Text Available Nanostructured multilayers, composed of alternate organic (3-mercaptopropyltrimethoxysilane, alkylthiols, polydimethylsiloxane and metallic (gold layers, are grafted onto glass and prepared in order to modify the mechanical and dissipative properties of a thin surface layer of the substrate. The external face is constituted either of gold or alkyl groups, allowing us to study two types of surfaces exhibiting different chemical and thermodynamic properties. The formation and the structure of the nanostructured multilayers are first examined by means of various techniques such as atomic force microscopy (AFM, wettability, X-ray photoelectron spectroscopy (XPS, and conductivity measurements. All the results concerning the structure of the systems studied are used to understand the adhesive properties at short contact times (tack of the multi-layers and an elastomer (polyisoprene. The influence of the structural aspects of gold layers, the length of the alkyl chains of the top layer, the terminal functionality, and the length of the confined organic layer between two gold layers on the energy of adhesion regarding the polyisoprene are clearly demonstrated. The influence of the nano-structured surface layers on adhesion phenomena is explained in terms of either the surface thermodynamics or local energy dissipation during the propagation of a fracture according to complex mechanisms.

  1. Coding Psychological Constructs in Text Using Mechanical Turk: A Reliable, Accurate, and Efficient Alternative

    Science.gov (United States)

    Tosti-Kharas, Jennifer; Conley, Caryn

    2016-01-01

    In this paper we evaluate how to effectively use the crowdsourcing service, Amazon's Mechanical Turk (MTurk), to content analyze textual data for use in psychological research. MTurk is a marketplace for discrete tasks completed by workers, typically for small amounts of money. MTurk has been used to aid psychological research in general, and content analysis in particular. In the current study, MTurk workers content analyzed personally-written textual data using coding categories previously developed and validated in psychological research. These codes were evaluated for reliability, accuracy, completion time, and cost. Results indicate that MTurk workers categorized textual data with comparable reliability and accuracy to both previously published studies and expert raters. Further, the coding tasks were performed quickly and cheaply. These data suggest that crowdsourced content analysis can help advance psychological research. PMID:27303321

  2. Coding Psychological Constructs in Text Using Mechanical Turk: A Reliable, Accurate, and Efficient Alternative.

    Science.gov (United States)

    Tosti-Kharas, Jennifer; Conley, Caryn

    2016-01-01

    In this paper we evaluate how to effectively use the crowdsourcing service, Amazon's Mechanical Turk (MTurk), to content analyze textual data for use in psychological research. MTurk is a marketplace for discrete tasks completed by workers, typically for small amounts of money. MTurk has been used to aid psychological research in general, and content analysis in particular. In the current study, MTurk workers content analyzed personally-written textual data using coding categories previously developed and validated in psychological research. These codes were evaluated for reliability, accuracy, completion time, and cost. Results indicate that MTurk workers categorized textual data with comparable reliability and accuracy to both previously published studies and expert raters. Further, the coding tasks were performed quickly and cheaply. These data suggest that crowdsourced content analysis can help advance psychological research. PMID:27303321

  3. TRENDS IN OFFICIAL DEVELOPMENT ASSISTANCE TO DEVELOPING COUNTRIES AND POSSIBILITIES OF ALTERNATIVE FINANCING MECHANISMS

    Directory of Open Access Journals (Sweden)

    Talknice Saungweme

    2013-09-01

    Full Text Available The study analyses trends in Official Development Assistance (ODA to developing countries, mainly Africa, and possibilities of new financing instruments. Economies of most developing countries, especially those in Sub-Saharan Africa, are characterised by low investment flows, huge import bills and lower exports. Subsequently, development assistance is the major source of external finance and has taken the form of budget support, humanitarian and development finance. However, the noted fall in ODA in 2005, 2009 and 2012 might adversely impact directly on the attainment of millennium development goals in 2015. This negative trend in ODA is a result of a combination of factors such as economic constraints in the donor countries (for example, the debt crisis and/or a new shift in financing mechanisms to developing countries.

  4. New Experiments Call for a Continuous Absorption Alternative to Quantum Mechanics — The Unquantum Effect

    Directory of Open Access Journals (Sweden)

    Reiter E. S.

    2014-04-01

    Full Text Available A famous beam-split coincidence test of the photon model was performed with -rays instead of visible light. A similar test was performed to split -rays. In both tests, co- incidence rates greatly exceed chance, leading to an unquantum effect. In contradiction to quantum theory and the photon model, these new results are strong evidence of the long abandoned accumulation hypothesis, also known as the loading theory. Attention is drawn to assumptions applied to past key experiments that led to quantum mechan- ics. The history of the loading theory is outlined, and a few key experiment equations are derived, now free of wave-particle duality. Quantum theory usually works because there is a subtle difference between quantized and thresholded absorption.

  5. Properties of Nano SiO2 Modified PVF Adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN He-sheng; SUN Zhen-ya; XUE Li-hui

    2004-01-01

    Some properties of nano SiO2 modified PVF adhesive were studied. The experimental results show that nano SiO2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO2 to PVF adhesive and the applications of this adhesive in paper-plastic composite, concrete and fireproof paint were discussed by using IR and XRD determination.

  6. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    Science.gov (United States)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  7. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    Science.gov (United States)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated

  8. A Homemade Snare: An Alternative Method for Mechanical Removal of Dirofilaria immitis in Dogs.

    Science.gov (United States)

    Alho, Ana Margarida; Fiarresga, António; Landum, Miguel; Lima, Clara; Gamboa, Óscar; Meireles, José; Sales Luís, José; Madeira de Carvalho, Luís

    2016-01-01

    Canine dirofilariosis is a life-threatening parasitic disease that is increasingly reported worldwide. Once diagnosed the main treatment goals are to improve the animal's clinical condition and to eliminate all life stages of the parasite with minimal posttreatment side effects. This can be achieved through mechanical, surgical, or chemotherapeutical approaches. Currently, manual extraction is the preferred method to remove adult heartworms due to its diminished invasiveness, reduced damage to the vascular endothelium, and shortened anaesthesia duration. However, it remains an expensive technique that can be highly traumatic. To address this issue, a nontraumatic homemade catheter-guided snare was developed for heartworm removal by adapting and folding a 0.014-inch coronary wire (BMW, Abbott Vascular). Transvenous heartworm extraction was performed on a dog severely infected with adult heartworms by inserting the modified snare into a 6-F Judkins right coronary guiding catheter BMW (Cordis) and advancing it into the right ventricle under fluoroscopic guidance. Fifteen adult specimens of Dirofilaria immitis were successfully extracted from the pulmonary artery and right ventricle without complications. To assure the death of both larvae and adults, postoperative treatment was successfully managed using ivermectin, doxycycline, and melarsomine, with no recurrence after surgery. PMID:26981316

  9. A Homemade Snare: An Alternative Method for Mechanical Removal of Dirofilaria immitis in Dogs

    Directory of Open Access Journals (Sweden)

    Ana Margarida Alho

    2016-01-01

    Full Text Available Canine dirofilariosis is a life-threatening parasitic disease that is increasingly reported worldwide. Once diagnosed the main treatment goals are to improve the animal’s clinical condition and to eliminate all life stages of the parasite with minimal posttreatment side effects. This can be achieved through mechanical, surgical, or chemotherapeutical approaches. Currently, manual extraction is the preferred method to remove adult heartworms due to its diminished invasiveness, reduced damage to the vascular endothelium, and shortened anaesthesia duration. However, it remains an expensive technique that can be highly traumatic. To address this issue, a nontraumatic homemade catheter-guided snare was developed for heartworm removal by adapting and folding a 0.014-inch coronary wire (BMW, Abbott Vascular. Transvenous heartworm extraction was performed on a dog severely infected with adult heartworms by inserting the modified snare into a 6-F Judkins right coronary guiding catheter BMW (Cordis and advancing it into the right ventricle under fluoroscopic guidance. Fifteen adult specimens of Dirofilaria immitis were successfully extracted from the pulmonary artery and right ventricle without complications. To assure the death of both larvae and adults, postoperative treatment was successfully managed using ivermectin, doxycycline, and melarsomine, with no recurrence after surgery.

  10. Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism

    Science.gov (United States)

    Pompella, Alfonso; Kubacki, Jerzy; Szade, Jacek; Roy, Robert A.; Hedzelek, Wieslaw

    2016-01-01

    Objectives To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration. Methods In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization) in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface. Results UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2O and increases TiOH with many –OH groups being produced. These groups explain the super-hydrophilic effect from photofunctionalization when these groups come into contact with water. Significance Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level. PMID:27309723

  11. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  12. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  13. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    Science.gov (United States)

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms. PMID:26194054

  14. Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity.

    Science.gov (United States)

    Santos, Antonio; Alonso, Alejandro; Belda, Ignacio; Marquina, Domingo

    2013-01-01

    Pichia membranifaciens CYC 1086 secretes a unique 30kDa killer toxin (PMKT2) that inhibits a variety of spoilage yeasts and fungi of agronomical interest. The cytocidal effect of PMKT2 on Saccharomyces cerevisiae cells was studied. Metabolic events associated with the loss of S. cerevisiae viability caused by PMKT2 were qualitatively identical to those reported for K28 killer toxin activity, but different to those reported for PMKT. At higher doses, none of the cellular events accounting for the action of PMKT, the killer toxin secreted by P. membranifaciens CYC 1106, was observed for PMKT2. Potassium leakage, sodium influx and the decrease of intracellular pH were not among the primary effects of PMKT2. We report here that this protein is unable to form ion-permeable channels in liposome membranes, suggesting that channel formation is not the mechanism of cytotoxic action of PMKT2. Nevertheless, flow cytometry studies have revealed a cell cycle arrest at an early S-phase with an immature bud and pre-replicated 1n DNA content. By testing the sensitivity of cells arrested at different stages in the cell cycle, we hoped to identify the execution point for lethality more precisely. Cells arrested at the G1-phase by α-factor or arrested at G2-phase by the spindle poison methyl benzimidazol-2-yl-carbamate (MBC) were protected against the toxin. Cells released from the arrest in both cases were killed by PMKT2 at a similar rate. Nevertheless, cells released from MBC-arrest were able to grow for a short time, and then viability dropped rapidly. These findings suggest that cells released from G2-phase are initially able to divide, but die in the presence of PMKT2 after initiating the S-phase in a new cycle, adopting a terminal phenotype within that cycle. By contrast, low doses of PMKT and PMKT2 were able to generate the same cellular response. The evidence presented here shows that treating yeast with low doses of PMKT2 leads to the typical membranous, cytoplasmic

  15. Mechanism of a high-Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow

    Science.gov (United States)

    Geng, Jianzhao; Coombs, T. A.

    2015-10-01

    High-Tc Superconducting (HTS) magnets operating in persistent current mode suffer a current decay due to flux creep of superconductor and joint resistance. Flux pumps are able to inject direct current into superconducting circuit to compensate the current decay, without the thermal loss caused by current leads. In this work, we proposed a flux pumping mechanism for HTS coils, with an experimental verification and an analytical model. The basic principle we have used is that flux flow can be triggered when the superconductor carrying a direct current is subjected to a perpendicular AC magnetic field. Low frequency alternating current is induced in a loop of YBCO tape using an AC field. A portion of the tape which we refer to as the "bridge" shorts a superconducting coil. A high frequency AC field is applied perpendicular to the bridge tape when alternating current in the tape reaches one polarity. This triggers a net flux flow and results in a current increase in the coil. The proposed flux pump has clear physics and is easily controllable, which may make it promising in practical use.

  16. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A;

    2008-01-01

    , to clarify whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...... and their association with fragile sites in the genome. They have also been shown to control cell growth, differentiation, and apoptosis, suggesting that these molecules could act as tumour suppressors or oncogenes. Our results demonstrated a modulation of specific miRNAs. In particular, down-regulation...... of hsa-let-7c was observed in BL cases, compared to normal controls. More interestingly, hsa-mir-34b was found to be down-regulated only in BL cases that were negative for MYC translocation, suggesting that this event might be responsible for c-Myc deregulation in such cases. This hypothesis was...

  17. The effects of low salt concentrations on the mechanism of adhesion between two pieces of pork semimembranosus muscle following tumbling and cooking.

    Science.gov (United States)

    Bombrun, Laure; Gatellier, Philippe; Carlier, Martine; Kondjoyan, Alain

    2014-01-01

    The aim of this research was to gain deeper insight into the effect of salt content on the adhesion between pieces of semimembranosus pork muscle bound by a tumbling exudate gel. Hydrophobic site number, free thiol and carbonyl content were measured in tumbling exudate and meat protein to evaluate the protein-protein interactions involved in the adhesion process. Proteins were far more oxidized in exudate than in meat, and under our experimental conditions, salt content increased protein bonding in the exudate but not in the meat. Breaking stress increased between non-salted meat and 0.8%-salted meat but did not depend on the protein physicochemical properties of the tumbling exudate. Modifying the meat surface by tumbling alone, tumbling and salting, or scarification had no effect on breaking stress. It is suggested that the break between the meat pieces occurred between the tumbling exudate and the meat surface due to weaker chemical bonds at this location. PMID:23896131

  18. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  19. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    OpenAIRE

    Labonte, David; John A Williams; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads int...

  20. Adhesion of Cercaria (Larva of Helminth Parasites to Host by Lectins- Carbohydrates Bonds as a Model for Evaluation of Schistosoma Entrance Mechanisms in Cercarial Dermatitis

    Directory of Open Access Journals (Sweden)

    A Farahnak

    2008-07-01

    Full Text Available Background: Cercariae (larva of helminth parasites are covered by a thick glycocalyx coat, which serves as an osmotic protection during their free existence, and contain carbohydrates conjugated as glycoproteins, glycolipids and mucopolysaccharides. Although, limited studies have been made on life cycle of cercariae from fresh water snails, however, carbohydrate studies on cercariae have not been done in Iran so far. This study was made to determine the cercariae specifications from Lymnaea gedrosiana and evaluation of surface carbohydrates as receptors for host lectins in a host-parasite relationship system as a model in human schistosomiasis including cercarial dermatitis in Khuzestan Province. Methods: For this purpose, snails were collected from Dezful region in Khuzestan Province and cercariae were obtained by shedding method and identified by valuable keys. Experimental infection was established in the Culex pipiens (Culicidae mosquitoes larvae for further identification and mode of adhesion. To detect the mode of adhesion, surface carbohydrates of cercariae were detected by lentil (Lens culinaris lectins. Results: Examined snails were infected with xiphidiocerceria of trematodes and metacercariae were obtained from Culex pipiens. Also, Mannose monosaccharides- CH2OH (CHOH 4CHO - were detected particularly on the glands of cercariae. Conclusion: Adhesion of cercariae to their host by lectins-carbohydrates bonds is the first stage of host-parasite relationship. This phenomenon could be happened for animal schistosome's cercaria in cercarial dermatitis.

  1. Investigation of surface properties and adhesion mechanisms in the combination of different layers, with the aid of surface analysis methods; Untersuchungen von Oberflaecheneigenschaften und Haftmechanismen bei der Verbindung unterschiedlicher Schichten mit Hilfe oberflaechenanalytischer Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Olschewski, T.

    1991-12-13

    The aim of the investigations was to characterize the surface properties of organic coating materials and inorganic substrates, which are relevant in the context of microstructure technique developments and to obtain information on the adhesion mechanisms present. Two systems were examined which play an important part in micro-technique, i.e.: for the LIGA process and in the development of micro-sensors based on Chem FET`s for chemical analysis. For these systems, i.e.: PMMA/TiO{sub 2} and PVC adipate/Si{sub 3}N{sub 4}, adhesion mechanisms were expected, which occur particularly frequently in adhesive combination of polymers with inorganic substrates, i.e.: the mechanical gearing between polymer molecules and substrate structures and a chemical interaction between the boundary layers of the organic top coating and the inorganic substrate. (orig./DG) [Deutsch] Die Untersuchungen hatten zum Ziel, die Oberflaecheneigenschaften von organischen Beschichtungsmaterialien und anorganischen Substraten, die im Rahmen mikrostrukturtechnischer Entwicklungen relevant sind, zu charakterisieren und Aufschluss ueber die jeweils vorliegenden Haftmechanismen zu gewinnen. Es wurden zwei Systeme untersucht, die in der Mikrotechnik eine wichtige Rolle spielen, und zwar fuer das LIGA-Verfahren und bei der Entwicklung von Mikrosensoren auf ChemFET-Basis zur chemischen Analytik. Fuer diese Systeme, naemlich PMMA/TiO{sub 2} und PVC-Adipat/Si{sub 3}N{sub 4}, wurden Haftmechanismen erwartet, die besonders haeufig bei der adhaesiven Verbindung von Polymeren mit anorganischen Substraten auftreten, naemlich die mechanische Verzahnung zwischen Polymermolekuelen und Substratstrukturen sowie eine chemische Wechselwirkung zwischen den Grenzschichten der organischen Deckschicht und des anorganischen Substrats. (orig./DG)

  2. Investigation on the Mechanics of Adhesion to the Selective Extracellular Matrix Coated Surfaces of Lung Cancer Cells%肺癌细胞与胞外基质选择裱衬表面粘附力学的研究

    Institute of Scientific and Technical Information of China (English)

    张婷; 屈谦; 薛亚梅; 吴泽志; 宋关斌; 蔡绍皙

    2001-01-01

    The adhesion properties of tumor cells with extracellular matrix(ECM) are closely associated with their invasion and metastasis.Our work reported here was intended reveal the relevant biomechanical and biorheological manifestations of human lung cancer. Using micropipette aspiration technique, we investigated quantitatively the adhesive mechanics properties of high metastatic human giant cell carcinoma(PG) cells as well as low metastatic adenocarcinoma(PAa) cells of lung based on cell culture in vitro. The results showed that the adhesion forces of PAa and PG cells to collagen Ⅳ were significantly higher than those to glass surfaces, but at the lower concentrations(1.00μg/ml and 2.00μg/ml) of collagen Ⅳ, the amplitude for the increase of adhesion forces of PG cells were less than the amplitude for that of PAa cells, and most of the adhesion force values of PAa cells to the coated surfaces of incorporation of laminin along with 2 μg/ml collagen Ⅳ were significantly greater than those of PG cells. At the lower concentrations(0.625μg/ml for PAa cells,and 0.625 μg/ml, 1. 25 μg/ml for PG cells) of laminin tested,the adhesion force values of PAa and PG cells all decreased, but the amplitude and level for the decreased values of adhesion forces of PG cells were greater than those for the PAa cells. In conclusion, the adhesive and proteolytic behaviour of cancer cells to extracellular matrix might be mediated mainly by tumor cell membrane receptors such as integrin receptors and laminin receptors, it might affect the biological characteristics and the metastasis of the tumor cells. The results may benefit to explain some questions in biomechanical views about how the highly metastatic PG cells are prone to migration and invasion.%肿瘤细胞与细胞外基质的粘附特性与肿瘤的侵袭转移密切相关,作者力图揭示人肺癌细胞相应的生物力学和生物流变学特征。采用微管吸吮技术定量测定体外培

  3. Effect of small peptide (P-15) on HJMSCs adhesion to hydroxyap-atite

    Science.gov (United States)

    Cheng, Wei; Tong, Xin; Hu, QinGang; Mou, YongBin; Qin, HaiYan

    2016-02-01

    P-15, a synthetic peptide of 15-amino acids, has been tested in clinical trials to enhance cell adhesion and promote osseointe- gration. This feature of P-15 has also inspired the development of designing new bone substitute materials. Despite the increasing applications of P-15 in bone graft alternatives, few studies focus on the mechanism of cell adhesion promoted by P-15 and the mechanical property changes of the cells interacting with P-15. In this article, we used atomic force microscope (AFM) based single cell indentation force spectroscopy to study the impact of P-15 on the stiffness and the adhesion ability of human jaw bone mesenchymal stem cells (HJMSCs) to hydroxyapatite (HA). We found that the stiffness of HJMSCs increases as the concentration of P-15 grows in short culture intervals and that the adhesion forces between HJMSCs and HA particles in both the presence and absence of P-15 are all around 30pN. Moreover, by calculating the binding energy of HJMSCs to HA particles mixed with and without P-15, we proved that P-15 could increase the adhesion energy by nearly four times. Scanning electron microscope (SEM) was also exploited to study the morphology of HJMSCs cultured in the presence and absence of P-15 on HA disc surface for a short term. Apparent morphological differences were observed between the cells cultured with and without P-15. These results explain the probable underlying adhesion mechanism of HJMSC promoted by P-15 and can serve as the bases for the design of bone graft substitute materials.

  4. Brittle-tough transitions during crack growth in toughened adhesives

    Science.gov (United States)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  5. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  6. Analysis of the Behaviours Mediating Barnacle Cyprid Reversible Adhesion

    OpenAIRE

    Aldred, Nick; Høeg, Jens Thorvald; Maruzzo, Diego; Anthony S. Clare

    2013-01-01

    When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic ‘walking’ behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as ‘footprints’ on previously e...

  7. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  8. Phosphoproteomic analysis of adhesion receptor signalling

    OpenAIRE

    Robertson, Joseph

    2014-01-01

    The binding of integrin adhesion receptors to their extracellular matrix (ECM) ligands activates intracellular signalling pathways that control diverse and fundamental aspects of cell behaviour. While it is clear that protein kinases and phosphatases play an integral role in such adhesion-mediated signalling, current knowledge of the phosphorylation events regulated downstream of integrin ligation is limited and prohibits a systems-level understanding of the molecular mechanisms through which...

  9. Adhesion of Dental Materials to Tooth Structure

    Science.gov (United States)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  10. Inhibitory Effect of Doxycycline on the Adhesion of Melanoma Cells and Its MolecularMechanisms%多西环素抑制黑色素瘤细胞黏附的分子机制研究

    Institute of Scientific and Technical Information of China (English)

    董恒磊; 孙保存; 孙涛; 赵楠; 董学易; 车娜; 赵秀兰

    2011-01-01

    Objective: To investigate the inhibitory effect of Doxycycline on the adhesion of melanoma cells and its mechanism.Methods: Melanoma B16F110, WM351 and WM451 cell lines were treated with Doxycycline at different doses and through different administration methods.MMT, cell adhesion experiment and Western blot were used to observe the effect of different treatment.A total of 20 C57/BL mice were transplanted with melanoma through injection of B16F10 cells and were divided into two groups.One group was treated with Doxycycline, and the other NaCl solution.Carcinoma tissues were obtained and underwentWestern blot and gelatin zymography.Results: MTT analysis showed that the inhibition ratio was significantly higher in the group receiving treatment before cell adhesion than in the group receiving treatment after cell adhesion ( P < 0.05 ).Cell adhesion experiment showed that Doxycycline had an inhibitory effect on the adhesion of B16F110, WM351 and WM451 cells, with a statistical significance ( P < 0.05 ).Western blot revealed that FAK expression in the three cell lines was decreased at 12 h after Doxycycline treatment.Observations from the mice melanoma model suggested obvious changes in FAK expression and its phosphorylation level ( P < 0.05 ).Conclusion: Doxycycline can interfere the adhesion of melanoma cells, possibly through inhibiting FAK expression and its phosphorylation.%目的:研究多西环素对黑色素瘤细胞黏附的抑制作用及分子机制.方法:对黑色素瘤细胞系B16F10、WM351、WM451分别以不同给药方式和给药浓度进行处理,利用MTT实验、细胞黏附实验和Western blot技术检测比较其差异.C57/BL小鼠20只进行黑色素瘤动物实验,接种B16F10后随机分为2组,分别给予多西环素和NaCl溶液处理,取瘤组织进行Western blot和明胶酶谱检测.结果:MTT实验显示"贴壁前"给药组的细胞抑制率显著高于"贴壁后"给药组且差异具有统计学意义(P<0.05).细胞黏附实

  11. Linking self-incompatibility, dichogamy, and flowering synchrony in two Euphorbia species: alternative mechanisms for avoiding self-fertilization?

    Directory of Open Access Journals (Sweden)

    Eduardo Narbona

    Full Text Available BACKGROUND: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy. It is hypothesized that one species would not simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce selfing; however, this has not been accurately assessed. METHODOLOGY/PRINCIPAL FINDINGS: This expectation was tested over two years in two natural populations of the closely related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the cyathia level. Both spurges showed a high population synchrony (Z<79, and their inflorescences flower synchronously. In E. nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between sexual phases of cyathia of the same inflorescence level was uncommon (4-16%. In contrast, E. boetica showed a high overlap among consecutive inflorescence levels (74-93% and between sexual phases of cyathia of the same inflorescence level (48-80%. The flowering pattern of both spurges was consistent in the two populations and over the two successive years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was partially self-incompatible. CONCLUSIONS/SIGNIFICANCE: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each

  12. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    Science.gov (United States)

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098

  13. Sensitivity of ATLAS to alternative mechanisms of electroweak symmetry breaking in vector boson scattering qq→qqlνlν

    International Nuclear Information System (INIS)

    An analysis of the expected sensitivity of the ATLAS experiment at the Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry breaking in the dileptonic vector boson scattering channel is presented. With the generalized K-Matrix model of vector boson scattering recently implemented in the event generator Whizard, several additional resonances are investigated. Whizard is validated for ATLAS use and an interface for the Les Houches event format is adapted for the ATLAS software Athena. Systematic model and statistical Monte Carlo uncertainties are reduced with a signal definition using events reweighted in the couplings g of the new resonances. Angular correlations conserved by Whizard are used in the event selection. A multivariate analyzer is trained to take into account correlations between the selection variables and thereby to improve the sensitivity compared to cut analyses. The statistical analysis is implemented with a profile likelihood method taking into account systematic uncertainties and statistical uncertainties from Monte Carlo. Ensemble tests are performed to assure the applicability of the method. Expected discovery significances and coupling limits for new additional resonances in vector boson scattering are determined. (orig.)

  14. Plating on Plastics Part Ⅱ: Pretreatment, Mechanism of Adhesion%塑料电镀Ⅱ--塑料电镀前处理,结合机理

    Institute of Scientific and Technical Information of China (English)

    Hermann-Josef Middeke

    2005-01-01

    Depositing metal onto a polymer surface requires that the metal is able to be deposited there (and nowhere else) and that it adheres. Even the Greek philosopher Plato wrote about adhesion. Today, we know about the factors influencing adhesion although we mostly are not able to get quantitative data. From experiments we can see that electrostatic forces have the greatest influence. Depending on the nature of the polymers to be plated, special pretreatment is therefore necessary to make a plastic′s surface receptive for the first plating step and help to achieve sufficient adhesion between surface and metal. While sometimes quite aggressive methods like chromosulphuric acid are necessary to attack the polymer surface, looking for less dangerous and environmentally friendly systems has started long time ago.%为将金属沉积在聚合材料表面,这种金属必须是可以被沉积在某处(而非它处),而且金属是附着其上的.希腊哲学家柏拉图甚至也曾谈及这种结合问题.今天,我们已经对影响结合力的因素有所了解,虽然其中大部分还没有得到定量数据.从实验数据可以看出,静电力的影响最大.根据被镀聚合材料的性质,采取特殊的前处理使塑料容易接受电镀过程的第一步,而且使塑料表面与金属间形成有效的结合.虽然有时需要使用如硫酸、铬酸等强腐蚀性的方法处理聚合材料表面,但人们早就开始了探索危害小的环保体系.

  15. Dangling chain elastomers as repeatable fibrillar adhesives.

    Science.gov (United States)

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  16. Tissue adhesives in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Schneider, Gerlind

    2009-01-01

    Full Text Available The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones. But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use.

  17. Tongue adhesion in the horned frog Ceratophrys sp.

    Science.gov (United States)

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  18. Biomimetic Adhesive Materials Containing Cyanoacryl Group for Medical Application

    Directory of Open Access Journals (Sweden)

    Sueng Hwan Jo

    2014-10-01

    Full Text Available For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.

  19. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Science.gov (United States)

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules. PMID:24689803

  20. Biocompatibility of a Novel Cyanoacrylate Based Tissue Adhesive: Cytotoxicity and Biochemical Property Evaluation

    OpenAIRE

    Lee, Young Ju; Jung, Gyeong Bok; Choi, Samjin; Lee, Gihyun; Kim, Ji Hye; Son, Ho Sung; Bae, Hyunsu; Park, Hun-Kuk

    2013-01-01

    Cyanoacrylate (CA) is most widely used as a medical and commercial tissue adhesive because of easier wound closure, good cosmetic results and little discomfort. But, CA-based tissue adhesives have some limitations including the release of cytotoxic chemicals during biodegradation. In previous study, we made prepolymerized allyl 2-CA (PACA) based tissue adhesive, resulting in longer chain structure. In this study, we investigated a biocompatibility of PACA as alternative tissue adhesive for me...

  1. Sticking around: an up-close look at drop adhesion

    CERN Document Server

    Paxson, Adam T

    2013-01-01

    We present a fluid dynamics video showing the adhesion of a drop to a superhydrophobic surface. We use environmental scanning electron microscopy to observe depinning events at the microscale. As the drop moves along the surface, the advancing portion of the contact line simply lies down onto the upcoming roughness features, contributing negligibly to adhesion. After measuring the local receding contact angle of capillary bridges formed on a micropillar array, we find that these depinning events follow the Gibbs depinning criterion. We further extend this technique to two-scale hierarchical structures to reveal a self-similar depinning mechanism in which the adhesion of the entire drop depends only on the pinning at the very smallest level of roughness hierarchy. With this self-similar depinning mechanism we develop a model to predict the adhesion of drops to superhydrophobic surfaces that explains both the low adhesion on sparsely structured surfaces and the surprisingly high adhesion on surfaces whose featu...

  2. Handbook of adhesion

    CERN Document Server

    Packham, D E

    2006-01-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require.This second edition includ

  3. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  4. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  5. Investigation of the Adhesion Promoter Distribution in Porous Ceramic Precursors

    OpenAIRE

    Steier, Volker; Koplin, Christof; Kailer, Andreas; Reinecke, Holger

    2011-01-01

    The purpose of this paper is to improve the mechanical properties of polymer infiltrated ceramics (PICs) by the enhancement of the adhesion between both components. To improve the interface adhesion, an adhesion promoter (silane) was used. The silane distribution in the precursors was studied using Raman and IR spectroscopy. Inhomogeneous silane distribution was found after applying a common surface modification method. In this paper, different silane modification methods were developed. The ...

  6. Dynamic force spectroscopy to probe adhesion strength of living cells

    OpenAIRE

    Prechtel, K.; Bausch, A. R.; Marchi-Artzner, V.; Kantlehner, M.; Kessler, H; Merkel, R

    2002-01-01

    We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force application revealed pronounced kinetic effects. The dependence of the detachment forces on the loading r...

  7. Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili

    OpenAIRE

    Beaussart, Audrey; Baker, Amy E.; Kuchma, Sherry L.; El-Kirat-Chatel, Sofiane; O’Toole, George A; Yves F Dufrêne

    2014-01-01

    A variety of bacterial pathogens use nanoscale protein fibers called type IV pili to mediate cell adhesion, a primary step leading to infection. Currently, how these nanofibers respond to mechanical stimuli and how this response is used to control adhesion is poorly understood. Here, we use atomic force microscopy techniques to quantify the forces guiding the adhesion of Pseudomonas aeruginosa type IV pili to surfaces. Using chemical force microscopy and single-cell force spectroscopy, we sho...

  8. IL-1β enhances cell adhesion to degraded fibronectin

    OpenAIRE

    Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2012-01-01

    IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attachi...

  9. Experimental and numerical investigations on adhesively bonded joints

    Science.gov (United States)

    Negru, R.; Marsavina, L.; Hluscu, M.

    2016-04-01

    Two types of adhesively bonded joints were experimental and numerical investigated. Firstly, the adhesives were characterized through a set of tests and the main elastic and mechanical properties were obtained. After that, the stress distributions at interface and middle of adhesive layer were determined using a linear elastic FEA. The numerical data were fitted by a power law in order to determine the critical values of intensity of stress singularity.

  10. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-04-01

    Full Text Available Abstract Background Iron oxide magnetic nanoparticles (MNP's have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine (PEI and poly(ethylene glycol (PEG to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM, was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS production and lipid peroxidation (LPO, LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines. Results Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV which increased to 40 nm (+55.6 mV upon coating with PEI and subsequently 50 nm (+31.2 mV with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling. Conclusions

  11. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  12. Repeated origin and loss of adhesive toepads in geckos.

    Directory of Open Access Journals (Sweden)

    Tony Gamble

    Full Text Available Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  13. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    OpenAIRE

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; Van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions....

  14. Effects of a Temperature-Sensitive, Anti-Adhesive Agent on the Reduction of Adhesion in a Rabbit Laminectomy Model

    OpenAIRE

    Park, Jeong Woo; Bak, Koang Hum; Cho, Tae Koo; Chun, Hyoung-Joon; Ryu, Je Il

    2016-01-01

    Objective A common cause of failure in laminectomy surgery is when epidural, peridural, or perineural adhesion occurs postoperatively. The purpose of this study is to examine the efficacy of a temperature-sensitive, anti-adhesive agent (TSAA agent), Guardix-SG®, as a mechanical barrier for the prevention or reduction of peridural scar adhesion in a rabbit laminectomy model. Methods Twenty-six mature rabbits were used for this study. Each rabbit underwent two separate laminectomies at lumbar v...

  15. Discriminatory bio-adhesion over nano-patterned polymer brushes

    Science.gov (United States)

    Gon, Saugata

    Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the analyte solution, along with the competition between attractions and repulsions between various species in the suspension and different parts of the collecting surface. The resulting binding selectivity can be exquisitely sharp; however, complex mixtures generally require the use of multiple surfaces to isolate the various species: Different components will be adhered, sharply, with changes in collector composition. The key feature of these surface designs is their lack of reliance on biomolecular fragments for specificity, focusing entirely on physicochemical principles at the lengthscales from 1 - 100 nm. This, along with a lack of formal patterning, provides the advantages of simplicity and cost effectiveness. This PhD thesis demonstrates these principles using a system in which cationic poly-L-lysine (PLL) patches (10 nm) are deposited randomly on a silica substrate and the remaining surface is passivated with a bio-compatible PEG brush. TIRF microscopy revealed that the patches were randomly arranged, not clustered. By precisely controlling the number of patches per unit area, the interfaces provide sharp selectivity for adhesion of proteins and bacterial cells. For instance, it was found that a critical density of patches (on the order of

  16. Management of adhesive capsulitis

    OpenAIRE

    Neviaser, Andrew

    2015-01-01

    Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive cri...

  17. Controlled Adhesion of Silicone Elastomer Surfaces

    Science.gov (United States)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  18. Laser processing of natural mussel adhesive protein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, A. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Narayan, R.J. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States)]. E-mail: roger_narayan@unc.edu; Cristescu, R. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Chrisey, D.B. [United States Naval Research Laboratory, Washington, DC (United States)

    2007-04-15

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications.

  19. Laser processing of natural mussel adhesive protein thin films

    International Nuclear Information System (INIS)

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications

  20. Joints of magnesium to dissimilar metals - comperative study of soldering, adhesive bonding and mechanical joining; Magnesium-Mischverbindungen - Vergleichende Untersuchungen zwischen Loeten, Kleben und mechanischem Fuegen

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, S.; Wielage, B. [Technische Univ. Chemnitz (Germany); Horstmann, M.; Hahn, O. [Paderborn Univ. (Germany). Lehrstuhl fuer Werkstoff- und Fuegetechnik

    2007-07-01

    For joints of magnesium to dissimilar metals like aluminium or steel, the fundamentals and the state of knowledge concerning glueing, soldering, mechanical joining and hybrid methods are pointed out. (orig.)

  1. Computational modeling reveals that a combination of chemotaxis and differential adhesion leads to robust cell sorting during tissue patterning.

    Science.gov (United States)

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting. PMID:25302949

  2. In vitro inhibition of adhesion of Escherichia coli strains by Xylitol

    Directory of Open Access Journals (Sweden)

    Annelisa Farah da Silva

    2011-04-01

    Full Text Available The present study aimed to evaluate xylitol's antimicrobial and anti-adherence activities on Escherichia coli (ATCC 8739 and on another clinical strain enteropathogenic E. coli (EPEC. In vitro minimum inhibitory concentration (MIC test and adhesion assays were performed using 0.5, 2.5 and 5.0% xylitol. It was found that xylitol did not have antimicrobial properties on these strains. The scanning electron microscopy (SEM demonstrated that the slides treated with xylitol had a significant reduction in the number of bacilli and the inhibition of microbial adhesion was probably the xylitol's mechanism of action. Xylitol could be a possible alternative on the control of E. coli infections.

  3. Tensile adhesion test measurements on plasma-sprayed coatings

    Science.gov (United States)

    Berndt, C. C.

    1986-01-01

    Adhesion measurements on plasma-sprayed coatings are briefly studied, including a critical analysis of the experimental scatter for duplicate tests. The application of a simple method which presents adhesion strength data in a fracture mechanics perspective is demonstrated. Available data are analyzed in a way which suggests an approach to finding the overall defect contribution to reducing the apparent strength of coatings.

  4. Tuning the Adhesion of Soft Elastomers with Topographic Patterns

    Science.gov (United States)

    Crosby, Alfred; Chan, Edwin

    2006-03-01

    Nature (e.g. gecko and jumping spider) utilizes surface patterns to control adhesion. The primary mechanism of adhesion for these systems can be sufficiently described by linear elastic fracture mechanics theory and material-defined length scales. Based upon these natural inspirations, similar mechanisms can be used to control the adhesion of elastic polymers. For viscoelastic polymers, patterns tune adhesion through additional mechanisms that have not been previously observed. Here, we illustrate the effects of topographic patterns in tuning the adhesion for soft, elastic or viscoelastic, elastomers. Contact adhesion tests based on Johnson, Kendall and Roberts (JKR) theory are used to characterize the adhesion of patterned poly(dimethyl siloxane) as well as poly(n-butyl acrylate) elastomers. We demonstrate that patterns can be utilized to control the adhesion of these polymers by: 1) controlling the balance of initiation and propagation for local separation process, 2) controlling the local crack velocity to alter the global viscoelastic response, and 3) altering the local separation mode through modification of a polymer layer's lateral confinement.

  5. Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic

    Directory of Open Access Journals (Sweden)

    Joaquín Palacios-Alquisira

    2010-10-01

    Full Text Available Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA‑MMA‑EA and (AA‑MMA‑2EHA with different molar ratios. The formulation based on (AA‑MMA‑2EHA with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives.

  6. Multi-dimensional regional inequality as an alternative allocation mechanism for eu structural funds remittances: the case of Spain and Hungary

    OpenAIRE

    Folmer, H.; Heijman, W.J.M.

    2005-01-01

    We propose a multidimensional approach to regional inequality as an alternative allocation mechanism for EU Structural Funds remittances based on per capita GDP, particularly after EU enlargement. The indicators of regional inequality are combined to a composite index by means of Maasoumi's aggregator function. We propose Partial Common Principal Component Aanalysis as the estimator of the weights for the aggregator function. Application of the multidimensional approach to Spain shows that th...

  7. Analysis of the behaviours mediating barnacle cyprid reversible adhesion.

    Directory of Open Access Journals (Sweden)

    Nick Aldred

    Full Text Available When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic 'walking' behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as 'footprints' on previously explored surfaces. The attachment structures, the antennular discs, of cyprids also present a complex morphology reminiscent of both the hairy appendages used by some terrestrial invertebrates for temporary adhesion and a classic 'suction cup'. Despite the numerous analytical approaches so-far employed, it has not been possible to resolve conclusively the respective contributions of viscoelastic adhesion via the proteinaceous 'temporary adhesive', 'dry' adhesion via the cuticular villi present on the disc and the behavioural contribution by the organism. In this study, high-speed photography was used for the first time to capture the behaviour of cyprids at the instant of temporary attachment and detachment. Attachment is facilitated by a constantly sticky disc surface - presumably due to the presence of the proteinaceous temporary adhesive. The tenacity of the resulting bond, however, is mediated behaviourally. For weak attachment the disc is constantly moved on the surface, whereas for a strong attachment the disc is spread out on the surface. Voluntary detachment is by force, requiring twisting or peeling of the bond - seemingly without any more subtle detachment behaviours. Micro-bubbles were observed at the adhesive interface as the cyprid detached, possibly an adaptation for energy dissipation. These observations will allow future work to focus more specifically on the cyprid temporary adhesive proteins, which appear to be fundamental to adhesion

  8. Analysis of the behaviours mediating barnacle cyprid reversible adhesion.

    Science.gov (United States)

    Aldred, Nick; Høeg, Jens T; Maruzzo, Diego; Clare, Anthony S

    2013-01-01

    When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic 'walking' behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as 'footprints' on previously explored surfaces. The attachment structures, the antennular discs, of cyprids also present a complex morphology reminiscent of both the hairy appendages used by some terrestrial invertebrates for temporary adhesion and a classic 'suction cup'. Despite the numerous analytical approaches so-far employed, it has not been possible to resolve conclusively the respective contributions of viscoelastic adhesion via the proteinaceous 'temporary adhesive', 'dry' adhesion via the cuticular villi present on the disc and the behavioural contribution by the organism. In this study, high-speed photography was used for the first time to capture the behaviour of cyprids at the instant of temporary attachment and detachment. Attachment is facilitated by a constantly sticky disc surface - presumably due to the presence of the proteinaceous temporary adhesive. The tenacity of the resulting bond, however, is mediated behaviourally. For weak attachment the disc is constantly moved on the surface, whereas for a strong attachment the disc is spread out on the surface. Voluntary detachment is by force, requiring twisting or peeling of the bond - seemingly without any more subtle detachment behaviours. Micro-bubbles were observed at the adhesive interface as the cyprid detached, possibly an adaptation for energy dissipation. These observations will allow future work to focus more specifically on the cyprid temporary adhesive proteins, which appear to be fundamental to adhesion, inherently sticky and

  9. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading

    NARCIS (Netherlands)

    Ccahuana Vasqueza, Vanessa Zulema; Ozcan, Mutlu; Kimpara, Estevao Tomomitsu

    2009-01-01

    Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy. Methods. Metallic frameworks (diameter

  10. Green chemistry in the design of safer anaerobic adhesives

    OpenAIRE

    Porter, Adam

    2015-01-01

    New cure accelerators for anaerobic adhesives have been designed to offer less harmful alternatives to current industry standard accelerators. Accelerators in current use are comprised of compounds such as acetylphenylhydrazine (APH), diethyl-p- toluidine (DEpT), tetrahydroquinoline (THQ) and their derivatives, all of which can be classified as being acutely toxic or harmful to the user. Further to this, there is no consensus as to their mode of action within the curing of the adhesive and ho...

  11. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  12. Modeling and characterization of interfacial adhesion and fracture

    Science.gov (United States)

    Yao, Qizhou

    2000-09-01

    The loss of interfacial adhesion is mostly seen in the failure of polymer adhesive joints. In addition to the intrinsic physical attraction across the interface, the interfacial adhesion strength is believed to highly depend on a number of factors, such as adhesive chemistry/structure, surface topology, fracture pattern, thermal and elastic mismatch across the interface. The fracture failure of an adhesive joint involves basically three aspects, namely, the intrinsic interfacial strength, the driving force for fracture and other energy dissipation. One may define the intrinsic interfacial strength as the maximum value of the intrinsic interfacial adhesion. The total work done by external forces to the component that contains the interface is partitioned into two parts. The first part is consumed by all other energy dissipation mechanisms (plasticity, heat generation, viscosity, etc.). The second part is used to debond the interface. This amount should equal to the intrinsic adhesion of the interface according to the laws of conservation of energy. It is clear that in order to understand the fundamental physics of adhesive joint failure, one must be able to characterize the intrinsic interfacial adhesion and be able to identify all the major energy dissipation mechanisms involved in the debonding process. In this study, both physical and chemical adhesion mechanisms were investigated for an aluminum-epoxy interface. The physical bonding energy was estimated by computing the Van de Waals forces across the interface. A hydration model was proposed and the associated chemical bonding energy was calculated through molecular simulations. Other energy dissipation mechanisms such as plasticity and thermal residual stresses were also identified and investigated for several four-point bend specimens. In particular, a micromechanics based model was developed to estimate the adhesion enhancement due to surface roughness. It is found that for this Al-epoxy system the major

  13. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    GilLevkowitz

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  14. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  15. Enhancing the adhesion strength of micro electroforming layer by ultrasonic agitation method and the application.

    Science.gov (United States)

    Zhao, Zhong; Du, Liqun; Tao, Yousheng; Li, Qingfeng; Luo, Lei

    2016-11-01

    Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0W, 100W, 150W, 200W, 250W) and different ultrasonic frequencies (0kHz, 40kHz, 80kHz, 120kHz, 200kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200W and 40kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under

  16. On the origin of Mount Etna eruptive cycles and Stromboli volcano paroxysms: implications for an alternative mechanism of volcanic eruption

    CERN Document Server

    Nechayev, Andrei

    2014-01-01

    New mechanism of imbalance between magma column and fluid volume, accumulated in the magmatic system, is considered as a driving force of the volcanic eruption. Conditions of eruption based on this mechanism are used to explain main features of the volcanic activity (eruptive cycles and paroxysms) of the volcanoes Etna and Stromboli (Italy).

  17. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by

  18. A novel approach to implant screw-retained restorations: adhesive combination between zirconia frameworks and monolithic lithium disilicate.

    Science.gov (United States)

    Fabbri, Giacomo; Sorrentino, Roberto; Brennan, Myra; Cerutti, Antonio

    2014-01-01

    The use of zirconia is an esthetic alternative to metal for implant-supported frameworks, and it has increased primarily for its high biocompatibility, low bacterial surface adhesion, high flexural strength and high mechanical features. The zirconia frameworks in fixed prosthetic restorations that are supported by implants is commonly covered with hand-layered overlay porcelain. This technical procedure is highly esthetic but it can cause some complications, such as porcelain fractures. The purpose of this article is to introduce an innovative approach to create an esthetic fixed ceramic implant restoration to minimize and facilitate the repair of the mechanical complications, by combining the adhesive-cementation of lithium disilicate full coverage restorations on implant screw-retained zirconia frameworks. PMID:25289384

  19. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading

    OpenAIRE

    Vásquez, V Z C; Özcan, M.; Kimpara, E T

    2009-01-01

    OBJECTIVES: This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy. METHODS: Metallic frameworks (diameter: 5 mm, thickness: 4 mm) (N=96, n=12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 microm aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feld...

  20. Behavior of adhesion forces of silicone adhesive sealants and mastic butyl under the influence of ionizing radiation

    International Nuclear Information System (INIS)

    Adhesives are products that can keep materials together by bonds between the surfaces. Sealants are products that can keep filled a space between two surfaces, through a barrier that is configured as a 'bridge' between the two surfaces. The mastic is a product made of a mixture of substances with the primary butyl polymer, with the consistency of a mass not dried that can be used as a sealant. The polysiloxane, also known as silicone are the most important synthetic polymers with inorganic structure, and are matrices of silicone adhesive sealants. To demonstrate the behavior of the adhesive forces of these products under different conditions, we used five different techniques. These products were subjected to two different conditions to verify the behavior of adhesion, one at the environmental condition and another under the ionizing radiation. The results showed not only differences between products (silicone and mastic), but also that the adhesive forces have different behaviors under the conditions which the samples were subjected. With this was reached the goal of this study that aspired show the differences between the mastic and silicone, this last one is often considered - erroneously - the same as mastic. Thus it was proven that: 1. silicone can be regarded as an adhesive and a sealant at ambient conditions, 2. mastic improves substantially adhesion in an environment of ionizing radiation and this property can be an excellent alternative to the adhesive market. (author)

  1. Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property

    International Nuclear Information System (INIS)

    The superhydrophobic ZnO surface possessing water adhesive reversibility is fabricated by a facile method. The as-prepared surface is low adhesive; however, after being irradiated by UV light through a photomask, it becomes highly adhesive. A water droplet can suspend on the irradiated surface. Further annealing the irradiated surface, water droplets can roll on the surface again. Reversible transition between the high adhesive pinning state and low adhesive rolling state can be realized simply by UV illumination and heat treatment alternately. The adhesion transition is attributed to the adsorption/desorption of surface hydroxyl groups and the organic chains rearrangement on the top surfaces of ZnO.

  2. Study of soil-solid adhesion by grey system theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; REN Luquan; TONG Jin; SHI Yaowu

    2004-01-01

    The adhesion of soil to solid surface is a complicated interfacial reaction that relates to many factors. Quantitative descriptions of the forming procedures and the conditions of the adhesion interface forming can provide a guidance to the design of the soil-engaging component surfaces with a good anti-adhesion performance. Using a self-developed soil adhesion measurement device, the mean area and mean thickness of the adhesion interface waterfilm and the interfacial adhesion force varied with soil water content and vertical loads are measured. According to the gray system theory, the differential equations of the mean area and the mean thickness of waterfilm and the adhesion force of the interface are developed. The consequences between or among the factors related to the adhesion interface forming process are analyzed quantitatively with the gray correlation analyzing theory. The forming procedure of the adhesion interface and the influence on the mechanic behaviour of soil adhering on a solid surface are demonstrated by the experiments. The analysis will be beneficial to designing of soil-engaging component surfaces of terrain-machines.

  3. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  4. Characterization and Development of General Material Models for use in Modeling Structures Bonded with Ductile Adhesives

    OpenAIRE

    Cassino, Christopher

    2005-01-01

    Structural adhesives are materials that are capable of bearing significant loads in shear, and sometimes tension, over a range of strains and strain rates. Adhesively bonded structures can dissipate large amounts of mechanical energy and can be lighter and more efficient than many bolted or vibration welded parts. The largest barrier to using structural adhesives in more applications is the many challenges engineers are presented with when designing and analyzing adhesively bonded structures....

  5. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    OpenAIRE

    Rong Liu; Rui Chen; Hua Shen; Rong Zhang

    2013-01-01

    Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by se...

  6. Coating Reduces Ice Adhesion

    Science.gov (United States)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  7. The electron beam cure of epoxy paste adhesives

    International Nuclear Information System (INIS)

    Recently developed epoxy paste adhesives were electron beam cured and experimentally explored to determine their suitability for use in an aerospace-quality aircraft component. There were two major goals for this program. The first was to determine whether the electron beam-curable past adhesives were capable of meeting the requirements of the US Air Force T-38 supersonic jet trainer composite windshield frame. The T-38 windshield frame's arch is currently manufactured by bonding thin stainless steel plies using an aerospace-grade thermally-cured epoxy film adhesive. The second goal was to develop the lowest cost hand layup and debulk process that could be used to produce laminated steel plies with acceptable properties. The laminate properties examined to determine adhesive suitability include laminate mechanical and physical properties at room, adhesive tack, out-time capability, and the debulk requirements needed to achieve these properties. Eighteen past adhesives and four scrim cloths were experimentally examined using this criteria. One paste adhesive was found to have suitable characteristics in each of these categories and was later chosen for the manufacture of the T-38 windshield frame. This experimental study shows that by using low-cost debulk and layup processes, the electron beam-cured past adhesive mechanical and physical properties meet the specifications of the T-38 composite windshield frame

  8. Cell adhesion strength from cortical tension - an integration of concepts.

    Science.gov (United States)

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  9. Ideal, catch, and slip bonds in cadherin adhesion

    OpenAIRE

    Rakshit, Sabyasachi; Zhang, Yunxiang; Manibog, Kristine; Shafraz, Omer; Sivasankar, Sanjeevi

    2012-01-01

    Classical cadherin cell-cell adhesion proteins play key morphogenetic roles during development and are essential for maintaining tissue integrity in multicellular organisms. Classical cadherins bind in two distinct conformations, X-dimer and strand-swap dimer; during cellular rearrangements, these adhesive states are exposed to mechanical stress. However, the molecular mechanisms by which cadherins resist tensile force and the pathway by which they convert between different conformations are ...

  10. Pathogenesis of postoperative adhesion formation

    NARCIS (Netherlands)

    Hellebrekers, B.W.J.; Kooistra, T.

    2011-01-01

    Background: Current views on the pathogenesis of adhesion formation are based on the "classical concept of adhesion formation", namely that a reduction in peritoneal fibrinolytic activity following peritoneal trauma is of key importance in adhesion development. Methods: A non-systematic literature s

  11. Molecular Mechanisms Underlying Hull-Caryopsis Adhesion/Separation Revealed by Comparative Transcriptomic Analysis of Covered/Naked Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Ruijun Duan

    2015-06-01

    Full Text Available The covered/naked caryopsis trait of barley is an important agronomic trait because it is directly linked to dietary use. The formation of covered/naked caryopsis is controlled by an NUD transcription factor, which is involved in pericarp cuticle development. However, the molecular mechanism underlying this trait remains so far largely unknown. In this study, comparative transcriptomes of grains three weeks after anthesis of Tibetan Hulless barley landrace Dulihuang and covered barley Morex were analyzed using RNA-seq technique. A total of 4031 differentially expressed genes (DEGs were identified. The Nud gene was overexpressed in Morex, with trace expression in Dulihuang. Among seventeen cuticle related DEGs, sixteen were down regulated and one up regulated in Morex. These results suggest that the Nud gene in covered caryopsis might down regulate cuticle related genes, which may cause a permeable cuticle over pericarp, leading to a hull-caryopsis organ fusion. A functional cuticle covering the pericarp of naked caryopsis might be the result of deletion or low expression level of the Nud gene. The functional cuticle defines a perfect boundary to separate the caryopsis from the hull in naked barley.

  12. Alternative Toxicity Testing: Analyses on Skin Sensitization, ToxCast Phases I and II, and Carcinogenicity Provide Indications on How to Model Mechanisms Linked to Adverse Outcome Pathways.

    Science.gov (United States)

    Benigni, Romualdo; Battistelli, Chiara Laura; Bossa, Cecilia; Giuliani, Alessandro; Tcheremenskaia, Olga

    2015-01-01

    This article studies alternative toxicological approaches, with new (skin sensitization, ToxCast) and previous (carcinogenicity) analyses. Quantitative modeling of rate-limiting steps in skin sensitization and carcinogenicity predicts the majority of toxicants. Similarly, successful (Quantitative) Structure-Activity Relationships models exploit the quantification of only one, or few rate-limiting steps. High-throughput assays within ToxCast point to promising associations with endocrine disruption, whereas markers for pathways intermediate events have limited correlation with most endpoints. Since the pathways may be very different (often not simple linear chains of events), quantitative analysis is necessary to identify the type of mechanism and build the appropriate model. PMID:26398111

  13. Adhesion of PBO Fiber in Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  14. An alternative view on the role of the β-effect in the Rossby wave propagation mechanism

    Directory of Open Access Journals (Sweden)

    Eyal Heifetz

    2014-11-01

    Full Text Available The role of the β-effect in the Rossby wave propagation mechanism is examined in the linearised shallow water equations directly in momentum–height variables, without recourse to potential vorticity (PV. Rigorous asymptotic expansion of the equations, with respect to the small non-dimensionalised β parameter, reveals in detail how the Coriolis force acting on the small ageostrophic terms translates the geostrophic leading-order solution to propagate westward in concert. This information cannot be obtained directly from the conventional PV perspective on the propagation mechanism. Furthermore, a comparison between the β-effect in planetary Rossby waves and the sloping-bottom effect in promoting topographic Rossby waves shows that the ageostrophic terms play different roles in the two cases. This is despite the fact that from the PV viewpoint whether the advection of mean PV gradient is set up by changes in planetary vorticity or by mean depth is inconsequential.

  15. Application of TCF bleaching in mixtures of chemical and mechanics fibers recycled: alternative for the paper industry

    International Nuclear Information System (INIS)

    In this paper we study the technical feasibility of using mixtures composed by mechanical and chemical fibers recycled in the production of tissue paper, using TCF bleaching sequences that improve the optical properties of this raw material. At present, chemical fibers recycled are used, but their limited availability and high cost,stimulate the search for raw materials which replace them partially. Bleaching stages were carried out at atmospheric pressure, with the oxidative process made with hydrogen peroxide at 80 celsius degrade in 1.5 hours and the reductive stage with FAS, VBrite, Thiourea Dioxide in situ or Chromaclear at 60 celsius degrade for 1 hour. The obtained results allow to deduce that the addition of mechanical recycled fiber significantly affects the optical properties of mixtures. However, some of the bleaching sequences applied manage to compensate, at least partly, the effect of adding this raw material of lower quality and cost.

  16. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation. PMID:26617513

  17. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  18. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    XIAN Chengyu; WANG Yuanliang; ZHANG Bingbing; TANG Liling; PAN Jun; LUO Yanfeng; JIANG Peng; LI Dajun

    2006-01-01

    Insulin-like growth factor 1 (IGF-1) promotes osteoblasts differentiation and bone formation,and its expression is induced by mechanical stretch,thus IGF-1 has been considered an effector molecule that links mechanical stimulation and local tissue responses. In this study, a mechanical stretching device was designed to apply physiological level static or cyclic stretching stimulation to osteoblasts.Different isoforms of IGF-1 mRNA were amplified by RT-PCR from the cells using respective primers and these amplified products were sequenced. An isoform of IGF-1 splicing product was found to be selectively produced by osteoblasts under stretching stimulation. This IGF-1 isoform had identical sequence with the mechano growth factor (MGF) which was originally identified in muscle cells. Regulations of the expression of the liver-type IGF (L.IGF-1) and MGF in osteoblasts under stretch stimulation were further studied using semi-quantitative RT-PCR.Stretch stimulation was found to promot the expression of IGF-1 (L.IGF-1 and MGF), and for both isoforms expression was more effectively stimulated by cyclic stretch than static stretch. MGF was detected only in osteoblasts subjected to mechanical stretch,suggesting MGF was a stretch sensitive growth factor.Expression of MGF peaked earlier than that of L.IGF-1, which was similar to their regulation in muscie and suggested similar roles of MGF and L.IGF-1in bone as in muscle cells. The functions of MGF and L.IGF-1 in osteoblasts shall be established by further experimental studies.

  19. Characterization of adhesive of polyurethane from castor oil by FTIR, TGA and XRD

    International Nuclear Information System (INIS)

    Castor oil polyurethanes are an alternative to adhesives that emanate volatile compounds. This adhesive come from a renewable source and has very low toxicity. In this work the microstructural and thermal characterization is presented. This material is partially crystalline. The mass loss start at 240 deg C and the glass transition temperature is 60 deg C. Then the adhesive is adequate to be employed at temperatures lower than 60 deg C. (author)

  20. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  1. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  2. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  3. Multibody simulation of adhesion pili

    CERN Document Server

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  4. High-Temperature Adhesive Strain Gage Developed

    Science.gov (United States)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  5. Alternative security

    International Nuclear Information System (INIS)

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  6. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos. PMID:20952618

  7. More about Neutron Majorana mass from Exotic Instantons: an alternative mechanism in Low-Scale String theory

    CERN Document Server

    Addazi, Andrea

    2015-01-01

    Recently, we have proposed that Exotic instantons can generate a Majorana mass for the neutron, with emphasis to experimental researches in the next future. In this paper, we discuss an alternative model based on the same idea, in the contest of low scale string theory. In particular, with $M_{S}=10\\div 10^{3}\\rm TeV$, such a transition can be mediated by two color-triplets, through a quartic coupling with down-quarks, generated by exotic instantons, in a calculable and controllable way. Comparison with FCNCs imposes limits on color-triplet mass well compatible with $n-\\bar{n}$ oscillation ones. If a $n-\\bar{n}$ transition were found, this would be an indirect hint for our model. This would strongly motivate searches for direct channels in proton-proton colliders. In fact, our model can be directly tested in a experimentally challenging $100\\div 1000\\, \\rm TeV$ proton-proton collider, searching for our desired color-triplet states and an evidence for "exotic quartic couplings", in addition to Regge resonances...

  8. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  9. More about neutron Majorana mass from exotic instantons: An alternative mechanism in low-scale string theory

    Science.gov (United States)

    Addazi, Andrea

    2016-06-01

    We discuss an alternative for baryon-violating six quarks transition in the context of low scale string theory. In particular, with MS = 10-103 TeV, such a transition can be mediated by two color-triplets through a quartic coupling with down-quarks, generated by exotic instantons, in a calculable and controllable way. We show how flavor-changing neutral currents (FCNCs) limits on color-triplet mass are well compatible with n ‑n¯ oscillation ones. If an n ‑n¯ transition was found, this would be an indirect hint for our model. This would strongly motivate searches for direct channels in proton-proton colliders. In fact, our model can be directly tested in an experimentally challenging 100-1000 TeV proton-proton collider, searching for our desired color-triplet states and an evidence for exotic instantons resonances, in addition to stringy Regge resonances, anomalous Z‧-bosons and gauged megaxion. In particular, our scenario can be related to the 750 GeV diphoton hint identifying it with the gauged megaxion dual to the B-field. On the other hand, this scenario is compatible with TeV-ish color triplets visible at large hadron collider (LHC) and with 1-10 TeV string scale, i.e. stringy resonances at LHC.

  10. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  11. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces

    International Nuclear Information System (INIS)

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  12. Ceramic microstructure and adhesion

    Science.gov (United States)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  13. Clinical Effect of Dental Adhesive on Marginal Integrity in Class I And Class II Resin-Composite Restorations

    OpenAIRE

    Manchorova-Veleva Neshka A.; Vladimirov Stoyan B.; Keskinova Donka А.

    2016-01-01

    BACKGROUND: Dental adhesives are believed to influence marginal adaptation and marginal discoloration when used under posterior resin-based composite restorations. Studies on the latest adhesive systems reveal that the group of the three-step etch-and-rinse adhesive (3-E&RA) and the one-step self-etch adhesive (1-SEA) have entirely different bonding mechanisms, as well as different bond strength and resistance to chemical, thermal and mechanical factors. STUDY OBJECTIVES: A hypothesis that a ...

  14. Acceleration of Ca(2+) repletion in the junctional sarcoplasmic reticulum and alternation of the Ca(2+)-induced Ca(2+)-release mechanism in hypertensive rat (SHR) cardiac muscle.

    Science.gov (United States)

    Tanaka, Midori; Tameyasu, Tsukasa

    2008-04-01

    We estimated the time taken for a repletion of the junctional sarcoplasmic reticulum (JSR) Ca(2+) stores from a family of mechanical restitution curves after twitches of various magnitudes in the cardiac muscle of hypertensive rats (SHR), using a method described previously (Tameyasu et al. Jpn J Physiol. 2004;54:209-19), to evaluate abnormality in Ca(2+) handling by cardiac JSR in hypertension. We found no differences in contractility or in the time course of mechanical restitution between SHR and the controls (WKY) at 3 weeks of age. In comparison to WKY, 7- and 20-week-old SHR showed a greater rested state contraction (RST) and similar or smaller rapid cooling contracture, suggesting that their JSR contains a similar amount of Ca(2+) at saturation, but releases more Ca(2+) upon stimulation. The adult SHR and WKY showed similar mechanical restitution time courses, but the adults had longer pretwitch latencies. The function G(t) representing the time course of JSR Ca(2+) store repletion in adult SHR exceeded the WKY value at t JSR [Ca(2+)] change corresponding to the mechanical restitution after RST was smaller in the adult SHR at t JSR Ca(2+) store repletion and an alternation of the Ca(2+)-induced release of Ca(2+ )from the JSR in young adult SHR. PMID:18312741

  15. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating.

    Science.gov (United States)

    Joung, Yoon Ki; You, Seung Soo; Park, Kyung Min; Go, Dong Hyun; Park, Ki Dong

    2012-11-01

    Durable and blood-compatible coating of metallic biomaterials remains a major issue in biomedical fields despite its long history of development. In this study, in situ forming, metal-adhesive heparin hydrogels were developed to coat metallic substrates to enhance blood compatibility. The hydrogels are composed of metal-adhesive and enzyme-reactive amphiphilic block copolymer (Tetronic-tyramine/dopamine; TTD) and enzyme-reactive heparin derivatives (heparin-tyramine or heparin-polyethylene glycol-tyramine), which are cross-linkable in situ via an enzyme reaction. The combinations of heparin and Tetronic formed hydrogels with relatively high mechanical strengths of 300-5000 Pa within several tens of seconds; this was also confirmed by observing a dried porous structure as coated on a metal surface. The introduction of dopamine to the hydrogel network enhanced the durability of the hydrogel layers coated on metal, such that more than 60% heparin remained for 7 days. Compared to bare metal surfaces, hydrogel-coated metal surfaces exhibited significantly enhanced blood compatibility. Reduced fibrinogen adsorption and platelet adhesion showed that blood compatibility was 3-5-fold-enhanced on coated hydrogel layers than on the bare metal surface. In conclusion, hydrogels containing heparin and dopamine prepared by enzyme reaction have the potential to be an alternative coating method for enhancing blood compatibility of metallic biomaterials. PMID:22100384

  16. Characterization of adhesively bonded joints using bulk adhesive properties

    OpenAIRE

    Kon, Haruhiko

    1991-01-01

    Though using bulk adhesive properties to predict adhesively bonded joint response has yet to be proven infallible, based upon the success of previous works, this effort attempts to shed some light on the stresses present in a typical automotive bonded joint. Adhesive material properties obtained in previous works were used in a finite element analysis of a simulated automotive joint to predict the stresses in that joint. The automotive joint analyzed was a simplified repr...

  17. Adhesive joint and composites modeling in SIERRA.

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  18. Soy protein isolate molecular level contributions to bulk adhesive properties

    Science.gov (United States)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  19. Cadherin-Based Intercellular Adhesions Organize Epithelial Cell-Matrix Traction Forces

    CERN Document Server

    Mertz, Aaron F; Banerjee, Shiladitya; Goldstein, Jill; Rosowski, Kathryn R; Niessen, Carien M; Marchetti, M Cristina; Dufresne, Eric R; Horsley, Valerie

    2012-01-01

    Cell--cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of crosstalk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular-matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell--cell adhesions modulate the physical cohesion between contractile cells is ...

  20. Signaling and Adhesive Mechanisms in Acute Pancreatitis

    OpenAIRE

    Awla, Darbaz

    2011-01-01

    Acute pancreatitis (AP) is an inflammatory disease with variable severity ranging from mild interstitial edematous to severe necrotizing disease. The overall mortality rate of AP is 8-9%. Specific treatment of AP is lacking which is partly related to an incomplete understanding of the basic pathophysiology behind the disease. It is widely held that premature intra-cellular trypsinogen activation and leukocyte recruitment play key roles in the pathophysiology of the AP. However, the signaling ...

  1. Curing of natural rubber and epoxy adhesive

    International Nuclear Information System (INIS)

    Low molecular weight epoxy resin based on diglycidyl ether of bisphenol A was synthesized and mixed at constant percentages with natural rubber. The rubber epoxy system was cured with various types of curing agents such as ethylene diamine, maleic anhydride as well as the prepared resole phenol formaldehyde. A study of the photo-induced crosslinking of the prepared elastic adhesives and film samples was carried out by exposure to ultraviolet lamp (300 w) for 2 weeks at 20 deg. C. Samples containing ethylene diamine were cured at 25 + - 1 deg. C. for 24 h while samples containing maleic anhydride or resole phenol formaldehyde resins were thermally cured at 150-170 deg. C. for 10 min. Cured adhesive compositions were tested mechanically and physically and evaluated as wood adhesives. While hardness, chemical resistance as well as heat stability of the prepared cured film sample were investigated. The obtained data indicate that the highest epoxy resin content and the presence of resole phenol formaldehyde resin in composition improve the tensile strength and adhesion properties on wood. While their cured film sample have the best hardness properties, chemical resistance and heat stability. (author)

  2. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Directory of Open Access Journals (Sweden)

    Wolfram Tobias

    2008-12-01

    through a mechanism that more closely resembles an interaction with the extracellular matrix than a transmembrane adhesion molecule.

  3. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-01-01

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications. PMID:25867092

  4. Higher-Order Architecture of Cell Adhesion Mediated by Polymorphic Synaptic Adhesion Molecules Neurexin and Neuroligin

    Directory of Open Access Journals (Sweden)

    Hiroki Tanaka

    2012-07-01

    Full Text Available Polymorphic adhesion molecules neurexin and neuroligin (NL mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca2+, the ectodomain complex of neurexin-1 β isoform (Nrx1β and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.

  5. Effect of osteopontin on the initial adhesion of dental bacteria.

    Science.gov (United States)

    Schlafer, Sebastian; Meyer, Rikke L; Sutherland, Duncan S; Städler, Brigitte

    2012-12-28

    Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention. PMID:23167781

  6. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful. In...... particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...

  7. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  8. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive

    OpenAIRE

    Stefan Veigel; Jörn Rathke; Martin Weigl; Wolfgang Gindl-Altmutter

    2012-01-01

    Adhesives on the basis of urea-formaldehyde (UF) and melamine-urea-formaldehyde (MUF) are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs). The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing ...

  9. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  10. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  11. Investigation of basalt plastic reinforcement and its Adhesion with Concrete

    OpenAIRE

    Kustikova Yulia Olegovna

    2014-01-01

    The load-bearing capacity and durability of concrete structures with metal or other reinforcement depends on their physical and mechanical properties and adhesion values with concrete. In this regard, there is an urgent need in the definition of adhesion of basalt reinforcement and concrete of various compositions and classes. One of the main problems with the use of basalt rods in concrete structures is - providing a high degree of load-carrying capacity in different conditions of stress-str...

  12. The impact resistance of CTBN- modified epoxy adhesive joints

    OpenAIRE

    Lataillade, J.; Grapotte, D.; Cayssials, F.

    1994-01-01

    The wide use of structural adhesives by cars'manufacturers, lays down the problem of the impact resistance of a rubber-modified epoxy-bonded steel joint. An experimental device, which allows us to reach high strain rates under different failures modes (mode I, mode II, mode I+II) and under different temperature conditions, has been developed. To allow the use of fracture mechanics, to study the substrate influence, adhesive specimens have been realized with an interfacial defect. The microstr...

  13. A biodegradable and biocompatible gecko-inspired tissue adhesive

    OpenAIRE

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W.; Chan, Edwin P.; Carter, David J. D.; Bettinger, Chris J.; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T.; Faquin, William

    2008-01-01

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multipl...

  14. Status of high-temperature laminating resins and adhesives

    Science.gov (United States)

    Hergenrother, P. M.; Johnston, N. J.

    1980-01-01

    High-temperature polymers now being developed as adhesives and composite matrices are reviewed, including aromatic polyimides, polybenzimidazoles, polyphenylquinoxalines, nadic end-capped imide oligomers, maleimide end-capped oligomers, and acetylene-terminated imide oligomers. The mechanical properties of laminates based on these resins are reported together with preliminary test results on the adhesive properties for titanium-to-titanium and composite-to-composite lap shear specimens.

  15. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  16. Preparation of starch-g-polyacrylamide and its utilization as an adhesive for wood, paper and glass

    International Nuclear Information System (INIS)

    Starch- based adhesives are capable of wetting polar surfaces such as cellulose, penetrating pores, and forming strong bonds through mechanical and physical bonds. This paper studies the modification of starch by grafting with acrylamide, and the relation between modification and adhesion properties. Six formulae are prepared from modified and unmodified starch, and evaluated as adhesives for wood, glass, carton, and paper. Study of the factors affecting the adhesive bond is performed. Promising results are obtained. The adhesive formulae I-VI can be used successfully as paper and carton adhesives. Formulae I, TI and III can be used as wood adhesives. Excellent value for shear strength using formula No. I, comparable with other known thermoplastic and thermoset adhesives., formula I also can be used as glass adhesive, but in narrow applications and in absence of water

  17. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  18. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  19. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  20. Treatment to Control Adhesion of Silicone-Based Elastomers

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  1. [Posttraumatic adhesive ileus following pelvic ring fracture].

    Science.gov (United States)

    Kusmenkov, T; Kasparek, M S; Brumann, M; Bogner, V; Mutschler, W

    2015-09-01

    We report on two cases of posttraumatic ileus after pelvic ring fracture in two patients aged 73 and 74 years, respectively. Although all conservative measures were exhausted, in both cases the ileus resulted in additional operative procedures and a significant extension of the hospital stay. Intraoperatively both patients presented with a mechanical ileus caused by adhesions which were unapparent for decades. Only the trauma-related motility disorder led to a clinical manifestation. Pathophysiological mechanisms and their implications on prophylaxis and therapy are discussed. PMID:25432671

  2. Adhesion aspects in MEMS/NEMS

    CERN Document Server

    Kim, Seong H; Mittal, Kash L

    2012-01-01

    Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface

  3. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  4. Investigation of elevated temperature effects on multiple layer piezoelectric ultrasonic transducers with adhesive bondlines by self-heating

    OpenAIRE

    Wu, Zhengbin; Cochran, Sandy; Wu, Bo

    2010-01-01

    In this chapter, the behaviour of adhesively-bonded multilayer piezoelectric ultrasonic transducers with two typical adhesives has been investigated under self-heating conditions. The material characteristic variation of high Curie temperature lead metaniobate piezoelectric cermaic, used to manufacture the multilayer structures, with different temperature were studied. The temperature rise and mechanical output characteristics of adhesively-bonded multilayer ultrasonic transducers resulted fr...

  5. Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2ZnCl4

    Science.gov (United States)

    Ben Bechir, M.; Karoui, K.; Tabellout, M.; Guidara, K.; Ben Rhaiem, A.

    2014-04-01

    [N(CH3)3H]2ZnCl4 has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH3)3H]2ZnCl4 hybrid compound is crystallized at room temperature (T ≈ 300 K) in the orthorhombic system with Pnma space group. Five phase transitions (T1 = 255 K, T2 = 282 K, T3 = 302 K, T4 = 320 K, and T5 = 346 K) have been proved by DSC measurements. The electrical technique was measured in the 10-1-107 Hz frequency range and 233-363 K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH3)3H]2ZnCl4 is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  6. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    Science.gov (United States)

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  7. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK and total and activated focal adhesion kinase (FAK were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines may depend upon the cancer cell type.

  8. Hyaluronan-mediated cellular adhesion

    Science.gov (United States)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  9. [Retention of adhesive bridges].

    Science.gov (United States)

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  10. Effect of fibril shape on adhesive properties

    Science.gov (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  11. Effects of montmorillonite addition on the performance of starch-based wood adhesive.

    Science.gov (United States)

    Li, Zhaofeng; Wang, Jian; Li, Caiming; Gu, Zhengbiao; Cheng, Li; Hong, Yan

    2015-01-22

    Effects of montmorillonite (MMT) addition on the performance of corn starch-based wood adhesive were investigated. It was found that MMT addition could enhance the shear strength of the starch-based wood adhesive. The shear strength of the adhesive with 5% (w/w, dry starch basis) MMT reached 10.6 MPa in the dry state, which was almost twice that of the same adhesive without MMT. Addition of 5% MMT also produced an approximately 1.2-fold increase in the shear strength in the wet state. Although this addition caused an increase in the viscosity, the resulting adhesive retained both good mobility and viscosity stability during storage. MMT also enhanced the shear-thinning and solid-like behaviors of the adhesive, compared with the adhesive without MMT. Finally, MMT addition improved the thermal stability of the adhesive. In conclusion, addition of MMT to starch-based wood adhesives can improve their overall performance, enhancing their value as alternatives for traditional petrochemical-based wood adhesives. PMID:25439910

  12. David Dillard named Adhesive and Sealant Science Professor

    OpenAIRE

    Crumbley, Liz

    2006-01-01

    David Dillard of Blacksburg, professor of engineering science and mechanics in the College of Engineering at Virginia Tech, has been named the Adhesive and Sealant Science Professor in Engineering Science and Mechanics by the Virginia Tech Board of Visitors during the board's quarterly meeting August 28.

  13. An Approach to Quality Assurance of Structural Adhesive Joints

    OpenAIRE

    Michaloudaki, Marianna

    2007-01-01

    With the development of advanced materials and structures, new nondestructive test techniques are being developed to evaluate material and structural integrity. Since adhesive bonding in engineering structures promises significant advantages - uniform stress distribution, enhanced fatigue properties, light weight, combination of dissimilar materials - over traditional techniques like welding and mechanical fastening, increased interest is registered in transport, construction, mechanical engi...

  14. Adhesion and wear behaviour of NCD coatings on Si3N4 by micro-abrasion tests.

    Science.gov (United States)

    Silva, F G; Neto, M A; Fernandes, A J S; Costa, F M; Oliveira, F J; Silva, R F

    2009-06-01

    Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2-CH4 and H2-CH4-N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 microm. A micro-abrasion tribometer was used, with 3 microm diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25-0.75 N. The wear rate for MPCVD NCD (3.7 +/- 0.8 x 10(-5) mm3 N(-1) m(-1)) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure. PMID:19504945

  15. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  16. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    OpenAIRE

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  17. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  18. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  19. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    Science.gov (United States)

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  20. Study of Materials and Adhesives for Superconducting Cable Feedthroughs

    CERN Document Server

    Perin, A; Métral, L

    2002-01-01

    Powering superconducting magnets requires the use of cryogenic feedthroughs for the superconducting cables capable of withstanding severe thermal, mechanical and electrical operating conditions. Such feedthrough shall provide the continuity of the superconducting circuit while ensuring a hydraulic separation at cryogenic temperature. A study about the adhesive and polymers required for the production of thermal shock resistant feedthroughs is presented. The strength of the busbar to adhesive joints was first investigated by compression/shear tests as well as pin and collar tests performed with four epoxy adhesives. After the selection of the most appropriate adhesive, pin and collar tests were performed with four different polymers. Based on the results, a superconducting cable feedthrough for 6 busbars of 6 kA and 12 busbars of 120 A was constructed and successfully tested.

  1. Investigation of basalt plastic reinforcement and its Adhesion with Concrete

    Directory of Open Access Journals (Sweden)

    Kustikova Yulia Olegovna

    2014-03-01

    Full Text Available The load-bearing capacity and durability of concrete structures with metal or other reinforcement depends on their physical and mechanical properties and adhesion values with concrete. In this regard, there is an urgent need in the definition of adhesion of basalt reinforcement and concrete of various compositions and classes. One of the main problems with the use of basalt rods in concrete structures is - providing a high degree of load-carrying capacity in different conditions of stress-strain state of the structure, and the related amount of its adhesion with concrete. Meeting these requirements can be achieved with load-bearing capacity of individual rods, adhesion value, in general, of basalt reinforcement with concrete.

  2. Surface tension regularizes the crack singularity of adhesion.

    Science.gov (United States)

    Karpitschka, Stefan; van Wijngaarden, Leen; Snoeijer, Jacco H

    2016-05-11

    The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while recent work highlights the importance of surface tension for exceedingly soft materials. Here we show that surface tension plays a crucial role even in stiff solids: Young's wetting angle emerges as a boundary condition and this regularizes the crack-like singularity at the edge of adhesive contacts. We find that the edge region exhibits a universal, self-similar structure that emerges from the balance of surface tension and elasticity. The similarity theory is solved analytically and provides a complete description of adhesive contacts, by which we reconcile global adhesion laws and local contact mechanics. PMID:27087459

  3. Simulation of Cell Adhesion using a Particle Transport Model

    Science.gov (United States)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  4. An Internally Heated Shape Memory Polymer Dry Adhesive

    Directory of Open Access Journals (Sweden)

    Jeffrey Eisenhaure

    2014-08-01

    Full Text Available A conductive epoxy-based shape memory polymer (SMP is demonstrated using carbon black (CB as a dopant for the purpose of creating an SMP dry adhesive system which can internally generate the heat required for activation. The electrical and mechanical properties of the CB/SMP blends for varying dopant concentrations are characterized. A composite adhesive is created to minimize surface contact resistance to conductive tape acting as electrodes, while maintaining bulk resistivity required for heat generation due to current flow. The final adhesive can function on flat or curved surfaces. As a demonstration, a 25 mm wide by 45 mm long dry adhesive strip is shown to heat evenly from an applied voltage, and can easily hold a mass in excess of 6 kg when bonded to a spherical concave glass surface using light pressure at 75 °C.

  5. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  6. Impact of oils and coatings on adhesion of structural adhesives

    OpenAIRE

    Hagström, Marcus

    2015-01-01

    This is a master thesis project conducted for Scania CV AB in collaboration with Swerea Kimab. The purpose is to examine how oils and coatings on the surface affect the adhesion of adhesives. Earlier work done by Scania indicate that the amount of oil applied may have an impact on the adhesion. Substrates tested are hot dipped galvanised steel, electro galvanised. AlSi and ZnMg. Oils used are Anticorit RP 3802 that is an anti-corrosive oil and Renoform 3802 that is a drawing oil. The two adhes...

  7. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Directory of Open Access Journals (Sweden)

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  8. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Science.gov (United States)

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  9. Analysis of adhesion characteristics of liner dental materials

    Directory of Open Access Journals (Sweden)

    Đorđević Maja

    2013-01-01

    Full Text Available Adhesive characteristics of materials used in dental practice are determined by indirect methods, by measuring mechanical properties of liner materials. In that procedure, the adhesion is defined by using measured mechanical properties of the bond material-test sample, which has several shortages. In the presented research the focus was based on the multi-component, composite, materials, which have, both organic and inorganic components in their structures. The direct measure of material-dentine bond was used in order to quantify the adhesion properties of investigated liner materials. Artificial saliva was the media for inducing the liner-dentine bond destruction. Destruction measurements were made by applying the quantification of visual information methodology. Obtained results were used to calculate the adhesion coefficient of the liner materials. The results were correlated with the mechanical test. There are no references on comparative testing of adhesion mechanical properties of dental material in the literature with presented methodology. The presented methodology proved to be useful for the functional quality ranking of dental materials.

  10. ModuleFinder and CoReg: alternative tools for linking gene expression modules with promoter sequences motifs to uncover gene regulation mechanisms in plants

    Directory of Open Access Journals (Sweden)

    Whelan James

    2006-04-01

    Full Text Available Abstract Background Uncovering the key sequence elements in gene promoters that regulate the expression of plant genomes is a huge task that will require a series of complementary methods for prediction, substantial innovations in experimental validation and a much greater understanding of the role of combinatorial control in the regulation of plant gene expression. Results To add to this larger process and to provide alternatives to existing prediction methods, we have developed several tools in the statistical package R. ModuleFinder identifies sets of genes and treatments that we have found to form valuable sets for analysis of the mechanisms underlying gene co-expression. CoReg then links the hierarchical clustering of these co-expressed sets with frequency tables of promoter elements. These promoter elements can be drawn from known elements or all possible combinations of nucleotides in an element of various lengths. These sets of promoter elements represent putative cis-acting regulatory elements common to sets of co-expressed genes and can be prioritised for experimental testing. We have used these new tools to analyze the response of transcripts for nuclear genes encoding mitochondrial proteins in Arabidopsis to a range of chemical stresses. ModuleFinder provided a subset of co-expressed gene modules that are more logically related to biological functions than did subsets derived from traditional hierarchical clustering techniques. Importantly ModuleFinder linked responses in transcripts for electron transport chain components, carbon metabolism enzymes and solute transporter proteins. CoReg identified several promoter motifs that helped to explain the patterns of expression observed. Conclusion ModuleFinder identifies sets of genes and treatments that form useful sets for analysis of the mechanisms behind co-expression. CoReg links the clustering tree of expression-based relationships in these sets with frequency tables of promoter

  11. A Novel Mechanism in Regulating the Alpha-Subunit of the Epithelial Sodium Channel (α ENaC by the Alternatively Spliced Form α ENaC-b

    Directory of Open Access Journals (Sweden)

    Marlene F. Shehata

    2009-01-01

    Full Text Available Introduction: In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b is the most abundant mRNA transcript (32+/-3 fold α ENaC-wt as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet.Objectives: In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner.Methods: Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur.Results: α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt.Conclusions: Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.

  12. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  13. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  14. Adhesiveness of cold rolled steels for car body parts

    Directory of Open Access Journals (Sweden)

    Kleiner Marques Marra

    2007-09-01

    Full Text Available The aim of this work was to evaluate the adhesiveness of uncoated and zinc-electrogalvanized steel sheets used in the automotive industry. Three types of adhesives, one acrylic and two epoxy resins, were employed to join low carbon cold rolled steels, one uncoated and another electrogalvanized, both previously degreased or chemically pickled. Mechanical strength of the joints was evaluated by the T-peel and tensile strength tests. Steel grade, surface condition and heating below the cure temperatures did not influence the joints' mechanical strength. However, their shear strength decreased drastically as the test temperature increased. The exposure of the joints to an atmosphere with 90% relative humidity at 40 °C caused reduction of their shear strength. Epoxy adhesives showed higher mechanical strength, but exhibited higher degradation by humidity.

  15. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  16. Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    CERN Document Server

    Pontani, Lea-Laetitia; Viasnoff, Virgile; Brujic, Jasna

    2012-01-01

    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeos...

  17. Focal Adhesion Kinases in Adhesion Structures and Disease

    Directory of Open Access Journals (Sweden)

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  18. Focal adhesion kinases in adhesion structures and disease.

    Science.gov (United States)

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  19. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  20. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  1. Focal Adhesion Kinases in Adhesion Structures and Disease

    OpenAIRE

    Pierre P. Eleniste; Angela Bruzzaniti

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organiza...

  2. Development of Screenable Pressure Sensitive Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Severtson

    2003-11-29

    An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation. A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

  3. GNAS mutation as an alternative mechanism of activation of the Wnt/β-catenin signaling pathway in gastric adenocarcinoma of the fundic gland type.

    Science.gov (United States)

    Nomura, Ryosuke; Saito, Tsuyoshi; Mitomi, Hiroyuki; Hidaka, Yasuhiro; Lee, Se-yong; Watanabe, Sumio; Yao, Takashi

    2014-12-01

    Gastric adenocarcinoma of the fundic gland type (GAFG) is a rare variant of gastric tumor. We have recently reported the frequent accumulation of β-catenin in GAFGs and showed that approximately half of the cases studied harbored at least 1 mutation in CTNNB1/AXINs/APC, leading to the constitutive activation of the Wnt/β-catenin pathway. However, the mechanisms of Wnt signaling activation in the remaining cases are unknown. Accumulating evidence showed that the activating mutation in GNAS promotes tumorigenesis via the activation of the Wnt/β-catenin pathway or the ERK1/2 MAPK pathway. Therefore, we analyzed the mutations in GNAS (exons 8 and 9) and in KRAS (exon 2) in 26 GAFGs. Immunohistochemistry revealed nuclear β-catenin expression in 22 of 26 GAFGs, and 10 (38.5%) of 26 cases harbored at least 1 mutation in CTNNB1/AXINs/APC. Activating mutations in GNAS were found in 5 (19.2%) of 26 GAFGs, all of which harbored R201C mutations. Activating mutations in KRAS were found in 2 (7.7%) of 26 GAFGs, and both of these also contained GNAS activating mutations. Four of 5 cases with GNAS mutation showed nuclear β-catenin expression, and presence of GNAS mutation was associated with β-catenin nuclear expression (P = .01). Furthermore, 3 of these 4 cases did not harbor mutations in CTNNB1, APC, or AXINs, suggesting that mutations in the Wnt component genes and those in GNAS occur almost exclusively. These results suggest that GNAS mutation might occur in a small subset of GAFG as an alternative mechanism of activating the Wnt/β-catenin signaling pathway. PMID:25288233

  4. Pre-tension generates strongly reversible adhesion of a spatula pad on substrate

    OpenAIRE

    Chen, Bin; Wu, Peidong; Gao, Huajian

    2008-01-01

    Motivated by recent studies on reversible adhesion mechanisms of geckos and insects, we investigate the effect of pre-tension on the orientation-dependent adhesion strength of an elastic tape adhering on a substrate. Our analysis shows that the pre-tension can significantly increase the peel-off force at small peeling angles while decreasing it at large peeling angles, leading to a strongly reversible adhesion. More interestingly, we find that there exists a critical value of pre-tension beyo...

  5. Hypoxia-generated superoxide induces the development of the adhesion phenotype

    OpenAIRE

    Fletcher, Nicole M.; Jiang, Zhong L.; Diamond, Michael P.; ABU-SOUD, HUSAM M.; Saed, Ghassan M.

    2008-01-01

    Adhesion fibroblasts exhibit higher TGF-β1 and type I collagen expression as compared to normal peritoneal broblasts. Furthermore, exposure of normal peritoneal fibroblasts to hypoxia results in an irreversible increase in TGF-β1 and type I collagen. We postulated that the mechanism by which hypoxia induced the adhesion phenotype is through the production of superoxide either directly or through the formation of peroxynitrite. To test this hypothesis, normal peritoneal and adhesion fibroblast...

  6. Sensitivity of ATLAS to alternative mechanisms of electroweak symmetry breaking in vector boson scattering qq{yields}qql{nu}l{nu}

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Jan W.

    2010-10-15

    An analysis of the expected sensitivity of the ATLAS experiment at the Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry breaking in the dileptonic vector boson scattering channel is presented. With the generalized K-Matrix model of vector boson scattering recently implemented in the event generator Whizard, several additional resonances are investigated. Whizard is validated for ATLAS use and an interface for the Les Houches event format is adapted for the ATLAS software Athena. Systematic model and statistical Monte Carlo uncertainties are reduced with a signal definition using events reweighted in the couplings g of the new resonances. Angular correlations conserved by Whizard are used in the event selection. A multivariate analyzer is trained to take into account correlations between the selection variables and thereby to improve the sensitivity compared to cut analyses. The statistical analysis is implemented with a profile likelihood method taking into account systematic uncertainties and statistical uncertainties from Monte Carlo. Ensemble tests are performed to assure the applicability of the method. Expected discovery significances and coupling limits for new additional resonances in vector boson scattering are determined. (orig.)

  7. Influência da Estrutura química do co-monômero nas propriedades mecânicas e adesivas de redes epoxídicas Influence of chemical structure of co-monomer on mechanical and adhesive properties of epoxy networks

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2010-06-01

    Full Text Available As propriedades mecânicas e adesivas de formulações à base do prepolímero do éter diglicidílico do bisfenol A curadas com várias aminas alifáticas foram avaliadas no estado vítreo. Ensaios de impacto do tipo Izod e compressão uniaxial foram usados para determinar a energia de impacto, o módulo de elasticidade e a tensão de escoamento. Ensaios de adesão usando substrato de aço para uniões de simples sobreposição, descascamento em T, e de impacto foram realizados. O melhor comportamento mecânico e adesivo dos polímeros foi obtido quando existe alta flexibilidade entre as cadeias e/ou alto módulo elástico. O sistema DGEBA/AEP mostrou as melhores propriedades adesivas, alta flexibilidade e maior energia de impacto nos ensaios mecânicos. No entanto, apresentou baixo modulo elástico e tensão de escoamento. Além disso, exibe incremento nos ensaios de adesão de descascamento em T e nas uniões de impacto, por outro lado, apresenta uma redução na resistência das uniões de simples sobreposição.The mechanical and adhesive properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact and uniaxial compression tests were used to determine the impact energy, elastic modulus and yield stress, respectively. The adhesion tests were carried out in steel-steel joints using single lap shear, T-peel and impact adhesive joints geometry. The better mechanical and adhesive behavior of the networks is obtained for highly flexible chains and/or a high elastic modulus. The 1-(2-aminoethylpiperazine epoxy network presents the best adhesive properties, high flexibility, and the largest impact energy. However, it possesses low elastic modulus and yield stress. Also, it exhibits increased peel strength and impact energy with a reduction in the lap shear strength.

  8. Denture Adhesives - A Literature Review

    Directory of Open Access Journals (Sweden)

    Sudhanshu Shekhar

    2016-06-01

    Full Text Available Successful complete denture treatment combines exemplary technique, effective patient rapport and education and familiarity with all possible management options to provide the highest degree of patient satisfaction. Dentists need to know about denture adhesives to be able to identify those patients who actually need them and to be able to educate them about the advantages, disadvantages and correct use of these products. Denture adhesives are commercially available nontoxic, soluble materials that when applied to the tissue surface of dentures enhance their retention, stability and performance. They were introduced in dentistry in the late 18th century. The first patent related to adhesives was issued in 1913, followed in the 1920’s and 1930’s. The purpose of the use of denture adhesives can be described as to subjectively benefit denture-wearers with improved stability, retention and comfort of their dentures, and with improved incisal force, masticatory ability, and confidence.

  9. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    Science.gov (United States)

    Kim, Yongkwan

    fibrillar adhesives. Basic geometric factors, namely fiber length and diameter, are optimized on smooth glass for high friction. The test surfaces are then processed to intentionally introduce roughness or lower the surface energy in a systematic and quantifiable manner, so that the failure mechanisms of the adhesive can be investigated in detail. In these studies, observed macroscale friction is related to the nano-scale contact behavior with simple mechanical models to establish criteria to ensure high performance of fibrillar adhesives. Chapter 6 presents various methods to produce more complex fiber structures. The metal-assisted chemical etching of silicon nanowires is studied in detail, where the chemical composition of the etching bath can be varied to produce clumped, tapered, tilted, and curved nanowires, which provide interesting templates for molding and are potentially useful for applications in various silicon nanowire devices. Hierarchical fiber structures are fabricated by a few different methods, as well as composite structures where the fibers are embedded in another material. A way to precisely control tapering of microfibers is demonstrated, and the effect of tapering on macroscale friction is studied in detail. The final chapter summarizes the dissertation and suggests possible future works for both further investigating fibrillar interfaces and improving the current gecko adhesive.

  10. Laser surface modification and adhesion

    CERN Document Server

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  11. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  12. Adhesive capsulitis: a case report

    OpenAIRE

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue ther...

  13. Time course of isocyanate emission from curing polyurethane adhesives

    Science.gov (United States)

    Wirts, M.; Grunwald, D.; Schulze, D.; Uhde, E.; Salthammer, T.

    The time course of isocyanate emission from curing polyurethane (PUR) resins and adhesives was studied in two different emission test chambers. The measured emissions were strongly dependent on the type of experiment. The adhesives under investigation contained different types of diisocyanates and are used for different applications, e.g. for fixing of textile floor coverings. The influence of the curing mechanism on emission was studied by comparing the emission curves of one-component adhesives (OCA) and two-component adhesives (TCA). For TCA, the decrease in isocyanate emission was found to follow a two-step process during curing. In the first step, the emission is dominated by surface evaporation, and the decay of emission is mainly caused by the decrease in monomer content due to reaction. In the second step, the release is limited by internal diffusion. The influence of monomer reactivity on the emission profile could be demonstrated for 2,4'- and 4,4'-MDI. The less-reactive 2,4'-MDI caused prolonged emission. A strong dependence of emission rates on temperature and adhesive viscosity was also obvious. The evaluation of emission rates of different commercially available PUR adhesives showed the highest emission from systems that are applied at high temperatures. The high reactivity of diisocyanates requires special techniques for sampling and analysis. Therefore, an analytical method using HPLC-MS/MS was developed that enables limits of quantitation of <5 ng/m 3 with a sampling volume of 100 l.

  14. Mechanosensitive components of integrin adhesions: Role of vinculin.

    Science.gov (United States)

    Atherton, Paul; Stutchbury, Ben; Jethwa, Devina; Ballestrem, Christoph

    2016-04-10

    External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell-matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli. PMID:26607713

  15. Improved dental adhesive formulations based on reactive nanogel additives.

    Science.gov (United States)

    Morães, R R; Garcia, J W; Wilson, N D; Lewis, S H; Barros, M D; Yang, B; Pfeifer, C S; Stansbury, J W

    2012-02-01

    Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material's hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins. PMID:22019910

  16. The effect of surface water and wetting on gecko adhesion.

    Science.gov (United States)

    Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

    2012-09-01

    Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments. PMID:22875772

  17. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces.

    Science.gov (United States)

    Pham, Tam Thanh; Wiedemeier, Stefan; Maenz, Stefan; Gastrock, Gunter; Settmacher, Utz; Jandt, Klaus D; Zanow, Jürgen; Lüdecke, Claudia; Bossert, Jörg

    2016-09-01

    Occlusion by thrombosis due to the absence of the endothelial cell layer is one of the most frequent causes of failure of artificial vascular grafts. Bioinspired surface structures may have a potential to reduce the adhesion of platelets contributing to hemostasis. The aim of this study was to investigate the hemodynamic aspects of platelet adhesion, the main cause of thrombosis, on bioinspired microstructured surfaces mimicking the endothelial cell morphology. We tested the hypothesis that platelet adhesion is statistically significantly reduced on bioinspired microstructured surfaces compared to unstructured surfaces. Platelet adhesion as a function of the microstructure dimensions was investigated under flow conditions on polydimethylsiloxane (PDMS) surfaces by a combined experimental and theoretical approach. Platelet adhesion was statistically significantly reduced (by up to 78%; p≤0.05) on the microstructured PDMS surfaces compared to that on the unstructured control surface. Finite element method (FEM) simulations of blood flow dynamic revealed a micro shear gradient on the microstructure surfaces which plays a pivotal role in reducing platelet adhesion. On the surfaces with the highest differences of the shear stress between the top of the microstructures and the ground areas, platelet adhesion was reduced most. In addition, the microstructures help to reduce the interaction strength between fluid and surfaces, resulting in a larger water contact angle but no higher resistance to flow compared to the unstructured surface. These findings provide new insight into the fundamental mechanisms of reducing platelet adhesion on microstructured bioinspired surfaces and may lay the basis for the development of innovative next generation artificial vascular grafts with reduced risk of thrombosis. PMID:27239904

  18. Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion

    Directory of Open Access Journals (Sweden)

    Chen SH

    2014-08-01

    Full Text Available Shih-Hsien Chen,1 Chih-Hao Chen,1,2 KT Shalumon,1 Jyh-Ping Chen1,3 1Department of Chemical and Materials Engineering, 2Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 3Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China Abstract: Peritendinous adhesion is one of the common complications encountered after tendon injury and subsequent surgery, and it can be minimized by introducing a physical barrier between the injured site and the surrounding tissue. An electrospun hyaluronic acid-grafted poly(caprolactone (PCL-g-HA nanofibrous membrane (NFM is proposed as an alternative to current antiadhesion barrier films. HA is covalently grafted to surface-aminolyzed PCL nanofibers, using carbodiimide as the coupling agent. Pristine PCL and PCL-g-HA NFMs were characterized by scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and mechanical testing. In vitro cell culture with fibroblasts showed that PCL-g-HA NFMs reduced cellular adhesion on the membrane surface while maintaining cell proliferation. Animal experiments using a rabbit flexor digitorum profundus tendon model confirmed the efficacy of PCL-g-HA in reducing peritendinous adhesion, based on gross observation, histology, joint flexion-angle measurements, gliding tests, and biomechanical evaluation. Keywords: peritendinous adhesion, hyaluronic acid, polycaprolactone, antiadhesion, nanofibrous membranes, barrier film, surface grafting

  19. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    Science.gov (United States)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a

  20. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    Science.gov (United States)

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. PMID:24763427

  1. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber

    International Nuclear Information System (INIS)

    Research highlights: → Elucidation of adhesion property of epoxidized natural rubber (ENR 25). → Correlation of peel and shear strength with molecular weight and rate of testing. → Confirmation of miscibility of tackifier and ENR 25 by DSC and FTIR study. → Applicability of Fox equation in ENR 25/coumarone-indene resin system. -- Abstract: The dependence of peel strength and shear strength of epoxidized natural rubber (ENR 25)-based pressure-sensitive adhesive on molecular weight and rate of testing was investigated using coumarone-indene as the tackifying resin. Toluene and polyethylene terephthalate (PET) were used as the solvent and substrate respectively throughout the study. A SHEEN hand coater was used to coat the adhesive on the substrate at a coating thickness of 120 μm. All the adhesion properties were determined by a Llyod Adhesion Tester operating at different rates of testing. Result shows that peel strength and shear strength increases up to an optimum molecular weight of 6.5 x 104 of ENR 25. For peel strength, the observation is attributed to the combined effects of wettability and mechanical strength of rubber at the optimum molecular weight, whereas for the shear strength, it is ascribed to the increasing amount of adhesive present in the coating layer which enhances the shear resistance of the adhesive. Peel strength and shear strength also increases with increase in rate of testing, an observation which is associated to the viscoeslastic response of the adhesive. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) study confirms the miscibility of tackifier and the ENR 25.

  2. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Science.gov (United States)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  3. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology.

    Science.gov (United States)

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2015-09-10

    An adhesive potting technology for fiber coils of a fiber optic gyroscope (FOG) is proposed. The fiber coil is immersed in liquid adhesive with superior mechanical properties. The internal air is first removed completely by vacuum pumping, and the adhesive is then evenly pressed into the fiber coil under pressure. The potted fiber core is prepared by ladder-type temperature curing and a stress-release process. With this potting technology, the vibration performance of an FOG is greatly improved and, at the same time, will not lead to degradation of its temperature performance. Using this potting technique of adhesive impregnation, the adaptability of FOGs will be enhanced. PMID:26368951

  4. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    OpenAIRE

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  5. Finite element analysis of multi-piece post-crown restoration using different types of adhesives

    Institute of Scientific and Technical Information of China (English)

    Lin-Wei Lu; Guang-Wei Meng; Zhi-Hui Liu

    2013-01-01

    The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques. Various types of adhesives have different material properties that affect restoration. Therefore, the choice of adhesive is particularly important for patients. However, the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth. One tooth root can only be restored with one type of adhesive in experiment. After the mechanical test, this tooth root cannot be restored with other adhesives. With the help of medical imaging technology, reverse engineering and finite element analysis, a molar model can be reconstructed precisely and restored using different types of adhesives. The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately. Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively. However, a root canal concentration is apparently produced around the root canal orifice when chewing. Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice. However, the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.

  6. A method for predicting critical load evaluating adhesion of coatings in scratch testing

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-fang(陈溪芳); YAN Mi(严密); YANG De-ren(杨德人); HIROSE Yukio

    2003-01-01

    In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined by scratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data are discussed.

  7. A method for predicting critical load evaluating adhesion of coatings in scratch testing

    Institute of Scientific and Technical Information of China (English)

    陈溪芳; 严密; 杨德人; HIROSEYukio

    2003-01-01

    In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined byscratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data arediscussed.

  8. Radiation curing of laminating adhesives : lamination of pvc films on wood (fibreboard) substrate

    International Nuclear Information System (INIS)

    A study was set up in an attempt to aquire a better understanding of factors influencing the adhesion in the EB curing lamination of PVC films on wood substrates. Various acrylated polyester, epoxy and urethane oligomers with monofunctional and difunctional monomers were investigated. The contact angle, viscosity, pendulum hardness and peel strength were determined to give a brief explanation of the adhesion mechanism

  9. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  10. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  11. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  12. Characterization of mode I and mixed-mode failure of adhesive bonds between composite adherends

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1986-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  13. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules.

    OpenAIRE

    Yamazaki, T; Seko, Y; Tamatani, T; Miyasaka, M.; Yagita, H; Okumura, K.; R. Nagai; Yazaki, Y

    1993-01-01

    To elucidate the mechanism(s) of myocardial reperfusion injury, we investigated the roles of cell adhesion molecules on both leukocytes and vascular endothelial cells in the reperfused myocardia. We found that within 2 hours after reperfusion leukocytes began to infiltrate into the rat myocardia subjected to 30 minutes of ischemia and clarified, for the first time, that the expression of intercellular adhesion molecule-1 was enhanced on the capillary and venous endothelial cells from 8 to 96 ...

  14. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    Science.gov (United States)

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  15. A new adhesive technique for internal fixation in midfacial surgery

    Directory of Open Access Journals (Sweden)

    Riediger Dieter

    2008-05-01

    Full Text Available Abstract Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa. Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates

  16. Adhesive strip wound closure after thyroidectomy/parathyroidectomy: a prospective, randomized controlled trial.

    LENUS (Irish Health Repository)

    O'Leary, D Peter

    2013-03-01

    Conventional collar incision closure in thyroid and parathyroid surgery involves the insertion of an epidermal layer of subcutaneous absorbable sutures that are reinforced by a deep layer of sutures. Adhesive strips offer an alternative method to close the epidermal layer. The aim of this study was to compare adhesive strip closure with absorbable sutures for collar incisions in a prospective, single-blinded, randomized controlled trial.

  17. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and ch

  18. ADHESION OF PSEUDOMONAS-FLUORESCENS TO METALLIC SURFACES

    NARCIS (Netherlands)

    VIEIRA, MJ; OLIVEIRA, R; MELO, L; PINHEIRO, M; VANDERMEI, HC

    1992-01-01

    Deposition of Pseudomonas fluorescens on aluminium, brass and copper plates was studied in a flow system. The number of bacteria deposited on aluminium was greater than on the other two types of metals. The results are discussed in terms of the mechanisms (transport and/or adhesion) that may control

  19. Study of surface properties and adhesion mechanisms between layers of different composition with surface analytical methods; Untersuchungen von Oberflaecheneigenschaften und Haftmechanismen bei der Verbindung unterschiedlicher Schichten mit Hilfe oberflaechenanalytischer Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Olschewski, T.

    1992-07-01

    The aim of this investigation was to record structural and surface-chemical properties affecting the adhesion of organic layers on inorganic substrates - e.g. PMMA on oxidized titanium for the LIGA-process and PVC on Si{sub 3}N{sub 4} for chemical microsensors based on a field-effect-transistor (FET). For this purpose the materials involved were characterized using surface analytical tools like XPS, AES and SIMS. Previously the stability of the organic materials were investigated under analytical conditions and the measurement techniques were adapted accordingly. After that, the effects of pre- and posttreatment steps which are used for the optimization of microstructure adhesion on the function of chemical microsensors were investigated on the respective substrates. (orig.). [Deutsch] Die vorliegenden Untersuchungen wurden mit dem Ziel durchgefuehrt, strukturelle und oberflaechenchemische Eigenschaften zu erfassen, die die Haftung von organischen Schichten auf anorganischen Substraten beeinflussen - wie z.B. zwischen PMMA und oxidiertem Titan im Rahmen des LIGA-Verfahrens und zwischen PVC und Si{sub 3}N{sub 4} bei der Entwicklung von chemischen Mikrosensoren auf FET-Basis. Dazu wurden zunaechst die beteiligten Materialien mittels XPS, AES und SIMS oberflaechenanalytisch charakterisiert, nachdem zuvor die Stabilitaet der organischen Verbindungen unter Analysenbedingungen untersucht und die Messbedingungen entsprechend angepasst worden waren. Danach wurden die Auswirkungen von Vor- bzw. Nachbehandlungsschritten, die zur Optimierung der Haftung von Mikrostrukturen bzw. der Funktion von chemischen Mikrosensoren eingesetzt werden, auf die jeweiligen Substrate untersucht. (orig.).

  20. Enhanced adhesion of diamond coatings

    Science.gov (United States)

    Zheng, Zhido

    Diamond coatings are of interest for a wide range of applications due to the unique properties of crystalline diamond. Many applications require that the coating adhere strongly to metallic substrates which may have a large difference in thermal expansion coefficient with diamond. These substrates may also have undesirable chemical interactions with carbon during the deposition of the coatings. Intermediate layers are a possible solution to both of these problems. Such layers can act as diffusion barriers preventing the deleterious chemical interactions, and may help to accommodate the thermal expansion mismatch strains. Several aspects of these issues are addressed in this work. The mechanics of the interface for a coating-substrate system loaded by thermal expansion mismatch is modeled. Both continuous coatings and coatings containing a through-thickness hole surrounded by an annular delamination crack are examined. Analytic expressions for the stress distribution in the film and in the substrate are derived by representing the thermal expansion mismatch loads as tractions and moments acting along the outer free edge of the specimen and along the tip of the annular crack. The loads near the center hole are found to vary with the size of the delamination crack, and hence constitute a driving force for growth of such a delamination. The strain energy release rate for the growth of the annular crack surrounding the central hole is derived, and expressed in terms of the thermal expansion misfit between film and substrate; their thickness, elastic moduli and Poisson's ratios; and the characteristic dimensions of the film-substrate system. The crack driving force is found to decrease as the delamination crack surrounding the hole propagates, and hence a relationship between crack length and crack driving force is established. The requirements for an effective intermediate layer between diamond films and Fe-group containing substrate materials are described, and two