WorldWideScience

Sample records for alternative adhesion mechanisms

  1. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  2. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  3. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  4. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  5. Adhesion mechanisms of nanoparticle silver to substrate materials: identification

    International Nuclear Information System (INIS)

    Joo, Sungchul; Baldwin, Daniel F

    2010-01-01

    Nanoparticle silver (NPS) conductors are increasingly being investigated for printed electronics applications. However, the adhesion mechanism of the nanoparticle silver to substrate materials has not been identified yet. In particular, the adhesion of NPS to organic materials such as the widely used polyimide Kapton HN and Kapton FPC dry films is concerned with low adhesion strength because the processed polymer surface is chemically inert. Moreover, its adhesion to substrate materials such as benzocyclobutene (BCB), copper and aluminum was found to be very weak. Therefore, in this paper, the mechanisms of NPS adhesion to organic and inorganic materials are identified as the first step in improving NPS adhesion strength. Improving the adhesion strength of NPS will be the key issue for printed electronics applications. The adhesion of NPS to substrate materials was found to be mainly attributed to van der Waals forces based on particle adhesion mechanisms. This finding provides the initiative of developing an adhesion prediction model of NPS to substrate materials in order to provide guidelines for improving the NPS adhesion strength to the substrate materials used in printed electronics.

  6. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention

  7. Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis.

    Science.gov (United States)

    Thomas, W A; Yancey, J

    1988-05-01

    Embryonic chick neural retina cells possess two classes of adhesion mechanism, one Ca2+-independent, one Ca2+-dependent, responsible for short-term cell aggregation. This study investigates the role of these mechanisms in the long-term cell sorting potentially relevant to in vivo histogenesis. Retina cells are prepared either with both (E cells) or with only one mechanism (TC cells, CD; LTE cells, CI), respectively. The two types of cell preparations are differentially labelled using fluorescein or rhodamine isothiocyanate, mixed and allowed to aggregate in the presence or absence of cycloheximide at 0.5 microgram ml-1 to retard metabolic recovery of the removed adhesive mechanism. When observed by fluorescence and phase-contrast microscopy, the aggregates formed in cycloheximide show cell sorting, the cells with both mechanisms assuming a more interior position relative to those with a single adhesion mechanism. In parallel hanging-drop experiments, preformed aggregates of cells with a single adhesion mechanism are seen to spread upon aggregates of cells with both mechanisms. No sorting occurs amongst cells from a given stage prepared using any single dissociation protocol. The observed cell sorting would thus seem to derive exclusively from differential cell adhesiveness dependent upon the different dissociation conditions and maintained in the presence of cycloheximide. The experiments support the hypothesis that the dual CI and CD adhesion mechanisms in question can play a central role in governing cell-sorting behaviour during normal histogenesis.

  8. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...

  9. Alternative castor oil-based polyurethane adhesive used in the production of plywood

    Directory of Open Access Journals (Sweden)

    Fabricio Moura Dias

    2004-09-01

    Full Text Available Plywood is normally produced with urea-formaldehyde and/or phenol-formaldehyde adhesives. However, the former is considerably toxic and environmentally damaging, while the latter is expensive, thus motivating the search for alternative raw materials in plywood production. The castor oil-based polyurethane adhesive developed at the São Carlos Institute of Chemistry, University of São Paulo, is an environmentally friendly vegetal oil-based polymer that is harmless to humans. The wood species Eucalyptus grandis offers favorable properties for plywood the manufacture. The study reported on here involved the use of castor oil-based polyurethane adhesive to produce plywood with Eucalyptus grandis layers. The plywood's performance was evaluated based on the results of physical and mechanical tests recommended by the Brazilian code, ABNT. Tests results showed higher values than those reported in the literature and recommended by the ABNT, indicating that the castor oil-based polyurethane adhesive is a promising glue for the manufacture of plywood.

  10. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects

    International Nuclear Information System (INIS)

    Clemente, Christofer J; Federle, Walter

    2012-01-01

    Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push–pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides. (paper)

  11. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects.

    Science.gov (United States)

    Clemente, Christofer J; Federle, Walter

    2012-12-01

    Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push-pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides.

  12. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Directory of Open Access Journals (Sweden)

    Francesca Tramacere

    Full Text Available The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa. In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  13. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  14. Alternating-current electrophoretic adhesion of biodegradable hydrogel utilizing intermediate polymers.

    Science.gov (United States)

    Asoh, Taka-Aki; Kawai, Wataru; Kikuchi, Akihiko

    2014-11-01

    The adhesion of anionic charged biodegradable hydrogels each other utilizing oppositely charged water-soluble polymers as a binder has been achieved by applying alternating-current (AC) electric fields. The two gelatin based dextran sulfate gels (DS gels) were molecularly sutured together by AC electrophoretic adhesion when cationic charged quaternary ammonium chitosan (TMC) was applied between and held in contact with the two DS gels. The adhesive strength of the gels increased with increasing periodicity when a square wave was applied. Hydrogel constructs composed of DS microgels were prepared simply by AC electrophoretic adhesion utilizing intermediate TMC. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evaluation of Tissue Adhesive as Alternative To Conventional ...

    African Journals Online (AJOL)

    Methods: To assess effectiveness of tissue adhesive in comparison to subcuticular 3-0 vicryl sutures in closure of inguinal hernia repair with respect to, time required for closure of skin incision, postoperative complications like wound disruption, wound discharge, wound infection and scar osmesis. The study was carried out ...

  16. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    International Nuclear Information System (INIS)

    Pertsin, Alexander; Grunze, Michael

    2014-01-01

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity

  17. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    Science.gov (United States)

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Ligand-mediated adhesive mechanics of two static, deformed spheres.

    Science.gov (United States)

    Sircar, Sarthok; Nguyen, Giang; Kotousov, Andrei; Roberts, Anthony J

    2016-10-01

    A self-consistent model is developed to investigate attachment/detachment kinetics of two static, deformable microspheres with irregular surface and coated with flexible binding ligands. The model highlights how the microscale binding kinetics of these ligands as well as the attractive/repulsive potential of the charged surface affects the macroscale static deformed configuration of the spheres. It is shown that in the limit of smooth, neutrally charged surface (i.e., the dimensionless inverse Debye length, [Formula: see text]), interacting via elastic binders (i.e., the dimensionless stiffness coefficient, [Formula: see text]) the adhesion mechanics approaches the regime of application of the JKR theory, and in this particular limit, the contact radius, R c , scales with the particle radius, R, according to the scaling law, [Formula: see text]. We show that static, deformed, highly charged, ligand-coated surface of micro-spheres exhibit strong adhesion. Normal stress distribution within the contact area adjusts with the binder stiffness coefficient, from a maximum at the center to a maximum at the periphery of the region. Although reported in some in vitro experiments involving particle adhesion, until now a physical interpretation for this variation of the stress distribution for deformable, charged, ligand-coated microspheres is missing. Surface roughness results in a diminished adhesion with a distinct reduction in the pull-off force, larger separation gap, weaker normal stress and limited area of adhesion. These results are in agreement with the published experimental findings.

  19. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  20. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  1. Mechanical Activation of Wood for Adhesive-free board Production

    Science.gov (United States)

    Ermolin, V. N.; Bayandin, M. A.; Kazitsin, S. N.

    2016-11-01

    This paper proposes to use hydrodynamic treatment of wood for the manufacture of wood-based panels from sawdust without using adhesive materials. It was found that such a treatment of wood particles (sawdust, dust, wood powder) allows producing panels with high physical-mechanical properties and water resistance. It is proved that the hydrodynamic treatment allows providing maximum energy of autoadhesion interaction in the moulding material due to increase of specific surface with small changes of geometric size of particles in comparison with mechanical methods of milling.

  2. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.

    Science.gov (United States)

    Glass, Paul; Cheung, Eugene; Sitti, Metin

    2008-12-01

    This paper presents a new concept for an anchoring mechanism to enhance existing capsule endoscopes. The mechanism consists of three actuated legs with compliant feet lined with micropillar adhesives to be pressed into the intestine wall to anchor the device at a fixed location. These adhesive systems are inspired by gecko and beetle foot hairs. Single-leg and full capsule mathematical models of the forces generated by the legs are analyzed to understand capsule performance. Empirical friction models for the interaction of the adhesives with an intestinal substrate were experimentally determined in vitro using dry and oil-coated elastomer micropillar arrays with 140 microm pillar diameter, 105 microm spacing between pillars, and an aspect ratio of 1:1 on fresh porcine small intestine specimens. Capsule prototypes were also tested in a simulated intestine environment and compared with predicted peristaltic loads to assess the viability of the proposed design. The experimental results showed that a deployed 10 gr capsule robot can withstand axial peristaltic loads and anchor reliably when actuation forces are greater than 0.27 N using dry micropillars. Required actuation forces may be reduced significantly by using micropillars coated with a thin silicone oil layer.

  3. Mechanism of alternative splicing and its regulation.

    Science.gov (United States)

    Wang, Yan; Liu, Jing; Huang, B O; Xu, Yan-Mei; Li, Jing; Huang, Lin-Feng; Lin, Jin; Zhang, Jing; Min, Qing-Hua; Yang, Wei-Ming; Wang, Xiao-Zhong

    2015-03-01

    Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.

  4. Adhesive Elastomeric Proteins

    OpenAIRE

    Mansour, Haefa; Liu, Julie

    2013-01-01

    Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives avail...

  5. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  6. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  7. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  8. Flowable composite an alternative orthodontic bonding adhesive: an in vitro study.

    Science.gov (United States)

    Kumar, K Supradeep; Rao, C Hanumantha; Reddy, Kv Baburam; Chidambaram, S; Girish, Hc; Murgod, Sanjay

    2013-09-01

    To determine the clinical applicability of Ormocer based fowable adhesive (Admira fow) in comparison with BisGMA based adhesive (Transbond XT) and Ormocer based packable adhesive (Admira). Sixty human premolars, divided into group I (n = 20) Transbond XT, group II (n = 20) Admira and group III (n = 20) Admira fow were bonded with metal brackets using adhesives. Brackets were debonded in shear on an Instron universal testing machine with a crosshead speed of 1 mm per minute. The mode of bond failure was determined by modifed ARI index. The results obtained from SBS evaluation and modifed ARI showed highest shear bond strength for Transbond XT (SD 11.64) 3.68 followed by Admira fow (SD 11.0) 2.87 and least for Admira (SD 9.42) 2.21. However, the difference was not statistically signifcant, but an intergroup comparison done using Independent student 't' test, showed statically signifcant difference between Transbond XT and Admira. Kaplan-Meier survival analysis showed least survival median value for Admira, but the survival median value is not statistically signifcant among the three groups. All groups had modifed ARI score of three (60-70%), suggestive of cohesive type of failure. The in vitro study showed that fowable Ormocer can be an good alternative to commonly used BisGMA based adhesive but the its effcacy needs clinical assessment through a survival analysis. CLINICAL SIGNIFCANCE: Admire fow can defnitely be considered as an alternative bonding system due to their comparable bond strength and debonding characters and reported properties of biocompatibility.

  9. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Science.gov (United States)

    Jannat, Risat A.; Dembo, Micah; Hammer, Daniel A.

    2009-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma, and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micro-machined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction but not an elimination of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation. PMID:20473350

  10. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  11. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    Science.gov (United States)

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the

  12. Alternative contract mechanisms for environmental restoration

    International Nuclear Information System (INIS)

    Billings, R.M.; Geotze, P.; Billings, B.G.

    1994-01-01

    Remediation and investigation contracting mechanisms used by Billings and Associates, Inc. (BAI), for operations within New Mexico are described, and the advantages and disadvantages are considered. Methods discussed are: time and materials, unit pricing, and pay for performance. An emphasis is placed upon the pay for performance method. While there are alternative contracting mechanisms, the state has thus far been limited to traditional contract types, such as time and materials. While the undertaking of a pay for performance remediation scenario presents higher risk with an opportunity for comparable reward, application of this type of alternative contracting has been slow to materialize. The New Mexico Environment Department/Underground Storage Tank Bureau is mandated by regulation to seek complete remediation of petroleum contaminated soils and ground water within the shortest practicable period of time

  13. Alternative perturbation approaches in classical mechanics

    International Nuclear Information System (INIS)

    Amore, Paolo; Raya, Alfredo; Fernandez, Francisco M

    2005-01-01

    We discuss two alternative methods, based on the Lindstedt-Poincare technique, for the removal of secular terms from the equations of perturbation theory. We calculate the period of an anharmonic oscillator by means of both approaches and show that one of them is more accurate for all values of the coupling constant. We believe that present discussion and comparison may be a suitable exercise for teaching perturbation theory in advanced undergraduate courses on classical mechanics

  14. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Science.gov (United States)

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  15. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially

  16. Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions.

    Directory of Open Access Journals (Sweden)

    Steven Huth

    Full Text Available The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A. castellanii and the target-cell. This process is mediated by the glycocalix of the target-cell and mannose has been identified as key mediator. The aim of the present study was to carry out a detailed biophysical investigation of mannose-mediated adhesion of A. castellanii using force spectroscopy on single trophozoites. In detail, we studied the interaction of a mannose-coated cantilever with an A. castellanii trophozoite, as mannose is the decisive part of the cellular glycocalix in mediating pathogenicity. We observed a clear increase of the force to initiate cantilever detachment from the trophozoite with increasing contact time. This increase is also associated with an increase in the work of detachment. Furthermore, we also analyzed single rupture events during the detachment process and found that single rupture processes are associated with membrane tether formation, suggesting that the cytoskeleton is not involved in mannose binding events during the first few seconds of contact. Our study provides an experimental and conceptual basis for measuring interactions between pathogens and target-cells at different levels of complexity and as a function of interaction time, thus leading to new insights into the biophysical mechanisms of parasite pathogenicity.

  17. Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions

    Science.gov (United States)

    Leippe, Matthias

    2017-01-01

    The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii) causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A. castellanii and the target-cell. This process is mediated by the glycocalix of the target-cell and mannose has been identified as key mediator. The aim of the present study was to carry out a detailed biophysical investigation of mannose-mediated adhesion of A. castellanii using force spectroscopy on single trophozoites. In detail, we studied the interaction of a mannose-coated cantilever with an A. castellanii trophozoite, as mannose is the decisive part of the cellular glycocalix in mediating pathogenicity. We observed a clear increase of the force to initiate cantilever detachment from the trophozoite with increasing contact time. This increase is also associated with an increase in the work of detachment. Furthermore, we also analyzed single rupture events during the detachment process and found that single rupture processes are associated with membrane tether formation, suggesting that the cytoskeleton is not involved in mannose binding events during the first few seconds of contact. Our study provides an experimental and conceptual basis for measuring interactions between pathogens and target-cells at different levels of complexity and as a function of interaction time, thus leading to new insights into the biophysical mechanisms of parasite pathogenicity. PMID:28472161

  18. Mechanical properties of adhesive systems at cryogenic and other temperatures

    Science.gov (United States)

    Staton, W. L.; Klich, P. J.; Cockrell, C. E.

    1982-01-01

    This paper presents a summary of the National Transonic Facility (NTF) fan blade adhesive characterization tests. Data was obtained at -300 F, room temperature (RT) and 200 F. The adhesive characterization data was acquired using specimens fabricated from materials orientated to simulate the lay up of the fan blades. Specimen fabrication, characterization tests, test equipment, test data, results and concluding remarks are reported. Adhesive test results are presented for specimens of the following types: lap shear, double lap shear, butt, short beam shear, flexure, and differential strain.

  19. Rubber contact mechanics: adhesion, friction and leakage of seals.

    Science.gov (United States)

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  20. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .2. ADHESION MECHANISMS

    NARCIS (Netherlands)

    VANDERMEI, HC; VANDEBELTGRITTER, B; BUSSCHER, HJ

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. Recent observations that the zeta potentials of hydrocarbons can be highly negative in the various solutions commonly used in MATH, have suggested that MATH may measure a

  1. Nano-mechanics of Tunable Adhesion using Non Covalent Forces

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Liechti

    2012-09-08

    The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

  2. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    Science.gov (United States)

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  3. Noise generation mechanisms in claw pole alternators

    Science.gov (United States)

    Eversman, W.; Burns, S.; Pekarek, S.; Bai, Hua; Tichenor, J.

    2005-05-01

    Noise of claw pole alternators, generated electromagnetically and structurally radiated, has been the subject of an extensive research program. The goal has been to identify and reduce noise radiation mechanisms in claw pole (Lundell) alternators used in automotive applications. Two approaches have been followed. In the first, electromagnetic sources of noise have been investigated by lumped parameter and magnetically equivalent circuit modeling and simulation, and by related experimentation. This is the subject of separate papers. The second, concurrent study reported here has investigated machine and mount responses to an electromagnetically generated torque ripple. Modeling and experimentation has led to the conclusion that there exists a high correlation between electromagnetic sources, torque ripple, and radiated noise. Experimentation also has led to the conclusion that noise characteristics of a given machine are substantially altered by modification of the mounting configuration. The work reported here involves modeling, simulation, and experiment to isolate machine dynamic characteristics and mounting geometries which contribute to strong coupling between torque ripple and machine/mount dynamic response. A low-order model of the alternator which includes shaft flexibility, gyroscopic effects, shaft bearing asymmetry, mounting lug geometry, and mounting structure dynamics has been created. The model provides a rapid simulation of dynamic response in the form of a transfer function between torque ripple and mounting forces. Generic studies of a simplified mounting structure coupled to the machine model are presented here. Acoustic testing of several machine configurations on a production mount has been carried out to investigate 36th order noise in three phase machines and 72nd order noise in six-phase machines. Electromagnetic modeling and dynamic response simulations suggest that the six-phase machine is inherently quieter. This is supported by

  4. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.

    Science.gov (United States)

    Cohen, N; Dotan, A; Dodiuk, H; Kenig, S

    2016-09-20

    Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (reduction of shear adhesion to a variety of SH treated substrates having low thermal expansion coefficient (copper and aluminum) and high thermal expansion coefficient (polycarbonate and poly(methyl methacrylate)). It was concluded that the thermal mismatch between the adhering ice and the various substrates and its resultant interfacial thermal stresses affect the adhesion strength of the ice to the respective substrate.

  5. An alternative adhesive based technique of raising the occlusal vertical dimension.

    Science.gov (United States)

    Nanda, Aditi; Jain, Veena; Manak, Karan; Verma, Mahesh

    2014-01-01

    Decimated dentitions may require raising the vertical dimension in some conditions while performing a full mouth rehabilitation treatment. Increase in a vertical dimension should be diagnosed by reversible methods prior to performing any irreversible methods for a minimum time period. Reversible methods like splints and overlay dentures are often used for this purpose. These methods however cannot be used in some conditions like in cases of brittle teeth. An alternative technique based on adhesive technology has been described which is reversible and yet minimally traumatic to teeth. The technique has two basic aims. The first is to accurately implement the occlusal scheme as planned in the diagnostic wax-up in the reversible method of altering the vertical dimension. The second aim is to increase the vertical dimension with minimal damage to the teeth.

  6. Strength and Failure Mechanism of Composite-Steel Adhesive Bond Single Lap Joints

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2018-01-01

    Full Text Available Carbon fiber-reinforced plastics- (CFRP- steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.

  7. A new arginine-based dental adhesive system: formulation, mechanical and anti-caries properties.

    Science.gov (United States)

    Geraldeli, Saulo; Soares, Eveline F; Alvarez, Andres J; Farivar, Tanaz; Shields, Robert C; Sinhoreti, Mario A C; Nascimento, Marcelle M

    2017-08-01

    Secondary caries at the margins of composite restorations has been attributed to adhesive failure and consequent accumulation of cariogenic biofilms. To develop and evaluate an etch-and-rinse adhesive system containing arginine for sustainable release and recharge without affecting its mechanical properties. Arginine metabolism by oral bacteria generates ammonia, which neutralizes glycolytic acids and creates a neutral environmental pH that is less favorable to the growth of caries pathogens, thus reducing the caries risk at the tooth-composite interface. Experimental adhesives were formulated with methacrylate monomers and arginine at 5%, 7%, and 10% or no arginine (control). Adhesives were tested for: (i) mechanical properties of true stress (FS and UTS), modulus of elasticity (E), degree of conversion (DC), Knoop hardness number (KHN) and dentin microtensile bond strength (μ-TBS), (ii) arginine release and recharge, and (iii) antibacterial activities. Data was analyzed by t-test, one-way ANOVA and Tukey's tests. FS and UTS results showed no statistically significant differences between the 7% arginine-adhesive and control, while the results for E, DC, KHN and μ-TBS showed no difference among all groups. The 7% arginine-adhesive showed a high release rate of arginine (75.0μmol/cm 2 ) at 2h, and a more sustainable, controlled release rate (up to 0.2μmol/cm 2 ) at 30days. Incorporation of 7% arginine did not affect the physical and mechanical properties of the adhesive. Arginine was released from the adhesive at a rate and concentration that exhibited antibacterial effects, regardless of shifts in biofilm conditions such as sugar availability and pH. Secondary caries is recognized as the main reason for failure of dental restorations. The development of an arginine-based adhesive system has the potential to dramatically reduce the incidence and severity of secondary caries in adhesive restorations in a very economical fashion. Copyright © 2017 Elsevier Ltd

  8. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Directory of Open Access Journals (Sweden)

    Casey A Gilman

    Full Text Available One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C is the change in extension (Δ relative to a change in force (F while loading a gecko's adhesive system (C = dΔ/dF. Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g. We also examined changes between juveniles and adults within a single species (Phelsuma grandis. We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  9. Influence of the Hardener Proportion on Mechanical Properties of Adhesive Bonds Used in Agriculture

    Directory of Open Access Journals (Sweden)

    Valášek P.

    2015-01-01

    Full Text Available Joining materials by adhesive bonding is used across all industrial branches. The occurrence of adhesive bonds in machine constructions is still more frequent because of the development of adhesives which are able to meet various requirements of designers. This trend is observable also in agriculture - in the construction of agricultural machines. There even exists a cooperation between the companies developing the adhesives and the agricultural machines producers. The production process of machines and equipment must consider a required production tact. Adhesives and the process of their hardening have to meet these requirements. In the sphere of agriculture, epoxy resins hardening based either on hardeners or heating are used. Mechanical properties of two-component epoxy resins depending on variable amount of the hardener starting crosslinking of these reactoplastics are described.

  10. Mechanical Properties and Adhesion of a Micro Structured Polymer Blend

    Directory of Open Access Journals (Sweden)

    Brunero Cappella

    2011-07-01

    Full Text Available A 50:50 blend of polystyrene (PS and poly(n-butyl methacrylate (PnBMA has been characterized with an Atomic Force Microscope (AFM in Tapping Mode and with force-distance curves. The polymer solution has been spin-coated on a glass slide. PnBMA builds a uniform film on the glass substrate with a thickness of @200 nm. On top of it, the PS builds an approximately 100 nm thick film. The PS-film undergoes dewetting, leading to the formation of holes surrounded by about 2 µm large rims. In those regions of the sample, where the distance between the holes is larger than about 4 µm, light depressions in the PS film can be observed. Topography, dissipated energy, adhesion, stiffness and elastic modulus have been measured on these three regions (PnBMA, PS in the rims and PS in the depressions. The two polymers can be distinguished in all images, since PnBMA has a higher adhesion and a smaller stiffness than PS, and hence a higher dissipated energy. Moreover, the polystyrene in the depressions shows a very high adhesion (approximately as high as PnBMA and its stiffness is intermediate between that of PnBMA and that of PS in the rims. This is attributed to higher mobility of the PS chains in the depressions, which are precursors of new holes.

  11. Mechanical and Anti-bacterial Properties of Dental Adhesive Containing Diamond Nanoparticles

    Directory of Open Access Journals (Sweden)

    zeinab Ebadi

    2012-12-01

    Full Text Available The effect of nanoparticle diamond incorporated in an experimental dental adhesive formulation is valuated by examining the mechanical properties and shear bond strength of the system. Diamond nanoparticles were incorporated into the dentin adhesive system in different concentrations of 0, 0.05, 0.1, 0.2, 0.5, and 1.0 weight percentages. The suspensions were ultrasonicated to facilitate the nano-particle dispersion in an adhesive solution containing ethanol, bis-GMA, UDMA, TMPTMA, HEMA  and photo-initiator  system. Diametral  tensile  strength, fexural strength, fexural modulus, depth of cure and microshear bond strength of the adhesive system were measured. The adhesive-dentin interface was then observed by scanning electron microscopy. The results were analyzed using one-way ANOVA at a signifcant level of P>0.05. No signifcant difference was observed between the diametral tensile strength of the adhesive. At nanoparticle content level of 0.1% (by wt, however, 85% increase in fexural strength and 13% enhancement in fexural modulus were observed. Microshear bond strength test revealed 70% and 79% improvements of adhesion force in systems containing 0.1% and 0.2% nanoparticles, respectively. Although the neat diamond nanoparticles revealed antibacterial activity, the adhesive containing different percentages of the nano particles did not show any antibacterial activities when tested against, Staphilococcus Aureus, Staphilococcus Streptococcus, Staphilococcus ephidermidis, Saprophyticus, Enterococcus faecalis bacteries.

  12. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  13. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  14. Contact mechanics studies of polymer thin film adhesion

    Science.gov (United States)

    McSwain, Rachel Lynn

    The work presented in this dissertation focuses on using the unique abilities of the JKR technique to probe the interfacial interactions of two independent polymer systems. To perform these studies, modifications were made to the JKR technique, including the integration of a thermal cycle to enable testing of thermally initiated interfacial interactions between two materials. Another enhancement of the JKR technique involved incorporation of cyclic testing to study crack growth under fatigue conditions. These additions to the JKR technique were used in the analysis of interfacial interactions of poly(tetramethyl bisphenol-A polycarbonate) (TMPC) and poly(ethylene oxide) (PEO). Adhesion tests were performed on thin layers of PEO sandwiched between layers of TMPC, which were heated in contact above the melting temperature of the PEO and cooled back to room temperature before a cyclic fatigue test was performed. Additional characterization of the bulk and interfacial properties of this blend showed that these two polymers are miscible. From these studies, the interfacial interaction of the TMPC and PEO was found to be controlled by the PEO-mediated mixing of the TMPC layers. In a second set of experiments, a model film consisting of a layer of acrylic diblock copolymer micelles was used to study the processes involved in the transfer of a viscoelastic film from a weakly adhesive elastomer substrate to a more strongly adhesive hemispherical glass indenter. Transfer of the film during tensile loading of the indenter began with expansion of a cavity at the film/elastomer interface, followed by subsequent delamination of the film at this interface. Criteria for cavity expansion and delamination are expressed in terms of the energy release rate. The critical energy release rate for cavity expansion increases linearly with the film thickness. A critical film thickness was identified above which films are able to peel from the elastomeric substrate over a region outside the

  15. Research notes : alternative local financing mechanisms.

    Science.gov (United States)

    2010-06-01

    Literature was reviewed to appraise the advantages and disadvantages of each financing mechanism evaluated, and, where applicable, highlight examples of their use in Oregon. Financing mechanisms were then assessed for suitability for funding intercha...

  16. Mechanics of the Adhesive Properties of Ivy Nanoparticles

    Science.gov (United States)

    2013-11-21

    from the start of the project to the date of this printing . List the papers, including journal references, in the following categories: 23.00 24.00...centrifuged at 1000g to remove any remaining debris. Finally, the sample was dialyzed through a 300 kDa Spectra/Por cellulose ester dialysis membrane...927 KPa (2.5 fold higher than the pure CS) after 3d reaction. Compared to 0.1and 1 Au CSNC, the 0.5 Au CSNC showed a significantly higher adhesion

  17. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  18. Adhesive and abrasive wear mechanisms in ion implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation. (orig.)

  19. Alternative support systems for mechanized stopes

    CSIR Research Space (South Africa)

    Roberts, DP

    2005-05-01

    Full Text Available , it is not envisaged that such machines will cut in-stope pillars. This paper describes the alternative support systems that will replace the pillars and the stope geometries that will be required for this type of mining. The paper describes how the support resistance...

  20. Alternative dispute resolution mechanisms, plea bargain and ...

    African Journals Online (AJOL)

    Conflicts, disputes, disagreements, problems and issues are inevitable in human affairs. Most of these disputes and problems in some circumstances give rise to offences for which a criminal prosecution becomes necessary. One can say that Alternative Dispute Resolution (ADR) is used all round the world to resolve ...

  1. Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda)

    Science.gov (United States)

    von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert

    2012-01-01

    Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. PMID:22221553

  2. Peripheral neuropathy: pathogenic mechanisms and alternative therapies.

    Science.gov (United States)

    Head, Kathleen A

    2006-12-01

    Peripheral neuropathy (PN), associated with diabetes, neurotoxic chemotherapy, human immunodeficiency virus (HIV)/antiretroviral drugs, alcoholism, nutrient deficiencies, heavy metal toxicity, and other etiologies, results in significant morbidity. Conventional pain medications primarily mask symptoms and have significant side effects and addiction profiles. However, a widening body of research indicates alternative medicine may offer significant benefit to this patient population. Alpha-lipoic acid, acetyl-L-carnitine, benfotiamine, methylcobalamin, and topical capsaicin are among the most well-researched alternative options for the treatment of PN. Other potential nutrient or botanical therapies include vitamin E, glutathione, folate, pyridoxine, biotin, myo-inositol, omega-3 and -6 fatty acids, L-arginine, L-glutamine, taurine, N-acetylcysteine, zinc, magnesium, chromium, and St. John's wort. In the realm of physical medicine, acupuncture, magnetic therapy, and yoga have been found to provide benefit. New cutting-edge conventional therapies, including dual-action peptides, may also hold promise.

  3. Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials.

    Science.gov (United States)

    Waar, Karola; van der Mei, Henny C; Harmsen, Hermie J M; Degener, John E; Busscher, Henk J

    2002-06-01

    An important step in infections associated with biliary drains is adhesion of micro-organisms to the surface. In this study the role of three surface proteins of Enterococcus faecalis (enterococcal surface protein, aggregation substances 1 and 373) in the adhesion to silicone rubber, fluoro-ethylene-propylene and polyethylene was examined. Four isogenic E. faecalis strains with and without aggregation substances and one strain expressing enterococcal surface protein were used. The kinetics of enterococcal adhesion to the materials was measured in situ in a parallel plate flow chamber. Initial deposition rates were similar for all strains, whereas the presence of surface proteins increased the total number of adhering bacteria. Nearest neighbour analysis demonstrated that enterococci expressing the whole sex-pheromone plasmid encoding aggregation substances 1 or 373 adhered in higher numbers through mechanisms of positive cooperativity, which means that adhesion of bacteria enhances the probability of adhesion of other bacteria near these bacteria. Enterococci with the enterococcal surface protein did not adhere through this mechanism. These findings indicate that the surface proteins of E. faecalis play a key role in the adhesion to bile drains and bile drain associated infections.

  4. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

    Science.gov (United States)

    Kim, Iris L; Khetan, Sudhir; Baker, Brendon M; Chen, Christopher S; Burdick, Jason A

    2013-07-01

    Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

    International Nuclear Information System (INIS)

    Kirchenbuechler, David; Born, Simone; Kirchgessner, Norbert; Houben, Sebastian; Hoffmann, Bernd; Merkel, Rudolf

    2010-01-01

    Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile

  6. Mechanisms of x-ray emission from peeling adhesive tape

    Science.gov (United States)

    Constable, E.; Horvat, J.; Lewis, R. A.

    2010-09-01

    It has previously been reported that x-rays are emitted when adhesive tape is peeled in a vacuum but no account of the dependence of the x-ray emission on the pressure of the environment has been given to date. In this paper we present detailed experimental data on the number and angular distribution of x-ray photons as a function of pressure. We find that x-rays are emitted for pressures between p0=10-3 and p1=10-2 mBar, with ˜106 counts/(cm2 s) recorded by a 256×256 pixel2 silicon array sensor placed 35 mm from the tape. The main role of the tape is found to be the build-up of an acceleration potential sufficient to produce x-rays by bremsstrahlung of free electrons in a low-pressure gas. The source of the free electrons is the gas. Our model shows that the production rate of uncompensated tape charge and absorption of positive ions from the gas define p1. The angular distribution of the radiation shows a pressure-independent 20° wide peak in the direction perpendicular to electron motion. Ordinary bremsstrahlung cannot describe this peak.

  7. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers.

    Science.gov (United States)

    Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran

    2018-04-25

    The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer.

    Science.gov (United States)

    Lee, Meng-Horng; Wu, Pei-Hsun; Staunton, Jack Rory; Ros, Robert; Longmore, Gregory D; Wirtz, Denis

    2012-06-20

    The mechanical and adhesive properties of cancer cells significantly change during tumor progression. Here we assess the functional consequences of mismatched stiffness and adhesive properties between neighboring normal cells on cancer cell migration in an epithelial-like cell monolayer. Using an in vitro coculture system and live-cell imaging, we find that the speed of single, mechanically soft breast carcinoma cells is dramatically enhanced by surrounding stiff nontransformed cells compared with single cells or a monolayer of carcinoma cells. Soft tumor cells undergo a mode of pulsating migration that is distinct from conventional mesenchymal and amoeboid migration, whereby long-lived episodes of slow, random migration are interlaced with short-lived episodes of extremely fast, directed migration, whereas the surrounding stiff cells show little net migration. This bursty migration is induced by the intermittent, myosin II-mediated deformation of the soft nucleus of the cancer cell, which is induced by the transient crowding of the stiff nuclei of the surrounding nontransformed cells, whose movements depend directly on the cadherin-mediated mismatched adhesion between normal and cancer cells as well as α-catenin-based intercellular adhesion of the normal cells. These results suggest that a mechanical and adhesive mismatch between transformed and nontransformed cells in a cell monolayer can trigger enhanced pulsating migration. These results shed light on the role of stiff epithelial cells that neighbor individual cancer cells in early steps of cancer dissemination. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Design of Electrostatic Directional Dry Adhesives for Robotic Attachment Mechanisms

    Data.gov (United States)

    National Aeronautics and Space Administration — Attachment mechanisms that are effective over a wide range of material types and surface conditions can be used for a variety of applications including manipulator...

  10. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  11. Ion Beam Enhanced Deposition as Alternative Pretreatment for Adhesive Bonding of Aircraft Alloys

    National Research Council Canada - National Science Library

    Koch, Gerhardus

    1994-01-01

    .... The objective of the work described in this paper was to demonstrate the feasibility of applying a non-chemical technique to generate an aluminum oxide surface with adhesive bonding properties...

  12. Alternative evaluation of innovations’ effectiveness in mechanical engineering

    Science.gov (United States)

    Puryaev, A. S.

    2017-09-01

    The aim of present work is approbation of the developed technique for assessing innovations’ effectiveness. We demonstrate an alternative assessment of innovations’ effectiveness (innovation projects) in mechanical engineering on illustrative example. It is proposed as an alternative to the traditional method technique based on the value concept and the method of “Cash flow”.

  13. Empirical Research of College Students' Alternative Frameworks of Particle Mechanics

    Science.gov (United States)

    Wang, Hongmei

    2010-01-01

    Based on the constructive theory, about 300 college students of grade 05 of the electronic information specialty of Dezhou University are surveyed for their alternative frameworks of particle mechanics in college physics in this article. In the survey, the questionnaires are used to find out college students' alternative frameworks, and the…

  14. Adhesion mechanism of salmon to polymer-coated can walls

    NARCIS (Netherlands)

    Dommershuijzen, H.; Hviid, L.; Hartog, den H.; Vereijken, J.

    2005-01-01

    Minimization of the amount of salmon adhering to the can wall after emptying is one of the convenience requirements of consumers of canned salmon. In order to achieve this, the mechanism by which salmon adheres to cans needs to be understood. The aim of this study was to provide such knowledge for

  15. Damage Mechanisms in AISI 304 Borided Steel: Scratch and Daimler-Benz Adhesion Tests

    OpenAIRE

    Rodríguez-Castro, German Anibal; Jiménez-Tinoco, Luis Fernando; Méndez-Méndez, Juan Vicente; Arzate-Vázquez, Israel; Meneses-Amador, Alfonso; Martínez-Gutiérrez, Hugo; Campos-Silva, Iván

    2015-01-01

    In this study, damage mechanisms in the FeB/Fe2B coatings formed on the surface of AISI 304 steel are determined by adhesion tests. First, the boriding of the AISI 304 steel was carried out through the powder-pack method at 1223 K in the range from 2-10 h of exposure time. After treatment, Berkovich depth-sensing indentation test were conducted; the result showed tensil and compressive residual stresses in the FeB and Fe2B, respectively. The adhesion of borided steels was evaluated by the Dai...

  16. THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY.

    Science.gov (United States)

    CURTIS, A S

    1964-02-01

    An optical technique for measuring the thickness of thin films has been adapted and evaluated for studying the structure of the adhesion of cells to glass in tissue culture. This technique, which is termed interference reflection microscopy, has been used to study embryonic chick heart fibroblasts. These findings have been observed: in normal culture medium the closest approach of the cell surface to substrate in its adhesions is ca. 100 A, much of the cell surface lying farther away; chemical treatments which bring the cell surface to near its charge reversal point reduce the closest approach of adhesions to glass in the adhesions. When cells de-adhere from glass, they appear not to leave fragments behind. The adhesive sites in these fibroblasts appear to be confined to the edge of the side of the cell facing the substrate and to the pseudopods. The significance of this is discussed in relation to the phenomenon of contact inhibition. Evidence is presented that the mechanism of cell adhesion does not involve calcium atoms binding cells to substrate by combining with carboxyl groups on cell surface, substrate, and with a cement substance. Osmium tetroxide fixation results in a final separation of 100 to 200 A between cell and substrate: there are reasons for thinking that this fairly close approach to the condition in life is produced as an artefact. The results can be accounted for only in terms of the action of electrostatic repulsive forces and an attractive force, probably the van der Waals-London forces. Biological arguments suggest that these results are equally applicable for cell-to-cell adhesions.

  17. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion.

    Science.gov (United States)

    James, Sean A; Hilal, Nidal; Wright, Chris J

    2017-07-01

    The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coupling behavior between adhesive and abrasive wear mechanism of aero-hydraulic spool valves

    OpenAIRE

    Chen Yunxia; Gong Wenjun; Kang Rui

    2016-01-01

    Leakage due to wear is one of the main failure modes of aero-hydraulic spool valves. This paper established a practical coupling wear model for aero-hydraulic spool valves based on dynamic system modelling theory. Firstly, the experiment for wear mechanism verification proved that adhesive wear and abrasive wear did coexist during the working process of spool valves. Secondly coupling behavior of each wear mechanism was characterized by analyzing actual time-variation of model parameters duri...

  19. Theory of the mechanical response of focal adhesions to shear flow

    International Nuclear Information System (INIS)

    Biton, Y Y; Safran, S A

    2010-01-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  20. Theory of the mechanical response of focal adhesions to shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Biton, Y Y; Safran, S A, E-mail: yoav.biton@weizmann.ac.i, E-mail: sam.safran@weizmann.ac.i [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  1. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2017-05-01

    Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.

  2. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  3. A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe

    International Nuclear Information System (INIS)

    Sridhar, I; Zheng, Z W; Johnson, K L

    2004-01-01

    As length scales decrease, adhesive forces become increasingly important. These adhesive forces contribute to the normal load in experiments conducted on thin layered systems using micro-probe instruments such as the surface force apparatus (SFA) and the atomic force microscope (AFM). Adhesion between these thin-layer systems was analysed by Sridhar et al (1997 J. Phys. D: Appl. Phys. 30 1710) for the SFA geometry and Johnson and Sridhar (2001 J. Phys. D: Appl. Phys. 34 683) for AFM using a numerical SJF (Sridhar-Johnson-Fleck) version of the JKR (Johnson-Kendal-Roberts) theory. In this paper, adhesion mechanics between a compliant elastic coating and a spherical probe is investigated using the SJF model in detail. When the substrate is rigid, the non-dimensional pull-off force may differ from the JKR value of -0.5 by as much as 90%. Computations of the contact size at zero load and pull-off force are presented for a range of values of adhesion energy. Finally, empirical relations for the contact load and contact compliance as a function of contact radius were obtained from the numerical data for practical layer-substrate material systems

  4. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~ 3.5 fold increase in adhesion strength compared to staples in skin graft fixation, and removal force of ~ 4.5 N/cm2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics. PMID:23591869

  5. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav

    2017-01-01

    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  6. Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability.

    Science.gov (United States)

    Gutsaeva, Diana R; Montero-Huerta, Pedro; Parkerson, James B; Yerigenahally, Shobha D; Ikuta, Tohru; Head, C Alvin

    2014-03-20

    The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.

  7. Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns.

    Directory of Open Access Journals (Sweden)

    Maiko Saito

    Full Text Available Although ceramic hydroxyapatite (HAp chromatography has been used as an alternative method ultracentrifugation for the production of vaccines, the mechanism of virus separation is still obscure. In order to begin to understand the mechanisms of virus separation, HAp surfaces were observed by scanning electron microscopy after chromatography with dengue viruses. When these processes were performed without elution and with a 10-207 mM sodium phosphate buffer gradient elution, dengue viruses that were adsorbed to HAp were disproportionately located in the columns. However, when eluted with a 10-600 mM sodium phosphate buffer gradient, few viruses were observed on the HAp surface. After incubating the dengue viruses that were adsorbed on HAp beads at 37°C and 2°C, the sphericity of the dengue viruses were reduced with an increase in incubation temperature. These results suggested that dengue virus was adsorbed to the HAp surface by electronic interactions and could be eluted by high-salt concentration buffers, which are commonly used in protein purification. Furthermore, virus fusion was thought to occur with increasing temperature, which implied that virus-HAp adhesion was similar to virus-cell adhesion.

  8. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  9. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    Science.gov (United States)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G

  10. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    Science.gov (United States)

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement.

  11. The adhesion solidity, physico-mechanical and tribological properties of the coating of titanium nitride

    Science.gov (United States)

    Krivina, L. A.; Tarasenko, Yu P.; Fel, Ya A.

    2017-05-01

    Influence of variable technological factors (arch current, fractional pressure of gas in the camera) on structure, physic-mechanical and tribological features of an ion-plasma coating of titanium nitride has been investigated. The adhesion solidity has been put to the test and the mechanism of destruction of a covering has been also researched by a skretch-test method. The optimal mode of spraying at which the formation of the nanostructured bar coating of TiN has been defined. The covering offers an optimal combination of physic-mechanical, tribological and solidity features.

  12. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  13. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  14. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis; Goldmann, Wolfgang H.

    2009-01-01

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  15. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Science.gov (United States)

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.

    Science.gov (United States)

    Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Millqvist-Fureby, Anna

    2015-01-01

    Tablets are the most convenient form for drug administration. However, despite the ease of manufacturing problems such as powder adhesion occur during the production process. This study presents surface and structural characterization of tablets formulated with commonly used excipients (microcrystalline cellulose (MCC), lactose, mannitol, magnesium (Mg) stearate) pressed under different compaction conditions. Tablet surface analyses were performed with scanning electron microscopy (SEM), profilometry and atomic force microscopy (AFM). The mechanical properties of the tablets were evaluated with a tablet hardness test. Local adhesion detected by AFM decreased when Mg stearate was present in the formulation. Moreover, the tablet strength of plastically deformable excipients such as MCC was significantly decreased after addition of Mg stearate. Combined these facts indicate that Mg stearate affects the particle-particle bonding and thus elastic recovery. The MCC excipient also displayed the highest hardness which is characteristic for a highly cohesive material. This is discussed in the view of the relatively high adhesion found between MCC and a hydrophilic probe at the nanoscale using AFM. In contrast, the tablet strength of brittle materials like lactose and mannitol is unaffected by Mg stearate. Thus fracture occurs within the excipient particles and not at particle boundaries, creating new surfaces not previously exposed to Mg stearate. Such uncoated surfaces may well promote adhesive interactions with tools during manufacture. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mechanism for reduced pericardial adhesion formation in hypercholesterolemic swine supplemented with alcohol.

    Science.gov (United States)

    Lassaletta, Antonio D; Chu, Louis M; Elmadhun, Nassrene Y; Robich, Michael P; Hoffman, Zachary G; Kim, David J; Sellke, Frank W

    2013-05-01

    Previous experiments in Yorkshire swine demonstrated significantly fewer pericardial adhesions and intramyocardial collagen deposition at reoperative sternotomy in animals supplemented with vodka but not with red wine. The purpose of this experiment was to determine a mechanism for adhesion reduction. Twenty-seven male Yorkshire swine were fed a high-cholesterol diet to simulate conditions of coronary artery disease followed by the surgical placement of an ameroid constrictor to the left circumflex coronary artery to induce chronic ischaemia. Postoperatively, control pigs continued their high-fat/cholesterol diet alone, whereas the two experimental groups had diets supplemented with either red wine or vodka for 7 weeks followed by reoperative sternotomy and cardiac harvest. The expression of related adhesion focal tyrosine kinase (RAFTK) and caspase 3 in the sodium dodecyl sulphate (SDS)-soluble myocardial fraction was significantly higher only in the vodka-supplemented group. In the more soluble fraction, the expression of caspase 3, cleaved caspase 3 and caspase 9 was lower in both the vodka and red wine treatment groups. In the SDS-soluble lysate fraction, likely representing the transmembrane/cell-extracellular matrix (ECM), a significant increase in RAFTK and caspase 3 expression was seen only in the vodka-treated animals, which may explain why this group demonstrated significantly fewer pericardial adhesions. Caspase expression/signalling was not increased in the more soluble myocardial lysate, suggesting that the increased apoptotic signalling was specific to the epicardial-ECM.

  18. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...... with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation....

  19. Mechanical analysis of CFRP-steel hybrid composites considering the interfacial adhesion

    Science.gov (United States)

    Jang, Jinhyeok; Sung, Minchang; Han, Sungjin; Shim, Wonbo; Yu, Woong-Ryeol

    2017-10-01

    Recently, hybrid composites of carbon fiber reinforced plastics (CFRP) and steel have attracted great attention from automotive engineers due to their high potential for lightweight and multi-materials structures. Interestingly, such hybrid composites have demonstrated increased breaking strain, i.e., the breaking strain of CFRP in the hybrid was larger than that of single CFRP. As such the mechanical properties of hybrid composites could not be calculated using the rule of mixture. In addition, such increase is strongly dependent on the adhesion between CFRP and steel. In this study, a numerical analysis model was built to investigate the mechanism behind increased breaking strain of CFRP in the hybrid structure. Using cohesive zone model, the adhesion between CFRP and steel was effectively considered. The numerical results showed that the simulated mechanical behavior of the hybrid composites did not change as much as observed in experimental as the interfacial adhesion varied. We will investigate this discrepancy in detail and will report new analysis method suitable for CFRP and steel hybrid composites.

  20. Estimation of adhesive bond strength in laminated safety glass using guided mechanical waves

    Science.gov (United States)

    Huo, Shihong

    Laminated safety glass is used in the automobile industry and in architectural applications. Laminated safety glass consists of a plastic interlayer, such as a layer of poly vinyl butyral (PVB) or Butacite, surrounded by two adjacent glass plates. The glass can be float glass, plate glass, tempered glass, or sheet glass, and the plastic interlayer is made of a viscoelastic material with relatively high damping. The level of adhesive bond strength between the plastic interlayer and the two adjacent glass plates has a significant role in the penetration resistance against flying objects and is a critical parameter towards ensuring the proper performance of safety glass. Therefore, estimation and control of adhesive bond levels in laminated safety glass is a critical issue. There are several destructive testing procedures used to quantify the adhesion level in laminated safety glass. These tests include the tension test, the peel test, the impact test, and the pummel test. All these tests have drawbacks including the pummel test method, which has been the most widely used in industry for over 80 years. The primary drawbacks of the pummel test method are that it is destructive and subjective (i.e., involves individual human judgment), which precludes this method for use as an on-line test method for quality control. Consequently, a quantitative nondestructive testing method to evaluate adhesion levels would be an asset to the laminated safety glass industry. In this study, adhesion levels in laminated safety glass samples, i.e., windshields, have been assessed using the guided mechanical wave method. To study the adhesive bond strength analytically, the imperfect interfaces between the plastic interlayer and the two adjacent glass plates in laminated safety glass are modeled using a bed of longitudinal and shear springs, and their stiffness characteristics are estimated using fracture mechanics and atomic force microscopy (AFM) surface measurements. The atomic force

  1. Alternative Mechanisms for Expanding Access to Justice in Latin ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to develop a regional comparative framework for assessing the effectiveness of alternative justice mechanisms in promoting greater access to justice, particularly among marginalized populations. Researchers will also review implementation challenges. They will explore options to enable greater ...

  2. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  3. Mechanical thrombectomy: an alternative for treating cerebral venous sinus thrombosis.

    Science.gov (United States)

    Izura Gómez, Marta; Misis Del Campo, Maite; Puyalto de Pablo, Paloma; Castaño Duque, Carlos

    2018-01-01

    We report the use of mechanical venous thrombectomy in 2 cases of cerebral venous sinus thrombosis in which the usual first-choice treatment with systemic anticoagulants was contraindicated. Our aim is to present this treatment as an alternative to consider when anticoagulants therapy is too risky or is contraindicated in critically ill patients.

  4. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  5. Mechanical Properties of 3 Ply Plywood Made from Acacia Mangium Veneers and Green Starch-based Adhesives

    Directory of Open Access Journals (Sweden)

    Chiang Liew Kang

    2016-01-01

    Full Text Available Recently, starch has attracted great consideration as a raw material on wood adhesives in the wood industry. Cassava and sago starchbased adhesive are renewable, biodegradable and environmental friendly product when compared with other petroleum-based adhesives. In this study, different starches-based adhesive has been produced. Mechanical properties of plywood made from Acacia mangium veneers with different starches-based adhesives (cassava and sago as binder cured at different curing temperatures (100°C, 120°C and 140°C has been determined. All materials (starch, vinegar, water and glycerol were cooked and stirred until the mixture reached 70°C - 80°C which become sticky and whitish. After that, starch-based adhesives were applied on the veneers by using spreader, and the plywood were pre-pressed for 30 minutes with 20 kg load before hot-press. Cassava starch-based adhesive showed the highest Modulus of Elasticity which was 12410.56 N/mm2 than sago starch-based adhesive, while Modulus of Rupture of the cassava starch-based adhesive at 100°C showed highest mean value at 74.19 N/mm2. Sago-starch based adhesive at 140°C showed the highest shear strength with 1.11 N/mm2. In short, cassava and sago starch-based adhesives gave good performance in mechanical properties such as bending for pressed temperature (100°C and 120°C, and shear at 140°C pressed temperature.

  6. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos.

    Science.gov (United States)

    Cheng, Q H; Chen, B; Gao, H J; Zhang, Y W

    2012-02-07

    Several mechanisms have been proposed in the literature to explain the robust attachment and rapid, controllable detachment of geckos' feet on vertical walls or ceilings, yet, it is still debatable, which one is ultimately responsible for geckos' extraordinary capabilities for robust and reversible adhesion. In this paper, we re-examine some of the key movements of geckos' spatula pads and seta hairs during attachment and detachment, and propose a sequence of simple mechanical steps that would lead to the extraordinary properties of geckos observed in experiments. The central subject under study here is a linear distribution of pre-tension along the spatula pad induced by its sliding motion with respect to a surface. The resulting pre-tension, together with a control of setae's pulling force and angle, not only allows for robust and strong attachment, but also enables rapid and controllable detachment. We perform computational modelling and simulations to validate the following key steps of geckos' adhesion: (i) creation of a linear distribution of pre-tension in spatula through sliding, (ii) operation of an instability envelope controlled by setae's pulling force and angle, (iii) triggering of an adhesion instability leading to partial decohesion along the interface, and (iv) complete detachment of spatula through post-instability peeling. The present work not only reveals novel insights into the adhesion mechanism of geckos, but also develops a powerful numerical simulation approach as well as additional guidelines for bioinspired materials and devices.

  7. A STUDY ON THE USE OF GRAPHENE PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES: MECHANICAL PROPERTIES AND MICROWAVE ACTIVATION

    Science.gov (United States)

    2017-11-03

    Technical Report ARWSB-TR-18001 A STUDY ON THE USE OF GRAPHENE-PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES: MECHANICAL PROPERTIES...AND SUBTITLE A STUDY ON THE USE OF GRAPHENE-PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES: MECHANICAL PROPERTIES AND MICROWAVE ACTIVATION 5a...is a widely used engineering polymer that is especially suitable for high - temperature applications. Graphene is a two-dimensional form of carbon

  8. Diatom Attachment at Aquatic Interfaces: Molecular Interactions, Mechanisms, and Physiology of Adhesion

    National Research Council Canada - National Science Library

    Gretz, Michael

    1997-01-01

    .... those more hydrophobic and that bacterial 'preconditioning' has variable effects on adhesion; (3) developed methodology for mass culture of fouling diatoms and isolation of adhesive components; (4...

  9. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Directory of Open Access Journals (Sweden)

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  10. Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Directory of Open Access Journals (Sweden)

    Fang Te-Hua

    2009-01-01

    Full Text Available Abstract Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature.

  11. Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium.

    Science.gov (United States)

    Arunbabu, Dhamodaran; Shahsavan, Hamed; Zhang, Wei; Zhao, Boxin

    2013-01-10

    Poly(acrylic acid-co-N,N'-methylenebisacrylamide) hydrogel films were synthesized by copolymerizing acrylic acid (AAc) with N,N'-methylenebisacrylamide (MBA) as a cross-linker via photo polymerization in the spacing confined between two glass plates. NMR spectroscopy was utilized to determine the cross-linking density. We found that the cross-linking density determined by NMR is higher than that expected from the feed concentrations of cross-linkers, suggesting that MBA is more reactive than AAc and the heterogeneous nature of the cross-linking. In addition to the swelling tests, indentation tests were performed on the hydrogel films under water to investigate effects of the cross-linking density on the adhesion and mechanical properties of the hydrogel films in terms of adhesive pull-off force and Hertz-type elastic modulus. As the cross-linker concentration increased, the effective elastic modulus of the hydrogel films increased dramatically at low cross-linking densities and reached a high steady-state value at higher cross-linking densities. The pull-off force decreased with increasing cross-linker concentration and reached a lower force plateau at high cross-linking densities. An optimal "trade-off" cross-linking density was determined to be 0.02 mol fraction of MBA in the hydrogel, where balanced elastic modulus and adhesive pull-off force can be obtained.

  12. A novel attribute of enoxaparin: inhibition of monocyte adhesion to endothelial cells by a mechanism involving cell adhesion molecules.

    Science.gov (United States)

    Manduteanu, I; Voinea, M; Capraru, M; Dragomir, E; Simionescu, M

    2002-05-01

    Enoxaparin is a low molecular weight heparin, widely accepted as anticoagulant or antithrombotic drug, and is likely to have a role in acute inflammation. To evaluate the anti-inflammatory potential of enoxaparin, we investigated the direct effect of the drug on the activation of endothelial cells. For this purpose we set up an in vitro system in which cultured valvular endothelial cells (VEC) activated by tumor necrosis factor alpha or lipopolysaccharide were exposed to a monocytic cell line; these conditions induced a significant adhesion of monocytes to VEC. Adhesion assays, ELISA, and flow cytometric analysis revealed that pretreatment with enoxaparin, at a relevant plasma concentration (16 microg/ml), acts upon activation of VEC by inhibition of lipopolysaccharide-induced E-selectin expression and tumor necrosis factor stimulated ICAM-1 expression, thus reducing monocyte adhesion to VEC. These results suggest a novel function of enoxaparin, namely to protect VEC from activation and inhibiting the expression of cell adhesion molecules. Copyright 2002 S. Karger AG, Basel

  13. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  14. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  15. Spacetime alternatives in the quantum mechanics of a relativistic particle

    International Nuclear Information System (INIS)

    Whelan, J.T.

    1994-01-01

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities

  16. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion : A quantitative proteomics approach

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-01-01

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After

  17. Influence of resin composite mechanical properties on adhesive microtensile bond strength to dentin.

    Science.gov (United States)

    Goracci, Cecilia; Margvelashvili, Mariam; Apicella, Davide; Sedda, Maurizio; Magni, Elisa; Ferrari, Marco

    2011-08-01

    To determine the influence of mechanical properties of resin-based composites on the microtensile bond strength to dentin of all-in-one adhesives. Microtensile bond strengths were measured with the non-trimming technique for the experimental groups: 1) Bond Force/Estelite Σ (Tokuyama); 2) G-Bond Plus (GC)/Estelite Σ; 3) Bond Force/Gradia Direct Anterior (GC);4) G-Bond Plus/Gradia Direct Anterior; 5) Bond Force/Gradia Direct LoFlo (GC); 6) G-Bond Plus/Gradia Direct LoFlo. The following mechanical properties of the resin-based composites were assessed: tensile strength, flexural strength, tensile elastic modulus, shear elastic modulus, Poisson's ratio, Vicker's hardness, contraction stress. Three-dimensional models of microtensile beams were created for finite element analysis of the first principal stress values and distribution in the adhesive layer during microtensile testing. Statistical tests were applied to microtensile bond strength values (two-way ANOVA) and to data from mechanical tests (one-way ANOVA). In all the analyses, the level of significance was set at p building up the coronal portion.

  18. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  19. Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands

    Directory of Open Access Journals (Sweden)

    Mehdi Roein-Peikar

    2016-01-01

    Full Text Available Integrins, a class of membrane proteins involved in cell adhesion, participate in the cell’s sensing of the mechanical environments. We previously showed that, for the initial cell adhesion to occur, single integrins need to experience a threshold force of 40 pico-Newton (pN through their bond with surface-bound ligands. This force requirement was determined using a series of double-stranded DNA tethers called tension gauge tethers (TGTs, each with a different rupture force, linked to the ligand. Here, we performed cell-adhesion experiments using surfaces coated with two different TGTs, one of a strong rupture force (around 54 pN and the other of a weak rupture force (around 12 pN. When presented with one type of TGT only, cells adhered to the strong TGT-coated surface but not to the weak TGT-coated surface. However, when presented with both, the presence of the strong TGTs transforms the way cells respond to the weak TGTs such that cells treat both TGTs the same, as if the weak TGTs were strong. Furthermore, a subpopulation of cells can adhere to and spread on a surface displaying just a few molecules of the strong TGTs per cell if, and only if, they are presented along with many weak TGTs. This ultrasensitivity to just a few tethers that can withstand strong forces raises a question of how the cells can achieve such remarkable sensitivity to their mechanical environment without amplifying noise.

  20. Adhesive Systems as an Alternative Material for Color Masking of White Spot Lesions: Do They Work?

    Science.gov (United States)

    de Lacerda, Ana Júlia Farias; da Silva Ávila, Daniele Mara; Borges, Alessandra Buhler; Pucci, Cesar Rogerio; Rocha Gomes Torres, Carlos

    2016-01-01

    To evaluate the color masking effect of infiltration treatment of artificial white spot lesions (AWSL) using a dedicated resin in comparison to different adhesive systems. Enamel/dentin specimens were obtained from bovine incisors and baseline color was assessed using a reflectance spectrophotometer, according to the CIE L*a*b* system. AWSL were produced using a buffered acid solution and a new color evaluation was performed. The specimens were divided into 8 groups: control: artificial saliva changed daily for 7 days; IC: infiltrating resin Icon; EC: EquiaCoat; FU: Futurabond U; SBU: Single Bond U; SBMP: Scotchbond MP; OB: OptibondFL; BF: Bioforty. After the treatments, the color was evaluated again and the values for the parameters ΔL (change in lightness), Δa (change in chroma), Δb (change in hue), and ΔE (general color difference) were calculated in relation to baseline. Data were analyzed by one-way ANOVA and Tukey's tests. After treatment, ANOVA showed significant differences for all parameters (p = 0.001). Tukey's test showed the greatest lightness reduction (ΔL) for the IC group, followed by EC, FU, and SBU. The SBMP, OB, and BF groups were similar to the control. For Δb values, all groups showed differences in relation to the control, with no differences between them. In relation to ΔE, all groups showed differences in relation to the control (ΔE = 5.24), with no significant differences between them. ΔE values after application of all resinous materials were lower than the threshold of 3.7, indicating effective color masking. The Icon infiltrant produced a greater lightness reduction of white lesions (ΔL). For general color difference (ΔE), all the resinous materials tested were able to color mask artificial AWSL.

  1. Protein Nanosheet Mechanics Controls Cell Adhesion and Expansion on Low-Viscosity Liquids.

    Science.gov (United States)

    Kong, Dexu; Megone, William; Nguyen, Khai D Q; Di Cio, Stefania; Ramstedt, Madeleine; Gautrot, Julien E

    2018-02-13

    Adherent cell culture typically requires cell spreading at the surface of solid substrates to sustain the formation of stable focal adhesions and assembly of a contractile cytoskeleton. However, a few reports have demonstrated that cell culture is possible on liquid substrates such as silicone and fluorinated oils, even displaying very low viscosities (0.77 cSt). Such behavior is surprising as low viscosity liquids are thought to relax much too fast (adhesions (with lifetimes on the order of minutes to hours). Here we show that cell spreading and proliferation at the surface of low viscosity liquids are enabled by the self-assembly of mechanically strong protein nanosheets at these interfaces. We propose that this phenomenon results from the denaturation of globular proteins, such as albumin, in combination with the coupling of surfactant molecules to the resulting protein nanosheets. We use interfacial rheology and atomic force microscopy indentation to characterize the mechanical properties of protein nanosheets and associated liquid-liquid interfaces. We identify a direct relationship between interfacial mechanics and the association of surfactant molecules with proteins and polymers assembled at liquid-liquid interfaces. In addition, our data indicate that cells primarily sense in-plane mechanical properties of interfaces, rather than relying on surface tension to sustain spreading, as in the spreading of water striders. These findings demonstrate that bulk and nanoscale mechanical properties may be designed independently, to provide structure and regulate cell phenotype, therefore calling for a paradigm shift for the design of biomaterials in regenerative medicine.

  2. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  3. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  4. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  5. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  6. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review.

    Science.gov (United States)

    Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando

    2017-11-01

    To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Role of seta angle and flexibility in the gecko adhesion mechanism

    Science.gov (United States)

    Hu, Congcong; Alex Greaney, P.

    2014-08-01

    A model is developed to describe the reversible nature of gecko dry adhesion. The central aspect of this model is that the seta can be easily peeled away from the contacting surface by a small moment at the contact tip. It is shown that this contact condition is very sensitive, but can result in robust adhesion if individual setae are canted and highly flexible. In analogy to the "cone of friction," we consider the "adhesion region"—the domain of normal and tangential forces that maintain adhesion. Results demonstrate that this adhesion region is highly asymmetric enabling the gecko to adhere under a variety of loading conditions associated with scuttling horizontally, vertically, and inverted. Moreover, under each of these conditions, there is a low energy path to de-adhesion. In this model, obliquely canted seta (as possessed by geckos) rather than vertically aligned fibers (common in synthetic dry adhesive) provides the most robust adhesion.

  8. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Science.gov (United States)

    A, Nouzari; A, Zohrei; M, Ferooz; N, Mohammadi

    2016-01-01

    Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow-speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B) of 15 and treated by either Clearfil SE Bond (CSEB) or Scotch bond. All prepared cavities were filled with a resin composite (Estellite). All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127). Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB), 73% of the group 2-A (hand piece + CSEB), 80% of the group 1-B (Carisolv + Scotch bond), and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv doesn’t adversely

  10. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal.

    Science.gov (United States)

    A, Nouzari; A, Zohrei; M, Ferooz; N, Mohammadi

    2016-06-01

    Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow-speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B) of 15 and treated by either Clearfil SE Bond (CSEB) or Scotch bond. All prepared cavities were filled with a resin composite (Estellite). All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. There were no significant differences between micro-leakage scores among the four groups ( p = 0.127). Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB), 73% of the group 2-A (hand piece + CSEB), 80% of the group 1-B (Carisolv + Scotch bond), and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv doesn't adversely affect the micro-leakage of composite restorations while using self-etch or all

  11. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Directory of Open Access Journals (Sweden)

    Nouzari A

    2016-06-01

    Full Text Available Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow–speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B of 15 and treated by either Clearfil SE Bond (CSEB or Scotch bond. All prepared cavities were filled with a resin composite (Estellite. All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127. Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB, 73% of the group 2-A (hand piece + CSEB, 80% of the group 1-B (Carisolv + Scotch bond, and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv

  12. Effect of Saline Environment on Mechanical Properties of Structural Adhesive Bonds

    Directory of Open Access Journals (Sweden)

    Miroslav Müller

    2016-01-01

    Full Text Available This study brings new pieces of knowledge about a utilization of an inorganic filler in an area of steel adhesive bonds exposed to a degradation environment. The filler in the form of glass beads with a fraction size 90 ± 20 μm was used within the research. The aim of the research was to evaluate an influence of the degradation environment on a strength of structural two‑component epoxy adhesives and a composite material. A preparation of adhesive bonds and a process of testing of the adhesive bonds were in accordance with the modified standard ČSN EN 1465. The degradation environment in a form of 5 % saline solution was used within this experiment. Adhesive bonded testing samples were subjected to a cyclic loading of the saline solution. The adhesive bonds with the filler reached up to 16 % higher adhesive bond strength than the unfilled adhesive bonds. The bonds adhesive bonded with the tested composite adhesive better resisted to the degradation process of ca. 9 %. The cyclic exposure, i.e. dipping of the testing samples into the saline solution and consequent drying significantly decreases the strength of the adhesive bond (up to 67 % in 6 weeks.

  13. Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7.

    Science.gov (United States)

    Miron, J; Forsberg, C W

    1999-04-01

    Cellulose-binding proteins (CBP) isolated from cell envelopes of the cellulolytic bacterium Fibrobacter intestinalis strain DR7 were studied in order to investigate the adhesion mechanism. The proteins were examined for their reaction with antibodies that specifically block bacterial adhesion, response to glycosylation staining and monosaccharide composition. To this end, the effect of some monosaccharides (CBP components) on blocking of DR7 adhesion to cellulose was determined. Previous study had shown the occurrence of 16 CBP in the outer membrane and periplasm of DR7, of which 6 had endoglucanase activity (Miron and Forsberg 1998). Data from the present study show that most of the 16 CBP of DR7, except for the 38-, 90- and 180-kDa proteins, are glycosylated. Rabbit antibodies that specifically block DR7 adhesion were prepared by affinity preabsorption of antiserum against wild-type DR7 with bacterial cells of its adherence-defective mutant (DR7-M). The preabsorbed antibodies reacted positively in Western blotting with glycosylated CBP of 225, 200, 150, 70, 45 and block the adhesion of DR7 cells to cellulose. It is suggested that some glycosylated residues of CBP may have a predominant role in the adhesion of DR7 to cellulose.

  14. Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate-single-crystal silicon system

    Science.gov (United States)

    Coman, B. P.; Juzevych, V. N.

    2012-07-01

    The kinetics of generation of internal mechanical stresses σ( d) in chromium, copper, gold, and aluminum thin films on single-crystal silicon substrates at different deposition rates has been experimentally investigated using the cantilever method. A two-step character of the variations in internal tensile stresses has been revealed. The regularities of the formation of the maximum level of mechanical stresses in the condensates under investigation have been established. The energy and adhesion parameters of chromium, copper, gold, and aluminum nanolayers on silicon, germanium, and nickel substrates have been studied using the macroscopic methods of surface physics. The interfacial energy, interfacial tension, work of adhesion, interfacial charge, and a new energy characteristic of the interfacial layer, namely, the energy of adhesive bonds, which exceeds the interfacial energy, have been determined.

  15. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    Science.gov (United States)

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  16. Real-time monitoring of mechanical changes during dynamic adhesion of erythrocytes to endothelial cells by QCM-D.

    Science.gov (United States)

    Zhang, Shaolian; Bai, Haihua; Yang, Peihui

    2015-07-21

    A quartz crystal microbalance with dissipation monitoring is used to measure changes in mechanical properties of diabetic red blood cells (RBCs) and normal RBCs. Moreover, the adhesion interaction between these two kinds of RBCs and endothelial cells (ECs) is further investigated using a proposed QCM-D biosensor for the first time.

  17. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.

    Science.gov (United States)

    Kroustalli, Anthoula A; Kourkouli, Souzana N; Deligianni, Despina D

    2013-12-01

    Multiwalled carbon nanotubes (MWCNTs) are considered to be excellent reinforcements for biorelated applications, but, before being incorporated into biomedical devices, their biocompatibility need to be investigated thoroughly. We investigated the ability of films of pristine MWCNTs to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts. Moreover, the selective integrin subunit expression and the adhesion mechanism to the substrate were evaluated on the basis of adherent cell number and adhesion strength, following the treatment of cells with blocking antibodies to a series of integrin subunits. Results indicated that MWCNTs accelerated cell differentiation to a higher extent than tissue culture plastic, even in the absence of additional biochemical inducing agents. The pre-treatment with anti-integrin antibodies decreased number of adherent cells and adhesion strength at 4-60%, depending on integrin subunit. These findings suggest that pristine MWCNTs represent a suitable reinforcement for bone tissue engineering scaffolds.

  18. Rosiglitazone inhibits HMC-1 cell migration and adhesion through a peroxisome proliferator-activated receptor gamma-dependent mechanism.

    Science.gov (United States)

    Zhang, Guqin; Yang, Jiong; Li, Ping; Cao, Jie; Nie, Hanxiang

    2014-02-01

    Mast cells play an important role in a variety of inflammatory diseases, particularly asthma and atopy. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the large nuclear hormone receptor transcription factor superfamily, and has been recently implicated in the anti-inflammatory response. To investigate a possible role for PPARγ in human mast cells, we studied the effects of a PPARγ ligand, rosiglitazone (RG), on stem cell factor (SCF)-induced migration and fibronectin-induced adhesion in human mast cell-1(HMC-1) cells. It was found that HMC-1 cells expressed PPARγ mRNA. RG inhibited SCF-induced HMC-1 cell migration and fibronectin-induced HMC-1 cell adhesion, the selective PPARγ antagonist GW9662 prevented the inhibitory effect of RG on HMC-1 cells. In conclusion, RG inhibits the migration and adhesion of HMC-1 cells by a PPARγ-dependent mechanism.

  19. Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials

    NARCIS (Netherlands)

    Waar, K; van der Mei, HC; Harmsen, HJM; Degener, JE; Busscher, HJ

    An important step in infections associated with biliary drains is adhesion of micro-organisms to the surface. In this study the role of three surface proteins of Enterococcus faecalis (enterococcal surface protein, aggregation substances 1 and 373) in the adhesion to silicone rubber,

  20. Lorentz-violating alternative to the Higgs mechanism?

    International Nuclear Information System (INIS)

    Alexandre, Jean; Mavromatos, Nick E.

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without flavor mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, while the vector mass is of the order of the heavy fermion mass. The work presented here may be considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone) speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic models for future work.

  1. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Huang, Chih-Ling; Liao, Jiunn-Der; Yang, Chia-Fen; Chang, Chia-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K.

    2009-01-01

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  2. Adhesions due to peritoneal carcinomatosis caused by a renal carcinoma leading to mechanical gastric outlet obstruction: a case report

    Directory of Open Access Journals (Sweden)

    Gruttadauria Salvatore

    2011-07-01

    Full Text Available Abstract Introduction Gastric outlet obstruction is a clinical syndrome caused by a variety of mechanical obstructions. Peptic ulcer disease used to be responsible for most gastric outlet obstruction, but in the last 40 years the prevalence of malignant tumors has risen significantly. Adhesive disease is an infrequent and insidious cause of mechanical gastric outlet obstruction. Case presentation We report the case of a 78-year-old Caucasian man who had a clinical history of a right nephrectomy for malignancy three years earlier and who was admitted for a severe gastric outlet obstruction (score of 1 confirmed both by an upper endoscopy and by a fluoroscopic view after contrast injection. A computed tomography scan and a laparotomy, with omental biopsies, showed a peritoneal carcinomatosis with the development of abdominal adhesions that prompted an abnormal gastric rotation around the perpendicular axis of his antrum with a dislocation in the empty space of his right kidney. Symptoms disappeared after surgical bypass through a gastrojejunostomy. Conclusions Our patient experienced a very rare complication characterized by the development of adhesions due to peritoneal carcinomatosis caused by a renal carcinoma treated with nephrectomy. These adhesions prompted an abnormal dislocation of his antrum, as an internal hernia, in the empty space of his right kidney.

  3. Phototoxicity: Its Mechanism and Animal Alternative Test Methods

    Science.gov (United States)

    Park, Hyeonji; Lim, Kyung-Min

    2015-01-01

    The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential. PMID:26191378

  4. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  5. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  6. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    National Research Council Canada - National Science Library

    Roy, Ajit K; Ganguli, Sabyasachi; Sihn, Sangwook; Qu, Liangti; Dai, Liming

    2006-01-01

    One of the barriers in achieving adequate through-thickness thermal conductivity in composite materials and also in composite joints is the extremely low thermal conductivity of resins (polymer) or adhesives (typically 0.3 W/mK...

  7. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties.

    Science.gov (United States)

    Sattabanasuk, Vanthana; Charnchairerk, Paleenee; Punsukumtana, Lada; Burrow, Michael F

    2017-08-01

    Intraoral repair of fractured ceramic restorations using resin composite is practical for dental treatment. In the present study, we investigated whether differences in surface treatments for glass ceramic would affect resin adhesion. Leucite-reinforced glass ceramic plates (IPS Empress Esthetic) were ground with 320-grit silicon carbide paper, cleaned using phosphoric acid, and then etched with hydrofluoric acid (IPS Ceramic Etching Gel) or left unetched, and silanized using silane coupling agent (RelyX Ceramic Primer) or kept unsilanized. Either conventional (Adper Scotchbond Multi-Purpose) or universal (Scotchbond Universal) adhesive was used to bond the resin composite to ceramic surfaces. Specimens were subjected to microshear test after 37°C water storage for 24 h, and fractured surfaces were examined. Ceramic surface hydrophobicity after treatments was verified with contact angle measurements. Data were analyzed using anova and Tukey's tests. Regardless of the adhesive tested, hydrofluoric acid-etched ceramics showed higher bond strengths. Ceramic primer application improved resin bonding, even in non-etched groups, and also influenced fractography (P ceramics treated with ceramic primer were higher than those treated with silane-containing universal adhesive (P resin adhesion to glass ceramic. Universal adhesive seems to not function in the same manner as a silane coupling agent. © 2016 John Wiley & Sons Australia, Ltd.

  8. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  9. Financing Medical Education: An Analysis of Alternative Policies and Mechanisms.

    Science.gov (United States)

    Felin, Rashi; Weber, Gerald I.

    This document explores current funding for medical schools and proposes alternatives for meeting increased public demands. A basic subsidy to reflect the public demand for medical education and Federal aid for students as well as for institutions is endorsed. (MJM)

  10. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (p<0.05) in all concentrations and the final amount of CHX release was directly proportional to the initial CHX concentration added to the adhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.

    Science.gov (United States)

    Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto

    2014-11-01

    This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Silane adhesion mechanism in dental applications and surface treatments: A review.

    Science.gov (United States)

    Matinlinna, Jukka Pekka; Lung, Christie Ying Kei; Tsoi, James Kit Hon

    2018-01-01

    To give a current review of silane adhesion chemistry, applications of silane coupling agents and related surface pretreatment methods in contemporary dentistry. Silane coupling agents are adhesion promoters to chemically unify dissimilar materials used in dentistry. Silanes are very effective in adhesion promotion between resin composites and silica-based or silica-coated indirect restorative materials. It is generally accepted that for non-silica-based restorations, surface pretreatment is a mandatory preliminary step to increase the silica content and then, with help of silane, improve resin bonding. This review discusses the silane-based adhesion chemistry, silane applications in dentistry, surface pretreatment methods, and presents the recent development of silane coupling agents. A silane coupling agent is considered a reliable, good adhesion promoter to silica-based (or silica-coated) indirect restorations. Surface pre-treatment steps, e.g., acid etching for porcelain and tribo-chemical silica-coating for metal alloys, is used before silanization to attain strong, durable bonding of the substrate to resin composite. In clinical practice, however, the main problem of resin bonding using silanes and other coupling agents is the weakening of the bond (degradation) in the wet oral environment over time. A silane coupling agent is a justified and popular adhesion promoter (adhesive primer) used in dentistry. The commercial available silane coupling agents can fulfil the requirements in clinical practice for durable bonding. Development of new silane coupling agents, their optimization, and surface treatment methods are in progress to address the long term resin bond durability and are highly important. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    Science.gov (United States)

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  14. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    Science.gov (United States)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard–Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  15. Tris(trimethylsilyl)silane as a co-initiator for dental adhesive: Photo-polymerization kinetics and dynamic mechanical property.

    Science.gov (United States)

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Spencer, Paulette

    2016-01-01

    The purpose of this study was to evaluate the polymerization behavior of a model dentin adhesive with tris(trimethylsilyl)silane (TTMSS) as a co-initiator, and to investigate the polymerization kinetics and mechanical properties of copolymers in dry and wet conditions. A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a model dentin adhesive. The photoinitiator system included camphorquinone (CQ) as the photosensitizer and the co-initiator was ethyl-4-(dimethylamino) benzoate (EDMAB) or TTMSS. Iodonium salt, diphenyliodonium hexafluorophosphate (DPIHP) serving as a catalyst, was selectively added into the adhesive formulations. The control and the experimental formulations were characterized with regard to the degree of conversion (DC) and dynamic mechanical properties under dry and wet conditions. In two-component photoinitiator system (CQ/TTMSS), with an increase of TTMSS concentration, the polymerization rate and DC of CC double bond increased, and showed a dependence on the irradiation time and curing light intensity. The copolymers that contained the three-component photoinitiator system (CQ/TTMSS/DPIHP) showed similar dynamic mechanical properties, under both dry and wet conditions, to the EDMAB-containing system. The DC of formulations using TTMSS as co-initiator showed a strong dependence on irradiation time. With the addition of TTMSS, the maximum polymerization rate can be adjusted and the network structure became more homogenous. The results indicated that the TTMSS could be used as a substitute for amine-type co-initiator in visible-light induced free radical polymerization of methacrylate-based dentin adhesives. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  17. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surro......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...

  18. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts

    Directory of Open Access Journals (Sweden)

    Ott Carolyn

    2012-04-01

    Full Text Available Abstract Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary

  19. Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells.

    Science.gov (United States)

    Angely, Christelle; Nguyen, Ngoc-Minh; Andre Dias, Sofia; Planus, Emmanuelle; Pelle, Gabriel; Louis, Bruno; Filoche, Marcel; Chenal, Alexandre; Ladant, Daniel; Isabey, Daniel

    2017-08-01

    The adenylate cyclase (CyaA) toxin is a major virulent factor of Bordetella pertussis, the causative agent of whooping cough. CyaA toxin is able to invade eukaryotic cells where it produces high levels of cyclic adenosine monophosphate (cAMP) affecting cellular physiology. Whether CyaA toxin can modulate cell matrix adhesion and mechanics of infected cells remains largely unknown. In this study, we use a recently proposed multiple bond force spectroscopy (MFS) with an atomic force microscope to assess the early phase of cell adhesion (maximal detachment and local rupture forces) and cell rigidity (Young's modulus) in alveolar epithelial cells (A549) for toxin exposure 95%) at CyaA concentration of 0.5 nM, but a significant effect (≈81%) at 10 nM. MFS performed on A549 for three different concentrations (0.5, 5 and 10 nM) demonstrates that CyaA toxin significantly affects both cell adhesion (detachment forces are decreased) and cell mechanics (Young's modulus is increased). CyaA toxin (at 0.5 nM) assessed at three indentation/retraction speeds (2, 5 and 10 μm/s) significantly affects global detachment forces, local rupture events and Young modulus compared with control conditions, while an enzymatically inactive variant CyaAE5 has no effect. These results reveal the loading rate dependence of the multiple bonds newly formed between the cell and integrin-specific coated probe as well as the individual bond kinetics which are only slightly affected by the patho-physiological dose of CyaA toxin. Finally, theory of multiple bond force rupture enables us to deduce the bond number N which is reduced by a factor of 2 upon CyaA exposure (N ≈ 6 versus N ≈ 12 in control conditions). MFS measurements demonstrate that adhesion and mechanical properties of A549 are deeply affected by exposure to the CyaA toxin but not to an enzymatically inactive variant. This indicates that the alteration of cell mechanics triggered by CyaA is a consequence of the increase in

  20. Physical and Mechanical Evaluation of Silicone-Based Double-Layer Adhesive Patch Intended for Keloids and Scar Treatment Therapy

    Directory of Open Access Journals (Sweden)

    Barbara Mikolaszek

    2016-11-01

    Full Text Available Growing interest in silicone elastomers for pharmaceutical purposes is due to both their beneficial material effect for scar treatment and their potential as drug carriers. Regarding their morphological structure, silicone polymers possess unique properties, which enable a wide range of applicability possibilities. The present study focused on developing a double-layer adhesive silicone film (DLASil by evaluating its physical and mechanical properties, morphology, and stability. DLASil suitability for treatment of scars and keloids was evaluated by measurement of tensile strength, elasticity modulus, and elongation. The results indicated that mechanical and physical properties of the developed product were satisfying.

  1. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Murillo L., E-mail: murillolongo@gmail.com [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J. [Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Bordallo, Heloisa N. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system.

  2. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    International Nuclear Information System (INIS)

    Martins, Murillo L.; Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J.; Bordallo, Heloisa N.

    2015-01-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system

  3. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  4. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  5. Continuum mechanics at the atomic scale : Insights into non-adhesive contacts using molecular dynamics simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2016-01-01

    Classical molecular dynamics (MD) simulations were performed to study non-adhesive contact at the atomic scale. Starting from the case of Hertzian contact, it was found that the reduced Young’s modulus E* for shallow indentations scales as a function of, both, the indentation depth and the contact

  6. Mechanisms for turn alternation in four invertebrate species.

    Science.gov (United States)

    Hughes, R N

    1987-02-01

    Free-choice behavior following one or more forced turns was observed in representatives of four invertebrate classes (earthworms, woodlice, millipedes, earwigs). While all animals alternated, species differences occurred in free turn angle and the effects of varied angle and number of forced turns. Overall, woodlice and millipedes turned at sharper angles and responded more to the forced turn conditions than earthworms and earwigs. From behavior observed following three forced turns in one direction and then one in the opposite, it was concluded that, in earlier experiments, earthworms alternated via tactile cues, woodlice mainly used kinesthetic but could also use tactile cues, millipedes mainly used tactile but could also use kinesthetic cues and earwigs may have relied on kinesthetic cues alone. Since phyletic differences did not seem appropriate, the results were discussed in terms of other characteristics such as body shape and life style. Copyright © 1987. Published by Elsevier B.V.

  7. New insights into the molecular mechanism of E-cadherin-mediated cell adhesion by free energy calculations

    DEFF Research Database (Denmark)

    Doro, Fabio; Saladino, Giorgio; Belvisi, Laura

    2015-01-01

    Three-dimensional domain swapping is an important mode of protein association leading to the formation of stable dimers. Monomers associating via this mechanism mutually exchange a domain to form a homodimer. Classical cadherins, an increasingly important target for anticancer therapy, use domain...... swapping to mediate cell adhesion. However, despite its importance, the molecular mechanism of domain swapping is still debated. Here, we study the conformational changes that lead to activation and dimerization via domain swapping of E-cadherin. Using state-of-the-art enhanced sampling atomistic......" mechanism in which monomers in an active conformational state bind to form a homodimer, analogous to the conformational selection mechanism often observed in ligand-target binding. Moreover, we find that the open state population is increased in the presence of calcium ions at the extracellular boundary...

  8. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H. (Chemizon); (GSKPA)

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  9. Effect of particle treatment and adhesive type on physical, mechanical, and durability properties of particleboard made from Sorghum Bagasse

    Science.gov (United States)

    Heri Iswanto, Apri; Supriyanto; Fatriasari, Widya; Susilowati, Arida

    2018-03-01

    Refers to chemical content of sweet sorghum stalk especially for Numbu varian, sorghum bagasse issuitable for materials of particleboard. The objective of the experiment was to evaluate of particle treatment on physichal, mechanical, and durability properties of particleboard made from sorghum bagasse. For particle treatment, Sorghum bagasse immersed in cold water and hot water for 24 and 1 hours respectively. Particleboards were produced in size 25 by 25 cm2 with thickness and density target of 0.8 cm and 0.7 g/cm3. Amount of 10% Urea formaldehyde (UF) and 7% isocyanat (MDI) adhesive level used for manufacturing of board. Particle and adhesive were blended with rotary blending. Afterward, it was placed into mat former with size of 25 by 25 cm2. Mat was pressed by hot press machine. The pressing was conducted on 130°C temperature for UF resin and 160°C for MDI resin, pressure of 25 kg/cm2 and pressing time for 10 minutes. The results showed that particle soaking in hot water produced of lower thickness swelling compared to untreated board. Similar trend also occuron particleboard whichwas bonded with MDI resin. MDI as exterior adhesive resulted good performance in dimensional stability of sorghum bagasse particleboard. For UF bonded particleboard, immersing in hot water resulted in the low MOR, MOE and IB parameter. It’s contrary with MDI bonded particleboard.

  10. Towards atomic-level mechanics: Adhesive forces between aromatic molecules and carbon nanotubes

    Science.gov (United States)

    Lechner, Christoph; Sax, Alexander F.

    2017-10-01

    The adhesive forces for desorption of the four aromatic compounds benzene, anthracene, pyrene, and tetracene from a (8,0) carbon nanotube (CNT) are investigated and compared to the desorption from graphene. The desorption energies are found to be proportional to the size of the contact zone in the adsorbent/adsorbate complex while maximum adhesive forces are proportional to the part of the contact zone where attractive interactions are reduced when external forces pull on the adsorbate. To assess the influence of the curvature, type of CNT, and the adsorbate's orientation, the desorption processes from six zigzag CNT and four armchair CNT are studied for pyrene and tetracene. For some properties, the results are independent of the curvature of the adsorbent, whereas for others we find marked differences. Aspects of elasticity are considered as well as the influence of the Pauli exclusion principle on the equilibrium geometries in adsorbent/adsorbate complexes.

  11. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2018-02-01

    Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.

  12. Two Models of Adhesive Debonding of Sylgard

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-14

    This report begins with a brief summary of the range of modeling methods used to simulate adhesive debonding. Then the mechanical simulation of the blister debonding test, and the thermomechanical simulation of the potted hemisphere problem are described. For both simulations, details of the chosen modeling techniques, and the reasons for choosing them (and rejecting alternate modeling approaches) will be discussed.

  13. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  14. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  15. Inflation and balanced-path growth with alternative payment mechanisms

    Czech Academy of Sciences Publication Activity Database

    Gillman, M.; Kejak, Michal

    -, E2005/15 (2005), s. 1-34 ISSN 1749-6101 Institutional research plan: CEZ:AV0Z70850503 Keywords : inflation * payment mechanisms * human capital Subject RIV: AH - Economics http://www.cardiff.ac.uk/carbs/econ/ working papers/papers/2005_15.pdf

  16. The Effect of Face and Adhesive Types on Mechanical Properties of Sandwich Panels Made from Honeycomb Paper

    Directory of Open Access Journals (Sweden)

    Mohsen Saffari

    2013-11-01

    Full Text Available Sandwich panels are new kind of layered composites that usually are composed of three layers and their core layer's thickness is higher and the outer layers are determinative in determination of the products strength and stiffness. The core layer is commonly made of honeycomb paper, corrugated paper and polyurethane etc. In this study, effects of face and adhesive types on mechanical properties of sandwich panels made from honeycomb paper were investigated. The variables included three types; beech face, poplar face and hardboard (S2S face, veneer less and adhesive type (two types; epoxy and PVA. Out of experimental panels specimens were cut and tested according to DIN E 326-1 standard. Mechanical properties of panels, included modulus of elasticity as well as modulus of rupture at the edge and surface (based on DIN EN 310 standard and Impact Bending Strength (IBS of the panels (based on ASTM D 3499 standard were measured. The gathered data were analyzed as completely randomized factorial design. Highest mechanical properties were reported for panels glued with epoxy resin and containing fiberboard at the middle. According to results, optimum condition of producing sandwich panels was observed in uses of epoxy resin and fiberboard S2S face, veneer less at the middle.

  17. Inflation and balanced-path growth with alternative payment mechanisms

    Czech Academy of Sciences Publication Activity Database

    Gillman, M.; Kejak, Michal

    2005-01-01

    Roč. 115, č. 500 (2005), s. 247-270 ISSN 0013-0133 R&D Projects: GA ČR GA402/05/2172 Institutional research plan: CEZ:AV0Z70850503 Keywords : inflation * payment mechanisms Subject RIV: AH - Economics Impact factor: 1.440, year: 2005 http://www.blackwell-synergy.com/doi/full/10.1111/j.1468-0297.2004.00968.x

  18. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation.

  19. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    Science.gov (United States)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  20. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  1. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    Science.gov (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  2. The mechanism of adhesion and germination in the carpospores of Porphyra spiralis var. amplifolia (Rhodophyta, Bangiales).

    Science.gov (United States)

    Ouriques, Luciane Cristina; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita

    2012-02-01

    Spore release is the primary means of dispersion employed by red algae, and it provides insight into the elements linking the stages of their life history. In most red algae, spores are released within a sheath-like envelope of mucilage, which is responsible for their primary attachment. However, few studies have characterized the polysaccharides involved in the adhesion of seaweed spores. Therefore, in this paper, the process of spore germination and adhesion in Porphyra spiralis var. amplifolia is described, as representative of the germination pattern of the Naccaria type. Using FITC-labeled lectins, we discovered high concentrations of α-D-mannose, α-D-glucose and β-D-galactose in the mucilage. The germ tube reacted with RCA-FITC, indicating the presence β-D-galactose, and the rhizoidal cells showed the presence of α-D-mannose, α-D-glucose and β-D-galactose, indicating their importance to substrate adhesion. Using light and transmission electron microscopy, we also conducted an analysis of spore ultrastructure. We found that the differentiation of a vacuole in the spore is one of the most important processes marking the initial stage of germination. Thus, as the degree of vacuolation increases, whole cell contents move towards the germ tube, which undergoes several successive divisions forming the sporophytic phase. Therefore, we can conclude that germination in Porphyra spiralis var. amplifolia is characterized by (1) the fixation of carpospores in the substrate by sugars present in the mucilage and (2) the polarization of cell contents by the processes of vacuolization and germ tube formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Liebscher, Ines; Ackley, Brian; Araç, Demet

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region....... In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF...

  4. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    International Nuclear Information System (INIS)

    Persson, B N J; Albohr, O; Tartaglino, U; Volokitin, A I; Tosatti, E

    2005-01-01

    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the atomic force microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input. (topical review)

  5. Alternative mechanism for white adipose tissue lipolysis after thermal injury.

    Science.gov (United States)

    Diao, Li; Patsouris, David; Sadri, Ali-Reza; Dai, Xiaojing; Amini-Nik, Saeid; Jeschke, Marc G

    2015-12-29

    Extensively burned patients often suffer from sepsis, a complication that enhances post-burn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 days post-burn. One day later, animals were sacrificed and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver which are associated with changes in organ function and structure.

  6. An alternative method for the measurement of the mechanical impulse of a vertically directed blast

    CSIR Research Space (South Africa)

    Turner, GR

    2008-01-01

    Full Text Available An alternative method for the measurement of the total mechanical impulse of a vertically directed blast due to an explosive charge is presented. The method differs from apparatus that employ a vertically displaced mass (similar in principle...

  7. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    International Nuclear Information System (INIS)

    Gray, J.E.; Norton, P.R.; Griffiths, K.

    2005-01-01

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers

  8. The Effect of Nanocopper Additions in a Urea-Formaldehyde Adhesive on the Physical and Mechanical Properties of Particleboard Manufactured from Date Palm Waste

    Science.gov (United States)

    Rangavar, H.; Hoseiny fard, M. S.

    2015-03-01

    The effect of addition of copper nanoparticles to a urea-formaldehyde (UF) adhesive on the physical and mechanical properties of particleboards manufactured from date palm waste (DPW) was investigated. The variable factors in the study included copper nanoparticles in amounts of 6 and 8 wt.% of the dry mass of wood, pressing durations of 5 and 6 min, and pressing temperatures of 150 and 160°C. The physical and mechanical properties of manufactured boards were measured according to EN standards. The results showed that the addition of copper nanoparticles to the UF adhesive considerably improved the physical and mechanical properties of the boards and shortened the pressing duration. The boards manufactured with 6 wt.% copper nanoparticles in a dry mass of wood mixed with the adhesive and pressed at a temperature of 160°C for 5 min had mechanical properties exceeding the EN312-2 standard levels.

  9. Study on the Effects of Adipic Acid on Properties of Dicyandiamide-Cured Electrically Conductive Adhesive and the Interaction Mechanism

    Science.gov (United States)

    Wang, Ling; Wan, Chao; Fu, Yonggao; Chen, Hongtao; Liu, Xiaojian; Li, Mingyu

    2014-01-01

    A small quantity of adipic acid was found to improve the performance of dicyandiamide-cured electrically conductive adhesive (ECA) by enhancing its electrical conductivity and mechanical properties. The mechanism of action of the adipic acid and its effects on the ECA were examined. The results indicated that adipic acid replaced the electrically insulating lubricant on the surface of the silver flakes, which significantly improved the electrical conductivity. Specifically, one of the acidic functional groups in adipic acid reacted with the silver flakes, and an amidation reaction occurred between the other acidic functional group in adipic acid and the dicyandiamide, which participated in the curing reaction. Therefore, adipic acid may act as a coupling agent to improve the overall ECA performance.

  10. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes

    OpenAIRE

    1993-01-01

    We have distinguished five TNF-alpha-inducible cell adhesion mechanisms on microvasculature-derived endothelioma cells of the mouse which mediate the binding of different types of leukocytes. Three of these mechanisms could be identified as the mouse homologs of ICAM-1, VCAM-1, and E-selectin, of which the latter was defined by the novel mAb 21KC10. The fourth TNF-alpha-inducible cell adhesion mechanism was blocked by antibodies specific for mouse P-selectin. We have recently shown that TNF-a...

  11. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes.

    Science.gov (United States)

    Hahne, M; Jäger, U; Isenmann, S; Hallmann, R; Vestweber, D

    1993-05-01

    We have distinguished five TNF-alpha-inducible cell adhesion mechanisms on microvasculature-derived endothelioma cells of the mouse which mediate the binding of different types of leukocytes. Three of these mechanisms could be identified as the mouse homologs of ICAM-1, VCAM-1, and E-selectin, of which the latter was defined by the novel mAb 21KC10. The fourth TNF-alpha-inducible cell adhesion mechanism was blocked by antibodies specific for mouse P-selectin. We have recently shown that TNF-alpha stimulates the synthesis of P-selectin in mouse endothelioma cells (A. Weller, S. Isenmann, D. Vestweber. 1992. J. Biol. Chem. 267:15176-15183). Here we show that this stimulation leads to maximal cell surface expression levels within 4 h after stimulation while the same endothelioma cells are also able to upregulate P-selectin at the cell surface within minutes after stimulation with PMA. Both effects are additive. The fifth TNF-induced cell adhesion mechanism is defined by mediating the binding to the mouse monocyte/macrophage cell line J774. This adhesion mechanism is not inhibited by antibodies against any of the other four CAMs; it functions well at 7 degrees C (in contrast to ICAM-1 and VCAM-1) and it is as active after 16 h of TNF induction as after 4 h (in contrast to E- and P-selectin). Furthermore, this new adhesion mechanism only functions on two of three endothelioma cell lines and is undetectable on the third, although ICAM-1, VCAM-1, E-selectin, and P-selectin could be demonstrated to function well on this cell line. Thus, in addition to the three known TNF-inducible CAMs, ICAM-1, VCAM-1, and E-selectin, also P-selectin and a fifth, as yet molecularly undefined cell adhesion mechanism, are TNF inducible at the cell surface of mouse endothelioma cells.

  12. Interleukin 1β induces rapid phosphorylation and redistribution of talin: A possible mechanism for modulation of fibroblast focal adhesion

    International Nuclear Information System (INIS)

    Qwarnstroem, E.E.; MacFarlane, S.A.; Page, R.C.; Dower, S.K.

    1991-01-01

    The majority of interleukin 1 (IL-1) receptors in human fibroblasts has been shown to be localized at focal adhesions. This study describes rapid alterations caused by IL-1β/IL-1-receptor interaction at these sites. Fibroblast monolayers, incubated with IL-1β and prepared for electron microscopy, showed successive loss of cell-substratum contact and fewer and less-pronounced processes. Immunocytochemistry revealed loss and redistribution of the talin staining initially observed after 5-15 min of IL-1β incubation. Similarly, the cytoskeleton showed a decrease in staining and a disorganization starting from 15 to 30 min after IL-1 addition, whereas extracellular fibronectin appeared largely unaffected. Prelabeling with [ 32 P]phosphate showed a 2- to 3-fold increase in the level of talin phosphorylation, peaking at 15 min. Phospho amino acid analyses revealed a higher level of serine and threonine phosphorylation. The data suggest that the action of IL-1β on fibroblasts may be partially mediated by direct phosphorylation of talin via activation of a protein serine/threonine kinase, leading to changes in transmembrane linkage proteins and the cytoskeleton. Such alterations at focal adhesions may provide a mechanism by which IL-1 can rapidly modulate cell-matrix interactions during inflammation and wound healing

  13. An Alternative Form of the Defense Mechanisms Inventory: Assessing Chinese University Students

    Science.gov (United States)

    Zhang, Li-Fang

    2016-01-01

    To overcome the major weakness in the response format of the Defense Mechanisms Inventory and to use the information most relevant to the population concerned in the present study, an alternative form of the Defense Mechanisms Inventory (DMI-AF) was designed. The 80 Likert-scaled items in the inventory were tested among 385 university students in…

  14. Mechanical Behaviour and Durability of FRP-to-steel Adhesively-bonded Joints

    NARCIS (Netherlands)

    Jiang, X.

    2013-01-01

    During the last two decades, fiber-reinforced polymer (FRP) bridge decks have been increasingly used as a competitive alternative for wood, concrete and orthotropic steel decks, due to their various advantages: light-weight, good corrosion resistance, low maintenance cost and rapid installation for

  15. Mouse podoplanin supports adhesion and aggregation of platelets under arterial shear: A novel mechanism of haemostasis.

    Science.gov (United States)

    Lombard, Stephanie E; Pollitt, Alice Y; Hughes, Craig E; Di, Ying; Mckinnon, Tom; O'callaghan, Chris A; Watson, Steve P

    2017-11-01

    The podoplanin-CLEC-2 axis is critical in mice for prevention of hemorrhage in the cerebral vasculature during mid-gestation. This raises the question as to how platelets are captured by podoplanin on neuroepithelial cells in a high shear environment. In this study, we demonstrate that mouse platelets form stable aggregates on mouse podoplanin at arterial shear through a CLEC-2 and Src kinase-dependent pathway. Adhesion and aggregation are also dependent on the platelet glycoprotein (GP) receptors, integrin αIIbβ3 and GPIb, and the feedback agonists ADP and thromboxane A 2 (TxA 2 ). CLEC-2 does not bind to von Willebrand factor (VWF) suggesting that the interaction with podoplanin is sufficient to both tether and activate platelets. Consistent with this, the surface plasmon resonance measurements reveal that mouse CLEC-2 binds to mouse podoplanin with nanomolar affinity. The present findings demonstrate a novel pathway of hemostasis in which podoplanin supports platelet capture and activation at arteriolar rates of shear.

  16. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Directory of Open Access Journals (Sweden)

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  17. Alternatively spliced CD44 isoforms containing exon v10 promote cellular adhesion through the recognition of chondroitin sulfate-modified CD44

    NARCIS (Netherlands)

    Chiu, R K; Droll, A; Dougherty, S T; Carpenito, C; Cooper, D L; Dougherty, G J

    1999-01-01

    Correlations have been noted between the expression of certain alternatively spliced CD44 isoforms and the metastatic propensity of various histologically distinct tumor cell types. The precise mechanism by which particular CD44 isoforms contribute to the metastatic process is, however, unclear. In

  18. Loss-of-Function Mutations in SERPINB8 Linked to Exfoliative Ichthyosis with Impaired Mechanical Stability of Intercellular Adhesions.

    Science.gov (United States)

    Pigors, Manuela; Sarig, Ofer; Heinz, Lisa; Plagnol, Vincent; Fischer, Judith; Mohamad, Janan; Malchin, Natalia; Rajpopat, Shefali; Kharfi, Monia; Lestringant, Giles G; Sprecher, Eli; Kelsell, David P; Blaydon, Diana C

    2016-08-04

    SERPINS comprise a large and functionally diverse family of serine protease inhibitors. Here, we report three unrelated families with loss-of-function mutations in SERPINB8 in association with an autosomal-recessive form of exfoliative ichthyosis. Whole-exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA (p.Lys316Serfs(∗)90), and a nonsense mutation, c.850C>T (p.Arg284(∗)), respectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA; nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex. Using Sanger sequencing, a homozygous missense mutation, c.2T>C (p.Met1?), predicted to result in an N-terminal truncated protein, was identified in an additional family from UAE. Histological analysis of a skin biopsy from an individual homozygous for the variant p.Arg284(∗) showed disadhesion of keratinocytes in the lower epidermal layers plus decreased SERPINB8 levels compared to control. In vitro studies utilizing siRNA-mediated knockdown of SERPINB8 in keratinocytes demonstrated that in the absence of the protein, there is a cell-cell adhesion defect, particularly when cells are subjected to mechanical stress. In addition, immunoblotting and immunostaining revealed an upregulation of desmosomal proteins. In conclusion, we report mutations in SERPINB8 that are associated with exfoliative ichthyosis and provide evidence that SERPINB8 contributes to the mechanical stability of intercellular adhesions in the epidermis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  20. High glucose induces enhanced monocyte adhesion to valvular endothelial cells via a mechanism involving ICAM-1, VCAM-1 and CD18.

    Science.gov (United States)

    Manduteanu, I; Voinea, M; Serban, G; Simionescu, M

    1999-01-01

    Upon induction of experimental hyperglycemia (i.e. diabetes) pathological modifications are early detected (approximately 7 days) at the level of the cardiac valves leading rapidly to the development of valvular atheroma. Monocyte adhesion to the vascular endothelium is one of the initial event at the onset of atherosclerosis. We questioned whether high glucose enhances monocyte adhesion to the valvular endothelial cells (VEC) so as to explain, in part, the accelerated atheroma formation that occur in diabetic conditions. To this purpose we compared the adhesion of monocytes to VEC cultured in 5.5 mM (normal) glucose (NG) or in 33 mM (high) glucose (HG) or in high mannitol (HM) (27.5 mM mannitol plus 5.5 mM glucose), a concentration known to simulate the hyperosmolar effect of high glucose. After incubation for 30 min at 37 degrees C, the adhesion of monocyte cell line (U937 cells) to VEC was quantitated by a fluorimetric assay or by direct counting. Statistical data showed a significant increased adhesion of monocytes to VEC grown in HG (up to 4 fold) or in HM (up to 2.7) when compared to normal conditions. Using a battery of specific monoclonal antibodies molecules it was found that the increased adhesion of monocytes to VEC grown in high glucose was specifically inhibited (p < 0.05) by anti-ICAM-1, anti-VCAM-1 and anti-CD18 monoclonal antibodies. Together, the results indicate that high glucose induces enhanced monocyte adhesion to VEC via a mechanism involving in part an osmotic effect and mainly the cell adhesion molecules: ICAM-1, VCAM-1 and CD18.

  1. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available , to improve their mechanical properties. Various chemical treatments with acrylic acid, 4-pentanoic acid, 2,4-pentadienoic acid and 2-methyl-4-pentanoic acid were investigated. The natural fibre reinforced polypropylene composites were processed by compression...

  2. Preparation, Characterization and Mechanical Properties of Bio-Based Polyurethane Adhesives from Isocyanate-Functionalized Cellulose Acetate and Castor Oil for Bonding Wood

    Directory of Open Access Journals (Sweden)

    Adrián Tenorio-Alfonso

    2017-04-01

    Full Text Available Nowadays, different types of natural carbohydrates such as sugars, starch, cellulose and their derivatives are widely used as renewable raw materials. Vegetable oils are also considered as promising raw materials to be used in the synthesis of high quality products in different applications, including in the adhesive field. According to this, several bio-based formulations with adhesion properties were synthesized first by inducing the functionalization of cellulose acetate with 1,6-hexamethylene diisocyanate and then mixing the resulting biopolymer with a variable amount of castor oil, from 20% to 70% (wt. These bio-based adhesives were mechanically characterized by means of small-amplitude oscillatory torsion measurements, at different temperatures, and standardized tests to evaluate tension loading (ASTM-D906 and peel strength (ASTM-D903. In addition, thermal properties and stability of the synthesized bio-polyurethane formulations were also analyzed through differential scanning calorimetry and thermal gravimetric analysis. As a result, the performance of these bio-polyurethane products as wood adhesives were compared and analyzed. Bio-polyurethane formulations exhibited a simple thermo-rheological behavior below a critical temperature of around 80–100 °C depending on the castor oil/cellulose acetate weight ratio. Formulation with medium castor oil/biopolymer weight ratio (50:50 % wt showed the most suitable mechanical properties and adhesion performance for bonding wood.

  3. Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates

    International Nuclear Information System (INIS)

    Wüstefeld, Christina; Rafaja, David; Motylenko, Mykhaylo; Ullrich, Christiane; Drehmann, Rico; Grund, Thomas; Lampke, Thomas; Wielage, Bernhard

    2017-01-01

    Cold gas sprayed Al coatings deposited onto wurtzitic AlN substrates show excellent adhesion. As a possible adhesion mechanism, the local heteroepitaxy between Al and AlN was considered and verified experimentally in Al coatings, which were deposited using magnetron sputtering or cold gas spraying on single-crystalline and polycrystalline AlN substrates. Analysis of the local orientation relationships at the Al/AlN interfaces revealed that preferentially such lattice planes of Al align parallel with the upright lattice planes of AlN, which possess similar interplanar distances. The matching lattice planes in the Al coatings grew as continuations of the lattice planes in the AlN substrates. In all samples under study, the parallel alignment of the lattice planes {220} Al and {110} AlN was found. Additional orientation relationships between Al and AlN arose if parallel lattice planes with similar interplanar spacing could be found in both counterparts via rotation of the lattice planes {220} Al around their normal direction. Still, the oriented growth of Al on AlN is only possible if Al atoms in the deposited coatings are mobile enough to rearrange along the AlN surface. Whereas the mobility of Al atoms in a magnetron sputtering process is expected to be sufficiently high, the intrinsic mobility of Al atoms in the cold gas sprayed particles is anticipated to be low. However, the auxiliary microstructure analyses have shown that local recrystallization and partial melting are two phenomena, which can facilitate the rearrangement of Al atoms within the cold gas sprayed coating.

  4. Adhesive cementation of zirconia posts to root dentin: evaluation of the mechanical cycling effect

    Directory of Open Access Journals (Sweden)

    Graziela Ávila Galhano

    2008-09-01

    Full Text Available This study evaluated the effect of mechanical cycling on the bond strength of zirconia posts to root dentin. Thirty single-rooted human teeth were transversally sectioned to a length of 16 mm. The canal preparation was performed with zirconia post system drills (CosmoPost, Ivoclar to a depth of 12 mm. For post cementation, the canals were treated with total-etch, 3-steps All-Bond 2 (Bisco, and the posts were cemented with Duolink dual resin cement (Bisco. Three groups were formed (n = 10: G1 - control, no mechanical cycling; G2 - 20,000 mechanical cycles; G3 - 2,000,000 mechanical cycles. A 1.6-mm-thick punch induced loads of 50 N, at a 45° angle to the long axis of the specimens and at a frequency of 8 Hz directly on the posts. To evaluate the bond strengths, the specimens were sectioned perpendicular to the long axis of the teeth, generating 2-mm-thick slices, approximately (5 sections per teeth, which were subjected to the push-out test in a universal testing machine at a 1 mm/min crosshead speed. The push-out bond strength was affected by the mechanical cycling (1-way ANOVA, p = .0001. The results of the control group (7.7 ± 1.3 MPa were statistically higher than those of G2 (3.9 ± 2.2 MPa and G3 (3.3 ± 2.3 MPa. It was concluded that the mechanical cycling damaged the bond strength of zirconia posts to root dentin.

  5. Strong Adhesion of Silver/Polypyrrole Composite onto Plastic Substrates toward Flexible Electronics

    Science.gov (United States)

    Kawakita, Jin; Hashimoto, Yasuo; Chikyow, Toyohiro

    2013-06-01

    Flexible electronics require sufficient adhesion to substrates, such as a plastic or a polymer, of the electric wiring for devices. A composite of a conducting metal and a polymer is a candidate alternative to pure metals in terms of wire flexibility. The purpose of this study was to evaluate the adhesiveness of a silver/polypyrrole composite to plastic substrates and to clarify the mechanism of adhesion. The composite was prepared on various plastic substrates by dropping its fluid dispersion. Its adhesiveness was evaluated by the peel-off test and its interfacial structure was characterized by microscopy measurements. Some polymers including Teflon with generally weak adhesion to different materials showed a high adhesiveness of more than 90%. The strong adhesion was related to the anchoring effect of the composite penetrating into the pores near the surface of the substrate.

  6. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    Science.gov (United States)

    2015-12-01

    event. The discovery that transformed and rapidly proliferating cells use alternative cleavage and polyadenylation ( APA ) to shorten the 3´UTR of their... APA . However, the mechanism that APA is still unknown. The goal of this project is to identify the mechanism of cyclin D1 APA regulation in cancer...for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other

  7. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  8. Enoxaparin reduces H2O2-induced activation of human endothelial cells by a mechanism involving cell adhesion molecules and nuclear transcription factors.

    Science.gov (United States)

    Manduteanu, Ileana; Dragomir, Elena; Voinea, Manuela; Capraru, Monica; Simionescu, Maya

    2007-01-01

    There are data that document the anti-inflammatory effect of enoxaparin (EP) and its possible antioxidant potential. This study was designed to search for the antioxidant mechanism(s) of EP directly on endothelial cells exposed to an oxidant stimulus. For this purpose cultured human endothelial cells were exposed to nontoxic concentrations of hydrogen peroxide in the presence or absence of EP, and the adhesion of monocytes, the expression of cell adhesion molecules and transcription factors possibly involved in the process were tested. Adhesion assays, ELISA and Western blot analysis revealed that EP reduced monocyte adhesion, ICAM-1 and P-selectin expression, decreased the nuclear levels of c-Jun and p65 proteins, and diminished the phosphorylation of c-Jun protein, MAPK p38 and JNK. Together, the data demonstrate the antioxidant effect of EP and the involvement of ICAM-1, P-selectin, MAPK p38, JNK and the transcription factors NF-kappaB and AP-1 in the mechanism of action of this drug. (c) 2007 S. Karger AG, Basel.

  9. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria

    NARCIS (Netherlands)

    Castonguay, MH; van der Schaaf, S; Koester, W; Krooneman, J; Harmsen, H; Landini, P; van der Meer, W.

    Laboratory strains of Escherichia coli do not show significant ability to attach to solid surfaces and to form biofilms. We compared the adhesion properties of the E. coli PHL565 laboratory strain to eight environmental E. coli isolates: only four isolates displayed adhesion properties to glass

  10. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    Science.gov (United States)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  11. The Molecular Mechanism of Alternative P450-Catalyzed Metabolism of Environmental Phenolic Endocrine-Disrupting Chemicals

    DEFF Research Database (Denmark)

    Ji, Li; Ji, Shujing; Wang, Chenchen

    2018-01-01

    Understanding the bioactivation mechanisms to predict toxic metabolites is critical for risk assessment of phenolic endocrine-disrupting chemicals (EDCs). One mechanism involves ipso-substitution, which may contribute to the total turnover of phenolic EDCs, yet the detailed mechanism and its...... EDCs. We envision that the identified pathways will be applicable for prediction of metabolites from phenolic EDCs whose fate is affected by this alternative type of P450 reactivity, and accordingly enable the screening of these metabolites for endocrine-disrupting activity....

  12. Rheological, mechanical and adhesive properties of surfactant-containing systems designed as a potential platform for topical drug delivery.

    Science.gov (United States)

    Carvalho, Flávia Chiva; Rocha e Silva, Hilris; da Luz, Gabriela Marielli; Barbi, Mariana da Silva; Landgraf, Daniele Silveira; Chiavacci, Leila Aparecida; Sarmento, Victor Hugo Vitorino; Gremião, Maria Palmira Daflon

    2012-04-01

    In the last few decades, nanotechnology has led to an advance in the development of topical drug delivery. Nanostructured drug delivery systems enable the compartmentalization of drugs in restricted environments, modifying the release profile and maintaining the required drug concentration for prolonged periods at the site of action and/or absorption. The development of nanostructured systems containing surfactants has evolved rapidly. Mixtures of surfactant, oil and water can self-associate to form structures, such as microemulsions and liquid crystal phases, which can be exploited as drug delivery systems because their nanostructured organization can control drug release. Therefore, the purpose of this study was to assess the potential of systems containing polyoxypropylene (5) polyoxyethylene (20) cetyl ether as surfactant, oleic acid or mineral oil as the oily phase, and water to be used as a platform in the development of topical drug delivery systems. Physicochemical characterization of the systems was performed by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological tests and texture profile analysis. The ternary phase diagrams showed that combinations of surfactant/mineral oil/water and surfactant/oleic acid/water could form various thermodynamically stable structures, such as microemulsions and liquid crystals. The oily phases, oleic acid and mineral oil, changed the rheological, mechanical and adhesive properties of systems containing polyoxypropylene (5) polyoxyethylene (20) cetyl ether.

  13. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM.

    Science.gov (United States)

    Ganser, Christian; Czibula, Caterina; Tscharnuter, Daniel; Schöberl, Thomas; Teichert, Christian; Hirn, Ulrich

    2017-12-20

    Viscoelastic properties are often measured using probe based techniques such as nanoindentation (NI) and atomic force microscopy (AFM). Rarely, however, are these methods verified. In this article, we present a method that combines contact mechanics with a viscoelastic model (VEM) composed of springs and dashpots. We further show how to use this model to determine viscoelastic properties from creep curves recorded by a probe based technique. We focus on using the standard linear solid model and the generalized Maxwell model of order 2. The method operates in the range of 0.01 Hz to 1 Hz. Our approach is suitable for rough surfaces by providing a defined contact area using plastic pre-deformation of the material. The very same procedure is used to evaluate AFM based measurements as well as NI measurements performed on polymer samples made from poly(methyl methacrylate) and polycarbonate. The results of these measurements are then compared to those obtained by tensile creep tests also performed on the same samples. It is found that the tensile test results differ considerably from the results obtained by AFM and NI methods. The similarity between the AFM results and NI results suggests that the proposed method is capable of yielding results comparable to NI but with the advantage of the imaging possibilities of AFM. Furthermore, all three methods allowed a clear distinction between PC and PMMA by means of their respective viscoelastic properties.

  14. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  16. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  17. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  18. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  19. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    Science.gov (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  1. Comparative investigation of the adhesion of Ce conversion layers and silane layers to a AA 2024-T3 substrate through mechanical and electrochemical tests

    Directory of Open Access Journals (Sweden)

    Luis Enrique Morales Palomino

    2007-12-01

    Full Text Available Cerium conversion layers and silane films are among the potential substitutes for the carcinogenic chromate conversion layers used to protect high-strength Al alloys. In the present work the adhesion of a cerium conversion layer and of a silane film to an aluminium alloy (AA 2024-T3 substrate was investigated using mechanical and electrochemical tests. Scanning electron microscopy (SEM- X ray energy dispersive spectroscopy (EDS, Fourier transform infrared spectroscopy (FT-IR and X ray photoelectron spectroscopy (XPS were used to characterize the layers prior and after the mechanical test consisting of ultrasonic rinse in deionized water during 30 minutes. Mechanically tested and untested layers were also submitted to electrochemical impedance spectroscopy (EIS and anodic polarization measurements in 0.1 M NaCl solution. The results of the characterization tests have pointed to a stronger adhesion of the Ce layer to the substrate in comparison with the silane film, which was confirmed by the electrochemical tests. The adhesion between the silane film and the Ce conversion layer was also tested, to evaluate the possibility of using the system as a protective bi-layer in accordance with the new trends being developed to substitute chromate conversion layers.

  2. Thermoresponsive cell culture substrates based on PNIPAM brushes functionalized with adhesion peptides: theoretical considerations of mechanism and design.

    Science.gov (United States)

    Halperin, Avraham; Kröger, Martin

    2012-12-04

    Thermoresponsive tissue culture substrates based on PNIPAM brushes are used to harvest confluent cell sheets for tissue engineering. The prospect of clinical use imposes the utilization of culture medium free of bovine serum, thus suggesting conjugation with adhesion peptides containing the RGD minimal recognition sequence. The optimum position of the RGD along the chain should ensure both cell adhesion at 37 °C and cell detachment at T(L) below the lower critical solution temperature of PNIPAM. Design guidelines are formulated from considerations of brush confinement by the cells: (i) Cell adhesion at 37 °C is controlled by the RGDs accessible without brush compression. (ii) Cell detachment at T(L) is driven by a disjoining force due to confinement of the swollen brush by cells retaining integrin-RGD bonds formed at 37 °C. These suggest placing the RGDs at the grafting surface or its vicinity. Randomly placed RGDs do not enable efficient detachment because a large fraction of the integrin-RGD bonds are not sufficiently tensioned at T(L), in line with experimental observations (Ebara, M.; Yamato, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Immobilization of celladhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 2004, 10, 1125-1135). The theory framework enables analysis of culture media based on polymer brushes conjugated with adhesion peptides in general.

  3. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  4. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    Science.gov (United States)

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation.

    Science.gov (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-26

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  6. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  7. Evaluation of degree of conversion, microtensile bond strength and mechanical properties of three etch-and-rinse dental adhesives

    Directory of Open Access Journals (Sweden)

    Samantha Ariadne Alves de Freitas

    2017-09-01

    Full Text Available Abstract This study evaluated microtensile bond strength (µTBS, degree of conversion, modulus of elasticity and ultramicrohardness of three etch-and-rinse adhesives systems. The materials evaluated were: Ambar (FGM, Optibond (Kerr and Magic Bond (Vigodent. The degree of conversion was analyzed by FTIR/ATR. To evaluate bond strength (μTBS in dentin, 15 teeth (n = 5 were restored and sliced to obtain the specimens (0.8mm2. The dynamic ultra microhardness tester was used to evaluate the hardness and modulus of elasticity. The Magic Bond adhesive system showed lower µTBS than Ambar and Optibond (p <0.001. For degree of conversion, comparisons between groups of adhesive systems evaluated showed statistically significant difference (p<0.001, with higher values for Ambar and Optibond when compared a Magic Bond. For modulus of elasticity and ultramicrohardness, Ambar and Magic Bond showed lower values than Optibond. The best results in all properties evaluated were obtained by the Optibond adhesive system.

  8. Marginal adaptation of inlay-retained adhesive fixed partial dentures after mechanical and thermal stress: an in vitro study.

    Science.gov (United States)

    Göehring, T N; Peters, O A; Lutz, F

    2001-07-01

    There are no studies that analyze the long-term durability of minimally invasive fixed partial dentures (FPDs) by comparing different methods of adhesive bonding. This in vitro study examined the influence of cavity design and operative technique on the marginal adaptation of resin-bonded composite FPDs. Slot-inlay tooth preparations with cavity margins located in enamel were prepared in 18 maxillary canines and 18 maxillary first molars designated as abutments. The specimens were divided equally into 3 experimental groups. In all groups, butt joint tooth preparations were created in canines and molars. In group 2, canines were prepared additionally with a 1.5-mm wide palatal bevel in enamel. After pretests with modification spaces of 11 and 17 mm (length), 2 missing premolars were replaced by the ceromer Targis and reinforced with the glass-fiber material Vectris. The prostheses were inserted with Tetric Ceram with use of an ultrasonic-supported, high-viscosity technique. Restorations were selectively bonded to cavity finish lines in groups 1 and 2 ("selective bonding"). In group 3, restorations were bonded totally to the whole cavity surface ("total bonding"). The restorations were stressed in a computer-controlled masticator. Marginal quality was examined with an SEM at x 200. The percent area of optimal margins after thermomechanical loading between composite and enamel in each group was as follows: group 1, 86.2% +/- 12.3% for canines and 95.5% +/- 3.5% for molars; group 2, 95.3% +/- 2.1% for canines and 96.2% +/- 2.7% for molars; and group 3, 95% +/- 0.9% for canines and 86.4% +/- 3.2% for molars. The marginal quality for molars inserted with total bonding was significantly lower (P< or =.05). Within the limitations of this study, the selective bonding technique for slot inlay-retained fixed partial dentures resulted in a negligible loss of marginal quality after extensive mechanical and thermal stress. The selective bonding technique is recommended for box

  9. Evaluation of non-specular reflecting silvered Teflon and filled adhesives

    Science.gov (United States)

    Bourland, G.; Cox, R. L.

    1981-01-01

    A non-specular silver-Teflon tape thermal control coating was tested to provide the data necessary to qualify it for use on the Space Shuttle Orbiter radiators. Effects of cure cycle temperature and pressure on optical and mechanical properties on the silver-Teflon tape were evaluated. The baseline Permacel P-223 adhesive, used with the specular silver-Teflon tape initially qualified for the Orbiter radiators, and four alternate metal-filled and unfilled adhesives were evaluated. Tests showed the cure process has no effect on the silver-Teflon optical properties, and that the baseline adhesive cure cycle gives best results. In addition the P-223 adhesive bond is more reproducible than the alternates, and the non-specular tape meets both the mechanical and the optical requirements of the Orbiter radiator coating specification. Existing Orbiter coating techniques were demonstrated to be effective in aplying the non-specular tape to a curved panel simulating the radiators. Author

  10. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.

    Science.gov (United States)

    Radestock, Sebastian; Forrest, Lucy R

    2011-04-15

    Lactose permease (LacY) is the prototype of the major facilitator superfamily (MFS) of secondary transporters. Available structures of LacY reveal a state in which the substrate is exposed to the cytoplasm but is occluded from the periplasm. However, the alternating-access transport mechanism requires the existence of a periplasm-facing state. We recently showed that inverted-topology structural repeats provide the foundation for the mechanisms of two transporter families with folds distinct from the MFS. Here, we generated a structural model of LacY by swapping the conformations of inverted-topology repeats identified in its two domains. The model exhibits all required properties of an outward-facing conformation, i.e., closure of the binding site to the cytoplasm and exposure to the periplasm. Furthermore, the model agrees with double electron-electron resonance distance changes, accessibility to cysteine-modifying reagents, cysteine cross-linking data, and a recent structure of a distantly related transporter. Analysis of the intradomain differences between the two states suggests a role for conserved sequence motifs in occluding the central pathway through kinking of the pore-lining helices. In addition, predicted re-pairing of critical salt-bridging residues in the binding sites agrees remarkably well with previous proposals, allowing a description of the proton/sugar transport mechanism. More fundamentally, our model demonstrates that inverted-topology repeats provide the foundation for the alternating-access mechanisms of MFS transporters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  12. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  13. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  14. Mechanisms for alternative treatments in Parkinson's disease: acupuncture, tai chi, and other treatments.

    Science.gov (United States)

    Ghaffari, Bijan D; Kluger, Benzi

    2014-06-01

    At least 40% of patients with Parkinson's disease (PD) use one or more forms of alternative therapy (AT) to complement standard treatments. This article reviews the commonest forms of AT for PD, including acupuncture, tai chi, yoga, mindfulness, massage, herbal medicine, and cannabis. We discuss the current evidence for the clinical efficacy of each AT and discuss potential mechanisms, including those suggested by animal and human studies. With a few notable exceptions, none of the treatments examined were investigated rigorously enough to draw definitive conclusions about efficacy or mechanism. Tai chi, acupuncture, Mucuna pruriens, cannabinoids, and music therapy have all been proposed to work through specific mechanisms, although current evidence is insufficient to support or refute these claims, with the possible exception of Mucuna pruriens (which contains levodopa). It is likely that most ATs predominantly treat PD patients through general mechanisms, including placebo effects, stress reduction, and improved mood and sleep, and AT may provide patients with a greater locus of control regarding their illness.

  15. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  16. Alternative mechanisms of telomere lengthening: Permissive mutations, DNA repair proteins and tumorigenic progression

    Energy Technology Data Exchange (ETDEWEB)

    Gocha, April Renee Sandy; Harris, Julia [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna, E-mail: joanna.groden@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Highlights: ► Neoplastic cells maintain telomeres by telomerase or ALT. ► Genetic mutations in p53, ATRX, DAXX or H3F3A may activate ALT. ► Many DNA repair proteins are involved in ALT. ► Tumor progression is favored by telomerase expression. - Abstract: Telomeres protect chromosome termini to maintain genomic stability and regulate cellular lifespan. Maintenance of telomere length is required for neoplastic cells after the acquisition of mutations that deregulate cell cycle control and increase cellular proliferation, and can occur through expression of the enzyme telomerase or in a telomerase-independent manner termed alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are unknown, although cellular origin may favor one or the other mechanisms. ALT pathways are incompletely understood to date; however, recent publications have increasingly broadened our understanding of how ALT is activated, how it proceeds, and how it influences tumor growth. Specific mutational events influence ALT activation, as mutations in genes that suppress recombination and/or alterations in the regulation of telomerase expression are associated with ALT. Once engaged, ALT uses DNA repair proteins to maintain telomeres in the absence of telomerase; experiments that manipulate the expression of specific proteins in cells using ALT are illuminating some of its mechanisms. Furthermore, ALT may influence tumor growth, as experimental and clinical data suggest that telomerase expression may favor tumor progression. This review summarizes recent findings in mammalian cells and models, as well as clinical data, that identify the genetic mutations permissive to ALT, the DNA repair proteins involved in ALT mechanisms and the importance of telomere maintenance mechanisms for tumor progression. A comprehensive understanding of the mechanisms that permit tumor cell immortalization will be important for identifying

  17. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  18. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...

  19. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING: PART I: EFFECTS ON PHYSICAL AND MECHANICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available The use of conventional bentonite binder is favorable in terms of mechanical and metallurgical pellet properties, however, because of its acid constituents bentonite is considered as impurity especially for iron ores with high acidic content. Therefore, alternative binders to bentonite have been tested. Organic binders are the most studied binders and they yield pellets with good wet strength; they fail in terms of preheated and fired pellet strengths. This study was conducted to investigate how insufficient pellet strengths can be improved when organic binders are used as binder. The addition of a low-melting temperature and slag bonding/strength increasing constituent (free in acidic contents into pellet feed was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into iron oxide pellet was tested. Wet and thermally treated pellet physical-mechanical qualities (balling - moisture content - size - shape - drop number - compressive strengths - porosity - dustiness were determined. The results showed that good quality wet, dry, preheated and fired pellets can be produced with combined binders (an organic binder plus a boron compound when compared with bentonite-bonded pellets. While organic binders provided sufficient wet and dry pellet strengths, the boron compounds provided the required preheated and fired pellet strengths at even lower firing temperature. Especially, the contribution of boron compound addition is most pronounced for hematite pellets which do not have strengthening mechanism through oxidation like magnetite pellets during firing. Therefore, addition of boron compound is beneficial to recover the low physical-mechanical qualities of pellets produced with organic binders through slag bonding mechanism. Furthermore, lowering the firing temperature thanks to low-melting boron compounds will be cost

  20. Properties of pressure sensitive adhesives found in paper recycling operations

    Science.gov (United States)

    Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman

    2006-01-01

    Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...

  1. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  2. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    Abstract Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation. A. Grossi, M. A. Lawson; Department of Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark The process of muscle...... forces. Stretch- or load-induced signaling is now beginning to be understood as a factor which affects the mass and phenotype of muscles as well as the expression of a number of proteins within muscle cells. Use of magnetic field to produce mechanical forces to stimulate cell populations has been well...... bead stimulation assay and a C2C12 mouse myoblast cell population, we have found that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, an enzyme found to be required for muscle cell fusion. After a short period of stimulation, m-calpain relocates into focal...

  3. Mechanical reliability evaluation of alternate motors for use in a radioiodine air sampler

    International Nuclear Information System (INIS)

    Bird, S.K.; Huchton, R.L.; Motes, B.G.

    1984-03-01

    Detailed mechanical reliability studies of two alternate motors identified for use in the BNL Air Sampler wer conducted. The two motor types were obtained from Minnesota Electric Technology, Incorporated (MET) and TCS Industries (TCSI). Planned testing included evaluation of motor lifetimes and motor operability under different conditions of temperature, relative humidity, simulated rainfall, and dusty air. The TCSI motors were not lifetime tested due to their poor performance during the temperature/relative humidity tests. While operation on alternating current was satisfactory, on direct current only one of five TCSI motors completed all environmental testing. The MET motors had average lifetimes of 47 hours, 97 hours, and 188 hours, respectively, and exhibited satisfactory operation under all environmental test conditions. Therefore, the MET motor appears to be the better candidate motor for use in the BNL Air Sampler. However, because of the relatively high cost of purchasing and incorporating the MET motor into the BNL Air Sampler System, it is recommended that commercial air sampler systems be evaluated for use instead of the BNL system

  4. Denture Adhesives

    Science.gov (United States)

    ... prevent overuse if zinc is an ingredient. (Some companies include graphics of the amount of adhesive to ... and adequate directions for use or a clear definition of an unsafe dosage or methods or duration ...

  5. Polymer adhesion predictions for oral dosage forms to enhance drug administration safety. Part 2: In vitro approach using mechanical force methods.

    Science.gov (United States)

    Drumond, Nélio; Stegemann, Sven

    2018-03-05

    Predicting the potential for unintended adhesion of solid oral dosage forms (SODF) to mucosal tissue is an important aspect that should be considered during drug product development. Previous investigations into low strength mucoadhesion based on particle interactions methods provided evidence that rheological measurements could be used to obtain valid predictions for the development of SODF coatings that can be safely swallowed. The aim of this second work was to estimate the low mucoadhesive strength properties of different polymers using in vitro methods based on mechanical forces and to identify which methods are more precise when measuring reduced mucoadhesion. Another aim was to compare the obtained results to the ones achieved with in vitro particle interaction methods in order to evaluate which methodology can provide stronger predictions. The combined results correlate between particle interaction methods and mechanical force measurements. The polyethylene glycol grades (PEG) and carnauba wax showed the lowest adhesive potential and are predicted to support safe swallowing. Hydroxypropyl methylcellulose (HPMC) along with high molecular grades of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) exhibited strong in vitro mucoadhesive strength. The combination of rheological and force tensiometer measurements should be considered when assessing the reduced mucoadhesion of polymer coatings to support safe swallowing of SODF. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  7. A Systematic Review of Security Mechanisms for Big Data in Health and New Alternatives for Hospitals

    Directory of Open Access Journals (Sweden)

    Sofiane Hamrioui

    2017-01-01

    Full Text Available Computer security is something that brings to mind the greatest developers and companies who wish to protect their data. Major steps forward are being taken via advances made in the security of technology. The main purpose of this paper is to provide a view of different mechanisms and algorithms used to ensure big data security and to theoretically put forward an improvement in the health-based environment using a proposed model as reference. A search was conducted for information from scientific databases as Google Scholar, IEEE Xplore, Science Direct, Web of Science, and Scopus to find information related to security in big data. The search criteria used were “big data”, “health”, “cloud”, and “security”, with dates being confined to the period from 2008 to the present time. After analyzing the different solutions, two security alternatives are proposed combining different techniques analyzed in the state of the art, with a view to providing existing information on the big data over cloud with maximum security in different hospitals located in the province of Valladolid, Spain. New mechanisms and algorithms help to create a more secure environment, although it is necessary to continue developing new and better ones to make things increasingly difficult for cybercriminals.

  8. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  9. Where will the money come from? Alternative mechanisms to HIV donor funding.

    Science.gov (United States)

    Katz, Itamar; Routh, Subrata; Bitran, Ricardo; Hulme, Alexandra; Avila, Carlos

    2014-09-16

    Donor funding for HIV programs has flattened out in recent years, which limits the ability of HIV programs worldwide to achieve universal access and sustain current progress. This study examines alternative mechanisms for resource mobilization. Potential non-donor funding sources for national HIV responses in low- and middle-income countries were explored through literature review and Global Fund documentation, including data from 17 countries. We identified the source, financing agent, magnitude of resources, frequency of availability, as well as enabling and risk factors. Four non-donor funding sources for HIV programs were identified: earmarked levy for HIV from country budgets; risk-pooling schemes such as health insurance; debt conversion, in which the creditor country reduces the debt of the debtor country and allocates at least a part of that reduction to health; and concessionary loans from international development banks, which unlike grants, must be repaid. The first two are recurring sources of funding, while the latter two are usually one-time sources, and, if very large, might negatively affect the debtor country's economy. Insurance schemes in five African countries covered less than 6.1% of the HIV expenditure, while social health insurance in four Latin American countries covered 8-11% of the HIV expenditure; in Colombia and Chile, it covered 69% and 60%, respectively. Most low-income countries will find concessionary loans hard to repay, as their HIV programs cost 0.5-4% of GDP. Even in a middle-income country like India, a US$255 million concessionary loan to be repaid over 25 years provided only 7.8% of a 5-year HIV budget. Earmarked levies provided only 15% of the annual HIV funding needs in Zimbabwe and Kenya. Debt conversion provided the same share in Indonesia, but in Pakistan it was much higher - the equivalent of 45% of the annual cost of the national HIV program. Domestic sources of funding are important alternatives to consider and might

  10. Interaction of Interceed oxidized regenerated cellulose with macrophages: a potential mechanism by which Interceed may prevent adhesions.

    Science.gov (United States)

    Reddy, S; Santanam, N; Reddy, P P; Rock, J A; Murphy, A A; Parthasarathy, S

    1997-12-01

    The objective of the study was to determine whether Interceed oxidized regenerated cellulose (Johnson & Johnson Medical, Arlington, Tex.), because of its polyanionic nature, may compete for the macrophage scavenger receptor. RAW macrophages were incubated with Interceed oxidized regenerated cellulose and known scavenger receptor ligands. The production of interleukin-1beta by mouse peritoneal macrophages was measured in the presence of Interceed cellulose. When macrophages were incubated with Interceed cellulose, increasing concentrations inhibited the uptake of fluorescent acetyl low-density lipoprotein. In the presence of Interceed cellulose there was a decrease in the production of interleukin-1beta by mouse macrophages. These results suggest that the interaction of Interceed oxidized regenerated cellulose with macrophages with scavenger receptors may result in a decreased secretion of matrix components, inflammatory mediators, and cellular growth factors. Thus Interceed cellulose may function as a biologic barrier in preventing adhesions.

  11. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  12. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes

    Directory of Open Access Journals (Sweden)

    Christoph S Herrmann

    2013-06-01

    Full Text Available Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  13. Analysis of heat loss mechanisms for mobile tent-type refuge alternatives.

    Science.gov (United States)

    Bissert, P T; Yantek, D S; Klein, M D; Yan, L

    2016-01-01

    Federal regulations require that refuge alternatives (RAs) be located within 305 m (1,000 ft) of the working face and spaced at one-hour travel distances in the outby area in underground coal mines, in the event that miners cannot escape during a disaster. The Mine Safety and Health Administration mandates that RAs provide safe shelter and livable conditions for a minimum of 96 hours while maintaining the apparent temperature below 35 °C (95 °F). The U.S. National Institute for Occupational Safety and Health used a validated thermal simulation model to examine the mechanisms of heat loss from an RA to the ambient mine and the effect of mine strata composition on the final internal dry bulb temperature (DBT) for a mobile tent-type RA. The results of these studies show that 51 percent of the heat loss from the RA to the ambient mine is due to radiation and 31 percent to conduction. Three mine width and height configurations and four mine strata compositions were examined. The final DBT inside the RA after 96 hours varied by less than 1 °C (1.8 °F) for the three mine width/height configurations and by less than 2 °C (3.6 °F) for the four mine strata compositions.

  14. An alternative mechanism for international health aid: evaluating a Global Social Protection Fund.

    Science.gov (United States)

    Basu, Sanjay; Stuckler, David; McKee, Martin

    2014-01-01

    Several public health groups have called for the creation of a global fund for 'social protection'-a fund that produces the international equivalent of domestic tax collection and safety net systems to finance care for the ill and disabled and related health costs. All participating countries would pay into a global fund based on a metric of their ability to pay and withdraw from the common pool based on a metric of their need for funds. We assessed how alternative strategies and metrics by which to operate such a fund would affect its size and impact on health system financing. Using a mathematical model, we found that common targets for health funding in low-income countries require higher levels of aid expenditures than presently distributed. Some mechanisms exist that may incentivize reduction of domestic health inequalities, and direct most funds towards the poorest populations. Payments from high-income countries are also likely to decrease over time as middle-income countries' economies grow.

  15. Alternative mechanism for coffee-ring deposition based on active role of free surface

    Science.gov (United States)

    Jafari Kang, Saeed; Vandadi, Vahid; Felske, James D.; Masoud, Hassan

    2016-12-01

    When a colloidal sessile droplet dries on a substrate, the particles suspended in it usually deposit in a ringlike pattern. This phenomenon is commonly referred to as the "coffee-ring" effect. One paradigm for why this occurs is as a consequence of the solutes being transported towards the pinned contact line by the flow inside the drop, which is induced by surface evaporation. From this perspective, the role of the liquid-gas interface in shaping the deposition pattern is somewhat minimized. Here, we propose an alternative mechanism for the coffee-ring deposition. It is based on the bulk flow within the drop transporting particles to the interface where they are captured by the receding free surface and subsequently transported along the interface until they are deposited near the contact line. That the interface captures the solutes as the evaporation proceeds is supported by a Lagrangian tracing of particles advected by the flow field within the droplet. We model the interfacial adsorption and transport of particles as a one-dimensional advection-generation process in toroidal coordinates and show that the theory reproduces ring-shaped depositions. Using this model, deposition patterns on both hydrophilic and hydrophobic surfaces are examined in which the evaporation is modeled as being either diffusive or uniform over the surface.

  16. Static Mechanical Loading Influences the Expression of Extracellular Matrix and Cell Adhesion Proteins in Vaginal Cells Derived From Premenopausal Women With Severe Pelvic Organ Prolapse.

    Science.gov (United States)

    Kufaishi, Hala; Alarab, May; Drutz, Harold; Lye, Stephen; Shynlova, Oksana

    2016-08-01

    Primary human vaginal cells derived from women with severe pelvic organ prolapse (POP-HVCs) demonstrate altered cellular characteristics as compared to cells derived from asymptomatic women (control-HVCs). Using computer-controllable Flexcell stretch unit, we examined whether POP-HVCs react differently to mechanical loading as compared to control-HVCs by the expression of extracellular matrix (ECM) components, cell-ECM adhesion proteins, and ECM degrading and maturating enzymes. Vaginal tissue biopsies from premenopausal patients with Pelvic Organ Prolapse Quantification System stage ≥3 (n = 8) and asymptomatic controls (n = 7) were collected during vaginal hysterectomy or repair. Human vaginal cells were isolated by enzymatic digestion, seeded on collagen (COLI)-coated plates, and stretched (24 hours, 25% elongation). Total RNA was extracted, and 84 genes were screened using Human ECM and Adhesion Molecules polymerase chain reaction array; selected genes were verified by quantitative reverse transcription-polymerase chain reaction. Stretch-conditioned media (SCM) were collected and analyzed by protein array, immunoblotting, and zymography. In mechanically stretched control-HVCs, transcript levels of integrins (ITGA1, ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMPs) 2, 8, and 13 were downregulated (P SCM from POP-HVCs compared to control-HVCs. Primary human vaginal cells derived from women with severe pelvic organ prolapse and control-HVCs react differentially to in vitro mechanical stretch. Risk factors that induce stretch may alter ECM composition and cell-ECM interaction in pelvic floor tissue leading to the abatement of pelvic organ support and subsequent POP development. © The Author(s) 2016.

  17. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  18. [The paper summarizes data on laboratory and clinical assessment of Corega dent Laboratory and clinical analysis of Corega denture adhesive cream mechanical properties].

    Science.gov (United States)

    Kalivradzhiyan, E S; Podoprigora, A V; Kaverina, E Yu; Bobeshko, M N

    The paper summarizes data on laboratory and clinical assessment of Corega denture adhesive cream adhesive properties: adhesion strength and time of adhesive material fixing. Clinical assessment was based on Ulitovsky-Leontyev denture fixation index evaluated in 18 edentulous patients with full removable dentures 1 and 12 months after denture manufacturing. After one year of evaluation denture fixation in patients using Corega denture adhesive cream was 8-15% better (depending on alveolar bed anatomy) than in controls proving that Corega improves full denture adaptation to physiological atrophy of alveolar bone.

  19. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H

    2011-01-01

    Mechanical forces are crucial in the regulation of cell morphology and function. At the cellular level, these forces influence myoblast differentiation and fusion. In this study we applied mechanical stimuli to embryonic muscle cells using magnetic microbeads, a method shown to apply stress...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  20. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2005-01-01

    to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ infux in myocytes. Evidence of the involvement of Ca2+ dependent activity in myoblast fusion, cell membrane and cytoskeleton component reorganization due......Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...

  1. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  2. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  3. Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty.

    Science.gov (United States)

    Lee, Yong Seuk; Howell, Stephen M; Won, Ye-Yeon; Lee, O-Sung; Lee, Seung Hoon; Vahedi, Hamed; Teo, Seow Hui

    2017-11-01

    A systematic review was conducted to answer the following questions: (1) Does kinematically aligned (KA) total knee arthroplasty (TKA) achieve clinical outcomes comparable to those of mechanically aligned (MA) TKA? (2) How do the limb, knee, and component alignments differ between KA and MA TKA? (3) How is joint line orientation angle (JLOA) changed from the native knee in KA TKA compared to that in MA TKA? Nine full-text articles in English that reported the clinical and radiological outcomes of KA TKA were included. Five studies had a control group of patients who underwent MA TKA. Data on patient demographics, clinical scores, and radiological results were extracted. There were two level I, one level II, three level III, and three level IV studies. Six of the nine studies used patient-specific instrumentation, one study used computer navigation, and two studies used manual instrumentation. The clinical outcomes of KA TKA were comparable or superior to those of MA TKA with a minimum 2-year follow-up. Limb and knee alignment in KA TKA was similar to those in MA TKA, and component alignment showed slightly more varus in the tibial component and slightly more valgus in the femoral component. The JLOA in KA TKA was relatively parallel to the floor compared to that in the native knee and not oblique (medial side up and lateral side down) compared to that in MA TKA. The implant survivorship and complication rate of the KA TKA were similar to those of the MA TKA. Similar or better clinical outcomes were produced by using a KA TKA at early-term follow-up and the component alignment differed from that of MA TKA. KA TKA seemed to restore function without catastrophic failure regardless of the alignment category up to midterm follow-up. The JLOA in KA TKA was relatively parallel to the floor similar to the native knee compared to that in MA TKA. The present review of nine published studies suggests that relatively new kinematic alignment is an acceptable and alternative

  4. Confidence versus Performance as an Indicator of the Presence of Alternative Conceptions and Inadequate Problem-Solving Skills in Mechanics

    Science.gov (United States)

    Potgieter, Marietjie; Malatje, Esther; Gaigher, Estelle; Venter, Elsie

    2010-01-01

    This study investigated the use of performance-confidence relationships to signal the presence of alternative conceptions and inadequate problem-solving skills in mechanics. A group of 33 students entering physics at a South African university participated in the project. The test instrument consisted of 20 items derived from existing standardised…

  5. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  6. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    Science.gov (United States)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  7. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (compression of a water drop between two gradient surfaces. This inchworm type motion is studied in detail and offers an alternative method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous

  8. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  9. Drug testing with alternative matrices II. Mechanisms of cocaine and codeine deposition in hair.

    Science.gov (United States)

    Joseph, R E; Höld, K M; Wilkins, D G; Rollins, D E; Cone, E J

    1999-10-01

    A 10-week inpatient study was performed to evaluate cocaine, codeine, and metabolite disposition in biological matrices collected from volunteers. An initial report described drug disposition in plasma, sebum, and stratum corneum collected from five African-American males. This report focuses on drug disposition in hair and sweat collected from the same five subjects. Following a three-week washout period, three doses of cocaine HCl (75 mg/70 kg, subcutaneous) and three doses of codeine SO4 (60 mg/70 kg, oral) were administered on alternating days in week 4 (low-dose week). The same dosing sequence was repeated in week 8 with doubled doses (high-dose week). Hair was collected by shaving the entire scalp once each week. Hair from the anterior vertex was divided into two portions. One portion was washed with isopropanol and phosphate buffer; the other portion was not washed. Hair was enzymatically digested, samples were centrifuged, and the supernatant was collected. Sweat was collected periodically by placing PharmChek sweat patches on the torso. Drugs were extracted from sweat patches with methanol/0.2 M sodium acetate buffer (75:25, v/v). Supernatants from hair digests, hair washes, and sweat patch extracts were processed by solid-phase extraction followed by gas chromatography-mass spectrometry analysis for cocaine, codeine, 6-acetylmorphine, and metabolites. Cocaine and codeine were the primary analytes identified in sweat patches and hair. Drugs were detected in sweat within 8 h after dosing, and drug secretion primarily occurred within 24 h after dosing. No clear relationship was observed between dose and drug concentrations in sweat. Drug incorporation into hair appeared to be dose-dependent. Drugs were detected in hair within 1-3 days after the last drug administration; peak drug concentrations generally occurred in the following 1-2 weeks; thereafter, drug concentrations decreased. Solvent washes removed 50-55% of cocaine and codeine from hair collected 1

  10. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  11. Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli.

    Directory of Open Access Journals (Sweden)

    Jessica A Younes

    Full Text Available Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2-6.4 nN than between staphylococcal pairs (2.2-3.4 nN, especially for the probiotic Lactobacillus reuteri RC-14 (4.0-6.4 nN after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens.

  12. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  13. Effect of Moisture Cycling on Mechanical Response of Metal-Plate Connector Joints With and Without an Adhesive Interface

    Science.gov (United States)

    Leslie H. Groom

    1995-01-01

    Wood trusses are frequently located in light-frame structures where they are subjected to significant shifts in moisture conditions. However, little is known about the effects of moisture cycling of the wood members on the mechanical behavior of metal-plate connector (MPC) joints. Thus, the primary objective of this study was to quantify the effect of wood moisture...

  14. Activation of PAK by a bacterial type III effector EspG reveals alternative mechanisms of GTPase pathway regulation.

    Science.gov (United States)

    Selyunin, Andrey S; Alto, Neal M

    2011-07-01

    Small Rho GTPases regulate a diverse range of cellular behavior within a cell. Their ability to function as molecular switches in response to a bound nucleotide state allows them to regulate multiple dynamic processes, including cytoskeleton organization and cellular adhesion. Because the activation of downstream Rho GTPase signaling pathways relies on conserved structural features of target effector proteins (i.e., CRIB domain), these pathways are particularly vulnerable to microbial pathogenic attack. Here, we discuss new findings for how the bacterial virulence factor EspG from EHEC O157:H7 exploits a CRIB-independent activation mechanism of the Rho GTPase effector PAK. We also compare this mechanism to that of EHEC EspFU, a bacterial virulence factor that directly activates N-WASP. While both virulence factors break the inhibitory interaction between the autoinhibitory and activity-bearing domains of PAK or WASP, the underlying mechanics are very distinct from endogenous Cdc42/Rac GTPase regulation. The ability of bacterial proteins to identify novel regulatory principles of host signaling enzymes highlights the multi-level nature of protein activation, and makes them effective tools to study mammalian Rho GTPase signaling pathways.

  15. Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion.

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2010-02-01

    Full Text Available The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte-surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte-surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1 but not LFA1 rebinding (to ICAM1 was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and

  16. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  17. Experimental Studies on the Bonding Strength and Fracture Behavior of Incompatible Materials Bonded by Mechanical Adhesion in Multilayer Rotational Molding

    Directory of Open Access Journals (Sweden)

    Martin Löhner

    2016-01-01

    Full Text Available Rotational molding is a plastic processing method that allows for the production of seamless, hollow parts. Defined shaping of the polymeric material only takes place on the outer surface where contact to the tooling is given. The inner surface forms by surface tension effects. By sequential adding of materials, complex multilayer build-up is possible. Besides pure, single materials, filled, or multiphase systems can be processed as well. In this work, possibilities to generate bonding between supposedly incompatible materials by adding a mix-material interlayer are investigated. Interlock mechanisms on a microscale dimension occur and result in mechanical bonding between the used materials, polyethylene (PE and thermoplastic polyurethane (TPE-U. The bonding strength between the materials was investigated to reveal the correlations between processing parameters, resulting layer build-up, and bonding strength. The failure behavior was analyzed and inferences to the influence of the varied parameters were drawn.

  18. Development of an alternative to mechanical shaft encoders for a “smart” wheelchair.

    Science.gov (United States)

    Shea, Kathleen M; Schultz, Dana L; Barrett, Steven F

    2012-01-01

    One device that is receiving a considerable amount of attention in the biomedical community is the “smart” wheelchair. “Smart” wheelchairs provide those who are unable to control the traditional joystick of a powered wheelchair with an alternative option. With minimal user input, these wheelchairs are able to autonomously navigate around a person’s environment, providing them with a higher level of mobility. The limited competition and extreme complexity of these wheelchairs propels their price outside of the affordable range for the average household. An alternative, cheaper system that could be attached to a typical powered wheelchair would be beneficial to the community.

  19. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    Science.gov (United States)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  20. The Unemployed Workers’ Perceptions of Stress and Employment Prospects in Macedonia: The Role of Alternative Adjustment Mechanisms

    Directory of Open Access Journals (Sweden)

    Nikoloski Dimitar

    2017-04-01

    Full Text Available Depressed labour market conditions in Macedonia manifested by high and persistent unemployment rate, strong segmentation and prevailing long-term unemployment is considered as a heritage of more than two decades long period of transition. Unemployment has a number of negative consequences such a decreased income which is assumed to influence the subjective experience of unemployment. The negative macroeconomic shocks in Macedonia have been mitigated due to the strengthened role of alternative labour market adjustment mechanisms such as: employment in the informal sector, emigration and inactivity. However, their impact on the unemployed workers’ perceptions of stress and future labour market prospects is less clear-cut. In this paper we use results from a survey carried out on a sample of unemployed workers in Macedonia in order to identify the psychological implications of unemployment by assessing the perceived stress and employment prospects with particular reference to the role of alternative labour market adjustment mechanisms.

  1. Effect on adhesion of a nanocapsules-loaded adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Genari

    2018-02-01

    Full Text Available Abstract This study aimed to evaluate the in situ degree of conversion, contact angle, and immediate and long-term bond strengths of a commercial primer and an experimental adhesive containing indomethacin- and triclosan-loaded nanocapsules (NCs. The indomethacin- and triclosan-loaded NCs, which promote anti-inflammatory and antibacterial effects through controlled release, were incorporated into the primer at a concentration of 2% and in the adhesive at concentrations of 1, 2, 5, and 10%. The in situ degree of conversion (DC, n=3 was evaluated by micro-Raman spectroscopy. The contact angle of the primer and adhesive on the dentin surface (n = 3 was determined by an optical tensiometer. For the microtensile bond strength µTBS test (12 teeth per group, stick-shaped specimens were tested under tensile stress immediately after preparation and after storage in water for 1 year. The data were analyzed using two-way ANOVA, three-way ANOVA and Tukey’s post hoc tests with α=0.05. The use of the NC-loaded adhesive resulted in a higher in situ degree of conversion. The DC values varied from 75.07 ± 8.83% to 96.18 ± 0.87%. The use of NCs in only the adhesive up to a concentration of 5% had no influence on the bond strength. The contact angle of the primer remained the same with and without NCs. The use of both the primer and adhesive with NCs (for all concentrations resulted in a higher contact angle of the adhesive. The longitudinal μTBS was inversely proportional to the concentration of NCs in the adhesive system, exhibiting decreasing values for the groups with primer containing NCs and adhesives with increasing concentrations of NCs. Adhesives containing up to 5% of nanocapsules and primer with no NCs maintained the in situ degree of conversion, contact angle, and immediate and long-term bond strengths. Therefore, the NC-loaded adhesive can be an alternative method for combining the bond performance and therapeutic effects. The use of an

  2. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  3. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  4. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  5. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  6. Diffusion mechanism of ionization of highly excited atoms in an alternating electromagnetic field

    International Nuclear Information System (INIS)

    Delone, N.B.; Zon, B.A.; Krajnov, V.P.

    1978-01-01

    A new mechanism is proposed to describe the ionization of highly excited atomic states by a strong low frequency electromagnetic field. It consists in electron diffusion along atomic states strongly perturbed by the field. The diffusion time is calculated. The range of field intensities for which the mechanism is predominant is estimated. The results are compared with the experimental data

  7. Mechanical Homogeneous Continuous Dynamical Systems Holor Algebra - Steady-State Alternating Velocity Analysis

    Science.gov (United States)

    Fijałkowski, B.

    2016-12-01

    In this article, a new mathematical representation of the sinusoidal alternating velocity, force and power by means of some complex quantities, termed `holors' is proposed. The word holor is a term to describe a mathematical entity that is made up of one or more independent quantities, and includes complex numbers, scalars, vectors, matrices, tensors and other hypernumbers. Holors, thus defined, have been known for centuries but each has been developed more or less independently, accompanied by separate nomenclature and theory.

  8. Experimental research on microscopic displacement mechanism of CO2-water alternative flooding in low permeability reservoir

    Science.gov (United States)

    Han, Hongyan; Zhu, Weiyao; Long, Yunqian; Song, Hongqing; Huang, Kun

    2018-02-01

    This paper provides an experimental method to deal with the problems of low oil recovery ratio faced with water flooding utilizing the CO2/water alternate displacement technology. A series of CO2/water alternate flooding experiments were carried out under 60°C and 18.4MPa using high temperature / pressure microscopic visualization simulation system. Then, we used the image processing technique and software to analyze the proportion of remaining oil in the displacement process. The results show that CO2 can extract the lighter chemical components in the crude oil and make it easier to form miscible phase, which can reduce the viscosity and favorable mobility ratio of oil. What’s more, the displacement reduces the impact of gas channeling, which can achieve an enlarged sweeping efficiency to improve filtration ability. In addition, the CO2 dissolved in oil and water can greatly reduce the interfacial tension, which can increase the oil displacement efficiency in a large extent. Generally speaking, the recovery rate of residual oil in the micro - model can be elevated up to 15.89% ∼ 16.48% under formation condition by alternate displacement.

  9. Diminished alternative reinforcement as a mechanism linking conduct problems and substance use in adolescence: a longitudinal examination.

    Science.gov (United States)

    Khoddam, Rubin; Cho, Junhan; Jackson, Nicholas J; Leventhal, Adam M

    2018-01-14

    To determine whether diminished alternative reinforcement (i.e. engagement and enjoyment from substance-free activities) mediated the longitudinal association of conduct problems with substance use in early-mid-adolescence. Structural equation modeling tested whether the association between wave 1 (baseline) conduct problems and wave 3 (24-month follow-up) substance use outcomes was mediated by diminished alternative reinforcement at wave 2 (12-month follow-up). Additional analyses tested whether sex and socio-economic status moderated this association. Ten high schools in Los Angeles, CA, USA, 2013-15. Students (n = 3396, 53.5% female, mean [standard deviation (SD)] age at wave 1 baseline = 14.1 (0.42) years). Self-reported conduct problems (11-item questionnaire), alternative reinforcement (44-item questionnaire) and use of alcohol, marijuana and combustible cigarettes during the past 6 months (yes/no) and the past 30 days (nine-level ordinal response based on days used in past 30 days). Significant associations of wave 1 conduct problems with wave 3 marijuana use during the past 6 months (β = 0.25) and past 30 days (β = 0.26) were mediated by wave 2 diminished alternative reinforcement (β indirect effect : 6 months = 0.013, 30 days = 0.017, Ps conduct problems with alcohol or combustible cigarette use were not mediated by alternative reinforcement. All associations did not differ by sex and socio-economic status. Diminished alternative reinforcement may be a modifiable mechanism linking early adolescent conduct problems and subsequent marijuana use that could be targeted in prevention programs to offset the adverse health and social sequelae associated with comorbid conduct problems and marijuana use in early-mid adolescence. © 2018 Society for the Study of Addiction.

  10. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  11. New Mechanisms to Explain the Effects of Added Lactose Fines on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Lexmond, Anne J.; van den Noort, Maarten; Hagedoorn, Paul; Hickey, Anthony J.; Frijlink, Henderik W.; de Boer, Anne H.

    2014-01-01

    Fine excipient particles or ‘fines’ have been shown to improve the dispersion performance of carrier-based formulations for dry powder inhalation. Mechanistic formulation studies have focussed mainly on explaining this positive effect. Previous studies have shown that higher drug contents may cause a decrease in dispersion performance, and there is no reason why this should not be true for fines with a similar shape, size and cohesiveness as drug particles. Therefore, the effects on drug detachment of ‘fine lactose fines’ (FLF, X50 = 1.95 µm) with a similar size and shape as micronised budesonide were studied and compared to those of ‘coarse lactose fines’ (CLF, X50 = 3.94 µm). Furthermore, interactions with the inhalation flow rate, the drug content and the mixing order were taken into account. The observed effects of FLF are comparable to drug content effects in that the detached drug fraction was decreased at low drug content and low flow rates but increased at higher flow rates. At high drug content the effects of added FLF were negligible. In contrast, CLF resulted in higher detached drug fractions at all flow rates and drug contents. The results from this study suggest that the effects of fines may be explained by two new mechanisms in addition to those previously proposed. Firstly, fines below a certain size may increase the effectiveness of press-on forces or cause the formation of strongly coherent fine particle networks on the carrier surface containing the drug particles. Secondly, when coarse enough, fines may prevent the formation of, or disrupt such fine particle networks, possibly through a lowering of their tensile strength. It is recommended that future mechanistic studies are based on the recognition that added fines may have any effect on dispersion performance, which is determined by the formulation and dispersion conditions. PMID:24489969

  12. Compact Kinetic Mechanisms for Petroleum-Derived and Alternative Aviation Fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To be useful for computational combustor design and analysis using tools like the National Combustion Code (NCC), low-dimensional chemical kinetic mechanisms for...

  13. Compact Kinetic Mechanisms for Petroleum-Derived and Alternative Aviation Fuels, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To be useful for computational combustor design and analysis using tools like the National Combustion Code (NCC), low-dimensional chemical kinetic mechanisms for...

  14. Diminished Alternative Reinforcement as a Mechanism Underlying Socioeconomic Disparities in Adolescent Substance Use

    Science.gov (United States)

    Leventhal, Adam M.; Bello, Mariel S.; Unger, Jennifer B.; Strong, David R.; Kirkpatrick, Matthew G.; Audrain-McGovern, Janet

    2015-01-01

    OBJECTIVE This study examined socioeconomic disparities in adolescent substance use utilizing a behavioral economic theoretical framework. We tested the hypothesis that teens of lower (vs. higher) socioeconomic status (SES) are vulnerable to substance use because they engage in fewer pleasurable substance-free activities that provide reinforcement and may deter substance use. METHOD In a cross-sectional correlational design, 9th grade students (N=2,839; mean age=14.1 years) in Los Angeles, California, USA completed surveys in Fall 2013 measuring SES (i.e., parental education), alternative reinforcement (engagement in pleasurable substance-free activities, e.g., hobbies), substance use susceptibility, initiation, and frequency, and other factors. RESULTS For multi-substance composite outcomes, lower parental education was associated with greater likelihood of substance use initiation in the overall sample, frequency of use among lifetime substance users, and susceptibility to substance use in never users. Substance-specific analyses revealed that lower parental education was associated with higher likelihood of initiating cigarettes, alcohol, and marijuana use as well as greater susceptibility to use cigarettes in never smokers. Each inverse association between parental education and substance-related outcomes was statistically mediated by diminished alternative reinforcement; lower parental education was associated with lower engagement in alternative reinforcers, which, in turn, was associated with greater substance use susceptibility, initiation, and frequency. CONCLUSION These results point to a behavioral economic interpretation for socioeconomic disparities in adolescent substance use. Replication and extension of these findings would suggest that prevention programs that increase access to and engagement in healthy and fun activities may reduce youth socioeconomic health disparities related to substance use. PMID:26051200

  15. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  16. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials.

    Science.gov (United States)

    Charytoniuk, Tomasz; Drygalski, Krzysztof; Konstantynowicz-Nowicka, Karolina; Berk, Klaudia; Chabowski, Adrian

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is considered to be one of the most common liver pathologies that occur widely among societies with a predominance of the Western dietary pattern. NAFLD may progress from hepatic steatosis to nonalcoholic steatohepatitis (NASH), subsequently leading to cirrhosis and becoming a major cause of hepatocellular carcinoma. Thus its prevention and therapy play an important role in hepatology. To our knowledge, there is no effective treatment for patients with NAFLD. The aim of this review was to summarize the results of recent alternative treatment studies conducted both on cell cultures and in vivo that concern molecular effects of resveratrol (3,5,4'-trihydroxystilbene) in the treatment of NAFLD. The precise metabolism, pharmacology, and clinical trials with different concentrations of resveratrol were described. The review also presents a brief summary of other alternative treatment methods of NAFLD and their mechanisms compared with current clinical understanding. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  18. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  19. Mechanical analyses on the digital behaviour of the Tokay gecko (Gekko gecko) based on a multi-level directional adhesion model.

    Science.gov (United States)

    Wu, Xuan; Wang, Xiaojie; Mei, Tao; Sun, Shaoming

    2015-07-08

    This paper proposes a multi-level hierarchical model for the Tokay gecko ( Gekko gecko ) adhesive system and analyses the digital behaviour of the G. gecko under macro/meso-level scale. The model describes the structures of G. gecko 's adhesive system from the nano-level spatulae to the sub-millimetre-level lamella. The G. gecko 's seta is modelled using inextensible fibril based on Euler's elastica theorem. Considering the side contact of the spatular pads of the seta on the flat and rigid substrate, the directional adhesion behaviour of the seta has been investigated. The lamella-induced attachment and detachment have been modelled to simulate the active digital hyperextension (DH) and the digital gripping (DG) phenomena. The results suggest that a tiny angular displacement within 0.25° of the lamellar proximal end is necessary in which a fast transition from attachment to detachment or vice versa is induced. The active DH helps release the torque to induce setal non-sliding detachment, while the DG helps apply torque to make the setal adhesion stable. The lamella plays a key role in saving energy during detachment to adapt to its habitat and provides another adhesive function which differs from the friction-dependent setal adhesion system controlled by the dynamic of G. gecko 's body.

  20. Combined Biological and Chemical Mechanisms for Degradation of Insensitive Munitions in the Presence of Alternate Explosives

    Science.gov (United States)

    2017-06-21

    explosive composites. b) Determine the intermediates and final products of IM degradation. c) Characterize the mixed “biological-abiotic” degradation...mechanisms in controlled system. d) Characterize microbial communities present in contaminated aquifer material. These objectives were met by...components of growth medium, leaving only a 15 dense pallet of cells. Final biomass was resuspended in 4ml of bicarbonate or

  1. Alternative Mechanisms to Encourage Individual Contributions to Vocational Education and Training

    Science.gov (United States)

    Haukka, Sandra; Keating, Jack; Lamb, Stephen

    2004-01-01

    Financing vocational education and training, as part of Australia's commitment to lifelong learning, will become a greater challenge as increased spending on other public services, such as health and welfare caused by an aging population, constrains government education expenditure. This report examines a range of mechanisms to encourage…

  2. Thyme essential oil as an alternative mechanism: biofungicide-causing sensitivity of Mycosphaerella graminicola.

    Science.gov (United States)

    Ben Jabeur, M; Somai-Jemmali, L; Hamada, W

    2017-04-01

    To understand the mode of action of thyme essential oil as an alternative biofungicide. The chemical composition of thyme essential oil isolated by hydrodistillation from the aerial parts of Thymus vulgaris was analyzed. The main constituents of thyme essential oil were thymol (76·96%), ρ-cymene (9·89%), γ-terpinene (1·92%) and caryophyllene oxide (1·69%). The antifungal activity of the oil and its pure major component (thymol) was assessed by the in vitro assay against Mycosphaerella graminicola. Thyme oil exhibited higher antifungal activity than thymol. The expression pattern of genes involved in fungal development and detoxification acting in M. graminicola under thyme oil and thymol treatment was analyzed. Thyme oil overexpressed, more than thymol, the genes encoding for the efflux pump (MgMfs1, MgAtr4), the regulatory subunit of protein kinase A (PKA) (MgBcy1) and the MAPK MgHog1. Thyme oil repressed the expression of the genes encoding for the efflux pump MgAtr4, the MAPK (MgSlt2) and the regulatory subunit of PKA (MgBcy1). However, thymol repressed only MgAtr4 and MgSlt2 expression. These data highlight the ability of thyme oil to target genes involved in fungal development and virulence of the yeast-like fungi M. graminicola, which explain its higher antifungal activity. These findings will probably be useful to design an alternative biofungicide which will not lead to pathogen multidrug resistance. © 2017 The Society for Applied Microbiology.

  3. Electrokinetic mechanism of wettability alternation at oil-water-rock interface

    Science.gov (United States)

    Tian, Huanhuan; Wang, Moran

    2017-12-01

    Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.

  4. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  5. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...

  6. Core and surface microgel mechanics are differentially sensitive to alternative crosslinking concentrations.

    Science.gov (United States)

    Mohapatra, Himansu; Kruger, Terra M; Lansakara, Thiranjeewa I; Tivanski, Alexei V; Stevens, Lewis L

    2017-08-30

    Microgel mechanics are central to the swelling of stimuli-responsive materials and furthermore have recently emerged as a novel design space for tuning the uptake of nanotherapeutics. Despite this importance, the techniques available to assess mechanics, at the sub-micron scale, remain limited. In this report, all mechanical moduli for a series of air-dried, polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels of varying composition in monomer and crosslinker (N,N'-methylene-bisacrylamide (BIS)) mol% have been determined using Brillouin light scattering (BLS) and AFM nanoindentation. These techniques sample the material through distinct means and provide complementary nanomechanical data. An initial demonstration of this combined approach is used to evaluate size-dependent nanomechanics in pS particles of varying diameter. For the pS-co-NIPAM series, our BLS results demonstrate an increase in Young's (E) and shear moduli with increasing NIPAM and/or BIS mol%, while the Poisson's ratio decreased. The same rank order in E was observed from AFM and the two techniques correlate well. However, at low BIS crosslinking, an inverted particle structure persists and small increases in BIS yield a higher increase in E from AFM relative to BLS, consistent with a higher density at the particle surface. At higher BIS incorporation, the microgel reverts to a typical, dense-core structure and further increasing BIS yields changes to core-particle mechanics reflected in BLS. Lastly, at 75 mol% NIPAM, the microgels displayed a broad volume phase transition and increased crosslinking resulted in a minor, yet unexpected, increase in swelling ratio. This complementary approach offers new insight into nanomechanics critical for microgel design and application.

  7. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species.

    Science.gov (United States)

    Igic, Branislav; Braganza, Kim; Hyland, Margaret M; Silyn-Roberts, Heather; Cassey, Phillip; Grim, Tomas; Rutila, Jarkko; Moskát, Csaba; Hauber, Mark E

    2011-11-07

    Obligate brood parasitic birds lay their eggs in nests of other species and parasite eggs typically have evolved greater structural strength relative to host eggs. Increased mechanical strength of the parasite eggshell is an adaptation that can interfere with puncture ejection behaviours of discriminating hosts. We investigated whether hardness of eggshells is related to differences between physical and chemical traits from three different races of the parasitic common cuckoo Cuculus canorus, and their respective hosts. Using tools developed for materials science, we discovered a novel correlate of increased strength of parasite eggs: the common cuckoo's egg exhibits a greater microhardness, especially in the inner region of the shell matrix, relative to its host and sympatric non-host species. We then tested predictions of four potential mechanisms of shell strength: (i) increased relative thickness overall, (ii) greater proportion of the structurally harder shell layers, (iii) higher concentration of inorganic components in the shell matrix, and (iv) elevated deposition of a high density compound, MgCO(3), in the shell matrix. We confirmed support only for hypothesis (i). Eggshell characteristics did not differ between parasite eggs sampled from different host nests in distant geographical sites, suggesting an evolutionarily shared microstructural mechanism of stronger parasite eggshells across diverse host-races of brood parasitic cuckoos.

  8. Evidence for van der Waals adhesion in gecko setae

    OpenAIRE

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-01-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well ...

  9. Specific Pressure and Mechanical Properties of the Alternator Flange from EN AC 47100 Alloy in HPDC Technology

    Directory of Open Access Journals (Sweden)

    Stefan Gaspar

    2016-05-01

    Full Text Available The technology HPDC (High Pressure Die Casting of metals represents accurate casting which approximates the most ideal effort of direct change of basic material to finished product. The die casting itself is characterized by mechanical method of casting with the molten metal being forced-in under high pressure (specific pressure into the divided metal mould by a plunger acting upon the melt in the filling chamber. The HPDC technology has in recent years achieved an expansive growth in the volume as well as the range of production and that is particularly in aviation and automobile industry. The presented paper deals with the experimental assessment of the impact of specific pressure on the mechanical properties of the alternator flange from EN AC 47100 in HPDC technology.

  10. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation.

    Science.gov (United States)

    Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M

    2012-10-01

    Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Acceptance of Hibah as an Alternative Mechanism in Muslims Asset Management

    Directory of Open Access Journals (Sweden)

    Ahmad Khairiah

    2017-01-01

    Full Text Available This study is aimed to identify the acceptance of hibah by beneficiaries based on cases registered in Melaka. Using secondary data collected from the Melaka Syariah Court and Amanah Raya Berhad Melaka, a number of hibah cases were identified from 2013-2015 and highlighted for further discussion in the paper. Interviews, telephone and email correspondences were conducted to further understand the issues concerning hibah cases and their reasoning. The findings indicated that the highest number of registered on hibah cases was recorded in 2015, increasing from 2013. The data result shows that there are more than 20 cases recorded in Melaka except only 12 cases in 2013. Due to increasing number of cases regarding hibah, it shows that citizen of Melaka is still low in understanding the concept and implementation of hibah. Therefore, it is a need to have a standard guideline regarding hibah to avoid any dispute about this matter in the future. Besides that, the dissemination of knowledge about hibah should be done in order to increase the awareness about the acceptable procedure of hibah because it is considered as the best alternative of asset management and to avoid unclaimed Muslim asset.

  12. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  13. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  14. COMPANY SUSTAINABILITY PROVISION ORGANIZATIONAL MECHANISM AS ALTERNATIVE TO ANTI-CRISIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    A. D. Bobryshev

    2012-01-01

    Full Text Available Experience available for practical implementation of anti-crisis company (particularly industrial enterprise management methods under conditions of proceeding destruction of scientifi c and technical potential of the country proves their ineff ectiveness, so other theoretical and practical solutions capable of changing the situation are to be searched. In this respect, creation of an organizational mechanism for a company to function sustainably through minimization of the infl uence of crisis phenomena consequences on activities of the company seems to have good prospects.

  15. Macro and micro observations on mortar alternation mechanism under the various solution conditions

    International Nuclear Information System (INIS)

    Fujiwara, A.; Tashiro, S.; Takemura, T.; Sakogaichi, K.; Yokomoto, S.; Katsuyama, K.

    1995-01-01

    Accelerated aging tests have been conducted to evaluate the long-term durability of cementitious material against aggressive ions. In tests, cementitious specimens were immersed in the solutions containing concentrated aggressive ions at high temperature and it promoted diffusion of the ions in the specimen. This method would be suitable for the evaluation on the aging as the alteration of the specimen would be expected to resemble the natural behavior. This paper presents a classification of alteration mechanism in the immersion tests using MgCl 2 and Na 2 SO 4 solution. This classification was done by relating the changes of compressive strength to microscopic and mineralogical changes

  16. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    Science.gov (United States)

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  17. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    Science.gov (United States)

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-07

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

  18. Mindfulness-Based Exposure Strategies as a Transdiagnostic Mechanism of Change: An Exploratory Alternating Treatment Design.

    Science.gov (United States)

    Brake, C Alex; Sauer-Zavala, Shannon; Boswell, James F; Gallagher, Matthew W; Farchione, Todd J; Barlow, David H

    2016-03-01

    The present study explored whether distress reduction in response to strong negative emotions, a putative transdiagnostic mechanism of action, is facilitated by mindfulness strategies. Seven patients (mean age=31.14years, SD=12.28, range 19-48 years, 43% female, 86% Caucasian) with heterogeneous anxiety disorders (i.e., panic disorder with or without agoraphobia, social anxiety, generalized anxiety) were assigned a randomized order of weeklong blocks utilizing either mindfulness- or avoidance-based strategies while ascending a 6-week emotion exposure hierarchy. Participants completed three exposures per block and provided distress and avoidance use ratings following each exposure. Anxiety severity, distress aversion, and distraction/suppression tendencies were also assessed at baseline and the conclusion of each block. Visual, descriptive, and effect size results showing exposures utilizing mindfulness were associated with higher overall distress levels, compared with those utilizing avoidance. Within blocks, the majority of participants exhibited declining distress levels when employing mindfulness strategies, as opposed to more static distress levels in the avoidance condition. Systematic changes in anxiety severity, distress aversion, and distraction/suppression were not observed. These results suggest mindfulness strategies may be effective in facilitating emotion exposure; however, a minimum dosage may be necessary to overcome initial distress elevation. Potential transdiagnostic change mechanisms and clinical implications are discussed. Copyright © 2015. Published by Elsevier Ltd.

  19. Crystal structure of A. aeolicus LpxC with bound product suggests alternate deacetylation mechanism.

    Science.gov (United States)

    Miller, Matthew D; Gao, Ning; Ross, Philip L; Olivier, Nelson B

    2015-09-01

    UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is the first committed step to form lipid A, an essential component of the outer membrane of Gram-negative bacteria. As it is essential for the survival of many pathogens, LpxC is an attractive target for antibacterial therapeutics. Herein, we report the product-bound co-crystal structure of LpxC from the acheal Aquifex aeolicus solved to 1.6 Å resolution. We identified interactions by hydroxyl and hydroxymethyl substituents of the product glucosamine ring that may enable new insights to exploit waters in the active site for structure-based design of LpxC inhibitors with novel scaffolds. By using this product structure, we have performed quantum mechanical modeling on the substrate in the active site. Based on our results and published experimental data, we propose a new mechanism that may lead to a better understanding of LpxC catalysis and inhibition. © 2015 Wiley Periodicals, Inc.

  20. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop

  1. TRENDS IN OFFICIAL DEVELOPMENT ASSISTANCE TO DEVELOPING COUNTRIES AND POSSIBILITIES OF ALTERNATIVE FINANCING MECHANISMS

    Directory of Open Access Journals (Sweden)

    Talknice Saungweme

    2013-09-01

    Full Text Available The study analyses trends in Official Development Assistance (ODA to developing countries, mainly Africa, and possibilities of new financing instruments. Economies of most developing countries, especially those in Sub-Saharan Africa, are characterised by low investment flows, huge import bills and lower exports. Subsequently, development assistance is the major source of external finance and has taken the form of budget support, humanitarian and development finance. However, the noted fall in ODA in 2005, 2009 and 2012 might adversely impact directly on the attainment of millennium development goals in 2015. This negative trend in ODA is a result of a combination of factors such as economic constraints in the donor countries (for example, the debt crisis and/or a new shift in financing mechanisms to developing countries.

  2. Management of disturbed patients: an alternative to the use of mechanical restraints.

    Science.gov (United States)

    Guirguis, E F

    1978-04-01

    This article briefly outlines some of the causes for violence and describes step by step guidelines to the management of disturbed behaviour in psychiatric patients including how the episode of violence can be dealt with by using a well planned approach, the effective use of medication in the management of acute crises and the actual physical handling of the patient. Recommendations are made regarding the need for the proper education of staff of all disciplines about the causes, prevention and management of such behaviour. The need for a well planned hospital wide policy as well as a treatment plan for each patient which contains contingencies for the management of those who are potentially violent is discussed with emphasis on the need for a thorough discussion following such episodes. The dangers and abuses of mechanical restraints are outlined.

  3. Dissociation of Infectivity from Seeding Ability in Prions with Alternate Docking Mechanism

    Science.gov (United States)

    Miller, Michael B.; Geoghegan, James C.; Supattapone, Surachai

    2011-01-01

    Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrPSc, suggesting that these domains of cellular prion protein (PrPC) serve as docking sites for PrPSc during prion propagation. To examine the role of polybasic domains in the context of full-length PrPC, we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrPSc molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrPSc prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrPSc molecules. Remarkably, ΔC-PrPSc and other polybasic domain PrPSc molecules displayed diminished or absent biological infectivity relative to wild-type PrPSc, despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrPSc prions interact with PrPC molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrPSc propagation. Furthermore, polybasic domain deficient PrPSc molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrPSc molecules may not depend on a single stereotypic mechanism, but that normal PrPC/PrPSc interaction through polybasic domains may be required to generate prion infectivity. PMID:21779169

  4. Mechanical analyses on the digital behaviour of the Tokay gecko (Gekko gecko) based on a multi-level directional adhesion model

    OpenAIRE

    Wu, Xuan; Wang, Xiaojie; Mei, Tao; Sun, Shaoming

    2015-01-01

    This paper proposes a multi-level hierarchical model for the Tokay gecko (Gekko gecko) adhesive system and analyses the digital behaviour of the G. gecko under macro/meso-level scale. The model describes the structures of G. gecko's adhesive system from the nano-level spatulae to the sub-millimetre-level lamella. The G. gecko's seta is modelled using inextensible fibril based on Euler's elastica theorem. Considering the side contact of the spatular pads of the seta on the flat and rigid subst...

  5. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer

    Science.gov (United States)

    Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd

    2017-11-01

    Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.

  7. Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action.

    Science.gov (United States)

    Oh, Kyu-Seon; Patel, Heta; Gottschalk, Rachel A; Lee, Wai Shing; Baek, Songjoon; Fraser, Iain D C; Hager, Gordon L; Sung, Myong-Hee

    2017-08-15

    Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome." Published by Elsevier Inc.

  8. A Homemade Snare: An Alternative Method for Mechanical Removal of Dirofilaria immitis in Dogs.

    Science.gov (United States)

    Alho, Ana Margarida; Fiarresga, António; Landum, Miguel; Lima, Clara; Gamboa, Óscar; Meireles, José; Sales Luís, José; Madeira de Carvalho, Luís

    2016-01-01

    Canine dirofilariosis is a life-threatening parasitic disease that is increasingly reported worldwide. Once diagnosed the main treatment goals are to improve the animal's clinical condition and to eliminate all life stages of the parasite with minimal posttreatment side effects. This can be achieved through mechanical, surgical, or chemotherapeutical approaches. Currently, manual extraction is the preferred method to remove adult heartworms due to its diminished invasiveness, reduced damage to the vascular endothelium, and shortened anaesthesia duration. However, it remains an expensive technique that can be highly traumatic. To address this issue, a nontraumatic homemade catheter-guided snare was developed for heartworm removal by adapting and folding a 0.014-inch coronary wire (BMW, Abbott Vascular). Transvenous heartworm extraction was performed on a dog severely infected with adult heartworms by inserting the modified snare into a 6-F Judkins right coronary guiding catheter BMW (Cordis) and advancing it into the right ventricle under fluoroscopic guidance. Fifteen adult specimens of Dirofilaria immitis were successfully extracted from the pulmonary artery and right ventricle without complications. To assure the death of both larvae and adults, postoperative treatment was successfully managed using ivermectin, doxycycline, and melarsomine, with no recurrence after surgery.

  9. A Homemade Snare: An Alternative Method for Mechanical Removal of Dirofilaria immitis in Dogs

    Directory of Open Access Journals (Sweden)

    Ana Margarida Alho

    2016-01-01

    Full Text Available Canine dirofilariosis is a life-threatening parasitic disease that is increasingly reported worldwide. Once diagnosed the main treatment goals are to improve the animal’s clinical condition and to eliminate all life stages of the parasite with minimal posttreatment side effects. This can be achieved through mechanical, surgical, or chemotherapeutical approaches. Currently, manual extraction is the preferred method to remove adult heartworms due to its diminished invasiveness, reduced damage to the vascular endothelium, and shortened anaesthesia duration. However, it remains an expensive technique that can be highly traumatic. To address this issue, a nontraumatic homemade catheter-guided snare was developed for heartworm removal by adapting and folding a 0.014-inch coronary wire (BMW, Abbott Vascular. Transvenous heartworm extraction was performed on a dog severely infected with adult heartworms by inserting the modified snare into a 6-F Judkins right coronary guiding catheter BMW (Cordis and advancing it into the right ventricle under fluoroscopic guidance. Fifteen adult specimens of Dirofilaria immitis were successfully extracted from the pulmonary artery and right ventricle without complications. To assure the death of both larvae and adults, postoperative treatment was successfully managed using ivermectin, doxycycline, and melarsomine, with no recurrence after surgery.

  10. Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism.

    Directory of Open Access Journals (Sweden)

    Marco Roy

    Full Text Available To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration.In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface.UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2O and increases TiOH with many -OH groups being produced. These groups explain the super-hydrophilic effect from photofunctionalization when these groups come into contact with water.Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level.

  11. A kit for the investigation of live Escherichia coli cell adhesion to glycosylated surfaces

    DEFF Research Database (Denmark)

    Hartmann, M.; Horst, A. K.; Klemm, Per

    2010-01-01

    A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces.......A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces....

  12. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    Science.gov (United States)

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  13. Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses

    NARCIS (Netherlands)

    Carniello, Vera; Harapanahalli, Akshay K.; Busscher, Henk J.; van der Mei, Henny C.

    2018-01-01

    Nisin-associated-sensitivity-response-regulator (NsaRS) in Staphylococcus aureus is important for its adhesion to surfaces and resistance against antibiotics, like nisin. NsaRS consists of an intra-membrane-located sensor NsaS and a cytoplasmatically-located response-regulator NsaR, which becomes

  14. [The influence of the chemo-mechanical removal of the smear-layer and the use of a dentin adhesive on microleakage of composite resin restorations].

    Science.gov (United States)

    de la Macorra García, J C; Gómez Martínez, A; Gutiérrez Argumosa, B

    1989-02-01

    We present an "in vitro" study of microfiltration in composite resin restorations with a perimetral seal placed totally in cement. We compare the sealing capability of a dentin adhesive (ScotchBond I) used in two ways: habitual, without conditioning dentin and conditioning it by means of the Caridex system. This produced no increasing of sealing capability under the study conditions.

  15. Thermal/mechanical simulation and laboratory fatigue testing of an alternative yttria tetragonal zirconia polycrystal core-veneer all-ceramic layered crown design.

    Science.gov (United States)

    Bonfante, Estevam A; Rafferty, Brian; Zavanelli, Ricardo A; Silva, Nelson R F A; Rekow, Elizabeth D; Thompson, Van P; Coelho, Paulo G

    2010-04-01

    This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.

  16. Improvement of the organizational and economic mechanism for managing the development of alternative sources of electricity at the territorial level

    Science.gov (United States)

    Kirillova, Ariadna; Krylova, Anna

    2017-10-01

    The article considers the features of the structure and functioning of energy supply facilities for housing and communal services of municipalities with the identification and analysis of problems, substantiates the main directions of improving the organizational and economic mechanism for the development of alternative sources of electricity supply, taking into account modern innovative energy-efficient technologies. The choice of a rational option for electricity supply to settlements and the region is considered on the basis of an analysis of geographical, climatic and socio-economic conditions, as well as engineering and financial opportunities, the availability of trunk, interregional and other networks, the total installed capacity of regional power plants and a set of other technical and economic Characteristics inherent in the region and its municipalities.

  17. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  18. Adhesive Penetration of Wood and Its Effect on Bond Strength

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    Woodworkers know that wood is porous in that adhesive flows into lumens for a mechanical interlock (1) and that wood absorbs water, allowing the use of water-borne adhesives. However, the anatomical aspects of wood that lend to its porosity are much more complicated and have a greater influence on adhesive performance than is normallyrealized or discussed. This...

  19. Failure behaviour of silicone adhesive in bonded connections with simple geometry

    OpenAIRE

    Staudt, Yves; Odenbreit, Christoph; Schneider, Jens

    2018-01-01

    In façade structures, adhesively bonded connections between glass panels and metallic substructures represent an attractive alternative to mechanical fixation devices. Apart from positive aspects regarding the construction's energy efficiency and aesthetics, the uniform load transfer reduces stress concentrations in the adherends, which is beneficial especially regarding brittle materials like glass. Structural silicone sealants are generally used for these kind of applications due to their e...

  20. Postoperative Complications Leading to Death after Coagulum Pyelolithotomy in a Tetraplegic Patient: Can We Prevent Prolonged Ileus, Recurrent Intestinal Obstruction due to Adhesions Requiring Laparotomies, Chest Infection Warranting Tracheostomy, and Mechanical Ventilation?

    Directory of Open Access Journals (Sweden)

    Subramanian Vaidyanathan

    2013-01-01

    Full Text Available A 22-year-old male sustained C-6 tetraplegia in 1992. In 1993, intravenous pyelography revealed normal kidneys. Suprapubic cystostomy was performed. He underwent open cystolithotomy in 2004 and 2008. In 2009, computed tomography revealed bilateral renal calculi. Coagulum pyelolithotomy of left kidney was performed. Pleura and peritoneum were opened. Peritoneum could not be closed. Following surgery, he developed pulmonary atelectasis; he required tracheostomy and mechanical ventilation. He did not tolerate nasogastric feeding. CT of abdomen revealed bilateral renal calculi and features of proximal small bowel obstruction. Laparotomy revealed small bowel obstruction due to dense inflammatory adhesions involving multiple small bowel loops which protruded through the defect in sigmoid mesocolon and fixed posteriorly over the area of previous intervention. All adhesions were divided. The wide defect in mesocolon was not closed. In 2010, this patient again developed vomiting and distension of abdomen. Laparotomy revealed multiple adhesions. He developed chest infection and required ventilatory support again. He developed pressure sores and depression. Later abdominal symptoms recurred. This patient’s general condition deteriorated and he expired in 2011. Conclusion. Risk of postoperative complications could have been reduced if minimally invasive surgery had been performed instead of open surgery to remove stones from left kidney. Suprapubic cystostomy predisposed to repeated occurrence of stones in urinary bladder and kidneys. Spinal cord physicians should try to establish intermittent catheterisation regime in tetraplegic patients.

  1. Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids.

    Science.gov (United States)

    Müser, Martin H

    2014-01-01

    In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load F N. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on F N, Δγ, and μT but - unlike the contact area - barely on the functional form of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts.

  2. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-09-19

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

  3. Effects of weak transcranial Alternating Current Stimulation on brain activity – a review of known mechanisms from animal studies

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2013-10-01

    Full Text Available Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (~1 Hz and gamma oscillations (~30 Hz. We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms.

  4. Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation.

    Science.gov (United States)

    Gupta, K C; Roy, P

    1980-01-01

    Two alternate mechanisms of mRNA capping for spring viremia of carp virus have been observed. Under normal reaction conditions, a ppG residue of the capping GTP is transferred to a pA moiety of the 5' termini of mRNA transcripts. However, in reaction conditions where GppNHp is used instead of GTP, an alternate capping mechanism occurs whereby a pG residue of the capping GTP is transferred to a ppA moiety of the transcripts. The first mechanism is identical to that described previously for vesicular stomatitis virus (G. Abraham, D. P. Rhodes, and A. K. Banerjee, Nature [London] 255:37-40, 1975; A. K. Banerjee, S. A. Moyer, and D. P. Rhodes, Virology 61:547-558, 1974), and thus appears to be a conserved function during the evolution of rhabdoviruses. The alternate mechanism of capping indicates not only that capping can take place by two procedures, but also that the substrate termini have di- or triphosphate 5' ends, indicating that they are probably independently initiated. An analog of ATP, AppNHp, has been found to completely inhibit the initiation of transcription by spring viremia of carp virus, suggesting that a cleavage between the beta and gamma phosphates of ATP is essential for the initiation of transcription. However, in the presence of GppNHp, uncapped (ppAp and pppAp), capped (GpppAp), and capped methylated (m7GpppAmpAp and GpppAmpAp) transcripts are detected. Size analyses of oligodeoxythymidylic acid-cellulose-bound transcripts resolved by formamide gel electrophoresis demonstrated that full-size mRNA transcripts are synthesized as well as larger RNA species. The presence of GppNHp and S-adenosylhomocysteine in reaction mixtures did not have any effect on the type of unmethylated transcription products. Our results favor a transcription model postulated previously (D. H. L. Bishop, in H. Fraenkel-Conrat and R. R. Wagner, ed., Comprehensive Virology, vol. 10, Plenum Press, New York, 1977; D. H. L. Bishop and A. Flamand, in D. C. Burke and W. C. Russell

  5. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  6. Experimental flexor tendon healing without adhesion formation--a new concept of tendon nutrition and intrinsic healing mechanisms. A preliminary report.

    Science.gov (United States)

    Lundborg, G

    1976-10-01

    An experimental model is presented enabling an analysis of the healing process of completely cut and re-sutured free segments of rabbit flexor tendons, kept avascular in a synovial milieu and completely isolated from adhesion formation. Under these conditions the cut tendons heal within a few weeks. It can be shown that this healing process is a result of intrinsic tendon cell activity only.

  7. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  8. Is mechanical retention for adhesive core build-up needed to restore a vital tooth with a monolithic zirconium crown? - An in vitro study.

    Science.gov (United States)

    Walczak, Katarzyna; Rues, Stefan; Wieckiewicz, Mieszko; Range, Ursula; Schmitter, Marc

    2016-01-01

    To show the influence of retentive cavity, cavity wall preparation and different luting techniques on the fracture resistance of severely damaged teeth restored with adhesive core build-ups and monolithic zirconium crowns. Extracted molars were prepared with 2 mm ferrule height and divided into eleven groups (n = 8/group). In nine groups a retentive occlusal cavity with a width and depth of 1 or 2 mm was prepared. Two control groups without a retentive cavity were made. Zirconium crowns were manufactured. 48 copings were cemented with glass-ionomer cement (Ketac Cem), the others (n = 40) with adhesive resin cement (Panavia F 2.0). Artificial ageing was carried out in the following way: n = 88, thermocycling (10,000 cycles, 6° C/60° C), n = 80 chewing simulation (1,200,000 cycles, 64 N). The samples were tested for load at first damage and fracture load with non-axial force. For statistical analysis ANCOVA with post hoc, Bonferroni-adjusted t-test were used ( p ≤ 0.05). No differences between the tested cements were detected. Influence of the cavity wall thickness was significant ( p = 0.001). Mostly, the samples with wall thickness of 2 mm showed better results. Both control groups (no cavity) showed results comparable to study groups with cavity. Retentive cavity is most likely not mandatory. However, if prepared, the cavity wall thickness is of higher importance than cavity depth. Glass-ionomer and adhesive resin cement are comparable for use with zirconia crowns.

  9. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma

    Science.gov (United States)

    Chaturvedi, Aashi; Hoffman, Laura M.; Jensen, Christopher C.; Lin, Yi-Chun; Grossmann, Allie H.; Randall, R. Lor; Lessnick, Stephen L.; Welm, Alana L.; Beckerle, Mary C.

    2014-01-01

    Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised. PMID:25057021

  10. A Molecular Mechanism for the Requirement of PAT-4 (Integrin-linked Kinase (ILK)) for the Localization of UNC-112 (Kindlin) to Integrin Adhesion Sites*

    Science.gov (United States)

    Qadota, Hiroshi; Moerman, Donald G.; Benian, Guy M.

    2012-01-01

    Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3. PMID:22761445

  11. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites.

    Science.gov (United States)

    Qadota, Hiroshi; Moerman, Donald G; Benian, Guy M

    2012-08-17

    Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3.

  12. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  13. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    The industrial goal of this PhD project is to enable manufacturing of larger wind turbine blades by improving the existing design methods for adhesive joints. This should improve the present joint design such that more efficient wind turbine blades can be produced. The main scientific goal...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  14. Activation of PAK by a bacterial type III effector EspG reveals alternative mechanisms of GTPase pathway regulation

    OpenAIRE

    Selyunin, Andrey S; Alto, Neal M

    2011-01-01

    Small Rho GTPases regulate a diverse range of cellular behavior within a cell. Their ability to function as molecular switches in response to a bound nucleotide state allows them to regulate multiple dynamic processes, including cytoskeleton organization and cellular adhesion. Because the activation of downstream Rho GTPase signaling pathways relies on conserved structural features of target effector proteins (i.e., CRIB domain), these pathways are particularly vulnerable to microbial pathoge...

  15. Adhesion rings surround invadopodia and promote maturation

    Directory of Open Access Journals (Sweden)

    Kevin M. Branch

    2012-06-01

    Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM. At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD of integrin-linked kinase (ILK reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.

  16. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes

    Directory of Open Access Journals (Sweden)

    Craig A. Schenck

    2017-11-01

    Full Text Available L-Tyrosine (Tyr is an aromatic amino acid synthesized de novo in plants and microbes. In animals, Tyr must be obtained through their diet or synthesized from L-phenylalanine. In addition to protein synthesis, Tyr serves as the precursor of neurotransmitters (e.g., dopamine and epinephrine in animals and of numerous plant natural products, which serve essential functions in both plants and humans (e.g., vitamin E and morphine. Tyr is synthesized via two alternative routes mediated by a TyrA family enzyme, prephenate, or arogenate dehydrogenase (PDH/TyrAp or ADH/TyrAa, typically found in microbes and plants, respectively. Although ADH activity is also found in some bacteria, the origin of arogenate-specific TyrAa enzymes is unknown. We recently identified an acidic Asp222 residue that confers ADH activity in plant TyrAs. In this study, structure-guided phylogenetic analyses identified bacterial homologs, closely-related to plant TyrAs, that also have an acidic 222 residue and ADH activity. A more distant archaeon TyrA that preferred PDH activity had a non-acidic Gln, whose substitution to Glu introduced ADH activity. These results indicate that the conserved molecular mechanism operated during the evolution of arogenate-specific TyrAa in both plants and microbes.

  17. How wood adhesives work and where are the areas for improvement

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    Invoking normal adhesion theory, bonding of wood would seem to be easy in that the surface has plenty of roughness for mechanical interlocking with high enough surface energy, there is an abundance of hydroxyl groups on the wood for hydrogen bonding to the adhesives, and the aqueous solvent in the adhesive can readily soak into the wood. In fact most adhesives will...

  18. A Maugis-Dugdale cohesive solution for adhesion of a surface with a dimple.

    Science.gov (United States)

    Papangelo, A; Ciavarella, M

    2017-02-01

    We study the adhesion of a surface with a 'dimple' which shows a mechanism for a bi-stable adhesive system in surfaces with spaced patterns of depressions, leading to adhesion enhancement, high dissipation and hysteresis. Recent studies were limited mainly to the very short range of adhesion (the so-called JKR regime), while we generalize the study to a Maugis cohesive model. A 'generalized Tabor parameter', given by the ratio of theoretical strength to elastic modulus, multiplied by the ratio of dimple width to depth has been found. It is shown that bistability disappears for generalized Tabor parameter less than about 2. Introduction of the theoretical strength is needed to have significant results when the system has gone in full contact, unless one postulates alternative limits to full contact, such as air entrapment, contaminants or fine scale roughness. Simple equations are obtained for the pull-off and for the full contact pressure in the entire set of the two governing dimensionless parameters. A qualitative comparison with results of recent experiments with nanopatterned bioinspired dry adhesives is attempted in light of the present model. © 2017 The Author(s).

  19. A probabilistic approach to measure the strength of bone cell adhesion to chemically modified surfaces.

    Science.gov (United States)

    Rezania, A; Thomas, C H; Healy, K E

    1997-01-01

    Patterned surfaces with alternating regions of amino silanes [N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS)] and alkyl silanes [dimethyldichlorosilane (DMS)] have been used to alter the kinetics of spatial distribution of cells in vitro. In particular, we have previously observed the preferential spatial distribution of bone cells on the EDS regions of EDS/ DMS patterned surfaces (10). In this study, we examined whether the mechanism of spatial distribution of cells on the EDS regions was adhesion mediated. Homogeneous layers of EDS and DMS were immobilized on quartz substrates and characterized by contact angle. X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The strength of bone cell attachment to the modified substrates was examined using a radial flow apparatus, within either 20 min or 2 hr of cell incubation in the presence of serum. A Weibull distribution was chosen to characterize the strength of cell-substratum adhesion. Within 20 min of cell exposure, the strength of adhesion was significantly larger on EDS and clean surfaces, compared with DMS surfaces (p < 0.001). Within 2 hr of cell incubation, there was no statistical difference between the strength of cell adhesion to EDS, DMS, and clean surfaces. The results of this study suggest that the surface chemistry mediates adhesion-based spatial cell arrangement through a layer of adsorbed serum proteins.

  20. Evidence for van der Waals adhesion in gecko setae.

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A; Peattie, Anne M; Hansen, Wendy R; Sponberg, Simon; Kenny, Thomas W; Fearing, Ronald; Israelachvili, Jacob N; Full, Robert J

    2002-09-17

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  1. Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    NARCIS (Netherlands)

    Younes, Jessica A.; van der Mei, Henny C.; van den Heuvel, Edwin; Busscher, Henk J.; Reid, Gregor

    2012-01-01

    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative

  2. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  3. Galphas-coupled receptor signaling actively down-regulates α4β1-integrin affinity: A possible mechanism for cell de-adhesion

    Directory of Open Access Journals (Sweden)

    Amit Or

    2008-06-01

    Full Text Available Abstract Background Activation of integrins in response to inside-out signaling serves as a basis for leukocyte arrest on endothelium, and migration of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule (i.e. change in the affinity for the ligand and molecular unbending (extension, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs. α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4 is expressed on leukocytes, hematopoietic stem cells, hematopoietic cancer cells, and others. Affinity and extension of VLA-4 are both rapidly up-regulated by inside-out signaling through several Gαi-coupled GPCRs. The goal of the current report was to study the effect of Gαs-coupled GPCRs upon integrin activation. Results Using real-time fluorescent ligand binding to assess affinity and a FRET based assay to probe α4β1-integrin unbending, we show that two Gαs-coupled GPCRs (H2-histamine receptor and β2-adrenergic receptor as well as several cAMP agonists can rapidly down modulate the affinity of VLA-4 activated through two Gαi-coupled receptors (CXCR4 and FPR in U937 cells and primary human peripheral blood monocytes. This down-modulation can be blocked by receptor-specific antagonists. The Gαs-induced responses were not associated with changes in the expression level of the Gαi-coupled receptors. In contrast, the molecular unbending of VLA-4 was not significantly affected by Gαs-coupled GPCR signaling. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by Gαs-coupled GPCR had a statistically significant effect upon cell aggregation. Conclusion We conclude that Gαs-coupled GPCRs can rapidly down modulate the affinity state of VLA-4 binding pocket through a cAMP dependent pathway. This plays an essential role in the regulation of cell adhesion. We discuss several possible implications of this described

  4. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  5. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Gabrielle da Silva Sutil

    Full Text Available Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8 according to Scotchbond Universal Adhesive (SbU applied in self-etch (SE and etch-and-rinse (ER mode, adhesive temperature (20°C or 37°C and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS. The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%. Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  6. Leukocyte adhesion - a fundamental process in leukocyte physiology

    Directory of Open Access Journals (Sweden)

    Gahmberg C.G.

    1999-01-01

    Full Text Available Leukocyte adhesion is of pivotal functional importance. The adhesion involves several different adhesion molecules, the most important of which are the leukocyte ß2-integrins (CD11/CD18, the intercellular adhesion molecules, and the selectins. We and others have extensively studied the specificity and binding sites in the integrins and the intercellular adhesion molecules for their receptors and ligands. The integrins have to become activated to exert their functions but the possible mechanisms of activation remain poorly understood. Importantly, a few novel intercellular adhesion molecules have been recently described, which seem to function only in specific tissues. Furthermore, it is becoming increasingly apparent that changes in integrins and intercellular adhesion molecules are associated with a number of acute and chronic diseases.

  7. Tongue adhesion in the horned frog Ceratophrys sp.

    Science.gov (United States)

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  8. Sundew adhesive: a naturally occurring hydrogel.

    Science.gov (United States)

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-06-06

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  9. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-04-01

    Full Text Available Abstract Background Iron oxide magnetic nanoparticles (MNP's have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine (PEI and poly(ethylene glycol (PEG to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM, was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS production and lipid peroxidation (LPO, LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines. Results Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV which increased to 40 nm (+55.6 mV upon coating with PEI and subsequently 50 nm (+31.2 mV with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling. Conclusions

  10. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  11. Adhesive compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Sendijarevic, Vahid; O' Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  12. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  13. Instant acting adhesive system

    Science.gov (United States)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  14. Model of moisture absorption by adhesive joint

    Science.gov (United States)

    Bonilla Mora, Veronica; Mieloszyk, Magdalena; Ostachowicz, Wieslaw

    2018-01-01

    Adhesive joints offer many advantages over traditional mechanical joining systems. Nonetheless, their use is limited since they can be adversely affected by extreme temperatures and humidity conditions. Moisture contamination (even 1-3% of the sample weight) in an adhesive can alter its tensile strength and compromise the structural integrity of the joint. Moisture absorption processes can be monitored using methods based on fibre Bragg grating sensors embedded in the adhesive material. In the present paper, a finite element model of an adhesive joint between composite elements was analysed using the commercial code Abaqus™. The investigation contains two main parts: a thermal analysis and a hygro-mechanical analysis. The achieved results were verified using experimental investigation results for a sample with embedded fibre Bragg grating sensors that were applied to monitor the moisture-induced strains in the adhesive joint. The achieved numerical results show good agreement with the experimental ones for all considered analyses. The presented models can also be used for the determination of moisture content in an adhesive layer especially in a range of 1.5-2.5% of the water content.

  15. Proteomic analysis of integrin adhesion complexes.

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Bass, Mark D; Knight, David; Humphries, Martin J

    2011-04-05

    Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.

  16. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  17. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  18. Sphingosine 1-Phosphate Induces Platelet/Endothelial Cell Adhesion Molecule-1 Tyrosine Phosphorylation in Bovine Aortic Endothelial Cells through a PP2-Inhibitable Mechanism

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2007-12-01

    Full Text Available Sphingosine-1-phosphate (S1P is a low-molecular-weight phospholipid derivative released by activated platelets. S1P transduces signals through a family of G protein-coupled receptors to modulate various physiological behaviors of endothelial cells. Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31 is a 130-kDa protein expressed on the surfaces of leukocytes, platelets, and endothelial cells. Upon PECAM-1 activation, its cytoplasmic tyrosine residues become phosphorylated and bind with SH2 domain-containing proteins, thus leading to the downstream functions mediated by PECAM-1. In the present study, we found that S1P induced PECAM-1 tyrosine phosphorylation and SHP-2 association in bovine aortic endothelial cells (BAECs by immunoprecipitation and western blotting. The pretreatment of BAECs with a series of chemical inhibitors to determine the signaling pathway showed that the PECAM-1 phosphorylation was inhibited by PP2, indicating the participation of Src family kinases. These results demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in BAECs through mediation of Src family kinases, and this may regulate the physiological behaviors of endothelial cells.

  19. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    Science.gov (United States)

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  20. Self-etch Adhesive Systems: A Literature Review

    OpenAIRE

    Giannini M.; Makishi P.; Ayres A.P.A.; Vermelho P.M.; Fronza B.M.; Nikaido T.; Tagami J.

    2015-01-01

    This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the num...

  1. Alternate stresses and temperature variation as factors of influence of ultrasonic vibration on mechanical and functional properties of shape memory alloys.

    Science.gov (United States)

    Belyaev, Sergey; Volkov, Alexander; Resnina, Natalia

    2014-01-01

    It is known that the main factors in a variation in the shape memory alloy properties under insonation are heating of the material and alternate stresses action. In the present work the experimental study of the mechanical behaviour and functional properties of shape memory alloy under the action of alternate stresses and varying temperature was carried out. The data obtained had demonstrated that an increase in temperature of the sample resulted in a decrease or increase in deformation stress depending on the structural state of the TiNi sample. It was shown that in the case of the alloy in the martensitic state, a decrease in stress was observed, and on the other hand, in the austenitic state an increase in stress took place. It was found that action of alternate stresses led to appearance of strain jumps on the strain-temperature curves during cooling and heating the sample through the temperature range of martensitic transformation under the constant stress. The value of the strain jumps depended on the amplitude of alternate stresses and the completeness of martensitic transformation. It was shown that the heat action of ultrasonic vibration to the mechanical behaviour of shape memory alloys was due to the non-monotonic dependence of yield stress on the temperature. The force action of ultrasonic vibration to the functional properties was caused by formation of additional oriented martensite. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The effects of alternative electrical and mechanical stunning methods on hemorrhaging and meat quality of broiler breast and thigh muscles

    NARCIS (Netherlands)

    Hillebrand, S.J.W.; Lambooij, E.; Veerkamp, C.H.

    1996-01-01

    Five trials were conducted to determine the effects of various alternative stunning and restraining methods on the quality of chicken broiler meat. The stunning methods used were electrical whole-body and head-only stunning with different voltages (25 vs 100 V) and frequencies (50 vs 200 Hz), and

  3. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick

    2007-01-01

    The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAP alpha transcript, the GFAP epsilon and GFAP kappa transcripts are generated by alternative mRNA 3'-end processing. Here we use a GFAP minigene to characterize...

  4. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  5. Repeated origin and loss of adhesive toepads in geckos.

    Directory of Open Access Journals (Sweden)

    Tony Gamble

    Full Text Available Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  6. Repeated origin and loss of adhesive toepads in geckos.

    Science.gov (United States)

    Gamble, Tony; Greenbaum, Eli; Jackman, Todd R; Russell, Anthony P; Bauer, Aaron M

    2012-01-01

    Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  7. Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum▿ †

    OpenAIRE

    Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

    2008-01-01

    Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechani...

  8. Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Akbar Kanji

    2016-01-01

    Conclusion: Our data show an nsSNP in the drrA efflux pump gene that may result in upregulation of drug efflux mechanisms in MTB strains. It is therefore imperative to understand the mechanism of efflux and its role in drug resistance, which will enable the identification of new drug targets and development of new drug regimens to counteract the drug efflux mechanism of MTB.

  9. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with

  10. Demonstration/Validation of Hazardous Air Pollutant-Free Adhesive Replacement for Federal Specification MMM-A-121 on the Stryker Infantry Carrier Vehicle

    Science.gov (United States)

    2013-06-01

    of hazardous air pollutant (HAP) emissions produced in coating operations, including adhesives application and removal. Adhesives and sealants ...addition to alternative substrates, such as silicone rubber and lightweight composite materials, showing a high versatility to the 3M-847 adhesive...installations were surveyed, and it was determined that the Army used numerous adhesives and sealants , among other coating materials, that contain significant

  11. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  12. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion

    Science.gov (United States)

    Jill Gaskell; Robert A. Blanchette; Philip E. Stewart; Sandra Splinter BonDurant; Marie Adams; Grzegorz Sabat; Philip Kersten; Daniel Cullen

    2016-01-01

    Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of...

  13. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  14. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  15. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  16. Effect of Adhesion Between Submicron Filler Particles and a Polymeric Matrix on the Structure and Mechanical Properties of Epoxy-Resin-Based Compositions

    Science.gov (United States)

    Bogomolova, O. Yu.; Biktagirova, I. R.; Danilaev, M. P.; Klabukov, M. A.; Polsky, Yu. E.; Pillai, Saju; Tsentsevitsky, A. A.

    2017-03-01

    The structure and mechanical properties of composites based on an ED-20 epoxy resin, modified with ZnO and ZnO particles untreated or encapsulated in polystyrene, were studied. It is shown that the introduction of polystyrene-encapsulated ZnO submicroparticles into the epoxy resin changed its supramolecular structure in comparison with that of the resin filled with untreated ones. It was established that the presence of shell on the filler particles affected the mechanical properties of the polymer composites — their hardness increased by 22.5% and elastic modulus by 13%.

  17. Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism

    NARCIS (Netherlands)

    Plaza-Menacho, Ivan; Morandi, Andrea; Mologni, Luca; Boender, Piet; Gambacorti-Passerini, Carlo; Magee, Anthony I.; Hofstra, Robert M. W.; Knowles, Phillip; McDonald, Neil Q.; Isacke, Clare M.

    2011-01-01

    Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely

  18. Salvianolic Acid B inhibits platelet adhesion under conditions of flow by a mechanism involving the collagen receptor alpha 2 beta 1

    NARCIS (Netherlands)

    Wu, Ya Ping; Zhao, Xiao Min; Pan, Shao Dong; Guo, De An; Wei, Ran; Han, Ji Ju; Kainoh, Mie; Xia, Zuo Li; de Groot, Philip G.; Lisman, Ton

    2008-01-01

    Salvianolic acid B (SAB) is a component of Danshen, a herb widely used in Chinese medicine, and was previously shown to exert a number of biological activities including inhibition of platelet function, but the exact mechanisms involved are unclear. SAB dose-dependently inhibited platelet deposition

  19. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks

    NARCIS (Netherlands)

    Zant, Erwin; Grijpma, Dirk W.

    Major drawbacks of synthetic hydrogels are their poor mechanical properties and their limited ability to allow cell attachment and proliferation. By photo-cross-linking mixtures of dimethacrylate-functionalized oligomers (macromers) in a combinatorial manner in solution, synthetic hydrogels with

  20. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading

    NARCIS (Netherlands)

    Ccahuana Vasqueza, Vanessa Zulema; Ozcan, Mutlu; Kimpara, Estevao Tomomitsu

    Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy. Methods. Metallic frameworks

  1. Molecular markers of cell adhesion in ameloblastomas. An update

    Science.gov (United States)

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets. Key words:Ameloblastoma, cellular adhesion, molecular markers, cell-cell adhesion, extracellular matrix-cell adhesion. PMID:23986011

  2. Adhesion modulation using glue droplet spreading in spider capture silk.

    Science.gov (United States)

    Amarpuri, Gaurav; Zhang, Ci; Blackledge, Todd A; Dhinojwala, Ali

    2017-05-01

    Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. © 2017 The Author(s).

  3. Expression of Rac1 alternative 3' UTRs is a cell specific mechanism with a function in dendrite outgrowth in cortical neurons.

    Science.gov (United States)

    Braz, Sandra Oliveira; Cruz, Andrea; Lobo, Andrea; Bravo, Joana; Moreira-Ribeiro, Joana; Pereira-Castro, Isabel; Freitas, Jaime; Relvas, Joao B; Summavielle, Teresa; Moreira, Alexandra

    2017-06-01

    The differential expression of mRNAs containing tandem alternative 3' UTRs, achieved by mechanisms of alternative polyadenylation and post-transcriptional regulation, has been correlated with a variety of cellular states. In differentiated cells and brain tissues there is a general use of distal polyadenylation signals, originating mRNAs with longer 3' UTRs, in contrast with proliferating cells and other tissues such as testis, where most mRNAs contain shorter 3' UTRs. Although cell type and state are relevant in many biological processes, how these mechanisms occur in specific brain cell types is still poorly understood. Rac1 is a member of the Rho family of small GTPases with essential roles in multiple cellular processes, including cell differentiation and axonal growth. Here we used different brain cell types and tissues, including oligodendrocytes, microglia, astrocytes, cortical and hippocampal neurons, and optical nerve, to show that classical Rho GTPases express mRNAs with alternative 3' UTRs differently, by gene- and cell- specific mechanisms. In particular, we show that Rac1 originate mRNA isoforms with longer 3' UTRs specifically during neurite growth of cortical, but not hippocampal neurons. Furthermore, we demonstrate that the longest Rac1 3' UTR is necessary for driving the mRNA to the neurites, and also for neurite outgrowth in cortical neurons. Our results indicate that the expression of Rac1 longer 3' UTR is a gene and cell-type specific mechanism in the brain, with a new physiological function in cortical neuron differentiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic

    Directory of Open Access Journals (Sweden)

    Joaquín Palacios-Alquisira

    2010-10-01

    Full Text Available Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA‑MMA‑EA and (AA‑MMA‑2EHA with different molar ratios. The formulation based on (AA‑MMA‑2EHA with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives.

  5. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  6. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  7. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  8. LPS challenge regulates gene expression and tissue localization of a Ciona intestinalis gene through an alternative polyadenylation mechanism.

    Directory of Open Access Journals (Sweden)

    Aiti Vizzini

    Full Text Available A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with relevant homology to several components of the Receptor Transporting Protein (RTP family not present in the Ci8short mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript. This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of expression and tissue distribution of alternative transcripts.

  9. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  10. Introduction: History of the Adhesion GPCR Field

    NARCIS (Netherlands)

    Hamann, Jörg; Petrenko, Alexander G.

    2016-01-01

    Development of the aGPCR scientific field based on PubMed-listed research articles and selected key findings Since the discovery of adhesion G-protein-coupled receptors (aGPCRs) 20 years ago, reverse genetics approaches have dominated the elucidation of their function and work mechanisms. Seminal

  11. Adhesion molecule expression in basal cell carcinoma

    NARCIS (Netherlands)

    Verhaegh, M.; Beljaards, R.; Veraart, J.; Hoekzema, R.; Neumann, M.

    1998-01-01

    Basal cell carcinomas (BCCs) are frequently associated with a peritumoral mononuclear infiltrate. Until now, the function of this inflammatory infiltrate and its possible role in the control of tumor growth is unclear. Mechanisms controlling endothelial and target cell adhesiveness for leukocytes

  12. Bioresorbable adhesion barrier for reducing the severity of postoperative cardiac adhesions: Focus on REPEL-CV®

    Directory of Open Access Journals (Sweden)

    Martin Haensig

    2011-01-01

    Full Text Available Martin Haensig, Friedrich Wilhelm Mohr, Ardawan Julian RastanDepartment of Cardiac Surgery, Heart Center, University of Leipzig, Leipzig, GermanyAbstract: Treatment of a number of congenital heart defects often necessitates staged surgical intervention. In addition, substantial improvements in postoperative cardiac care and more liberal use of biological valve substitutes have resulted in many adult patients surviving to become potential candidates for reoperations to repair or replace valves or to undergo additional revascularization procedures. In all these scenarios, surgeons are confronted with cardiac adhesions, leading to an increased surgical risk. Thus, bioresorbable adhesion barriers had become of increasing interest because they are easy to use, and safe and effective. This review focuses on the mechanisms by which REPEL-CV® prevents adhesive processes, as well as the development, design, and materials used, and also summarizes efficacy studies, clinical data, safety, and current role in therapy.Keywords: adhesion prevention, bioresorbable copolymer, cardiac reoperation

  13. Segment-Specific Adhesion as a Driver of Convergent Extension

    Science.gov (United States)

    Vroomans, Renske M. A.; Hogeweg, Paulien; ten Tusscher, Kirsten H. W. J.

    2015-01-01

    Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial event in the formation of the main body axis during embryonic development. It involves processes on multiple scales: the sub-cellular, cellular and tissue level, which interact via explicit or intrinsic feedback mechanisms. Computational modelling studies play an important role in unravelling the multiscale feedbacks underlying convergent extension. Convergent extension usually operates in tissue which has been patterned or is currently being patterned into distinct domains of gene expression. How such tissue patterns are maintained during the large scale tissue movements of convergent extension has thus far not been investigated. Intriguingly, experimental data indicate that in certain cases these tissue patterns may drive convergent extension rather than requiring safeguarding against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tissue prepatterned into segments, to show that convergent extension tends to disrupt this pre-existing segmental pattern. However, when cells preferentially adhere to cells of the same segment type, segment integrity is maintained without any reduction in tissue extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself sufficient to drive convergent extension. Convergent extension is enhanced when we endow our in silico cells with persistence of motion, which in vivo would naturally follow from cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our results. We demonstrate a similar effect of differential adhesion on convergent extension in tissues that can only extend in a single direction (as often occurs due to the inertia of the head region of the embryo), and in tissues prepatterned into a sequence of domains resulting in two opposing adhesive gradients, rather than alternating segments. PMID:25706823

  14. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in Southern Spain.

    Science.gov (United States)

    Amaro-Blanco, Ignacio; Fernández-Moreno, Pablo Tomás; Osuna-Ruiz, María Dolores; Bastida, Fernando; De Prado, Rafael

    2018-02-25

    In perennial crops, the most common method of weed control is to spray herbicides, and glyphosate has long been the first choice of farmers. Three species of the genus Conyza are among the most problematic weeds for farmers, exhibiting resistance to glyphosate. The objectives of this work were to evaluate resistance levels and mechanisms, and to test chemical control alternatives in putative resistant (R) populations of Conyza bonariensis, Conyza canadensis and Conyza sumatrensis. Plants of the three R-populations of Conyza spp. survived high doses of glyphosate compared to plants of susceptible (S) populations. The rate of movement of 14 C glyphosate out of treated leaves in plants of S-populations was higher than in plants of R-populations. Only in plants of the R-population of C. sumatrensis contained the known target-site 5-enolpyruvylshikimate-3-phosphate synthase mutation Pro-106-Thr. Field responses to the different alternative herbicide treatments tested indicated injury and high effectiveness in most cases. The results indicate that non-target-site resistant (NTSR) mechanisms explain resistance in C. bonariensis and C. canadensis, whereas both NTSR and target-site resistant (TSR) mechanisms contribute to resistance in C. sumatrensis. The results obtained in the field trials suggest that the resistance problem can be solved through Integrated Weed Management. This article is protected by copyright. All rights reserved.

  15. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  16. Preventing mussel adhesion using lubricant-infused materials

    Science.gov (United States)

    Amini, Shahrouz; Kolle, Stefan; Petrone, Luigi; Ahanotu, Onyemaechi; Sunny, Steffi; Sutanto, Clarinda N.; Hoon, Shawn; Cohen, Lucas; Weaver, James C.; Aizenberg, Joanna; Vogel, Nicolas; Miserez, Ali

    2017-08-01

    Mussels are opportunistic macrofouling organisms that can attach to most immersed solid surfaces, leading to serious economic and ecological consequences for the maritime and aquaculture industries. We demonstrate that lubricant-infused coatings exhibit very low preferential mussel attachment and ultralow adhesive strengths under both controlled laboratory conditions and in marine field studies. Detailed investigations across multiple length scales—from the molecular-scale characterization of deposited adhesive proteins to nanoscale contact mechanics to macroscale live observations—suggest that lubricant infusion considerably reduces fouling by deceiving the mechanosensing ability of mussels, deterring secretion of adhesive threads, and decreasing the molecular work of adhesion. Our study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.

  17. Improved understanding of moisture effects on outdoor wood–adhesive bondlines

    Science.gov (United States)

    Joseph E. Jakes; Nayomi Plaza-Rodriguez; Xavier Arzola Villegas; Charles R. Frihart

    2017-01-01

    The development of improved moisture-durable wood adhesives for outdoor applications, such as repairing historic covered bridges, is hindered by an incomplete mechanistic understanding of what makes a wood–adhesive bond moisture-durable. The wood–adhesive bondline is extraordinarily difficult to study because of the chemical, structural, and mechanical complexities and...

  18. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  19. Spectroscopic and morphologic characterization of the dentin/adhesive interface

    Science.gov (United States)

    Lemor, R. M.; Kruger, Michael B.; Wieliczka, David M.; Swafford, Jim R.; Spencer, Paulette

    1999-01-01

    The potential environmental risks associated with mercury release have forced many European countries to ban the use of dental amalgam. Alternative materials such as composite resins do not provide the clinical function for the length of time characteristically associated with dental amalgam. The weak link in the composite restoration is the dentin/adhesive bond. The purpose of this study was to correlate morphologic characterization of the dentin/adhesive bond with chemical analyses using micro- Fourier transform infrared and micro-Raman spectroscopy. A commercial dental adhesive was placed on dentin substrates cut from extracted, unerupted human third molars. Sections of the dentin/adhesive interface were investigated using infrared radiation produced at the Aladdin synchrotron source; visible radiation from a Kr+ laser was used for the micro-Raman spectroscopy. Sections of the dentin/adhesive interface, differentially stained to identify protein, mineral, and adhesive, were examined using light microscopy. Due to its limited spatial resolution and the unknown sample thickness the infrared results cannot be used quantitatively in determining the extent of diffusion. The results from the micro-Raman spectroscopy and light microscopy indicate exposed protein at the dentin/adhesive interface. Using a laser that reduces background fluorescence, the micro-Raman spectroscopy provides quantitative chemical and morphologic information on the dentin/adhesive interface. The staining procedure is sensitive to sites of pure protein and thus, complements the Raman results.

  20. An alternative view on the role of the β-effect in the Rossby wave propagation mechanism

    Directory of Open Access Journals (Sweden)

    Eyal Heifetz

    2014-11-01

    Full Text Available The role of the β-effect in the Rossby wave propagation mechanism is examined in the linearised shallow water equations directly in momentum–height variables, without recourse to potential vorticity (PV. Rigorous asymptotic expansion of the equations, with respect to the small non-dimensionalised β parameter, reveals in detail how the Coriolis force acting on the small ageostrophic terms translates the geostrophic leading-order solution to propagate westward in concert. This information cannot be obtained directly from the conventional PV perspective on the propagation mechanism. Furthermore, a comparison between the β-effect in planetary Rossby waves and the sloping-bottom effect in promoting topographic Rossby waves shows that the ageostrophic terms play different roles in the two cases. This is despite the fact that from the PV viewpoint whether the advection of mean PV gradient is set up by changes in planetary vorticity or by mean depth is inconsequential.

  1. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    OpenAIRE

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Dinischiotu, Anca

    2015-01-01

    Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression ...

  2. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  3. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  4. Surface tension and deformation in soft adhesion

    Science.gov (United States)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  5. Leukocyte Adhesion Molecules in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Kousuke Noda

    2012-01-01

    Full Text Available Diabetes is a systemic disease that causes a number of metabolic and physiologic abnormalities. One of the major microvascular complications of diabetes is diabetic retinopathy (DR, a leading cause of blindness in people over age 50. The mechanisms underlying the development of DR are not fully understood; however, extensive studies have recently implicated chronic, low-grade inflammation in the pathophysiology of DR. During inflammation leukocytes undergo sequential adhesive interactions with endothelial cells to migrate into the inflamed tissues, a process known as the “leukocyte recruitment cascade” which is orchestrated by precise adhesion molecule expression on the cell surface of leukocytes and the endothelium. This paper summarizes the recent clinical and preclinical works on the roles of leukocyte adhesion molecules in DR.

  6. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.

  7. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  8. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and

  9. Spiders Tune Glue Viscosity to Maximize Adhesion.

    Science.gov (United States)

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  10. Molecular Biology of Flexor Tendon Healing in Relation to Reduction of Tendon Adhesions.

    Science.gov (United States)

    Legrand, Anais; Kaufman, Yoav; Long, Chao; Fox, Paige M

    2017-09-01

    Tendon injuries are encountered after major and minor hand trauma. Despite meticulous repair technique, adhesion formation can occur, limiting recovery. Although a great deal of progress has been made toward understanding the mechanism of tendon healing and adhesions, clinically applicable solutions to prevent adhesions remain elusive. The goal of this paper is to review the most recent literature relating to the tendon healing and adhesion prevention. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Behavior of adhesion forces of silicone adhesive sealants and mastic butyl under the influence of ionizing radiation

    International Nuclear Information System (INIS)

    Costa, Wanderley da

    2012-01-01

    Adhesives are products that can keep materials together by bonds between the surfaces. Sealants are products that can keep filled a space between two surfaces, through a barrier that is configured as a 'bridge' between the two surfaces. The mastic is a product made of a mixture of substances with the primary butyl polymer, with the consistency of a mass not dried that can be used as a sealant. The polysiloxane, also known as silicone are the most important synthetic polymers with inorganic structure, and are matrices of silicone adhesive sealants. To demonstrate the behavior of the adhesive forces of these products under different conditions, we used five different techniques. These products were subjected to two different conditions to verify the behavior of adhesion, one at the environmental condition and another under the ionizing radiation. The results showed not only differences between products (silicone and mastic), but also that the adhesive forces have different behaviors under the conditions which the samples were subjected. With this was reached the goal of this study that aspired show the differences between the mastic and silicone, this last one is often considered - erroneously - the same as mastic. Thus it was proven that: 1. silicone can be regarded as an adhesive and a sealant at ambient conditions, 2. mastic improves substantially adhesion in an environment of ionizing radiation and this property can be an excellent alternative to the adhesive market. (author)

  12. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    Science.gov (United States)

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Dinischiotu, Anca

    2015-08-25

    Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs-BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs-BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.

  13. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    Directory of Open Access Journals (Sweden)

    Andreea Iren Serban

    2015-08-01

    Full Text Available Advanced glycation end products (AGEs can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293 upon exposure to 200 μg/mL bovine serum albumine (BSA or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE and heat shock proteins (HSPs 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6, HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.

  14. Characterization of Adhesion in Pressure Sensitive Adhesives with a Spherical Indenter

    Science.gov (United States)

    Crosby, Alfred; Shull, Kenneth R.

    1997-03-01

    A combination of interfacial effects and bulk viscoelastic behavior controls the performance of pressure sensitive adhesives. We have studied these issues using commercially available adhesive transfer tapes. Using a spherical indenter, these experiments measure the displacement of the indenter into the adhesive as a function of the applied normal contact force. With the assumption of linear elastic behavior under small displacements, accepted theories of this contact problem are used to approximate the contact area and calculate a plateau modulus from the loading data. Fracture mechanics approaches based on linear elasticity also allow us to calculate the energy release rate (i.e. driving force for adhesive failure) from the load/displacement relationship measured during unloading. To alleviate uncertainty in the calculation of the plateau modulus and energy release rate for thicknesses not within the ranges of accepted theories, a finite element model simulates the behavior of the polymer layer upon loading and pull-off of the indenter. Future work will include modeling the adhesive with a viscoelastic constitutive model and characterizing the effects of geometry, substrate material, and loading rate on the adhesive properties.

  15. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  16. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  17. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics.

    Science.gov (United States)

    Craiem, Damian; Magin, Richard L

    2010-01-20

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.

  18. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

    International Nuclear Information System (INIS)

    Craiem, Damian; Magin, Richard L

    2010-01-01

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. (perspective)

  19. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  20. Polymer Claw: Instant Underwater Adhesive

    Science.gov (United States)

    2012-04-24

    OBIECTIVES 2 KEY ACCOMPLISHMENTS 3.1 AMINE MICROENCAPSULATION 3 3.2 ALTERNATIVE CAUSTIC INGREDIENTS 4 3.3 LOAD-DISPLACEMENT TESTING OF METAL BRUSH 5 4...cleaning agent, and mechanically activated abrasive brush. 3 Key Accomplishments 3.1 Amine Microencapsulation As described in last month’s report, we

  1. Alternative security

    International Nuclear Information System (INIS)

    Weston, B.H.

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  2. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  3. The contribution of adhesion signaling to lactogenesis.

    Science.gov (United States)

    Morrison, Bethanie; Cutler, Mary Lou

    2010-10-01

    The mammary gland undergoes hormonally controlled cycles of pubertal maturation, pregnancy, lactation, and involution, and these processes rely on complex signaling mechanisms, many of which are controlled by cell-cell and cell-matrix adhesion. The adhesion of epithelial cells to the extracellular matrix initiates signaling mechanisms that have an impact on cell proliferation, survival, and differentiation throughout lactation. The control of integrin expression on the mammary epithelial cells, the composition of the extracellular matrix and the presence of secreted matricellular proteins all contribute to essential adhesion signaling during lactogenesis. In vitro and in vivo studies, including the results from genetically engineered mice, have shed light on the regulation of these processes at the cell and tissue level and have led to increased understanding of the essential signaling components that are regulated in temporal and cell specific manner during lactogenesis. Recent studies suggest that a secreted matricellular protein, CTGF/CCN2, may play a role in lactogenic differentiation through binding to β1 integrin complexes, enhancing the production of extracellular matrix components and contributions to cell adhesion signaling.

  4. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  5. Microfabricated adhesive mimicking gecko foot-hair

    Science.gov (United States)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  6. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts

    DEFF Research Database (Denmark)

    Woods, A; Longley, R L; Tumova, S

    2000-01-01

    Cell adhesion to extracellular matrix involves signaling mechanisms which control attachment, spreading and the formation of focal adhesions and stress fibers. Fibronectin can provide sufficient signals for all three processes, even when protein synthesis is prevented by cycloheximide. Primary...

  7. Nitrous acid (HONO) nocturnal surface deposition and daytime acid displacement: An alternative mechanism contributing to the unknown daytime HONO source

    Science.gov (United States)

    Murphy, J. G.; VandenBoer, T. C.; Roberts, J. M.; Young, C. J.; Brown, S. S.; Markovic, M. Z.; Talukdar, R. K.

    2012-12-01

    Measurements of HONO were made during two intensive field campaigns: NACHTT 2011 in Erie, CO and CalNex 2010 in Bakersfield, CA. These field data and results from a flow tube study provide a new perspective on the interactions of HONO with ground surfaces. Integrated atmospheric column measurements of HONO and NO2 during NACHTT provided clear evidence that the ground surface dominates HONO production and loss at night. Simultaneous measurements of the gas and particle phases made by an Ambient Ion Monitor - Ion Chromatography (AIM-IC) system during CalNex demonstrated the potential for reactive uptake of HONO on mineral dust/soil as a nocturnal sink. Similarly, the potential for nitrite salts to react with strong acids, displacing HONO during the day was suggested by this dataset. Lab study results confirmed that HONO reacts irreversibly with carbonate salts and real soil extracts. Relative humidity-dependent reactive uptake coefficients were derived. Subsequent release of HONO by displacement reactions with HNO3 and HCl was also demonstrated. Together, these field and lab studies contribute to a new picture of HONO surface interactions by providing i) a more explicit description of the nocturnal HONO sink that also is a surface reservoir and ii) a new mechanism for daytime HONO formation that does not require NO2.

  8. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  9. A Strong Contractile Actin Fence and Large Adhesions Direct Human Pluripotent Colony Morphology and Adhesion

    Directory of Open Access Journals (Sweden)

    Elisa Närvä

    2017-07-01

    Full Text Available Cell-type-specific functions and identity are tightly regulated by interactions between the cell cytoskeleton and the extracellular matrix (ECM. Human pluripotent stem cells (hPSCs have ultimate differentiation capacity and exceptionally low-strength ECM contact, yet the organization and function of adhesion sites and associated actin cytoskeleton remain poorly defined. We imaged hPSCs at the cell-ECM interface with total internal reflection fluorescence microscopy and discovered that adhesions at the colony edge were exceptionally large and connected by thick ventral stress fibers. The actin fence encircling the colony was found to exert extensive Rho-ROCK-myosin-dependent mechanical stress to enforce colony morphology, compaction, and pluripotency and to define mitotic spindle orientation. Remarkably, differentiation altered adhesion organization and signaling characterized by a switch from ventral to dorsal stress fibers, reduced mechanical stress, and increased integrin activity and cell-ECM adhesion strength. Thus, pluripotency appears to be linked to unique colony organization and adhesion structure.

  10. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (p<0.05). Higher CR was observed in adhesives with higher concentration of CHX (p<0.05). After 1Y, significant reductions of μTBS and increases of NL were observed in the control groups (p<0.05). Reductions of μTBS and increase of NL over time were not observed (AM) for CHX-containing adhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  11. Muon g -2 in an alternative quasi-Yukawa unification with a less fine-tuned seesaw mechanism

    Science.gov (United States)

    Altın, Zafer; Ã-zdal, Ã.-zer; Ün, Cem Salih

    2018-03-01

    We explore the low-scale implications of the Pati-Salam Model including the TeV scale right-handed neutrinos interacting and mixing with the MSSM fields through the inverse seesaw (IS) mechanism in light of the muon anomalous magnetic moment (muon g -2 ) resolution and highlight the solutions which are compatible with the quasi-Yukawa unification condition (QYU). We find that the presence of the right-handed neutrinos causes heavy smuons as mμ ˜≳800 GeV in order to avoid tachyonic staus at the low scale. On the other hand, the sneutrinos can be as light as about 100 GeV, and along with the light charginos of mass ≲400 GeV , they can yield such large contributions to muon g -2 that the discrepancy between the experiment and the theory can be resolved. These solutions also require mχ˜1 ±≲400 GeV and mχ˜10≲200 . We also discuss such light chargino and neutralino along with the light stau (mτ ˜≳200 GeV ) in the light of current LHC results. Besides, the gluino mass lies in a range ˜[2.5 - 3.5 ] TeV , which is tested in near future experiments. In addition, the model predicts relatively light Higgsinos (μ ≲700 GeV ); hence, the second chargino mass is also light enough (≲700 GeV ) to contribute to muon g -2 . Light Higgsinos also yield less fine-tuning at the electroweak scale, and the regions compatible with muon g -2 restrict ΔEW≲100 strictly, and this region also satisfies the QYU condition. In addition, the ratios among the Yukawa couplings should be 1.8 ≲yt/yb≲2.6 , yτ/yb˜1.3 to yield correct fermion masses. Even though the right-handed neutrino Yukawa coupling can be varied freely, the solutions bound its range to 0.8 ≲yν/yb≲1.7 .

  12. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  13. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  14. [Alternative mechanisms for conflict resolution in the context of health rights: The Peruvian experience from the center for reconciliation and arbitration of the national health authority].

    Science.gov (United States)

    Hidalgo-Salas, Darwin; Ortiz-Pérez, Claudia; Lobatón-Flores, Juan; Huamaní-Ñahuinlla, Percy; Mezones-Holguín, Edward

    2016-01-01

    In Peru the right to health protection is constitutionally recognized. The right to access health services is legally mandated, as well as access to health information and the protection of rights such as informed consent. However, with the implementation of actions related to these rights and protections, there may be disagreements which need to be resolved. In this context, alternative mechanisms for conflict resolution (AMCR), such as mediation, reconciliation and arbitration, are valid and accessible strategies within the Peruvian Health System. Currently, the Center for Reconciliation and Arbitration (CECONAR) of the National Health Authority (SUSALUD) has the responsibility to lead the implementation of AMCR at the national level. In this article we provide a general overview of CECONAR, starting with its historical and legal foundations, and continuing to its present activities and finally we discuss and outline some future prospects.

  15. The alternative dispute resolution mechanism as a human right / Los mecanismos alternativos de solución de controversias como derecho humano

    Directory of Open Access Journals (Sweden)

    Egla Cornelio Landero

    2014-10-01

    Full Text Available Human rights are owned by the person for the simple fact of being, that all authorities within the scope of its powers, have the obligation to promote, respect, protect and ensure, in accordance with the principles of universality, interdependence, indivisibility and escalation. Second paragraph of Article 17 of the Constitution of Mexico, provides the fundamental right of access to justice and the public right that everyone has to be given to it for speedy justice courts, within the time and manner prescribed laws under principles of promptness, full and impartial justice. In the fourth paragraph of this constitutional provision since June 2008, has been recognized as a human right to access to justice, alternative dispute resolution mechanisms, which consist of negotiation, mediation, conciliation and arbitration.

  16. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  17. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  18. Behaviour under Impact of Mixed Adhesive Joints for the Automotive Industry

    Directory of Open Access Journals (Sweden)

    M. R. G. Silva

    Full Text Available Abstract The automotive industry is increasingly using adhesive joints bonding advanced lightweight materials to reduce vehicle weight. Strength under impact loadings is a major concern for this application and mixed adhesive joints can effectively improve the joints by combining stiffness and flexibility on the same overlap. This work introduces and studies several configurations for static and impact tests of mixed adhesive joints with four adhesives in different combinations. The main purpose of this work is the development of a strong adhesive joint using a mixed adhesive layer and perform a series of mechanical to study its mechanical behaviour. It is concluded that the use of the mixed adhesive technique improves both static and impact strength by introducing flexibility to the joint which subsequently allows more energy absorption when introduced in crash resistant structures.

  19. Soy protein isolate molecular level contributions to bulk adhesive properties

    Science.gov (United States)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  20. Mechanical properties and degree of conversion of etch-and-rinse and self-etch adhesive systems cured by a quartz tungsten halogen lamp and a light-emitting diode.

    Science.gov (United States)

    Gaglianone, Lívia Aguilera; Lima, Adriano Fonseca; Gonçalves, Luciano Souza; Cavalcanti, Andrea Nóbrega; Aguiar, Flávio Henrique Baggio; Marchi, Giselle Maria

    2012-08-01

    The aim of the present study was to evaluate the degree of conversion (DC), elastic modulus (E), and flexural strength (FS) of five adhesive systems (only the bonding component of both Scotchbond MP-SBMP and Clearfil Protect Bond-CP; Single Bond 2-SB2; One-up Bond F Plus-OUP; and P90 System Adhesive: primer-P90P and bond-P90B) cured with a quartz tungsten halogen (QTH) lamp and a light-emitting diode (LED). Two groups per adhesive were formed (n=5), according to the light source (quartz tungsten halogen-QTH: Demetron LC; and light-emitting diode-LED: UltraLume 5). Bar-shaped specimens were evaluated using three-point bending. The DC was obtained by Fourier transform infrared spectroscopy (FTIR). SB2 and P90P exhibited better DC values for QTH curing. However, SB2 and P90P presented the worst results overall. The light source was statistically significant for all adhesives, except for P90B and OUP. Non-solvated adhesives presented the best E and FS values. It could be concluded that the DC and E values can be influenced by the light source; however, this interference is material dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  2. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  3. Laser-based microbonding using hot melt adhesives

    Science.gov (United States)

    Hemken, G.; Böhm, S.

    2009-02-01

    This paper presents an alternative adhesive bonding system which is able to join very small parts as well as relatively large parts with high accuracy requirements. The main advantages are the possibility to apply small volumes, to preapply the adhesive with a temporarily delayed joining procedure and extremely short set cycles. The center of micro joining develops suitable joining techniques on the basis of non-viscous adhesive systems (hot melts). The process development focuses on the suitability for automation, process times and the applicability of batch processes. The article discusses certain hot melt application techniques that are suitable for batch production e. g. the laser-sintering of hot melt powder, presents an adapted assembly system and shows an example of an automated assembly process for hot melt coated micro components. Therefore, using hot melts can be a technologically and economically interesting alternative for the assembly and packaging of MEMS.

  4. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  5. Curing of natural rubber and epoxy adhesive

    International Nuclear Information System (INIS)

    Matawie, A.M.; Sadek, E.M.

    2001-01-01

    Low molecular weight epoxy resin based on diglycidyl ether of bisphenol A was synthesized and mixed at constant percentages with natural rubber. The rubber epoxy system was cured with various types of curing agents such as ethylene diamine, maleic anhydride as well as the prepared resole phenol formaldehyde. A study of the photo-induced crosslinking of the prepared elastic adhesives and film samples was carried out by exposure to ultraviolet lamp (300 w) for 2 weeks at 20 deg. C. Samples containing ethylene diamine were cured at 25 + - 1 deg. C. for 24 h while samples containing maleic anhydride or resole phenol formaldehyde resins were thermally cured at 150-170 deg. C. for 10 min. Cured adhesive compositions were tested mechanically and physically and evaluated as wood adhesives. While hardness, chemical resistance as well as heat stability of the prepared cured film sample were investigated. The obtained data indicate that the highest epoxy resin content and the presence of resole phenol formaldehyde resin in composition improve the tensile strength and adhesion properties on wood. While their cured film sample have the best hardness properties, chemical resistance and heat stability. (author)

  6. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  7. From the Cover: Evidence for van der Waals adhesion in gecko setae

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-09-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  8. Interface strength and degradation of adhesively bonded porous aluminum oxides

    DEFF Research Database (Denmark)

    T. Abrahami, Shoshan; M. M. de Kok, John; Gudla, Visweswara Chakravarthy

    2017-01-01

    environmental and health regulations. Replacing this traditional process in a high-demandingand high-risk industry such as aircraft construction requires an in-depth understanding of the underlying adhesion and degradationmechanisms at the oxide/resin interface resulting from alternative processes...

  9. Peel testing behavior of mushroom-top terminated structured adhesives

    Science.gov (United States)

    Hossfeld, Craig Kenneth

    Synthetic structured surfaces have been created based on the extraordinary adhesive ability exhibited by insects, spiders, and geckos. The adhesion of synthetic and natural structured adhesives is attributed to the cumulative addition of van der Waals forces acting on the structures of the surface. It has been shown that for synthetic surfaces a "mushroom top" or "flanged" terminating structure exhibits the highest adhesion. Unfortunately, due to the variety of testing and fabrication techniques and the small scale of previous studies, the detachment behavior of these structures is not well understood. This research systematically investigated the effect of peel angle, pillar diameter, flange diameter, and pillar aspect ratio on the force required for peeling. Explicit emphasis was placed on relatively large pillar structures to allow for in situ optical visualization in order to gain insights into fundamental mechanisms which dictate peeling. Traditional molding techniques were used to fabricate optical-scale mushroom terminated structures with pillar diameters of 1mm and 400microm and aspect ratios of 1, 3, and 5. Results were quantitatively compared to peel testing theory for conventional adhesives. It was convincingly demonstrated that the adhesive energy of a patterned surface changes as function of angle, and cannot be treated as a constant. The variability in the energy was linked to mechanistic differences in detachment through in situ observations and finite element analysis. Experimental results show that smaller pillars do not necessarily lead to higher adhesion during peeling, aspect ratio plays little role in peeling adhesive behavior, and pillar flange size is critical to adhesion. The conclusions from this study outline design parameters for mushroom topped dry adhesives in peeling applications.

  10. Study of Materials and Adhesives for Superconducting Cable Feedthroughs

    OpenAIRE

    Perin, A; Macias-Jareño, R; Métral, L

    2001-01-01

    Powering superconducting magnets requires the use of cryogenic feedthroughs for the superconducting cables capable of withstanding severe thermal, mechanical and electrical operating conditions. Such feedthrough shall provide the continuity of the superconducting circuit while ensuring a hydraulic separation at cryogenic temperature. A study about the adhesive and polymers required for the production of thermal shock resistant feedthroughs is presented. The strength of the busbar to adhesive ...

  11. Development or a solar cell coverglass adhesive for space application

    Science.gov (United States)

    Koch, J.

    1983-10-01

    A mixed silicone rubber adhesive for solar cells was developed, manufactured, and tested with respect to flow properties, optical data, mechanical data, processibility, adhesiveness, and weldability. Viscosity at 23 C of constituent A is 6.290 m Pa sec; viscosity at 25 C of constituent B is 224 sqmm/sec; proportion of mixture is 9 to 1, fabrication time at 23 C = 120 min.

  12. Mechanism

    Directory of Open Access Journals (Sweden)

    Yao Yu

    2010-01-01

    Full Text Available The kinematics analysis method of a novel 3-DOF wind tunnel mechanism based on cable-driven parallel mechanism is provided. Rodrigues' parameters are applied to express the transformation matrix of the wire-driven mechanism in the paper. The analytical forward kinematics model is described as three quadratic equations using three Rodridgues' parameters based on the fundamental theory of parallel mechanism. Elimination method is used to remove two of the variables, so that an eighth-order polynomial with one variable is derived. From the equation, the eight sets of Rodridgues' parameters and corresponding Euler angles for the forward kinematical problem can be obtained. In the end, numerical example of both forward and inverse kinematics is included to demonstrate the presented forward-kinematics solution method. The numerical results show that the method for the position analysis of this mechanism is effective.

  13. The effect of molluscan glue proteins on gel mechanics.

    Science.gov (United States)

    Pawlicki, J M; Pease, L B; Pierce, C M; Startz, T P; Zhang, Y; Smith, A M

    2004-03-01

    Several molluscs have been shown to alternate between a non-adhesive trail mucus and a similar gel that forms a strong glue. The major structural difference between the two secretions is the presence of specific proteins in the adhesive mucus. The present study identifies similar proteins from the glue of the slug Arion subfuscus and the land snail Helix aspersa. To investigate the role played by these proteins in adhesion, the proteins were isolated from the adhesive mucus of different molluscs and added to commercial polymer solutions. The effect was observed qualitatively, and quantified using a dynamic rheometer. The isolated proteins triggered gelling or visible stiffening of agar, pectin and polygalacturonic acid. The effect was stronger on more negatively charged polymers. The effect of the proteins was concentration dependent with an optimal concentration of 1-1.5 mg ml(-1), and was weakened when their structure changed. Other proteins and carbohydrates found in the adhesive mucus had no clear mechanical effect on gels. These findings show that the addition of these proteins to large, anionic polymers plays a central role in the formation of a glue from a mucus-like secretion. Such a mechanism may be common among invertebrates, and it may guide biomimetic approaches in the development of glues and gels.

  14. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    Science.gov (United States)

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  15. Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion

    Science.gov (United States)

    Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin

    Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.

  16. Adhesion International 1987. Proceedings of the Annual Meeting of the Adhesion Society, Inc. (10th) Held in Williamsburg, Virginia on 23-27 February 1987

    Science.gov (United States)

    1987-01-01

    characterization of Aramid- epoxy interface, reactive func- modified surfaces for, 469 tional groups in adhesive bonding at, to hydroxyapatite , 365 631 to wood...interlocking, in adhesion, 85 Morphology, of hydroxyapatite . as a result Mechanical properties, of epoxy resins of various treatments. 365 cured by...Catalysed Curing of Epoxy Resins Jurgen Vogt 255 New Developments in Structural Adhesives for the Automotive Industry U. T. Kreibich and A. F. Marcantonio 269

  17. Polymer Claw: Instant Underwater Adhesive

    Science.gov (United States)

    2012-09-24

    glycerol is a well-known hygroscopic liquid and lubricant. In the Polymer Claw Progress Report -4- 9/24/12 The Johns Hopkins University Applied Physics...the Polymer Claw adhesive partially solidified, while commercial adhesives were completely liquid after one hour. However, the curing rate was...is not valid for partial liquid adhesives, we will only test at later times, noting the minimum time for which the glass slides break. The time to

  18. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  19. Preparation of starch-g-polyacrylamide and its utilization as an adhesive for wood, paper and glass

    International Nuclear Information System (INIS)

    Abu-Ayana, Y.M.; Abou Zeid, N.Y.; Asran, A.Sh.; Aly, A.S.

    2005-01-01

    Starch- based adhesives are capable of wetting polar surfaces such as cellulose, penetrating pores, and forming strong bonds through mechanical and physical bonds. This paper studies the modification of starch by grafting with acrylamide, and the relation between modification and adhesion properties. Six formulae are prepared from modified and unmodified starch, and evaluated as adhesives for wood, glass, carton, and paper. Study of the factors affecting the adhesive bond is performed. Promising results are obtained. The adhesive formulae I-VI can be used successfully as paper and carton adhesives. Formulae I, TI and III can be used as wood adhesives. Excellent value for shear strength using formula No. I, comparable with other known thermoplastic and thermoset adhesives., formula I also can be used as glass adhesive, but in narrow applications and in absence of water

  20. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  1. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  2. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  3. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  4. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F

    2016-01-01

    ETB receptor agonist sarafotoxin 6c. The involvement of extracellular regulated kinase (ERK) 1/2 and focal adhesion kinase (FAK) were studied by their specific inhibitors U0126 and PF-228, respectively. Compared to their stretched counterparts, un-stretched MCA segments showed a significantly...

  5. A Novel Mechanism in Regulating the Alpha-Subunit of the Epithelial Sodium Channel (α ENaC by the Alternatively Spliced Form α ENaC-b

    Directory of Open Access Journals (Sweden)

    Marlene F. Shehata

    2009-01-01

    Full Text Available Introduction: In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b is the most abundant mRNA transcript (32+/-3 fold α ENaC-wt as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet.Objectives: In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner.Methods: Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur.Results: α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt.Conclusions: Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.

  6. Studies on the Adhesive Property of Snail Adhesive Mucus.

    Science.gov (United States)

    Newar, Janu; Ghatak, Archana

    2015-11-10

    Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.

  7. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    Science.gov (United States)

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  8. Treatment to Control Adhesion of Silicone-Based Elastomers

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  9. Reduction of periodontal pathogens adhesion by antagonistic strains.

    Science.gov (United States)

    Van Hoogmoed, C G; Geertsema-Doornbusch, G I; Teughels, W; Quirynen, M; Busscher, H J; Van der Mei, H C

    2008-02-01

    Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.

  10. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    Science.gov (United States)

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  11. On the Adhesion performance of a single electrospun fiber

    Science.gov (United States)

    Baji, Avinash; Zhou, Limin; Mai, Yiu-Wing; Yang, Zhifang; Yao, Haimin

    2015-01-01

    The micro- and nano-scale fibrillar structures found on the feet of spiders and geckos function as adhesion devices which allow them to adhere to both molecularly smooth and rough surfaces. This adhesion has been argued to arise from intermolecular forces, such as van der Waals (vdW) force, acting at the interface between any two materials in contact. Thus, it is possible to mimic their adhesion using synthetic nanostructured analogs. Herein, we report the first successful pull-off force measurements on a single electrospun fiber and show the potential of using electrospinning to fabricate adhesive analogs. A single fiber is glued to the atomic force microscope cantilever, and its adhesion to a metal substrate is studied by recording the pull-off force/displacement curves. The measured adhesive force of ~18 nN matches closely that of their biological counterparts. Similar to natural structures, the adhesive mechanism of these electrospun structures is controlled by vdW interactions.

  12. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  13. Influence of adhesion on random loose packings of binary micro-particle mixtures

    Science.gov (United States)

    Liu, Wenwei; Chen, Sheng; Li, Shuiqing; Key Laboratory for Thermal Science; Power Engineering of Ministry of Education Team

    2017-11-01

    Binary adhesive packings of microspheres with certain size ratios are investigated via a 3D discrete-element method specially developed with adhesive contact mechanics. We found a novel phenomenon that the packing fraction of the binary adhesive mixtures decreases monotonically with the increase of the amount of small components. It was further divulged that this behavior results from the competition between a geometrical filling effect and an adhesion effect. The positive geometrical filling effect only depends on the size ratio, while a dimensionless adhesion parameter Ad is employed to characterize the negative adhesion effect, which comes to its maximum at Ad 10 . Structural properties, including contact network, partial coordination number, radial distribution function and angular distribution function, are analyzed in order to give a better understanding of such adhesive binary packings. National Key Basic Research Program of China (No. 2013CB228506) and National Natural Science Foundation of China (No. 51390491).

  14. Adhesion aspects in MEMS/NEMS

    CERN Document Server

    Kim, Seong H; Mittal, Kash L

    2012-01-01

    Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface

  15. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...... to take into account effects such as plastic deformation in the adhering shells, and to take into account effects of large local curvatures of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics...

  16. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  17. The effect of water on the gecko adhesive system

    Science.gov (United States)

    Stark, Alyssa Yeager

    The gecko adhesive system is a dry, reversible adhesive that is virtually surface-insensitive due to the utilization of intermolecular van der Waals forces. Remarkably, although detailed models of the adhesive mechanism exist and hundreds of gecko-inspired synthetics have been fabricated, our ability to fully replicate the system still falls short. One reason for this is our limited understanding of how the system performs in natural environments. To begin to resolve this I focused on one particular environmental parameter, water. Although thin layers of water can disrupt van der Waals forces, I hypothesized that geckos are able to retain or regain adhesive function on wet surfaces. I was motivated to investigate this hypothesis because many species of gecko are native to the tropics, a climate where we expect surface water to be prevalent, thus it is likely geckos have some mechanism to overcome the challenges associated with surface water and wetting. Despite the challenge water should pose to adhesion, I found that when tested on hydrophobic substrates geckos cling equally well in air and water. Conversely, on wet hydrophilic substrates geckos cannot support their body weight. Investigating these results further, I found that the superhydrophobic nature of the adhesive toe pads allows geckos to form an air bubble around their foot, which when pressed into contact with a hydrophobic substrate likely removes water from the adhesive interface. When the toe pads are no longer superhydrophobic however, geckos cannot support their body weight and fall from substrates. In order to regain adhesion geckos only need to take about ten steps on a dry substrate to self-dry their toe pads. Finally, when measuring a dynamic component of adhesion, running, we found that geckos are able to maintain speed on misted hydrophobic and hydrophilic substrates, contrary to what we would predict based on static shear adhesion measurements. In conclusion, my research provides a detailed

  18. Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches

    OpenAIRE

    Joshi, S.; Bagani, R.; Beckers, Lucas; Dekker, R.

    2017-01-01

    This paper reports the use of rubber—Polybutadiene as an intermediate adhesive layer for improving the adhesion between polyimide (PI) and silicone polydimethylsiloxane (PDMS) which is required for a reliable fabrication of flexible/stretchable body patches for various applications. The adhesive bond initiated by the butyl rubber (BR), apart from being extremely strong, is also chemically resistant and mechanically stable as compared to the state of the art processes of improving adhesion bet...

  19. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  20. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.