WorldWideScience

Sample records for alternating magnetic field

  1. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  2. Induction MHD generator using alternating magnetic field

    International Nuclear Information System (INIS)

    The induction MHD generator using an alternating magnetic field is proposed. The characteristics of the machine are analyzed theoretically and also compared with those of the induction MHD generator using a traveling magnetic field. Following conclusions are obtained for the fundamental characteristics of the present machine: (1) This type of the machine is possibly operated not only as the generator but also as the pump or as the damper. (2) The optimum condition for the maximum generator efficiency exists among the relations of the frequency, the fluid velocity and the inner core radius because of the eddy current loss due to an alternating magnetic field. (3) The power ratio of the reactive power of the machine to the gross output power can be reduced to a much smaller value than that of the traveling wave MHD generator. Therefore, even in the case of the working fluid with a relative low electrical conductivity such as two-phase liquid metal flow with high void fraction, the acceptable power ratio can be expected. (4) For the working fluid with higher electrical conductivity the skin effect is also able to be reduced to the acceptable level in the present machine, while it is a serious problem in the traveling wave MHD generator. (author)

  3. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    Science.gov (United States)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  4. Heating of polyacrylamide ferrogel by alternating magnetic field

    Science.gov (United States)

    Safronov, A. P.; Samatov, O. M.; Tyukova, I. S.; Mikhnevich, E. A.; Beketov, I. V.

    2016-10-01

    Ferrogel based on polacryamide network with embedded maghemite nanoparticles with mean number average particle diameter 12 nm was synthesized by radical polymerization in water-based ferrofluid. The network structure of ferrogel was characterized by Flory-Rehner theory and it was shown that the embedded particles were substantially larger than the mesh size. It prevented the translational movement of particles in the ferrogel. The immobilization of particles was confirmed by dynamic light scattering. The adhesion of macromolecular chains to the particles was determined by calorimetry using thermochemical cycle. The enthalpy of interfacial adhesion was found several orders of magnitude higher than the energy of dipoles in typically applied magnetic fields. Despite the differenve in the mobility of particles in ferrofluid and ferrogel the comparative study of their heating in alternating magnetic field, however, revealed their close similarity. In both cases it was goverened by superposing of Neel and Brownian relaxation mechanisms.

  5. EXPERIMENTAL STUDY ON ALTERNATING MAGNETIC FIELD MAGNETOHYDRODYNAMIC PUMP

    Institute of Scientific and Technical Information of China (English)

    PENG Yan; ZHAO Ling-zhi; SONG Shu-jun; SHA Ci-wen; LI Ran; XU Yu-yu

    2008-01-01

    An experimental apparatus to investigate AC MHD pump was established, which mainly consists of a rotary permanent magnet with 4 poles an annular channel, a motor, a shaft and a platform. The magnet generates a field similar to sinusoid with the maximum of 0.9 T in the channel when it is rotated up by the motor to simulate an AC magnetic field. This moving magnetic field acts on the conductive fluid in the channel, and produces an electromagnetic force to move the fluid in the same direction as that of the magnet rotating. Experiments were carried out to investigate the performance of the pump. Flow velocity in the annular channel was measured for different conductivities and rotating speeds of the magnet. The results show that the flow rate and pressure increase as the magnetic field strength, fluid conductivity and frequency of the magnetic field increase.

  6. Alternating magnetic field optimization for IONP hyperthermia cancer treatment

    Science.gov (United States)

    Kastner, Elliot J.; Reeves, Russell; Bennett, William; Misra, Aditi; Petryk, Jim D.; Petryk, Alicia A.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) have therapeutic potential to deliver a thermal dose to tumors when activated in an alternating magnetic field (AMF). Through various targeting methods such as antibody labeling or injection site choice, delivery of IONPs to tumors yields enhanced treatment accuracy and efficacy. Despite this advantage, delivery an AMF, which is sufficient to result in clinically relevant IONP heating, can result in nonspecific tissue heating via the generation of eddy currents and tissue permeated by local electric fields (joule heating). The production of eddy current heating is a function of tissue size, geometry and composition as well as coil design and operation. The purpose of this research is to increase the level of energy deposited into the IONPs versus the non-target tissue (power ratio/PR)1 in order to improve target heating and reduce nonspecific tissue damage. We propose to improve the PR using two primary concepts: (1) reduce power deposition into non-target tissue by manipulating the fields and eddy current flow and (2) enhance heat removal from non-target tissue. We have shown that controlling tissue placement within the AMF field, accounting for tissue geometry, utilizing external cooling devices, and modifying the field properties can decrease non-target heating by more than 50%, at clinically relevant AMF levels, thereby allowing for an increase in thermal dose to the tumor and increasing the therapeutic ratio.

  7. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinzhong, E-mail: wjz.0926@163.com; Zou, Yanhua, E-mail: yanhua@cc.utsunomiya-u.ac.jp; Sugiyama, Hitoshi, E-mail: sugiyama@cc.utsunomiya-u.ac.jp

    2015-07-15

    We proposed a new ultra-precision magnetic abrasive finishing (MAF) process using low frequency alternating magnetic field in this paper. Magnetic cluster themselves may produce the up and down movement change under alternating magnetic force. The movement may not only promote the dispersion of micro-magnetic particles, but also improve stirring effect and cross-cutting effects of the abrasives, achieving circulation and update to ensure the stability of grinding tools. This process is considered to be able to efficiently apply in ultra-precision finishing of plane and complicated micro-surfaces. In this study, we investigated the effects of alternating magnetic field on magnetic field distribution, finishing force and abrasive behavior. Furthermore, a set of experimental devices have been designed for finishing SUS304 stainless steel plate. The present work is aimed at understanding finishing particularity of this process and studying impacts of important process parameters namely grinding fluid, rotational speed of magnetic pole, current frequency on change in finish surface and material removal. Experimental results indicate that the process can realize ultra-precision finishing of plane by using oily grinding fluid. In the present research, the surface roughness of SUS304 stainless steel plate was improved from 240.24 nm to 4.38 nm by this process. - Highlights: • We investigated magnetic field distribution in processing region. • Magnetic cluster can produce a fluctuating finishing force in alternating magnetic field. • Oily grinding fluid is more applicable to this process. • Few nanometer finish surface can be obtained by this process.

  8. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field

    International Nuclear Information System (INIS)

    We proposed a new ultra-precision magnetic abrasive finishing (MAF) process using low frequency alternating magnetic field in this paper. Magnetic cluster themselves may produce the up and down movement change under alternating magnetic force. The movement may not only promote the dispersion of micro-magnetic particles, but also improve stirring effect and cross-cutting effects of the abrasives, achieving circulation and update to ensure the stability of grinding tools. This process is considered to be able to efficiently apply in ultra-precision finishing of plane and complicated micro-surfaces. In this study, we investigated the effects of alternating magnetic field on magnetic field distribution, finishing force and abrasive behavior. Furthermore, a set of experimental devices have been designed for finishing SUS304 stainless steel plate. The present work is aimed at understanding finishing particularity of this process and studying impacts of important process parameters namely grinding fluid, rotational speed of magnetic pole, current frequency on change in finish surface and material removal. Experimental results indicate that the process can realize ultra-precision finishing of plane by using oily grinding fluid. In the present research, the surface roughness of SUS304 stainless steel plate was improved from 240.24 nm to 4.38 nm by this process. - Highlights: • We investigated magnetic field distribution in processing region. • Magnetic cluster can produce a fluctuating finishing force in alternating magnetic field. • Oily grinding fluid is more applicable to this process. • Few nanometer finish surface can be obtained by this process

  9. Effect of alternative magnetic field on the diffusion layer growth in Al/Zn couple

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaotao; CUI Jianzhong; WU Xiaoming; GUO Yanhui; ZHANG Jun

    2004-01-01

    The influence of an alternative magnetic field on the growth of the diffusion layer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. The results show that the alternative magnetic field increases the thickness of the diffusion layer and the effect increases with the intensity and frequency of the altemative magnetic field increasing. The growth of the diffusion layer obeys the parabolic rate law and the growth rate increases with the application of the alternative magnetic field. This growth rate change is manifested through a change in the frequency factor k0 and not through a change in the activation energy Q. The frequency factor k0 for the diffusion layer growth with the alternative magnetic field is 5.03 cm2/s and the one without the magnetic field is 3.84 cm2/s.

  10. Electronic measurements in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Boekelheide, Z.; Hussein, Z. A.; Hartzell, S.

    Magnetic nanoparticle hyperthermia is a promising cancer treatment in which magnetic nanoparticles are injected into a tumor and then exposed to an alternating magnetic field (AMF). This process releases heat and damages tumor cells, but the exact mechanisms behind the effectiveness of this therapy are still unclear. Accurate sensors are required to monitor the temperature and, potentially, other parameters such as magnetic field or mechanical stress during clinical therapy or lab research. Often, optical rather than electronic temperature sensors are used to avoid eddy current self-heating in conducting parts in the AMF. However, eddy current heating is strongly dependent on the size and geometry of the conducting part, thus micro- and nano-scale electronics are a promising possibility for further exploration into magnetic nanoparticle hyperthermia. This presentation quantitatively discusses the eddy current self-heating of thin wires (thermocouples) and will also present a proof of concept thin film resistive thermometer and magnetic field sensor along with measurements of their eddy current self-heating. The results show that electronic measurements are feasible in an AMF with both thin wires and patterned thin film sensors under certain conditions.

  11. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field

    Science.gov (United States)

    DeCuyper, M.; Hodenius, M.; Ivanova, G.; Baumann, M.; Paciok, E.; Eckert, T.; Soenen, S. J. H.; Schmitz-Rode, T.

    2008-05-01

    Magnetic fluids (MFs) with a similar narrow size distribution of the iron oxide core were stabilized with lauric acid (MF 1), oleate (MF 2) or, after dialysis in the presence of liposomes, with phospholipid molecules (MF 3 and MF 4, respectively). The hydrodynamic sizes of the MF 1 and MF 3 were half those found for MF 2 and MF 4. The MFs were exposed to inductive heating in an alternating magnetic field at a frequency of 200 kHz and a maximum magnetic field strength of 3.8 kA m-1. Specific absorption rates (SAR) of 294 ± 42 (MF 1), 214 ± 16 (MF 2), 297 ± 13 (MF 3) and 213 ± 6 W g-1 Fe (MF 4) were obtained. The data for MF 2 and MF 4 were identical to those found for the commercially available ferucarbotran. The biomedical relevance of the phospholipid-coated MFs is briefly discussed.

  12. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cuyper, M de; Soenen, S J H [Interdisciplinary Research Centre, Katholieke Universiteit Leuven-Campus Kortrijk, B-8500 Kortrijk (Belgium); Hodenius, M; Ivanova, G; Baumann, M; Paciok, E; Schmitz-Rode, T [Applied Medical Engineering, Helmholtz-Institute, Rheinisch-Westfaelische Technische Hochschule Aachen, Pauwelsstrasse 20, D-52074 Aachen (Germany); Eckert, T [Department of Physical Chemistry, RWTH Aachen, Landoltweg 2, D-52074 Aachen (Germany)], E-mail: hodenius@hia.rwth-aachen.de

    2008-05-21

    Magnetic fluids (MFs) with a similar narrow size distribution of the iron oxide core were stabilized with lauric acid (MF 1), oleate (MF 2) or, after dialysis in the presence of liposomes, with phospholipid molecules (MF 3 and MF 4, respectively). The hydrodynamic sizes of the MF 1 and MF 3 were half those found for MF 2 and MF 4. The MFs were exposed to inductive heating in an alternating magnetic field at a frequency of 200 kHz and a maximum magnetic field strength of 3.8 kA m{sup -1}. Specific absorption rates (SAR) of 294 {+-} 42 (MF 1), 214 {+-} 16 (MF 2), 297 {+-} 13 (MF 3) and 213 {+-} 6 W g{sup -1} Fe (MF 4) were obtained. The data for MF 2 and MF 4 were identical to those found for the commercially available ferucarbotran. The biomedical relevance of the phospholipid-coated MFs is briefly discussed.

  13. Effect of alternate magnetic field on LY12 structure properties after thermal plastic forming

    Institute of Scientific and Technical Information of China (English)

    陈革新; 付宇明; 尹京; 肖宏

    2008-01-01

    The powerful alternate magnetic field treatment is an effective not-heat treatment, which improves the coriaceous performance of the material. In order to reveal the effect rule of the powerful alternate magnetic field on the structure capability after thermal plastic forming, the experimental methods were adopted to compare the microcosmic structure of the LY12 aluminium alloy test pieces before and after the powerful alternate magnetic field treatment. The mechanism of the structure refining was analyzed theoretically. According to the effect rule of the alternate magnetic field on critical grain growth work and the magnetic vibration-constriction mechanism, the structure dynamics factors were analyzed. The results show that, after a certain powerful alternate magnetic field treatment, the mechanical capability of the LY12 aluminium alloy after thermal plastic forming can be reinforced, the structure intertwist deriving from the thermal plastic forming becomes even and the branch crystal is also smashed, consequently refines the structure. The powerful alternate magnetic field treatment can be regarded as an effective method to improve metal structure performance after heat plastic forming.

  14. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    Science.gov (United States)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  15. Influence of Alternative Magnetic Field on the Diffusion of Al and Mg

    Institute of Scientific and Technical Information of China (English)

    Xiaotao LIU; Jianzhong CUI; Yanhui GUO; Xiaoming WU; Jun ZHANG

    2004-01-01

    The influence of an alternative magnetic field on the diffusion of Al and Mg in Al-Mg diffusion couple is studied. The diffusion zone is composed of two intermediate phases, namelyβ and γ phase. Thickness of each intermediate phase is examined. The results show that the alternative magnetic field increases the thicknesses ofβ and γ phase zone and the layer growth ofβ and γ phase obeys the parabolic rate law. The growth rate of theβ and γ phase are increased with the application of the alternative magnetic field. This change is manifested through a change in the frequency factor ko and not through a change in the activation energy Q. The frequency factor ko for intermediate phase growth with an alternative magnetic field is 39.95 cm2/s for γ phase and 2.84×10-4 cm2/s for β phase compared with those without the magnetic field is 22.4 cm2/s for γ phase and 1.53×10-4 cm2/s forβ phase.

  16. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  17. Infrared thermography based defect detection in ferromagnetic specimens using a low frequency alternating magnetic field

    Science.gov (United States)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Mahendran, V.; Pillai, V. P. M.; Philip, John; Jayakumar, T.

    2014-05-01

    A new active infrared thermography based technique is proposed for defect detection in ferromagnetic specimens using a low frequency alternating magnetic field induced heating. The test specimens (four mild steel specimens with artificial rectangular slots of 8.0, 5.0, 3.3 and 3.0 mm depths) are magnetized using a low frequency alternating magnetic field and by using an infrared camera, the surface temperature is remotely monitored in real time. An alternating magnetic field induces an eddy current in the specimen which increases the specimen temperature due to the Joule's heating. The experimental results show a thermal contrast in the defective region that decays exponentially with the defect depth. The observed thermal contrast is attributed to the reduction in induction heating due to the leakage of magnetic flux caused by magnetic permeability gradient in the defective region. The proposed technique is suitable for rapid non-contact wide area inspection of ferromagnetic materials and offers several advantages over the conventional active thermography techniques like fast direct heating, no frequency optimization, no dependence on the surface absorption coefficient and penetration depth.

  18. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Science.gov (United States)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  19. Measurement, comparison, and transformation of dynamic magnetization in pulse field and high-frequency alternating field

    Science.gov (United States)

    Kodama, K.

    2015-12-01

    Dynamic magnetizations of selected natural samples (sediments and volcanic rocks) were measured in time domain as well as in frequency domain. The time domain measurements were performed in pulse fields with variable lengths (10 μs to 10 ms) and amplitudes (0.5 mT to 0.7 T). To measure hysteresis parameters for small loops, one cycle of positive and negative pulses with different rate of field variation were generated. In the frequency domain, low-field magnetic susceptibility was measured over the frequency rage (1 kHz to 500 kHz) corresponding to the pulse lengths in the time domain measurements. Results in the time domain were characterized by the transient magnetization-field curves that were broadly comparable to the corresponding portions of the hysteresis loops measured by a quasi-static method using a VSM. The dynamic coercivity that is defined as the intersect with the abscissa in the negative regime increased as the pulse length reduced and the pulse peak increased. In strong pulse fields (> 0.5 T), irrespective of the kinds of samples, the magnetization remained at the end of a pulse and decayed exponentially within a few ms, suggesting rapid magnetic relaxations. In weak pulse fields, no such relaxation was observed except for the sediments rich in superparamagnetic (SP) particles. These field dependencies suggest that the relaxations in the strong fields could be due to the dynamics of the domain walls in the MD particles, while those of the sediments in weak fields may be ascribed to the relaxation of the SP particles. Results in the frequency domain were obtained in terms of the frequency spectrum of the real and imaginary components of complex susceptibility. Comparisons and interpretations of the data in these different domains were made in terms of the distribution of relaxation times. Discussions on the numerical conversion and transformation of these data as well as their rock magnetic applications will be provided.

  20. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper

    Institute of Scientific and Technical Information of China (English)

    GUO Bin; ZHANG Peng; JIN Yongping; CHENG Shukang

    2008-01-01

    The effects of alternating magnetic field on the corrosion morphologies, corrosion rate, and corrosion products of copper in 3.5% NaCl solution, sea water, and magnetized sea water were investigated using electrochemical test, scanning electron microscopy/energy dispersive analysis system of X-ray (SEM/EDAX), and X-ray diffraction (XRD). The results show that the corrosion rate of copper in magnetized sea water is minimal. Moreover, the surface of the specimen in magnetized sea water is uniform and compact as compared with those in 3.5% NaCl solution and sea water. The corrosion products of copper in magnetized sea water are mainly Cu2O and CuCl2. However, the corrosion products in sea water are CuCl, Cu2Cl(OH)3, and FeCl3·6H2O. The electrochemical corrosion mechanisms of copper in the three media were also discussed.

  1. Resonances of an Oscillating Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…

  2. Alternative Magnetic Field Exposure Metrics: Occupational Measurements in Trolley Workers (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Yost, M

    1999-07-01

    Epidemiological studies on extremely low frequency (ELF) magnetic fields have widely used personal or area sampling to evaluate exposures based on the time-weighted averaged flux density magnitude (TWA field). Relatively few studies have evaluated 'alternative' exposure metrics related to field characteristics such as temporal variability, frequency harmonics, vector polarisation, spatial orientation, static fields, high frequency transients, or induced electric fields. These field attributes fall into three major categories: (1) temporal characteristics of exposure intensity and timing, (2) frequency-domain characteristics, (3) spatial characteristics. The first category describes the magnitude and time history of exposure, including the TWA field metric, which most often is the focus of MF exposure assessment. The second category depicts the waveform characteristic (harmonic content), which has been relatively poorly described in most studies. The third category describes the field vector's time-space orientation and relation to static fields. Some examples of 'alternative metrics' that have been proposed based on biological mechanisms and potential measurement techniques are examined. The limited correlation of some alternative metrics with the TWA field metric in available data suggests that substantial exposure misclassification could occur if measurement protocols only focus on average field levels. (author)

  3. The Influence of Metallic Bodies on a Coil Radiating an Alternating Magnetic Field

    Directory of Open Access Journals (Sweden)

    Alladi Prabhakar

    1956-01-01

    Full Text Available The response of a metallic sphere placed in an alternating magnetic field has been studied in details and the conclusions derived therefrom have been verified experimentally. Similar investigations on cylinders and disc are also reported. the recent trend for developing non-metallic mines, in which the metallic components are very few, makes it imperative that a more detailed study with very small cylinder should be carried out.

  4. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    Natalia A. Belova

    2015-01-01

    Full Text Available It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals.

  5. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field.

    Science.gov (United States)

    Belova, Natalia A; Acosta-Avalos, Daniel

    2015-01-01

    It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals. PMID:26823664

  6. Features of metabolic disturbances in rat myocardium under effect of alternating magnetic fields of different parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kolodub, F.A.; Chernysheva, O.N.; Yevtushenko, G.I.

    1981-04-01

    The high sensitivity of the cardiovascular system, in particular of the myocardium, to the effect of constant and, especially, alternating magnetic fields was demonstrated by many authors. However, the biochemical mechanisms forming the basis for the development of functional and structural disturbances in the myocardium have not been clarified in many respects. N.A. Udintsev and N.V. Kanskaya have established that the effect of alternating magnetic fields leads to the activation in the heart muscle of glycolysis and glycogenolysis and to the inhibition of the pentose cycle. In the literature there are no data on the state of oxidation processes and phosphorylation associated with them, in the course of which energy needed both for synthesis and contraction processes' in the myocardium is accumulated. The study of the features of metabolism of carbohydrates, macroergic phosphates and low-molecular nitrogen compounds in the rat heart under the effect of alternating magnetic fields of various voltages and exposures was the object of this investigation.

  7. Thermocouples in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Hartzell, S.; Boekelheide, Z.

    Magnetic nanoparticle hyperthermia, a method of cancer therapy, is currently a subject of active research. A critical parameter during therapy or laboratory research is the temperature of the system (tissue or nanoparticle suspension). Thermocouples are affordable and ubiquitous temperature sensors which could be used in this capacity; however, their metallic nature results in self-heating due to eddy currents when placed in an AMF. This presentation will quantitatively discuss calculations and measurements of the self-heating of three common types of thermocouples. Type T, K, and E thermocouples of both thin (40 gauge) and thick (20 gauge) wires were tested in a range of applied magnetic field magnitudes (235 kHz, 0-0.4 T rms). Among the thermocouples, all three types demonstrated large self-heating in 20 gauge wires. For the 40 gauge wires, type K showed large self-heating, while type T showed small but significant self-heating and type E showed no significant self-heating in comparison to the background. Our results indicate that thin type E thermocouples can be accurately used as temperature sensors in an AMF environment similar to the one used here, and type T thermocouples may be appropriate under conditions with lower magnetic field strength or frequency.

  8. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  9. Effects of Magnetic Fluid Hyperthermia Induced by An Alternative Magnetic Field on Human Carcinoma A549 Cell in vitro

    Directory of Open Access Journals (Sweden)

    Guoqing WANG

    2011-03-01

    Full Text Available Background and objective Magnetic fluid hyperthermia (MFH is a method of heat therapy using nanometer techniques and hyperthermia. It has the advantage of high specificity of targeting. The aim of this study is to detect the effects of MFH induced by an alternating magnetic field on human being carcinoma A549 cells in vitro. Methods A human adenocarcinoma cell line A549 was cultured with various concentrations of ferroferric oxide (Fe3O4 magnetic fluid (1.5-6.0 mg/mL and exposed to an alternative magnetic field (AMF for 30 min. And then the optical density (OD of viable cell, cytotocixity index, growth curve of cells, morphologic changes of cell, cell cycle and aposptosis were measured. Results The proliferation of the A549 cells were remarkably inhibited, the OD value of viable cells decreased and cytotoxity index (CI increased; Apoptosis of the A549 cells were observed to have cell shrinkage, chromatin condensation, margination, unclear fragmentation and intact cell membrane by light and electron microscopy; The cells were inhibited in the stage S. Conclusion MFH induced by AMF could inhibit the proliferation, which promotes apoptosis and arrest at S stage of the A549 cells.

  10. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  11. Resonances of an oscillating conductive pipe driven by an alternating magnetic field in the presence of a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)

    2011-07-15

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces between the induced currents and the static field. This oscillating system presents an interesting set of properties. To start with, it is not a magnet interacting with the oscillating field of a coil. The oscillating pipe is not even a ferromagnet. It is a new and conceptually rich case of a damped forced oscillator whose motion differential equation contains coefficients that depend upon a parameter. Here, we present and analytically explain the case of the small amplitude oscillations of this magneto-mechanical system. The ordinary amplitude and phase resonance curves are theoretically derived and confirmed by the set of experimental results presented. This oscillator is inexpensive and simple to set up, does not require sophisticated instrumentation, and with its interesting analytical model, is recommended either as an undergraduate laboratory experiment, as student project work, or even as a demonstration experiment. In loving memory of our late colleague and friend Professor DarIo Moreno

  12. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    Science.gov (United States)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  13. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.

    Science.gov (United States)

    Wang, Xiaowen; Chen, Youping; Huang, Changshuo; Wang, Xufei; Zhao, Linyun; Zhang, Xiaodong; Tang, Jintian

    2013-02-01

    We investigated the relative contributions of temperature and a 300 kHz alternating magnetic field (AMF) on magnetic hyperthermia treatment (MHT). Our system consisted of an induction coil, which generated AMF by electric current flow, and a newly developed, temperature-controlled circulating water-jacketed glass bottle placed inside the coil. The AMF generator operated at a frequency of 300 kHz with variable field strength ranging from 0 to 11 mT. Four treatment conditions were employed: (A) control (37 °C, 0 mT), (B) AMF exposure (37 °C, 11 mT), (C) hyperthermia (46 °C, 0 mT), and (D) hyperthermia plus AMF exposure (46 °C, 11 mT) for 30 min. Cell viability and apoptotic death rate were estimated. The relative contributions or interactions of hyperthermia (46 °C) and AMF (11 mT) on MHT were evaluated using 2 × 2 factorial experiment analysis. Group A was statistically different (P magnetic hyperthermia.

  14. Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields

    Science.gov (United States)

    Stelian, Carmen; Delannoy, Yves; Fautrelle, Yves; Duffar, Thierry

    2004-05-01

    Numerical simulations of the vertical Bridgman solidification of Ga 1- xIn xSb concentrated alloys are performed by using the commercial codes FIDAP ® and FLUENT ®. The transient axi-symmetric simulation of heat, mass and species transport during highly doped ( x=0.2) crystal growth, shows a strong solute effect on the melt convection. The thermally driven flow is damped by the heavier solute (InSb) rejected at the solid-liquid interface. A diffusive transport regime is established in the melt a short time after the beginning of solidification and as a consequence, the radial segregation increases. This leads to a significant increase of the interface curvature because of the melting point dependency on the interface composition. Finally, the crystals are not chemically homogeneous with large variations of InSb concentration on the axial and radial directions. In order to improve the chemical homogeneity of highly doped Ga 1- xIn xSb crystals, it is proposed to apply an alternating magnetic field in the vicinity of the solid-liquid interface. The magnetic parameters for which an optimal level of convection arises in the melt are derived from the numerical simulation. It is shown that during solidification under optimized electromagnetic stirring, the radial segregation and interface deflection can be maintained at low values.

  15. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.

    Science.gov (United States)

    Wang, Xiaowen; Chen, Youping; Huang, Changshuo; Wang, Xufei; Zhao, Linyun; Zhang, Xiaodong; Tang, Jintian

    2013-02-01

    We investigated the relative contributions of temperature and a 300 kHz alternating magnetic field (AMF) on magnetic hyperthermia treatment (MHT). Our system consisted of an induction coil, which generated AMF by electric current flow, and a newly developed, temperature-controlled circulating water-jacketed glass bottle placed inside the coil. The AMF generator operated at a frequency of 300 kHz with variable field strength ranging from 0 to 11 mT. Four treatment conditions were employed: (A) control (37 °C, 0 mT), (B) AMF exposure (37 °C, 11 mT), (C) hyperthermia (46 °C, 0 mT), and (D) hyperthermia plus AMF exposure (46 °C, 11 mT) for 30 min. Cell viability and apoptotic death rate were estimated. The relative contributions or interactions of hyperthermia (46 °C) and AMF (11 mT) on MHT were evaluated using 2 × 2 factorial experiment analysis. Group A was statistically different (P < 0.05) from each of the other treatments. The observed effects on both cell viability and apoptotic cell death were influenced by temperature (97.36% and 92.15%, respectively), AMF (1.78% and 4.99%, respectively), and the interactions between temperature and AMF (0.25% and 2.36%, respectively). Thus, the effect of hyperthermia was significant. Also, AMF exposure itself might play a role in MHT, although these observations were made in vitro. These findings suggest a possible presence of an AMF effect during clinical magnetic hyperthermia. PMID:23059525

  16. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  17. SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP

    Directory of Open Access Journals (Sweden)

    V. S. Grinchenko

    2015-04-01

    Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.

  18. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    OpenAIRE

    Shokuhfar, Ali; Seyyed Afghahi, Seyyed Salman

    2013-01-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some s...

  19. Alternating magnetic field losses in ATLAS type aluminium stabilized NbTi superconductors

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    During ramping up- and down of the current in large-scale magnets the ramp losses are an important factor affecting the thermal and electro-magnetic stability of the system. The calculation of the losses is not straightforward due to the large dimensions of the conductor (~600 mm/sup 2/) implying that diffusion effects have to be taken into account. The AC-losses of the Al stabilized NbTi cable conductors used in the ATLAS magnet system were measured in 0.5 m long samples, using an inductive method with pick-up coils as well as the calorimetric method. External varying magnetic fields up to 2 tesla amplitude were applied parallel and perpendicular to the conductor wide surface. The results are compared to theory. It is found that hysteresis loss, eddy current loss in the Aluminum cladding and cable-to-cladding coupling loss contribute most to the AC loss. (5 refs).

  20. Interacting Dirac fermions under spatially alternating pseudo-magnetic field: Realization of spontaneous quantum Hall effect

    OpenAIRE

    Venderbos, Jörn W. F.; Fu, Liang

    2015-01-01

    Both topological crystalline insulators surfaces and graphene host multi-valley massless Dirac fermions which are not pinned to a high-symmetry point of the Brillouin zone. Strain couples to the low-energy electrons as a time-reversal invariant gauge field, leading to the formation of pseudo-Landau levels (PLL). Here we study periodic pseudo-magnetic fields originating from strain superlattices. We study the low-energy Dirac PLL spectrum induced by the strain superlattice and analyze the effe...

  1. Extremely low frequency alternating magnetic field-triggered and MRI-traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles

    Science.gov (United States)

    Fang, Jie; Yang, Yong; Xiao, Wen; Zheng, Bingwen; Lv, Yun-Bo; Liu, Xiao-Li; Ding, Jun

    2016-02-01

    An extremely low frequency alternating magnetic field (ELF-AMF) was demonstrated to be able to effectively trigger drug release from carefully engineered magnetic ZIF-90 nanoparticles. The embedded Fe3O4 nanoparticles or alternatively Gd2O3 nanoparticles serve as effective MRI tracers for potential visualization of drug delivery to ensure drug delivery accuracy.An extremely low frequency alternating magnetic field (ELF-AMF) was demonstrated to be able to effectively trigger drug release from carefully engineered magnetic ZIF-90 nanoparticles. The embedded Fe3O4 nanoparticles or alternatively Gd2O3 nanoparticles serve as effective MRI tracers for potential visualization of drug delivery to ensure drug delivery accuracy. Electronic supplementary information (ESI) available: Experimental details; TEM and SEM images of ZIF-90 synthesized at different conditions and discussion; TEM images of Fe3O4 and Gd2O3 nanoparticles; XRD pattern of Gd2O3 nanoparticles; FT-IR spectra of ZIF-90, ZIF-90-RSA and RSA; DLS of ZIF-90-RSA; UV-Vis spectra of released 5-Fu; molecular models of ZIF-90 and 5-Fu. See DOI: 10.1039/c5nr08086j

  2. Measurement system of alternating magnetic properties under DC-biased field

    CERN Document Server

    Enokizono, M

    2000-01-01

    This paper presents magnetic properties under DC-biased magnetization of a grain-oriented silicon steel sheet 30Z. We have practised the measurement of DC-biased flux density by using flux meter directly. The DC-biased magnetic properties have been made clear in this experimental approach.

  3. Bridgman growth of concentrated GaInSb alloys with improved compositional uniformity under alternating magnetic fields

    Science.gov (United States)

    Stelian, Carmen; Delannoy, Yves; Fautrelle, Yves; Duffar, Thierry

    2005-02-01

    Vertical Bridgman crystal growth of concentrated GaInSb alloys is in general difficult because of large chemical segregations which occur during the solidification process. From experimental works and numerical simulations, it is found that the melt convection is damped by the accumulation of the heavy InSb solute rejected at the interface. This leads to a significant increase of the interface curvature and radial segregations in the case of GaInSb crystals (10% and 20% In concentration). By using alternating magnetic fields produced by a coil placed around the crucible, the level of the convection can be increased in order to obtain a good mixing of the solute near the solid-liquid interface and to avoid the large chemical segregations. Numerical simulation is used in order to compute the magnetic field parameters, and for the optimization of the coil dimensions and position related to the solid-liquid interface. In order to solve simultaneously the electromagnetic and thermo-hydrodynamic problem, including species transport, a self-developed module which is able to solve the magnetic induction equation, has been introduced in the FIDAP commercial code. From the simulation, it is found that the coil position related to the interface has a significant influence on the electromagnetically induced flow. Based on these simulations, an optimal Bridgman configuration equipped with an electromagnetic coil is proposed in order to mix the solute near the interface and to avoid the excessive increase of chemical segregations and interface curvatures.

  4. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    Science.gov (United States)

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  5. Development of a method for measuring blood coagulation using superparamagnetic iron oxide nanoparticles and an alternating magnetic field

    CERN Document Server

    Murase, Kenya

    2016-01-01

    We developed a method for measuring blood coagulation using superparamagnetic iron oxide nanoparticles (SPIONs) and an alternating magnetic field (AMF). The 3rd and 5th harmonic signals from SPIONs mixed with blood induced by AMF were detected using a gradiometer coil. Blood coagulation was induced artificially by adding CaCl2 solution to whole blood of sheep at various temperatures and hematocrits. We calculated the coagulation rate (k) and normalized signal intensity at infinite time (Sinf) by fitting the time course of the normalized 3rd harmonic signal to S(t)=(1-Sinf)exp(-kt)+Sinf. The k values increased significantly with increasing temperature and decreased significantly with increasing hematocrit. The Sinf values decreased significantly with increasing temperature and tended to increase with increasing hematocrit. Blood anticoagulation was induced by adding heparin to the whole blood sampled from mice. There were significant differences in both the 3rd and 5th harmonic signals between groups with and ...

  6. The Physical Property of Susceptibility for One-Dimensional Ferrimagnetic Chain with Alternating Spins 1 and 1/2 in Finite Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    XIE Gang; HAN Ru-Shan

    2001-01-01

    We further calculate the dependence of xT on T in high magnetic fields,where X denotes susceptibility and T is temperature,using our previous research work - Green function's decoupling approximate approach,for the one-dimensional ferrimagnetic chain with alternating spins 1 and 1/2.We find a linear correlation in certain range of magnetic field between the temperature of xT maximum and the magnetic field.Moreover,we simply analyze its physical meaning by our approach.``

  7. Alternative low frequency magnetic field theranostics: recent advances, safety and hazards

    Science.gov (United States)

    Golovin, Y.; Klyachko, N.; Majouga, A.; Golovin, D.; Gribanovsky, S.

    2015-11-01

    The paper presents a brief review and comparative analysis of low frequency (nonheating) and radio-frequency electromagnetic nanomedicine technologies. The former are shown to have a considerable advantage over the latter ones: a higher flexibility and penetrating ability, easier to dose and control, easier to localize, as well as safer and less costly. This makes their employment promising for building a new technological platform for low frequency magnetic theranostics with a wider range of options, i.e. possessing a wider multimodality than traditional radio-frequency methods.

  8. Biochemical Changes in Saliva of Patients with Chronic Generalized Parodontitis under Combined Action of Alternating Running Magnetic Field and Laser Radiation

    Directory of Open Access Journals (Sweden)

    O.Yu. Guseva

    2009-09-01

    Full Text Available Biochemical changes in oral fluid of patients with chronic generalized parodontitis were investigated; the most informative indices were found out, they were used for estimating complex therapy effectiveness by means of low intensive helium — neon laser radiation and alternating running magnetic field

  9. THE INFLUENCE OF NICKEL OXIDE COMBINED WITH THE INFLUENCE OF ALTERNATING MAGNETIC FIELDS ON BIOLOGICAL PROPERTIES OF ALKALINITY BLACK SOILS OF THE CRIMEA (THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    Minnikova T. V.

    2014-12-01

    Full Text Available In the article we have investigated the influence of nickel oxide in the amount of 100, 1000 mg/kg of the soil (1, 10 MPC, combined with the influence of an alternating magnetic field of induction of 50, 100 and 650 µT power frequency of 50 Hz on the biological properties of alkalinity black soil

  10. Hyperthermia by a nitinol stent in an alternating magnetic field:Safety and feasibility in rabbit esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Jumei Zhou; Ning Li; Qisheng Xia; Lehui Du; Xiaowen Wang; Linyun Zhao; Xufei Wang; Jintian Tang

    2009-01-01

    Hyperthermia by heating in-stent is a potentially new method to treat esophageal cancer.This study assessed the safety of heating the rabbit esophagus with a nitinol stent in an alternating magnetic field (AMF) and investigated whether this method offers a therapeutic option for esophageal cancer.Nitinol stents were placed in the cervical esophagi of healthy rabbits,which were heated in an AMF for different times at 43,46 and 50 ℃.The esophagi were histologically examined after a week to observe whether there was transmural necroses.Then esophageal cancer of rabbit placed nitinol stents were heated in an AMF at 46℃ for 10 min.Stents were heated to a target temperature within 5 min.The highest tolerated temperature and time for the healthy rabbit esophagus was at 46℃ for 10 min.Tumor growth was delayed by heating and it was statistically significant.Heating the rabbit esophageal wall at 46℃ for 10 min proves to be safe and effective in delaying tumor growth.

  11. Magnetic nanoparticle motion in external magnetic field

    International Nuclear Information System (INIS)

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director. - Highlights: • There are three different modes of the unit magnetization vector precession for a free magnetic nanoparticle in uniform external magnetic field. • The high-frequency mode is similar to the conventional ferromagnetic resonance. The frequencies of the low-frequency modes can be two orders of magnitude lower. • The characteristic relaxation

  12. Harmonic flux penetration of superconductors in low-frequency, high-amplitude, alternating-current magnetic fields

    CERN Document Server

    Ramsbottom, H D

    1997-01-01

    A critical-state model has been used to calculate the magnetic response of a superconducting sample to an applied a.c. magnetic field. The analysis has been performed for both a cylindrical and a slab geometry and evaluated up to the tenth harmonic. It is shown that standard expressions derived using the critical-state model which relate the critical current density to the d.c. magnetic moment can be used in a.c. measurements to within an accuracy of approx 4% by replacing the term for the d.c. magnetic moment by sq root 2m sub r sub m sub s (min), where m sub r sub m sub s (min) is the minimum lossless rms magnetic moment; the apparent penetration of the field beyond the centre of the sample (i.e. an overshoot) found in flux penetration measurements is an artifact of the analysis and cannot be used as direct evidence for granularity. Flux penetration measurements on non-granular NbTi from 4.2 K up to T sub c in magnetic fields up to 10 T are presented which provide good agreement with calculations. (author)

  13. A change in permeability of membranes of barley seeds' cells as a function of the frequency of an alternating magnetic field

    International Nuclear Information System (INIS)

    We indicate the possibility to increase the efficiency of sodium human as a stimulator of plant growth by magnetic field during soaking. The efficiency depends on frequency nonlinearly: at 8 and 50 Hz, the average sprout length increases by 1.29 and 1.26 times and at 1.5 and 24 Hz only by 1.06 and 1.10 times. We infer on the possible influence of the alternating magnetic field on the transfer rate of negative ions through membrane structures

  14. [Dynamics of cardiac and skeletal muscle lactate dehydrogenase activity following a single exposure to an alternating magnetic field].

    Science.gov (United States)

    Udintsev, N A; Kanskaia, N V; Shchepetil'nikova, A I; Ordina, O M; Pichurina, R A

    1976-06-01

    A rise in LDH activity and a change of the enzyme distribution in the cytostructures of the heart and skeletal muscles of albino rats was revealed during the first 48 hours after a single twenty-four-hour action of an A. C. magnetic field (200 e, 50 cps). A displacement of the enzyma ratio in the direction of M-type was noted. Complete normalization occurred in the 3rd or 4th week only.

  15. Magnetic field mapper

    Science.gov (United States)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  16. Low-magnetic-field magnetars

    CERN Document Server

    Turolla, R

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  17. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  18. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, K., E-mail: kajikawa@sc.kyushu-u.ac.j [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Funaki, K. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Shikimachi, K.; Hirano, N.; Nagaya, S. [Chubu Electric Power Co., Inc., 20-1 Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan)

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  19. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Science.gov (United States)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  20. Cosmological magnetic field survival

    CERN Document Server

    Barrow, John D

    2011-01-01

    It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generi...

  1. Magnetic fields from reionisation

    CERN Document Server

    Langer, M; Puget, J L; Langer, Mathieu; Aghanim, Nabila; Puget, Jean-Loup

    2005-01-01

    We present a complementary study to a new model for generating magnetic fields of cosmological interest. The driving mechanism is the photoionisation process by photons provided by the first luminous sources. Investigating the transient regime at the onset of inhomogeneous reionisation, we show that magnetic field amplitudes as high as $2 \\times 10^{-16}$ Gauss can be obtained within a source lifetime. Photons with energies above the ionisation threshold accelerate electrons, inducing magnetic fields outside the Stroemgren spheres which surround the ionising sources. Thanks to their mean free path, photons with higher energies propagate further and lead to magnetic field generation deeper in the neutral medium. We find that soft X-ray photons could contribute to a significant premagnetisation of the intergalactic medium at a redshift of z=15.

  2. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  3. Magnetic Propeller for Uniform Magnetic Field Levitation

    OpenAIRE

    Krinker, Mark; Bolonkin, Alexander

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symm...

  4. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  5. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  6. New knowledge of the Galactic magnetic fields

    CERN Document Server

    Han, J L

    2009-01-01

    The magnetic fields of our Milky Way galaxy are the main agent for cosmic rays to transport. In the last decade, much new knowledge has been gained from measurements of the Galactic magnetic fields. In the Galactic disk, from the RMs of a large number of newly discovered pulsars, the large-scale magnetic fields along the spiral arms have been delineated in a much larger region than ever before, with alternating directions in the arm and interarm regions. The toroidal fields in the Galactic halo were revealed to have opposite directions below and above the Galactic plane, which is an indication of an A0 mode dynamo operating in the halo. The strength of large-scale fields obtained from pulsar RM data has been found to increase exponentially towards the Galactic center. Compared to the steep Kolmogorov spectrum of magnetic energy at small scales, the large-scale magnetic fields show a shallow broken spatial magnetic energy spectrum.

  7. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 1022G cm3 in the same direction as the earth's dipole), approx.-113 γR/sub M/4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  8. Measuring low frequency alternating magnetic field in solenoid by two Hall sensors%利用双霍尔探头测螺线管中低频交变磁场

    Institute of Scientific and Technical Information of China (English)

    张立辉; 张攀; 乐宏昊

    2014-01-01

    A method of measuring magnetic field with two Hall sensors in the Hall Effect experi-ment was proposed .The low frequency alternating magnetic field in a solenoid was studied after cali-bration .The features of the low frequency alternating magnetic field in the solenoid were analyzed .It offered a new thought for students in measuring weak low frequency electromagnetic radiation .%在霍尔效应实验中利用双霍尔探头测磁场,通过对磁场定标,研究了螺线管中低频交变磁场,并分析了螺线管中低频交变磁场的分布特征,为学生测量低频弱电磁辐射提供了新的思路。

  9. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  10. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  11. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  12. Magnetic helicity and cosmological magnetic field

    OpenAIRE

    Semikoz, V. B.; Sokoloff, D. D.

    2004-01-01

    The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.

  13. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    Science.gov (United States)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  14. Cosmological Magnetic Fields vs. CMB

    OpenAIRE

    Kahniashvili, Tina

    2004-01-01

    I present a short review of the effects of a cosmological magnetic field on the CMB temperature and polarization anisotropies. Various possibilities for constraining the magnetic field amplitude are discussed.

  15. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  16. Particle Transport in Therapeutic Magnetic Fields

    Science.gov (United States)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  17. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  18. Photonic Magnetic Field Sensor

    Science.gov (United States)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  19. Magnetic field therapy: a review.

    Science.gov (United States)

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  20. Magnetic Propeller for Uniform Magnetic Field Levitation

    CERN Document Server

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  1. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  2. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  3. Vestibular stimulation by magnetic fields

    Science.gov (United States)

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  4. Enhanced Cancer Cell (HeLa Killing Efficacy of Mixed Αlpha and Gamma Iron Oxide Superparamagnetic Nanoparticles under Combined AC (Alternating Current Magnetic-Field and Photoexcitation

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam, Yoshihumi Kusumoto, Md. Abdulla Al-Mamun and Yuji Horie

    2011-12-01

    Full Text Available We synthesized mixed α and γ-Fe2O3 nanoparticles and investigated their toxic effects against HeLa cells under induced AC (alternating current magnetic-fields and photoexcited conditions at room temperature. The findings revealed that the cell-killing percentage was increased with increasing dose for all types of treatments. Finally, 99% cancer cells were destructed at 1.2 mL dose when exposed to combined AC magnetic-field and photoexcited conditions (T3 whereas 89 and 83 % of HeLa cells were killed under only AC magnetic-field induced (T1 or only photoexcited (T2 condition at the same dose.ABSTRAK: Campuran α dan zarah γ-Fe2O3 bersaiz nano disintesiskan dan kesan toksidnya terhadap sel HeLa dikaji dibawah aruhan medan magnet arus ulang-alik (alternating current (AC dan keadaan photoexcited (proses ransangan atom atau molekul suatu bahan dengan penyerapan tenaga sinaran pada suhu bilik. Penemuan mendedahkan bahawa peratusan sel yang musnah bertambah dengan pertambahan dos untuk semua jenis rawatan. Akhirnya, 99% sel kanser dimusnahkan pada kadar dos 1.2mL setelah didedahkan terhadap kombinasi medan magnet AC dan keadaan photoexcited (T3 dimana 89% dan 83% sel HeLa dimusnahkan dengan hanya di bawah aruhan medan magnet AC (T1 atau hanya pada keadaan photoexcited (T2 pada kadar dos yang sama.KEY WORDS : Cancer, Hyperthermia, Iron oxide nanoparticles, Heat dissipation,    Cytotoxicity, HeLa cell.

  5. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  6. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  7. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  8. Magnetic fields during galaxy mergers

    OpenAIRE

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally l...

  9. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  10. Enhancement of the Excitation Efficiency of the Non-Contact Magnetostrictive Sensor for Pipe Inspection by Adjusting the Alternating Magnetic Field Axial Length

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2014-01-01

    Full Text Available The non-contact magnetostrictive sensor (MsS has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2 mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.

  11. Magnetic field synthesis for microwave magnetics

    Science.gov (United States)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  12. Design of CHWHG Type Low Frequency Magnetic Fields Generator

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2007-01-01

    Full Text Available Highly considering the invariability of magnetic field strength in the Magnetic Field Generators, which used to stimulate rat's nerve cell, surely improve the stimulation performance outcome. A new technique to get an invariable magnetic field strength within Magnetic Field Generator has been proposed, Furthermore it had implemented on microcontroller-based system providing an Alternating Magnetic Field Generator (AMFG with a high performance. The performance of the system is evaluated using two different methods. The results show that the errors are well and acceptable.

  13. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  14. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  15. Preflare magnetic and velocity fields

    Science.gov (United States)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  16. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  17. Magnetic fields and scintillator performance

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.; Ronzhin, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Hagopian, V. [Florida State Univ., Tallahasse, FL (United States)

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  18. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  19. Cosmology with inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    We review spacetime dynamics in the presence of large-scale electromagnetic fields and then consider the effects of the magnetic component on perturbations to a spatially homogeneous and isotropic universe. Using covariant techniques, we refine and extend earlier work and provide the magnetohydrodynamic equations that describe inhomogeneous magnetic cosmologies in full general relativity. Specialising this system to perturbed Friedmann-Robertson-Walker models, we examine the effects of the field on the expansion dynamics and on the growth of density inhomogeneities, including non-adiabatic modes. We look at scalar perturbations and obtain analytic solutions for their linear evolution in the radiation, dust and inflationary eras. In the dust case we also calculate the magnetic analogue of the Jeans length. We then consider the evolution of vector perturbations and find that the magnetic presence generally reduces the decay rate of these distortions. Finally, we examine the implications of magnetic fields for the evolution of cosmological gravitational waves

  20. Neutron scattering in magnetic fields

    International Nuclear Information System (INIS)

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references

  1. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    Science.gov (United States)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  2. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  3. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  4. Neutron in Strong Magnetic Fields

    CERN Document Server

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-01-01

    Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

  5. Mercury: magnetic field and interior

    International Nuclear Information System (INIS)

    Between 1965 and 1975, knowledge of Mercury and its physical characteristics improved dramatically. Radar studies of the planetary orbit and rotation rate and Mariner 10 spacecraft studies of its surface, atmosphere, magnetic field and plasma environment provided startling new results on what had been the least understood member of the terrestrial planets. With a highly cratered surface and a modest magnetic field, Mercury is a differentiated planet with fractionally the largest iron core of all. (Auth.)

  6. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  7. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  8. The magnetic field of Mercury

    International Nuclear Information System (INIS)

    The USA Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The 1st and 3rd encounters provided detailed observations of a well developed, detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field, and modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as Earth, tilted 120 from the rotation axis. The magnetic moment, 5x1022 Gauss-cm3, corresponds to an undistorted equatorial field intensity of 350γ, approximately 1% of Earth's. The origin of the field, while unequivocally intrinsic to the planet, is uncertain. It may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. Among these possibilities, the latter appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature, differentiated planetary interior with a large core, Rsub(c) approximately 0.7Rsub(M), and a record of the history of planetary formation in the magnetization of the crustal rocks. (Auth.)

  9. Magnetic fields in ring galaxies

    Science.gov (United States)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  10. Matter in Strong Magnetic Fields

    CERN Document Server

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  11. Fixed-Field Alternating-Gradient Accelerators

    CERN Document Server

    Sheehy, S L

    2016-01-01

    These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron ac- celerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gantries are also considered.

  12. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  13. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author)

  14. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  15. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... Experiments Stories Lessons Topics Games Activities Lessons MENU What are Electric and Magnetic Fields? (EMF) Kids Homepage ... electric power is something we take for granted. What are electric and magnetic fields? Electric and magnetic ...

  16. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  17. Jet Collimation by Small-Scale Magnetic Fields

    OpenAIRE

    Li, Li-Xin

    2001-01-01

    A popular model for jet collimation is associated with the presence of a large-scale and predominantly toroidal magnetic field originating from the central engine (a star, a black hole, or an accretion disk). Besides the problem of how such a large-scale magnetic field is generated, in this model the jet suffers from the fatal long-wave mode kink magnetohydrodynamic instability. In this paper we explore an alternative model: jet collimation by small-scale magnetic fields. These magnetic field...

  18. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J. F., E-mail: zhoujianfeng@njtech.edu.cn; Shao, C. L.; Gu, B. Q. [Nanjing Tech University, School of Mechanical and Power Engineering (China)

    2016-01-15

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient.

  19. Observations of Mercury's magnetic field

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  20. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  1. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  2. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  3. Low-magnetic-field magnetars

    OpenAIRE

    Turolla, R.; Esposito, P.

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, wi...

  4. Evaluation of alternate magnetic fusion concepts, 1977

    International Nuclear Information System (INIS)

    The objective of this exercise was to evaluate all of the alternate concepts supported by DMFE with regard to: (1) confidence in the physics assumptions; (2) confidence in the development of the requisite technologies; and (3) the desirability of its pure fusion reactor configuration. A primary concern in developing the evaluation technique described in this section was the need to obtain a uniform, critical evaluation. Motivated by this concern, it was decided to have all of the concepts evaluated on the same basis or criteria and to have all concepts evaluated by the same group of experts. The evaluation criteria and procedures which were developed for this purpose are described. The concepts evaluated were the EBT, RFP, TORMAC, field reversing ion rings, linear theta pinch, laser heated solenoid, e-beam heated solenoid, multiple mirrors, fast linear reactor, LINUS, and SURMAC

  5. ATLAS cavern magnetic field calculations

    International Nuclear Information System (INIS)

    A new approach has been adopted in an attempt to produce a complete ATLAS cavern B-field map using a more precise methodological approach (variable magnetisation, depending on the external field) and the latest design taking into account of the structural elements. The basic idea was to produce a dedicated basic TOSCA model and then to insert a series of ferromagnetic structure elements to monitor the perturbative effect on the basic field map. Eventually, it was found: the bedplate field perturbation is an order of magnitude above the permissible level; manufacturing of the bedplates from nonmagnetic material or careful evaluation of their field contribution in the event reconstruction codes is required; the field value at the rack positions is higher than the permissible one; the final position of racks should be chosen taking into account the detailed magnetic field distribution

  6. Brownian dipole rotator in alternating electric field

    Science.gov (United States)

    Rozenbaum, V. M.; Vovchenko, O. Ye.; Korochkova, T. Ye.

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters.

  7. Brownian dipole rotator in alternating electric field.

    Science.gov (United States)

    Rozenbaum, V M; Vovchenko, O Ye; Korochkova, T Ye

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters. PMID:18643221

  8. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  9. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  10. Primordial Generation of Magnetic Fields

    CERN Document Server

    Pandey, Arun Kumar

    2015-01-01

    We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.

  11. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  12. Oxide superconductors under magnetic field

    Science.gov (United States)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  13. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  14. Instability of ferrofluid magnetic drops under magnetic field

    OpenAIRE

    Bacri, J.C.; Salin, D.

    1982-01-01

    We have followed the evolution of the shape of ferrofluid magnetic drops in presence of a magnetic field. The prolate ellipsoid shape of the drop becomes unstable for a certain magnetic field threshold : the drop jumps from a slightly elongated shape to a much more elongated shape. When decreasing the magnetic field the same feature occurs for a smaller threshold. This instability is simply understood from a balance between magnetic energy and interfacial tension energy.

  15. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  16. Stress Field of Straight Edge Dislocation in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-long; HU Hai-yun; FAN Tian-you

    2007-01-01

    To study the changes in mechanical properties of materials within magnetic fields and the motion of dislocations,stress fields of dislocation in magnetic field need to be calculated.The straight edge dislocation is of basic importance in various defects.The stress field of straight edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media.This reduces to the known stress field when the magnet field is zero.The results can be used for further study on the strain energy of dislocations and the interactions between dislocations in magnetic fields.

  17. Diagnosis of solar chromospheric magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hongqi(张洪起)

    2002-01-01

    This paper discusses the measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic fields. Some questions in the study of the chromospheric magnetic field are also presented.

  18. Bound electrons in critical magnetic fields

    International Nuclear Information System (INIS)

    We determined the threshold for spontaneous electron-positron pair creation for various combinations of a nuclear Coulomb field and an external homogeneous magnetic field. The dependence of electron binding energies of the nuclear charge and the magnetic field strength is investigated. Our exact solutions of the Dirac equation are compared with approximative methods valid for weak and rather strong magnetic fields. (orig.)

  19. Magnetic-Field-Tunable Superconducting Rectifier

    Science.gov (United States)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  20. Magnetic field of a combined plasma trap

    Science.gov (United States)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  1. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  2. Quark stars in strong magnetic fields

    Science.gov (United States)

    Chu, Peng-Cheng; Chen, Lie-Wen; Wang, Xin

    2014-09-01

    Within the confined isospin- and density-dependent mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction, and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our results indicate that including the magnetic fields with radial (transverse) orientation can significantly decrease (increase) the maximum mass of QSs, demonstrating the importance of the magnetic field orientation inside the magnetized compact stars.

  3. Field and Thermal Characteristics of Magnetizing Fixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  4. Calculation of Air-Gap Magnetic Fields and Armature Reaction Reactances of Claw-Pole Alternator%爪极发电机气隙磁场与电枢反应电抗的计算

    Institute of Scientific and Technical Information of China (English)

    匡秀洪; 庄圣贤; 熊冬情

    2012-01-01

    采用三维有限元方法对一台爪极发电机的电枢反应进行了研究.基于ANSOFT软件对电机气隙磁场和电感矩阵进行了计算仿真,通过对电感矩阵进行派克变换,进而得到交、直轴的电枢反应电抗.所得结果与用相量图方法计算的结果进行了比较,证明了解的正确性与可行性,为爪极发电机的优化设计奠定了理论基础.%The armature reaction of a claw-pole alternator using three dimensional finite element method was analyzed. Air-gap magnetic fields and inductance matrix were calculated by Ansoft. The quadrature-axis and direct-axis armature reaction reactance were obtained through the Park transformation. The results between this method and phasor diagram method were compared and verified. Its validity and feasibility were indicated, which was the theoretic foundation for the optimum design of claw-pole alternators.

  5. Cluster Magnetic Fields from Galactic Outflows

    CERN Document Server

    Donnert, J; Lesch, H; Müller, E

    2008-01-01

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone et.al. (2006) to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude...

  6. The magnetic field of $\\zeta$ Ori A

    OpenAIRE

    Blazère, A.; Neiner, C.; Bouret, J-C.; Tkachenko, A.; MiMeS collaboration

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of...

  7. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  8. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  9. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  10. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  11. Turbulence-induced magnetic fields in shock precursors

    CERN Document Server

    del Valle, Maria Victoria; Santos-Lima, Reinaldo

    2016-01-01

    Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies, i.e. $10^{15}$ eV. A stronger magnetic field in the pre-shock region could provide the efficiency required. Bell's cosmic-ray nonresonant streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. However, an alternative mechanism has been proposed in which the cosmic-ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. A key ingredient for the mechanism to operate are the inhomogeneities present in the interstellar medium (ISM). These inhomogeneities are the consequence of turbulence. In this work we explore the magnetic field amplification in different ISM conditions through 3D MHD numerical simulations.

  12. Pulsed magnetic field distribution near conducting rings

    International Nuclear Information System (INIS)

    Measurements and calculations of the magnetic field distribution in the vicinity of stainless steel rings immersed in a pulsed magnetic field are compared. The computer code TRIDIF is found to produce results in good agreement with the measurements. The perturbations in magnetic field due to the rings are found to be considerably less than one would expect from one-dimensional skin depth considerations

  13. Primordial magnetic field limits from cosmological data

    International Nuclear Information System (INIS)

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  14. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  15. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming; Fan; Zhenfu; Luo; Yuemin; Zhao; Qingru; Chen; Daniel; Tao; Xiuxiang; Tao; Zhenqiang; Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  16. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  17. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  18. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  19. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  20. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    PU Sheng-Li; CHEN Xian-Feng; DI Zi-Yun; GENG Tao; XIA Yu-Xing

    2007-01-01

    We investigate the electrical properties of the nanostructured magnetic colloid without and with magnetic Held. The competition between the directional motion of the charged magnetic nanoparticles and other minor nonmagnetic impurities (also small amount of ions) under applied voltage and their random orientation due to thermal activation is implemented to elaborate the electrically conduction mechanism under zero magnetic Geld. Two equivalent electric circuits are employed for explaining the charging and discharging processes. The tunnelling conduction mechanism upon application of externally magnetic field may exist in the nanostructured magnetic colloid. The alternation of the two conduction mechanisms accounts for the current spikes when the magnetic field is switched on or off. This work presents the peculiar electrical phenomena of the magnetically colloidal system.

  1. The use of mirror image symmetry in coil winding, applications and advantages in magnetic field generation

    International Nuclear Information System (INIS)

    In this paper, an improved method of winding inductors, transformers and motors is discovered. This invention greatly enhances the ability to generate magnetic fields with a given amount of wire. This invention may be as fundamental to the use of magnetic fields as was Nikola Tesla's use of rotating magnetic fields for the generation of alternating current

  2. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    OpenAIRE

    Kyoung-Woong Moon; Byong Sun Chun; Wondong Kim; Qiu, Z. Q.; Chanyong Hwang

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this p...

  3. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    OpenAIRE

    E.V. Savich

    2013-01-01

    Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  4. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    Directory of Open Access Journals (Sweden)

    E.V. Savich

    2013-06-01

    Full Text Available Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  5. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  6. Pulsed field magnets at the US NHMFL

    International Nuclear Information System (INIS)

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2-1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments have been completed within the past year. ((orig.))

  7. Quark stars under strong magnetic fields

    CERN Document Server

    Chu, Peng-Cheng; Wang, Xin

    2014-01-01

    Within the confined-isospin-density-dependent-quark-mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) under strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our r...

  8. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  9. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... to be spatially constant and equal to the applied field, thus neglecting the demagnetizing field. Furthermore, the experimental magnetocaloric properties used (adiabatic temperature change, isothermal entropy change and specific heat) are often not corrected for demagnetization. The demagnetizing field in an AMR...

  10. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  11. Exploring Magnetic Fields with a Compass

    Science.gov (United States)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  12. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  13. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  14. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  15. Are pulsars born with a hidden magnetic field?

    CERN Document Server

    Torres-Forné, Alejandro; Pons, José A; Font, José A

    2015-01-01

    The observation of several neutron stars in the center of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyse...

  16. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  17. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  18. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  19. Magnetic fields of Sun-like stars

    CERN Document Server

    Fares, R

    2013-01-01

    Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.

  20. Quarks and gluons in a magnetic field

    CERN Document Server

    Watson, Peter

    2013-01-01

    The quark gap equation under the rainbow truncation, with two versions of a phenomenological one-gluon exchange interaction and in the presence of a uniform magnetic field is considered. It is argued that in order to describe the quark condensate in the limit of vanishing magnetic fields, one must sum over the Landau levels. The resulting chiral quark condensate rises quadratically for small magnetic fields and linearly for large fields, in qualitative agreement with various recent lattice results. It is observed that when discussing quarks, the magnitude of the magnetic field must be considered relative to the scale of the strong interaction.

  1. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  2. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  3. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  4. Magnetic surfaces in the reversed field geometry

    International Nuclear Information System (INIS)

    The achievement of field reversal is shown not to ensure a closed magnetic geometry. The closure of the reversed field geometry is found to be critically dependent on the shape of the toroidal component of the magnetic field no matter how small it may be

  5. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  6. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  7. Workshop on measurements of magnetic fields within plasmas

    International Nuclear Information System (INIS)

    On April 28-29, 1982, a workshop was held at the Oak Ridge National Laboratory to discuss the measurement of magnetic fields within plasmas or alternately the current flux distribution flowing in a plasma. This report summarizes the methods, status, and anticipated results of the efforts supported by DOE/OFE. Discussions centered around the use of external magnetic probes, Faraday rotation of submillimeter laser beam, and Zeeman effect from a neutral or charged beam traversing the plasma

  8. Behaviour of ferrocholesterics under external magnetic fields

    Science.gov (United States)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  9. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  10. Parahydrogen enhanced zero-field nuclear magnetic resonance

    CERN Document Server

    Theis, Thomas; Kervern, Gwendal; Knappe, Svenja; Kitching, John; Ledbetter, Micah; Budker, Dmitry; Pines, Alex

    2011-01-01

    Nuclear magnetic resonance (NMR), conventionally detected in multi-tesla magnetic fields, is a powerful analytical tool for the determination of molecular identity, structure, and function. With the advent of prepolarization methods and alternative detection schemes using atomic magnetometers or superconducting quantum interference devices (SQUIDs), NMR in very low- (~earth's field), and even zero-field, has recently attracted considerable attention. Despite the use of SQUIDs or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared to conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated via parahydrogen induced polarization (PHIP), enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H J-couplings in compounds with 13C in natural abundance in a single transient. The resulting spectra display distinct features that have straightforward interpretation and can be...

  11. Exploring Dense and Cold QCD in Magnetic Fields

    CERN Document Server

    Ferrer, E J

    2016-01-01

    Strong magnetic fields are commonly generated in off-central relativistic heavy-ion collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and in the Large Hadron Collider at CERN and have been used to probe the topological configurations of the QCD vacua. A strong magnetic field can affect the character and location of the QCD critical point, influence the QCD phases, and lead to anomalous transport of charge. To take advantage of the magnetic field as a probe of QCD at higher baryon densities, we are going to need experiments capable to scan the lower energy region. In this context, the nuclotron-based ion collider facility (NICA) at JINR offers a unique opportunity to explore such a region and complement alternative programs at RHIC and other facilities. In this paper we discuss some relevant problems of the interplay between QCD and magnetic fields and the important role the experiments at NICA can play in tackling them.

  12. Exploring dense and cold QCD in magnetic fields

    Science.gov (United States)

    Ferrer, E. J.; de la Incera, V.

    2016-08-01

    Strong magnetic fields are commonly generated in off-central relativistic heavy-ion collisions in the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Lab and in the Large Hadron Collider at CERN and have been used to probe the topological configurations of the QCD vacua. A strong magnetic field can affect the character and location of the QCD critical point, influence the QCD phases, and lead to anomalous transport of charge. To take advantage of the magnetic field as a probe of QCD at higher baryon densities, we are going to need experiments capable to scan the lower energy region. In this context, the nuclotron-based ion collider facility (NICA) at JINR offers a unique opportunity to explore such a region and complement alternative programs at RHIC and other facilities. In this paper we discuss some relevant problems of the interplay between QCD and magnetic fields and the important role the experiments at NICA can play in tackling them.

  13. QCD vacuum structure in strong magnetic fields

    CERN Document Server

    Kabat, D; Weinberg, Erick J; Kabat, Daniel; Lee, Kimyeong; Weinberg, Erick

    2002-01-01

    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \\sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.

  14. Noncommutativity in space and primordial magnetic field

    International Nuclear Information System (INIS)

    In this paper we show that noncommutativity in spatial coordinates can generate magnetic field in the early Universe on a horizon scale. The strength of such a magnetic field depends on tin number density of massive charged particles present at a given moment. This allows us to trace back the temperature dependence of the noncommutativity scale from the bounds on primordial magnetic field coming from nucleosynthesis. (author)

  15. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  16. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  17. Free oscillations of magnetic fluid in strong magnetic field

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  18. Numerical Simulation of Level Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  19. Magnetic field screening effect in electroweak model

    CERN Document Server

    Bakry, A; Zhang, P M; Zou, L P

    2014-01-01

    It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

  20. Magnetized quark matter with a magnetic-field dependent coupling

    CERN Document Server

    Li, Chang-Feng; Wen, Xin-Jian; Peng, Guang-Xiong

    2016-01-01

    It was recently derived that the QCD running coupling is a function of the magnetic field strength under the strong magnetic field approximation. Inspired by this progress and based on the self-consistent solutions of gap equations, the properties of 2-flavor and 3-flavor quark matter are studied in the framework of the Nambu-Jona-Lasinio model with a magnetic-field dependent running coupling. We find that the dynamical quark masses as a function of the magnetic field strength is not monotonous in the fully chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the conventional coupling constant case. It is concluded that the magnetized strange quark matter described by running coupling can be absolutely stable.

  1. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  2. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  3. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  4. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  5. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    Science.gov (United States)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  6. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  7. Synthesis of Ultralong Polyaniline Nanorods by Magnetic Nanoparticles as Templates Under External Magnetic Field.

    Science.gov (United States)

    Miao, Tingting; Li, Yijing; Zhang, Dongmei

    2016-06-01

    We report the successful synthesis of ultralong polyaniline nanorods (UL-PANI-NRs) via using water-soluble magnetic Fe3O4 nanoparticles as soft templates under the assistance of external magnetic field. It was found that the concentration of Fe3O4 nanoparticles, the aniline concentration and the use of an external magnetic field significantly affect the morphology of the PANI products. The following characterizations including transmission electron microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD). and thermogravimetric analysis (TGA) were conducted to investigate the electronic structure and composition of as-prepared UL-PANI-NRs. Our preliminary result indicates that complicated polymer structures (such as ultralong rods with vertical branches) may be prepared by water-soluble magnetic Fe3O4 nanoparticles as soft templates under the assistance of alternatively external magnetic fields. PMID:27427623

  8. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  9. Magnetic fields and halos in spiral galaxies

    OpenAIRE

    Krause, Marita

    2014-01-01

    Radio continuum observations allow to reveal the magnetic field structure in the disk and halo of nearby spiral galaxies, their magnetic field strength and vertical scale heights. The spiral galaxies studied so far show a similar magnetic field pattern which is of spiral shape along the disk plane and X-shaped in the halo, sometimes accompanied by strong vertical fields above and below the central region of the disk. The strength of the halo field is comparable to that of the disk. The total ...

  10. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  11. The magnetic field of $\\zeta$ Ori A

    CERN Document Server

    Blazère, A; Bouret, J-C; Tkachenko, A

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of $\\zeta$ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in $\\zeta$ Ori A. We identify that it belongs to $\\zeta$ Ori Aa and characterize it.

  12. The magnetic field of ζ Ori A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  13. The magnetic field of zeta Orionis A

    OpenAIRE

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J. -C.; Rivinius, Th.; collaboration, the MiMeS

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at...

  14. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  15. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1–570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T‑1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  16. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  17. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  18. Assessment of Industrial Exposure to Magnetic Fields (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, P

    1999-07-01

    Magnetic field strengths produced by industrial processes can be very large, but they often exhibit a marked spatial variation. Whilst there may be the potential for exposures of workers to be high, actual exposure will be determined to a great extent by working practices. Possible metrics for epidemiological studies might be based on the temporal variability of exposure as well as maximum operator exposure or time-weighted average exposure and, whilst it might be possible to estimate these quantities from spot magnetic field strength measurements and observed working practices, this might be very difficult to achieve in practice. An alternative would be the use of a logging dosemeter: this paper describes some of the results of exposure assessments carried out in industrial environments with a modified EMDEX II magnetic field dosemeter. Magnetic fields in industrial environments often have waveforms which are not purely sinusoidal. Distortion can be introduced by the magnetic saturation of transformer and motor cores, by rectification, by poor matching between oscillator circuits and loads and when thyristors are used to control power. The resulting repetitive but non-sinusoidal magnetic field waveforms can be recorded and analysed; the spectral data may be incorporated into possible exposure metrics. It is also important to ensure that measurement instrumentation is responding appropriately in a non-sinusoidal field and this can only be done if the spectral content of the field is characterised fully. Some non-sinusoidal magnetic field waveforms cannot be expressed as a harmonic series. Specialist instrumentation and techniques are needed to assess exposure to such fields. Examples of approaches to the assessment of exposure to repetitive and non-repetitive magnetic fields are also discussed. (author)

  19. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  20. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  1. Vacuum magnetic fields with dense flux surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  2. Modeling the evolution of galactic magnetic fields

    International Nuclear Information System (INIS)

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means

  3. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  4. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  5. Autoionization in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lemoigne, J.P.; Grandin, J.P.; Husson, X.; Kucal, H. (Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR) Caen Univ., 14 (FR)); Zakrzewski, J.; Dohnalik, T. (Uniwersytet Jagiellonski, Krakow, (PL). Inst. Fizyki); Marcinek, R. (Wyzsza Szkola Pedagogiczna, Cracow (PL))

    1991-04-15

    The autoionization in the presence of a strong magnetic field is studied experimentally for 11s'(1/2) 1 argon level. It is shown that autoionizing resonance properties are strongly affected by the magnetic-field-induced modification of the continuum in which the resonance is embedded. A simple theoretical model explains essential features of the phenomenon.

  6. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  7. Magnetic field quality requirements for PEP

    International Nuclear Information System (INIS)

    The field quality of the cell quadrupole magnets of PEP was previously studied. With an improved formula, which takes into account the synchrotron oscillations, the field quality of the bending magnets and of the insertion quadrupole magnets is studied. An attempt is made to give a quality parameter. The instability prediction given by the betatron frequency shifts is compared with the instability prediction given by a particle tracing program

  8. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  9. A two-phase spherical electric machine for generating rotating uniform magnetic fields

    OpenAIRE

    Lawler, Clinton T.

    2007-01-01

    This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform magnetic fields with air-cored solenoidal magnets are discussed and evaluated. Analytical and numerical models of these alternatives are described and compared. The design details of material selection, slot geometry, and mechanical connections are described for the fluxball mac...

  10. Magnetic field effects on humans: epidemiological study design

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, T.F.; Wong, P.; Yen, C.K.

    1978-10-01

    This report presents details of the study design and methods for a retrospective epidemiological study on the health effects, if any, of stationary and alternating magnetic fields produced by man-made devices such as cyclotrons, controlled thermonuclear reactors (CTR), high voltage-high current transmission lines, magnetohydrodynamic devices (MHD), energy storage systems, and isotope separation facilities. The magnetic fields to which the workers can be exposed are as high as 10,000 gauss and the anticipated increase in magnetic fields associated with the environment and transmission lines near these devices is a few times the natural earth magnetic field. Thus the objectives include acquisition of low exposure data which can be used to evaluate any risks to the population incidentally exposed to environmental increases in magnetic fields, as well as an acquisition of high exposure data to be used in determining allowable exposure standards for the technical personnel working at CTR and MHD facilities. From the present status of knowledge on biological effects of magnetic fields, it is not possible to extrapolate or rationally conclude maximum permissible exposure levels for magnetic device workers and the population at large. There are no known previous studies of the effects of long-term exposure to magnetic fields involving large samples and matched controls. Thus this human epidemiological study was commenced in 1977 in parallel with experimental studies on biological and medical effects of magnetic fields being conducted by Dr. T. Tenforde and co-workers at LBL, by investigators at Battelle Northwest, and smaller projects at a number of laboratories around the world. The data base for the exposed population is comprised of approximately 1,000 cyclotron and bubble chamber workers.

  11. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    Science.gov (United States)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  12. The magnetic field of rotating bodies

    International Nuclear Information System (INIS)

    The paper discusses the possibility of interpreting the magnetic fields of astronomical bodies in the framework of a unified field theory. Using one of the solutions of the generalized field theory, a direct relation between the polar magnetic field, the angular velocity and the gravitational potential of the body considered, is obtained. The model used for applications has spherical symmetry. The predictions of the theoretical formula, obtained from the model, are compared with available observational data, and with the empirical relation of Blackett. The theoretical formula gives a possible interpretation of a seed magnetic field which will develop and produce the largescale magnetic field observed for celestial objects. The formula shows that the field may be generated as a result of the rotation of the massive object. (author). 24 refs, 3 figs, 1 tab

  13. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  14. Delayed quarkonium formation in a magnetic field

    CERN Document Server

    Suzuki, Kei

    2016-01-01

    Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field mixes vector quarkonia ($J/\\psi$, $\\psi^\\prime$) and their pseudoscalar partners ($\\eta_c$, $\\eta_c^\\prime$), the properties of the quarkonia can be modified through such a spin mixing. This means that the formation time of quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia is delayed by an idealized constant magnetic field, where the formation time of the excited state becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions, effects by a time-dependent magnetic field are also discussed.

  15. Tracing magnetic field orientation in starless cores

    Science.gov (United States)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  16. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    OpenAIRE

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as step...

  17. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  18. How do galaxies get their magnetic fields?

    Science.gov (United States)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  19. Bending of magnetic filaments under a magnetic field

    Science.gov (United States)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  20. Variable spatial magnetic field influences peripheral nerves regeneration in rats.

    Science.gov (United States)

    Suszyński, Krzysztof; Marcol, Wiesław; Szajkowski, Sebastian; Pietrucha-Dutczak, Marita; Cieślar, Grzegorz; Sieroń, Aleksander; Lewin-Kowalik, Joanna

    2014-09-01

    Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n = 80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20 min/day, 5 d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1'-di-octadecyl-3,3,3',3'-tetramethyloindocarbocyanine perchlorate) was applied 5 mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves. PMID:23781984

  1. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  2. The magnetic field of ζ Orionis A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  3. Computation of electrical fields and currents in a plasma flowing in a spatial-periodic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorodzha, L.V.; Krutilin, V.A.; Rashchepkin, A.P.

    1977-01-01

    Electrical processes in a plasma flow in an internal periodically changing magnetic field are studied analytically. The analysis was conducted on the basis of the Riemann boundary problem for automorphic functions. Consequently, evaluations were made of the energy characteristics of the hollow MHD generator with an alternating magnetic field and their relationship to the geometric dimensions of the channel was found.

  4. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    Science.gov (United States)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  5. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    of presenting marine magnetic data. The Generic Mapping Tools (GMT) software package (Wessel, P. and Smith, W. H. F.,1995), which can be downloaded over the internet is a very useful software package for presentation of marine magnetic data. This software...

  6. Magnetic fields of rotating bodies

    International Nuclear Information System (INIS)

    After a short historical review of the magnetism of rotating bodies a new model, based on Stochastic Electrodynamics, is briefly presented. It is shown how the theory of cooperative phenomena applies to this model. The outcome of the theory is used to analyse results obtained in a laboratory experiment on the magnetism of rotating bodies

  7. External-field-free magnetic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  8. EFFECTIVE SHIELDING OF UNIDIRECTIONAL CURRENT GENERATED MAGNETIC FIELDS

    Institute of Scientific and Technical Information of China (English)

    徐霖; 傅正财; 杜亚平

    2002-01-01

    This paper presented an effective shielding design of magnetic fields generated by unidirectional current.Theoretical formulas and numerical computation software based on boundary element method (BEM) are employed to evaluate the shielding effectiveness (SE) of cylindrical shell. It is shown that ungrounded or one-end-grounded metal shell is ineffective for such magnetic fields. SE can be obtained by connecting the two ends of the conducting shell with low impedance connector, or alternatively, grounding the two ends. The experimental results also support these conclusions.

  9. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  10. Compact low field magnetic resonance imaging magnet: Design and optimization

    Science.gov (United States)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  11. Quantitative modeling of planetary magnetospheric magnetic fields

    Science.gov (United States)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  12. Debye relaxation in high magnetic fields

    OpenAIRE

    Brooks, J. S.; Vasic, R.; Kismarahardja, A.; Steven, E.; Tokumoto, T.; Schlottmann, P.; Kelly, S.

    2008-01-01

    Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperatur...

  13. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  14. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With a piece of magnet embeded in mouse body tomeasure the electrophoretic velocity of erythrocyte for ob-servation onthe biological effect of magnetic field.1Experi mental Material and Method1 .1Experi mental materialUsing permanent magnet was made of alloys fromCe .Co.Cu.Fe .,of which the force of magnetic field is500Gs ,formseems cylinder andthe weight is 0 .5 mg.1 .2Ani mals and groupingThere were eighteen mice that were choosed on ran-dom,theirs weight was 18-22gto divide equallyinthreegroups ,each gro...

  15. Computation of magnetic fields in hysteretic media

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A.; Mayergoyz, I.D.; Gomez, R.D.; Burke, E.R. (Univ. of Maryland, College Park, MD (United States))

    1993-11-01

    A newly developed vector Preisach-type model of hysteresis is applied to the computation of static magnetic fields in media with hysteresis. Time stepping technique is used to trace the time evolution of local magnetic fields which form the history of magnetizing process. At each time step, the magnetostatic problem is formulated in terms of an integral equation and an efficient iterative algorithm is employed for solving this problem. The technique has been used to simulate some magnetic recording processes. Sample results of these simulations are given in the paper.

  16. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  17. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  18. Quark matter under strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)

    2016-02-15

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  19. Quark matter under strong magnetic fields

    International Nuclear Information System (INIS)

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  20. Alignment of magnetic uniaxial particles in a magnetic field: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Golovnia, O.A., E-mail: golovnya@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Popov, A.G [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Sobolev, A.N. [South Ural State University (National Research University), av. Lenina, 76, 454080 Chelyabinsk (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-09-01

    The numerical investigations of the process of alignment of magnetically uniaxial Nd–Fe–B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient. - Highlights: • We simulate the magnetic alignment of ensemble of Nd–Fe–B spherical uniaxial particles. • Anisotropic particles as a combination of spherical particles are constructed. • Influence of the particle shape anisotropy and friction on the alignment is analyzed. • We compare calculated and experimental data on field dependence of magnetic alignment. • The results render the experimental dependence.

  1. Magnetic field evolution and reversals in spiral galaxies

    Science.gov (United States)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  2. Probing Intergalactic Magnetic Fields with Simulations of Electromagnetic Cascades

    CERN Document Server

    Batista, Rafael Alves; Sigl, Guenter; Vachaspati, Tanmay

    2016-01-01

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called 'Large Sphere Observer' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the $Q$-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the $S$-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths...

  3. Magnetic field induced transition in vanadium spinels.

    Science.gov (United States)

    Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

    2014-01-10

    We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at μ0H≈40  T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

  4. The magnetic field of Mercury, part 1

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  5. The National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J.; Brandt, B.L.; Brunel, L.C.; Cross, T.A.; Edison, A.S.; Marshall, A.G.; Reyes, A.P

    2004-04-30

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  6. The magnetic field in the Coma cluster

    OpenAIRE

    Feretti, L.; D. Dallacasa; Giovannini, G.; Tagliani, A.

    1995-01-01

    The polarization data of the radio galaxy NGC4869, belonging to the Coma cluster and located in its central region, allow us to obtain information on the structure of magnetic field associated with the cluster itself. A magnetic field of $\\sim$ 8.5 $\\mu$G, tangled on scales of the order of less than 1 kpc, is required to explain the observed fluctuations of the rotation measure. This magnetic field is more than one order of magnitude stronger than the equipartition value obtained for Coma C. ...

  7. Thermal diffusivity measurements in magnetic field

    International Nuclear Information System (INIS)

    This paper presents the first observation of thermal diffusivity in magnetic field on superconducting oxides. The measurements are performed on sintered samples using a high resolution a.c. technique from 30 to 120 K in magnetic field up to 7 T. In magnetic field higher than 1 T the thermal diffusivity below the critical temperature decreases and the authors suggest this is due to the scattering between the phonons and the flux lines inside the grains. The cross section σ related to such a scattering is calculated; the authors obtain values from 1 to 7 x 10-7 cm when the temperature increases from 30 to 70 K

  8. Conformal anomaly and primordial magnetic fields

    OpenAIRE

    Agullo, Ivan; Navarro-Salas, Jose

    2013-01-01

    The conformal symmetry of the quantized electromagnetic field breaks down in curved space-time. We point out that this conformal anomaly is able to generate a sizable magnetic field during a phase of slow-roll inflation. Such primordial magnetism is characterized by the expectation value of the squared of the magnetic field for comoving observers, which at leading order in slow-roll takes the value $\\ =\\frac{8}{15(4\\pi)^2}\\, H^4\\epsilon$, where $\\epsilon$ is the standard slow-ro...

  9. Magnetic Field Control of Combustion Dynamics

    Science.gov (United States)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  10. The Pregalactic Origin for Galactic Magnetic Fields

    Science.gov (United States)

    Kulsrud, R.; Chandran, B.; Yamada, M.

    1996-11-01

    It has been generally accepted that there is no natural mechanism to create a strong primordial magnetic field. For this reason all the attention has been concentrated on the generation of the magnetic field by hydrodynamic turbulence in the galactic disk. But this approach suffers from the problem of the rapid amplification of small scale magnetic fields(R. Kulsrud and S. Anderson ApJ 306, 606, 1992). However, as the result of numerical simulations, it is now clear that there is a lot of turbulence present in the pregalactic state, when the galaxy is arising out of gravitational instabilities. The simulations further show that the thermolelectric term in Ohm's law produces a weak magnetic field, even from zero initial conditions. Further, the smallest eddy of the turbulence turns over several hundred times before the galaxy collapses to a virial state. This many turnovers amplifies the weak magnetic field by a large enough factor for it to reach saturation with the hydrodynamic turbulence at a considerable field strength. Lastly, it appears from a physical argument, and also by a DIA calculation that when the field becomes strong enough it straightens itself out and becomes coherent on a galactic scale. this coherence arises even in the absence of an `` α '' effect! It is proposed that this pregalactic process is the true origin of the galactic magnetic field. .

  11. Field simulations for large dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy) and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)]. E-mail: cappuzzello@lns.infn.it; Cunsolo, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN - Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Khouaja, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Orrigo, S.E.A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Winfield, J.S. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted.

  12. Dispersion of Magnetic Fields in Molecular Clouds

    CERN Document Server

    Hildebrand, Roger H; Dotson, Jessie L; Houde, Martin; Vaillancourt, John E

    2008-01-01

    We describe a method for determining the dispersion of magnetic field vectors about local mean fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of MHD or turbulent dispersion - and hence to avoid inaccurate estimates of field strengths - due to large-scale, non-turbulent field structure when using the well-known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

  13. The field of a screened magnetic dipole

    Science.gov (United States)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  14. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  15. Magnetic field considerations in fusion power plant environs

    Energy Technology Data Exchange (ETDEWEB)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions.

  16. Mechanism of magnetic field effect in cryptochrome

    OpenAIRE

    Solov'yov, Ilia A.; Schulten, Klaus

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow...

  17. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  18. Juno and Jupiter's Magnetic Field (Invited)

    Science.gov (United States)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  19. Mechanical reinforcement for RACC cables in high magnetic background fields

    Science.gov (United States)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  20. Studies of Solar Vector Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Jingxiu

    2011-01-01

    In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. (1) We developed necessary methodology and concepts in vector magnetogram analysis (Wang et al. 1996). For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions (ARs), and it had been proved to be the best parameter in representing the major flare activity. (2) We revealed that there was always a dominant sense of magnetic shear in a given AR (Wang 1994), which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs (Wang 1996). (3) We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares (Wang and Shi 1993). Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.

  1. The magnetic field of zeta Orionis A

    CERN Document Server

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  2. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenologica...

  3. Current Sheets in Stressed Coronal Magnetic Fields

    Science.gov (United States)

    Labonte, B. J.

    2003-12-01

    The extrapolation of magnetic fields into the solar corona generally assumes that the fields are fully relaxed - all possible reconnection has occurred. This assumption is in conflict with the low magnetic diffusivity in the corona. I will present initial results on extrapolation based on stressed magnetic fields - those for which no reconnection has occurred. As an opposite extreme to traditional methods, stressed fields offer a different view of coronal fields. The locations of current sheets between flux systems are directly determined. Observational evidence of coronal reconnection can test the completeness of the extrapolation, as the field lines spanning flux systems must be in contact prior to reconnection. This work is supported by NASA SEC GI grant NAG5-13020.

  4. A Topology for the Penumbral Magnetic Fields

    CERN Document Server

    Almeida, J Sanchez

    2009-01-01

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild...

  5. KEK effort for high field magnets

    CERN Document Server

    Nakamoto, T

    2011-01-01

    KEK has emphasized efforts to develop the RHQNb3Al superconductor and a sub-scale magnet reaching 13 T towards the HL-LHC upgrade in last years. In addition, relevant R&D regarding radiation resistance has been carried out. For higher field magnets beyond 15 T, HTS in combination with A15 superconductors should be one of baseline materials. However, all these superconductors are very sensitive to stress and strain and thorough understanding of behaviour is truly desired for realization of high field magnets. KEK has launched a new research subject on stress/strain sensitivity of HTS and A15 superconductors in collaboration with the neutron diffraction facility at J-PARC and High Field Laboratory in Tohoku University. Present activity for high field magnets at KEK is reported.

  6. Magnetic Fields in Limb Solar Flares

    Science.gov (United States)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  7. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 109G; in the second the magnetic field ranges between 109 and 1011G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author)

  8. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  9. A Holographic Bound on Cosmic Magnetic Fields

    CERN Document Server

    McInnes, Brett

    2015-01-01

    Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.

  10. Pollux: a stable weak dipolar magnetic field but no planet?

    Science.gov (United States)

    Aurière, Michel; Konstantinova-Antova, Renada; Espagnet, Olivier; Petit, Pascal; Roudier, Thierry; Charbonnel, Corinne; Donati, Jean-François; Wade, Gregg A.

    2014-08-01

    Pollux is considered as an archetype of a giant star hosting a planet: its radial velocity (RV) presents sinusoidal variations with a period of about 590 d, which have been stable for more than 25 years. Using ESPaDOnS and Narval we have detected a weak (sub-gauss) magnetic field at the surface of Pollux and followed up its variations with Narval during 4.25 years, i.e. more than for two periods of the RV variations. The longitudinal magnetic field is found to vary with a sinusoidal behaviour with a period close to that of the RV variations and with a small shift in phase. We then performed a Zeeman Doppler imaging (ZDI) investigation from the Stokes V and Stokes I least-squares deconvolution (LSD) profiles. A rotational period is determined, which is consistent with the period of variations of the RV. The magnetic topology is found to be mainly poloidal and this component almost purely dipolar. The mean strength of the surface magnetic field is about 0.7 G. As an alternative to the scenario in which Pollux hosts a close-in exoplanet, we suggest that the magnetic dipole of Pollux can be associated with two temperature and macroturbulent velocity spots which could be sufficient to produce the RV variations. We finally investigate the scenarii of the origin of the magnetic field which could explain the observed properties of Pollux.

  11. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  12. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  13. Magnetic fields and massive star formation

    International Nuclear Information System (INIS)

    Massive stars (M > 8 M ☉) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  14. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  15. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field and the temperature dependence of rho(21). Numerical results are compared with recent experiments....

  16. The magnetic field investigation on Cluster

    Science.gov (United States)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  17. High Precision Physics in Low Magnetic Fields

    OpenAIRE

    Lins, Tobias

    2016-01-01

    The search for particle EDMs is a key approach in understanding the origin of matter. The new neutron EDM experiment at TUM aims to improve the current sensitivity by two orders of magnitude. In this thesis, a concept to fully track magnetic field changes in 4 pi is introduced. A devised mechanism to actively damp external field changes as well as the measurements of the temporal stability of the full shield is presented. Finally, two approaches to search for magnetic monopoles are discussed.

  18. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  19. Untwisting magnetic fields in the solar corona

    Science.gov (United States)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  20. Alternative material study for heat assisted magnetic recording transducer application

    Science.gov (United States)

    Xu, B. X.; Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-01

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  1. The magnetic field of a permanent hollow cylindrical magnet

    Science.gov (United States)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  2. Magnetic Field Measurement on a Refined Kicker

    CERN Document Server

    Fan, Tai-Ching; Lin, Fu-Yuan

    2005-01-01

    To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.

  3. Helical Fields Possessing Mean Magnetic Wells

    International Nuclear Information System (INIS)

    Recently Furth and Rosenbluth pointed out that a particular magnetic field having helical symmetry could provide a mean magnetic well, that is provide regions in which ∫dℓ/B decreases away from a magnetic axis (or equivalently a region in which V'' is negative). In this paper we examine helical fields in general and the circumstances in which they may exhibit the negative V'' property. This investigation is made possible by the use of the stream function formalism which provides a simple picture of the field geometry, The existence of negative V'' is related to the topology of the magnetic surfaces which in turn is connected with the positions of the stationary points of the stream function ψ. Detailed calculations are given of the shape of the flux surfaces and of the shape of the magnetic well (the variation of ∫dℓ/B across it) for several examples of helical fields. These include the Furth-Rosenbluth configuration and a new configuration which provides a mean magnetic well without the necessity for a central conductor. A survey is also made of the magnetic well properties of these two classes of helical field in terms of two simple criteria: (1) the ratio Q of the field strength on the axis and on the separatrix (which provides an estimate of the overall well depth); and (2) the value of V'' on the magnetic axis (which provides a measure of the ''curvature'' of the well). This latter quantity is calculated analytically by using a general expression for the value of V'' on an arbitrary magnetic axis; It is pointed out that Q alone does not provide a realistic indication of the well shape. (author)

  4. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  5. Estimation and reduction of temporal magnetic field fluctuations in powered magnets using inductive and NMR feedback control

    Science.gov (United States)

    Thomson, Brian F.

    Powered magnets provide high magnetic fields that promise to significantly improve nuclear magnetic resonance spectroscopy (NMR). Higher fields increase NMR chemical shift resolution and signal-to-noise ratio (SNR) while decreasing quadrupolar line broadening in solids. High resolution NMR is typically performed using superconducting magnets, which are currently limited to 24 Tesla. Powered magnets can provide continuous fields up to 45 Tesla, significantly larger than that achievable by superconducting magnets. This will dramatically expand opportunities in the areas of material science, chemistry, and biology. However, temporal magnetic field fluctuations due to both the power supply and cooling water system currently render these magnets unsuitable for high resolution NMR. The focus of this dissertation is to design, synthesize, and verify a feedback control system that reduces temporal field fluctuations so that powered magnets can be used for high resolution NMR. Earlier studies have shown that feedback control using inductive measurements significantly reduces higher frequency field fluctuations associated with power supply ripple, but are limited in their ability to reduce lower frequency field fluctuations associated with variations in the cooling water system. Conversely, feedback control using NMR measurements are more conducive to reducing lower frequency field fluctuations and less successful at higher frequencies. Feedback control systems which use NMR measurements are often referred to as field-frequency locks (FFLs). Earlier studies have shown that FFLs can estimate and reduce lower frequency field fluctuations in superconducting magnets, but have limited ability to do the same in powered magnets. This dissertation investigates why such FFLs are limited in powered magnets, and demonstrates some alternative methods for estimating lower frequency field fluctuations using NMR measurements in powered magnets. A digital sampled-data feedback control

  6. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  7. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  8. Resonant Magnetic Field Sensors Based On MEMS Technology.

    Science.gov (United States)

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  9. Magnetic fields in early-type stars

    OpenAIRE

    Grunhut, Jason H.; Neiner, Coralie

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these s...

  10. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  11. Magnetic field structure evolution in RMF plasmas

    Science.gov (United States)

    Petrov, Yuri; Yang, Xiaokang; Huang, Tian-Sen

    2007-11-01

    A study of magnetic field structure evolution during 40-ms plasma discharge had been performed in 80 cm long / 40 cm OD cylindrical chamber. Plasma current Ip˜2--3 kA is produced by applied 500 kHz rotating magnetic field. In experiments, the 2D profile of plasma current is changed by feeding a 10-ms pulse current to additional magnetic coil located at the midplane. Using newly developed magnetic field pick-up coils system, we scanned the magnetic field in cross-section of plasma. Two experimental regimes were studied: without external toroidal field (TF), and with TF produced by applied axial current. When a relatively small current (<0.5 kA) is applied to the midplane coil, in both cases the total plasma current measured with Rogowski coil experiences a jump (up to 100%), but the profile of current remains almost unchanged. When a larger current (1--2 kA) is applied to the midplane coil, the total plasma current drops; the magnetic structure changes differently in two regimes. In regime without TF, the magnetic field of plasma current is reversed at Rmagnetic field evolves during initial 1--3 ms transitional period of plasma formation.

  12. Magnetic fields in early-type stars

    Science.gov (United States)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  13. Growth of Czochralski silicon under magnetic field

    Institute of Scientific and Technical Information of China (English)

    XU Yuesheng; LIU Caichi; WANG Haiyun; ZHANG Weilian; YANG Qingxin; LI Yangxian; REN Binyan; LIU Fugui

    2004-01-01

    Growth of Czochralski (CZ) silicon crystals under the magnetic field induced by a cusp-shaped permanent magnet of NdFeB has been investigated. It is found that the mass transport in silicon melt was controlled by its diffusion while the magnetic intensity at the edge of a crucible was over 0.15 T. In comparison with the growth of conventional CZ silicon without magnetic field, the resistivity homogeneity of the CZ silicon under the magnetic field was improved. Furthermore, the Marangoni convection which has a significant influence on the control of oxygen concentration was observed on the surface of silicon melt. It is suggested that the crystal growth mechanism in magnetic field was similar to that in micro-gravity if a critical value was reached, named the growth of equivalent micro-gravity. The relationship of the equivalent micro-gravity and the magnetic intensity was derived as g=(v0/veff)g0. Finally, the orders of the equivalent micro-gravity corresponding to two crucibles with characteristic sizes were calculated.

  14. Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

    Science.gov (United States)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.

    2010-09-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s -1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( ˜1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the

  15. Magnetic Field Evolution During Neutron Star Recycling

    CERN Document Server

    Cumming, A

    2004-01-01

    I describe work on two aspects of magnetic field evolution relevant for the "recycling" scenario for making millisecond radio pulsars. First, many of the theoretical ideas for bringing about accretion-induced field decay rely on dissipation of currents in the neutron star crust. I discuss field evolution in the crust due to the Hall effect, and outline when it dominates Ohmic decay. This emphasises the importance of understanding the impurity level in the crust. Second, I briefly discuss the progress that has been made in understanding the magnetic fields of neutron stars currently accreting matter in low mass X-ray binaries. In particular, thermonuclear X-ray bursts offer a promising probe of the magnetic field of these neutron stars.

  16. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  17. Stealth magnetic field in de Sitter spacetime

    CERN Document Server

    Mukohyama, Shinji

    2016-01-01

    In the context of a U(1) gauge theory non-minimally coupled to scalar-tensor gravity, we find a cosmological attractor solution that represents a de Sitter universe with a homogeneous magnetic field. The solution fully takes into account backreaction of the magnetic field to the geometry and the scalar field. Such a solution is made possible by scaling-type global symmetry and fine-tuning of two parameters of the theory. If the fine-tuning is relaxed then the solution is deformed to an axisymmetric Bianchi type-I universe with constant curvature invariants, a homogeneous magnetic field and a homogeneous electric field. Implications to inflationary magnetogenesis are briefly discussed.

  18. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    Science.gov (United States)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  19. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials

    Science.gov (United States)

    Liu, Zhaotang; Wang, Jiafu; Qu, Shaobo; Zhang, Jieqiu; Ma, Hua; Xu, Zhuo; Zhang, Anxue

    2016-10-01

    In this article, we propose to enhance the isolation of antenna arrays by manipulating the near-field magnetic coupling between adjacent antennas using magnetic metamaterials (MMs). Due to the artificially designed negative or large permeability, MMs can concentrate or block the magnetic field lines where they are located, which allows us to tune the near-field magnetic coupling strengths between antennas. MMs can play a two-fold role in enhancing antenna isolation. On one hand, the magnetic fields can be blocked in gaps between adjacent antennas using MMs with negative permeability; on the other hand, the magnetic fields can be pulled towards the borders of the antenna array using MMs with large permeability. As an example, we demonstrated a four-element patch antenna array with split-ring resonators (SRR) integrated in the substrate. The measured results show that the isolation can be enhanced by more than 10 dB with the integration of SRRs, even if the gap between antennas is only about 0.082λ. This work provides an effective alternative to the design of high-isolation antenna arrays.

  20. Plasma separation from magnetic field lines in a magnetic nozzle

    Science.gov (United States)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  1. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    Science.gov (United States)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  2. QCD thermodynamics and magnetization in nonzero magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G

    2016-01-01

    In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.

  3. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  4. The Magnetic Field of Solar Spicules

    CERN Document Server

    Centeno, R; Ramos, A Asensio

    2009-01-01

    Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.

  5. Cyclic evolution and reversal of the solar magnetic field. I. The large-scale magnetic fields

    OpenAIRE

    Ikhsanov, R. N.; V. G. Ivanov

    2003-01-01

    On the base of the solar magnetic field measurements obtained in Stanford in 1976--2003 the properties of the cyclic evolution of the large-scale magnetic field are investigated. Some regularities are found in longitudinal and latitudinal evolution of the magnetic field in cycles 21, 22 and 23. The cyclic development of the large-scale magnetic field can be divided into two main phases. The phase I, which includes a period approximately from two years before and until three years after the ma...

  6. An investigation of electromagnetic rig-generated strong magnetic fields

    OpenAIRE

    Ekreem, Nasser B.

    2009-01-01

    In this thesis, two alternative solenoid designs are presented: 'Air-core' coil design and 'C-shape' coil design. The coils were designed to be capable of generating strong and static magnetic fields in various samples of magnetic materials. In the case of the first design, the sample would be placed in the central air space. In the second design, the sample would be placed in part of the 'jaws' of the 'C' shape. It was intended that the rig would be used to measure the magnetostriction strai...

  7. Interaction of magnetic resonators studied by the magnetic field enhancement

    OpenAIRE

    Yumin Hou

    2013-01-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE osci...

  8. Measurements of Photospheric and Chromospheric Magnetic Fields

    Science.gov (United States)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  9. Magnetizing a complex plasma without a magnetic field

    CERN Document Server

    Kählert, H; Bonitz, M; Löwen, H; Greiner, F; Piel, A

    2012-01-01

    We propose and demonstrate a concept that mimics the magnetization of the heavy dust particles in a complex plasma while leaving the properties of the light species practically unaffected. It makes use of the frictional coupling between a complex plasma and the neutral gas, which allows to transfer angular momentum from a rotating gas column to a well-controlled rotation of the dust cloud. This induces a Coriolis force that acts exactly as the Lorentz force in a magnetic field. Experimental normal mode measurements for a small dust cluster with four particles show excellent agreement with theoretical predictions for a magnetized plasma.

  10. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  11. Nikola Tesla: the man behind the magnetic field unit.

    Science.gov (United States)

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. PMID:14994307

  12. Nikola Tesla: the man behind the magnetic field unit.

    Science.gov (United States)

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era.

  13. Passive magnetic shielding in static gradient fields

    Science.gov (United States)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  14. DC-magnetic field vector measurement

    Science.gov (United States)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  15. Primordial magnetic fields from the string network

    Science.gov (United States)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  16. Galactic magnetic fields and hierarchical galaxy formation

    CERN Document Server

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  17. Magnetic field on the baseball coil

    International Nuclear Information System (INIS)

    An expression is developed in spherical harmonics for the magnetic field of a baseball coil. A simple dipole-layer model for the coil, and the computer program, MAFCO, yield comparable expansion coefficients, and give practically identical fields near the center of the baseball. 13 refs

  18. 150 MeV fixed field alternating gradient (FFAG) accelerator

    CERN Document Server

    Nakano, J

    2002-01-01

    150 MeV FFAG accelerator is prototype for practical use. Fundamental development of FFAG, research of FFAG accelerator and its application for therapy are investigated. 150 MeV ring consists of 12 sector magnets. The distribution of magnetic field of 12 sector magnets is almost same. 12 MeV proton beam is generated by cyclotron and injection to 150 MeV FFAG. The injection system consists of 2 bump magnets, kicker magnet and septum electrode. RF accelerating cavity system using high-permeability magnetic substance with high magnetic permeability accelerates proton beam to 150 MeV, then the first operation aims at 250 Hz. Return Yoke Free magnet was developed for adjustment. 150 MeV FFAG magnet is constructed and 12 MeV proton beam acceleration is conformed. The final state of 150 MeV FFAG magnet is explained by calculation results. On cancer therapy by proton beam, the three dimensions spot scan method is proposed. (S.Y.)

  19. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  20. Magnetic fields of young solar twins

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  1. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  2. Inference of magnetic fields in inhomogeneous prominences

    CERN Document Server

    Milic, Ivan; Atanackovic, Olga

    2016-01-01

    Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D...

  3. Jets, magnetic fields and the central engine

    International Nuclear Information System (INIS)

    Reviewing recent observations of jets unconfined by external pressure, the author suggests that self-confinement may be common. This requires current-carrying jets with helical magnetic fields. Such beams occur in the laboratory, in lightning, and in the Crab Nebula, where currents are apparently carried over distances greater than a light year. Self-confined jets require a significant torodial magnetic field emerging from the nozzle. The author suggests that the parallel/azimuthal magnetic field ratio may be the crucial nozzle parameter, causing asymmetries. Helical field configurations have remarkable stability properties and can evolve naturally as synchrotron losses in the jet lead to minimizing Lorentz forces. Current-carrying jets may provide a valuable clue to the physics of the central source. (Auth.)

  4. Magnetic fields during high redshift structure formation

    CERN Document Server

    Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S

    2012-01-01

    We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.

  5. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  6. Magnetic Field Amplification via Protostellar Disc Dynamos

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  7. The influence of combined magnetic field on the fusion of plant protoplasts.

    Science.gov (United States)

    Nedukha, O; Kordyum, E; Bogatina, N; Sobol, M; Vorobyeva, T; Ovcharenko, Yu

    2007-07-01

    The study of the influence of weak, alternating magnetic field, which was adjusted to the cyclotron frequency of Ca2+ and K+ ions, on the fusion of tobacco and soya protoplasts was carried out using the extra apparatus with ferromagnetic shield. An increase in the frequency of protoplasts fusion in 2-3 times and participation of calcium ions in the induction of protoplast fusion in weak alternating magnetic field have been established.

  8. Vector magnetic field in solar polar region

    Institute of Scientific and Technical Information of China (English)

    邓元勇; 汪景秀; 艾国祥

    1999-01-01

    By means of ’deep integration’ observations of a videomagnetograph the vector magnetic field was first systematically measured near the solar south polar region on April 12, 1997 when the Sun was in the minimal phase between the 22nd and 23rd solar cycle. It was found that the polar magnetic field deviated from the normal of solar surface by about 42.2°±3.2°, a stronger magnetic element may have smaller inclination, and that within the polar cap above heliolatitude of 50°, the unsigned and net flux densities were 7.8×10-4 T and -3.4×10-4 T, respectively, and consequently, the unsigned and net fluxes were about 5.5×1022 and -2.5×1022 Mx. The net magnetic flux, which belongs to the large-scale global magnetic field of the Sun, roughly approaches the order of the interplanetary magnetic field (IMF) measured at distance of 1 AU.

  9. Magnetic fields of young solar twins

    CERN Document Server

    Rosén, L; Hackman, T; Lehtinen, J

    2016-01-01

    The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field str...

  10. Measurements of Photospheric and Chromospheric Magnetic Fields

    CERN Document Server

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  11. Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Aravena, D.; Corona, R.M. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Goerlitz, D.; Nielsch, K. [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2013-11-15

    The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions. - Highlights: • Magnetic states of wire/tube were investigated as a function of their geometry. • Multisegmented systems present two well-defined jumps in the hysteresis curve. • It is possible to prepare an antiparallel magnetic configuration. • The step width for the optimum condition reaches 60 mT. • The tube segments reverse their magnetization first than the wire segments.

  12. Magnetic fields in gaps surrounding giant protoplanets

    CERN Document Server

    Keith, Sarah L

    2015-01-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution (pure hydrodynamical, ideal, and resistive MHD), but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability, and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap crossing simulation by Tanigawa et al. (2012). We calculate the ionisation fraction and estimate field strength an...

  13. A chiral alternative to the vierbein field in general relativity

    OpenAIRE

    Hooft, G. 't

    1991-01-01

    An alternative to the usual vierbein field in a (3 + 1)-dimensional (euclidean) space-time is proposed such that the internal index takes only three values and the external is a double: ea = −ea. In flat space-time this field reduces to the self-dual generalized Levi-Civita symbol a. Like the vierbein field, our field determines the metric field g uniquely. It can be viewed upon as the 'cube root' of the metric field. In euclidean space the internal symmetry group is SL(3). In Minkowski space...

  14. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  15. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  16. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  17. Magnetic Fields and Massive Star Formation

    CERN Document Server

    Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

    2014-01-01

    Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

  18. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  19. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  20. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  1. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  2. A weak combined magnetic field changes root gravitropism

    Science.gov (United States)

    Kordyum, E. L.; Bogatina, N. I.; Kalinina, Ya. M.; Sheykina, N. V.

    Although gravitropism has been studied for many decades, many questions on plant gravitropism, including the participation of Ca 2+ ions in graviperception and signal transduction, remain open and require new experiments. We have studied gravistimulation and root gravitropism in the presence of the weak, alternating magnetic field that consisted of a sinusoidal frequency of 32 Hz inside a μ-metal shield. We discovered that this field changes normally positively gravitropic cress root to exhibit negative gravitropism. Because the combined magnetic field was adjusted to the cyclotron frequency of Ca 2+ ions, the obtained data suggest that calcium ion participate in root gravitropism. Simultaneous application of the oscillating magnetic field of the same frequency ion induce oscillation of Ca 2+ ions and can change the rate and/or the direction of Ca 2+ ion flux in roots. Control and magnetic field-exposed roots were examined for change in the distribution of amyloplasts and cellular organelles by light, electron, and confocal laser microscopy.

  3. Evolution of primordial magnetic fields in mean-field approximation

    Science.gov (United States)

    Campanelli, Leonardo

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity and the magnetic correlation length evolve asymptotically with the temperature, , as and . Here, , , and are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients , , , , , and , depend on the index of the assumed initial power-law magnetic spectrum, , and on the particular regime, with the order-one constants and depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with equal to zero.

  4. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    Science.gov (United States)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  7. Magnetic fields in early-type stars

    CERN Document Server

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  8. Focus on Materials Analysis and Processing in Magnetic Fields

    OpenAIRE

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  9. The magnetic fields of hot subdwarf stars

    CERN Document Server

    Landstreet, John D; Fossati, Luca; Jordan, Stefan; O'Toole, Simon J

    2012-01-01

    Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of ...

  10. Magnetic field reconstruction based on sunspot oscillations

    CERN Document Server

    Löhner-Böttcher, J; Schmidt, W

    2016-01-01

    The magnetic field of a sunspot guides magnetohydrodynamic waves toward higher atmospheric layers. In the upper photosphere and lower chromosphere, wave modes with periods longer than the acoustic cut-off period become evanescent. The cut-off period essentially changes due to the atmospheric properties, e.g., increases for larger zenith inclinations of the magnetic field. In this work, we aim at introducing a novel technique of reconstructing the magnetic field inclination on the basis of the dominating wave periods in the sunspot chromosphere and upper photosphere. On 2013 August 21st, we observed an isolated, circular sunspot (NOAA11823) for 58 min in a purely spectroscopic multi-wavelength mode with the Interferometric Bidimensional Spectro-polarimeter (IBIS) at the Dunn Solar Telescope. By means of a wavelet power analysis, we retrieved the dominating wave periods and reconstructed the zenith inclinations in the chromosphere and upper photosphere. The results are in good agreement with the lower photosphe...

  11. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  12. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.;

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We...... also give new measurements of the eclipsing system ARAur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS...

  13. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  14. Diffusive shock acceleration and magnetic field amplification

    CERN Document Server

    Schure, K M; Drury, L O'C; Bykov, A M

    2012-01-01

    Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.

  15. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    CERN Document Server

    Denkova, Denitza; Silhanek, Alejandro V; Van Dorpe, Pol; Moshchalkov, Victor V

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and detectors of the magnetic field of light are now required. In this paper, assisted by finite-difference time-domain simulations, we suggest that the circular aperture at the apex of a metal coated hollow-pyramid SNOM probe can be approximated by a lateral magnetic dipole source. This validates its use as a detector for the lateral magnetic near-field, as illustrated here for a plasmonic nanobar sample. Verification for a dielectric sample is currently in progress. We experimentally demonstrate the equivalence of the reciproc...

  16. The Drift of Dust Grains Induced by Transient Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    华建军; 叶茂福; 王龙

    2003-01-01

    Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.

  17. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  18. Vertical gradients of sunspot magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hagyard, M.J.; Teuber, D.; West, E.A.; Tandberg-Hanssen, E.; Henze, W. Jr.; Beckers, J.M.

    1983-04-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  19. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    Science.gov (United States)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  20. Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance

    OpenAIRE

    Vernova, E. S.; Tyasto, M. I.; Baranov, D. G.

    2012-01-01

    Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north-south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north-south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the d...

  1. Evolution of Primordial Magnetic Fields: From Generation Till Today

    CERN Document Server

    Kahniashvili, Tina; Tevzadze, Alexander G

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed by decaying hydromagnetic turbulence. We claim that primordial magnetic fields can be considered as a seeds for observed magnetic fields in galaxies and clusters. Magnetic field strength bounds obtained in our analysis are consistent with the upper and lower limits of extragalactic magnetic fields.

  2. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  3. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  4. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.;

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils

    OpenAIRE

    Brys, T.; Czekaj, S.; Daum, M.; Fierlinger, P.; George, D.; Henneck, R.; Hochman, Z.; Kasprzak, M.(Physics Department, University of Fribourg, Fribourg, CH-1700, Switzerland); Kohlik, K.; Kirch, K.; Kuzniak, M.; Kuehne, G.; Pichlmaier, A.; Siodmok, A.; Szelc, A.

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the...

  7. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  8. MAGNETIC FIELDS AND GALACTIC STAR FORMATION RATES

    International Nuclear Information System (INIS)

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (nH>105 cm−3) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR

  9. Field measurement for large quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2008-06-21

    The results of the field measurement of the large quadrupole magnet of the MAGNEX spectrometer are presented and analyzed in the view of the possible application of modern techniques of ray reconstruction. The experimental data are checked against the symmetry conditions expected for the magnet. The observed deviations are related both to imperfections on the magnet manufacturing and to the not ideal positioning of the measurement device. In particular a quantitative estimation of the experimental error in the alignment of the probe with respect to the magnet is achieved. The measured field is also compared with the results from three-dimensional finite elements calculation. The obtained discrepancies between the measured and calculated field are too large for a direct application of the latter to ray-reconstruction methods. Nevertheless, these calculations are reliably used to study the impact of the observed inaccuracies in the probe alignment on the overall precision of field reconstruction and to set quantitative constraints on the field interpolation algorithms.

  10. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  11. Magnetic fields in merging spirals - the Antennae

    CERN Document Server

    Chyzy, K T; Chyzy, Krzysztof T.; Beck, Rainer

    2004-01-01

    We present an extensive study of magnetic fields in a system of merging galaxies. We obtained for NGC4038/39 (the Antennae) radio total intensity and polarization maps at 8.44, 4.86 and 1.49GHz using the VLA in the C and D configurations. The radio thermal fraction was found to be about 50% at 10.45GHz, higher than in normal spirals. The mean total magnetic fields in both galaxies are about two times stronger (20microG) than in normal spirals. However,the degree of field regularity is rather low, implying tangling of the regular component in regions with interaction-enhanced star formation. Our data combined with those in HI, Halpha, X-rays and in far infrared allow us to study local interrelations between different gas phases and magnetic fields. We distinguish several radio-emitting regions with different physical properties and at various evolutionary stages. The whole overlapping region shows a coherent magnetic field structure, probably tracing the line of collision between the arms of merging spirals wh...

  12. Synchronization of magnetic dipole rotation in an ac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, M; Cebers, A, E-mail: aceb@tesla.sal.lv [University of Latvia, Zellu-8, Riga, LV-1002 (Latvia)

    2011-07-22

    The synchronization of the rotation of magnetic dipoles due to weak dipolar interactions is studied. The set of equations is analyzed by the time averaging technique. It is found that dipoles synchronously oscillate at low applied fields and rotate synchronously at large applied fields. The mean angular velocity of synchronous rotation increases with the field strength and reaches a constant value equal to the angular frequency of the field above the critical value of the field strength. The critical value of the field strength above which the synchronous rotation takes place can be calculated from dimensionless parameters using a model derived from first principles by others. The values thus obtained are in good agreement with the values we obtain from a numerical simulation. Thus, we may conclude that the liquid flow observed in these systems may be caused by synchronized rotations of the dipoles.

  13. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Science.gov (United States)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  14. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min [Center for Biosignals, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 305-340 (Korea, Republic of)

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  15. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    OpenAIRE

    Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V.; Van Dorpe, Pol; Moshchalkov, Victor V.

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and det...

  16. Field reconstruction in large aperture quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Berz, M. [Department of Physics and Astronomy, Michigan State University, MI 48824 (United States)

    2009-04-21

    A technique to interpolate complex three-dimensional field distributions such as those produced by large magnets is presented. It is based on a modified charge density method where the elementary sources of the magnetic field are image charges with Gaussian shape placed on a three-dimensional surface. The strengths of the charges are found as the solution of a best-fit problem, whose special features are discussed in detail. The method is tested against the measured field of the MAGNEX large acceptance quadrupole, showing a high level of accuracy together with an effective compensation of the effect of the experimental errors present in the data. In addition the model field is in general analytical and Maxwellian. As a consequence, the reliability of the presented technique to the challenging problem of trajectory reconstruction in modern large acceptance spectrometers is demonstrated.

  17. Anchoring Magnetic Field in Turbulent Molecular Clouds

    CERN Document Server

    Li, Hua-bai; Goodman, Alyssa; Hildebrand, Roger; Novak, Giles

    2009-01-01

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic inter-cloud medium (ICM) which has density nH ~ 1 per cubic cm, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities nH2 > 10^5 per cubic cm. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  18. Cluster magnetic fields from active galactic nuclei

    CERN Document Server

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  19. Evolution of primordial magnetic fields in mean-field approximation

    CERN Document Server

    Campanelli, Leonardo

    2013-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and correlation length, both in helical and non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in radiation and matter dominated eras. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-steaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity $B$ and the magnetic correlation length $\\xi_B$ evolve asymptotically with the temperature $T$ as $B(T) \\simeq \\kappa_B (N_i v_i)^{\\varrho_1} (T/T_i)^{\\varrho_2}$ and $\\xi_B(T) \\simeq \\kap...

  20. Magnetic field effects in chemical systems

    OpenAIRE

    Rodgers, CT

    2009-01-01

    Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the field of spin chemistry of which there have been several detailed and extensive reviews. This review instead presents an introductory account ...

  1. High magnetic field facilities in Latin America

    Science.gov (United States)

    Sato, R.; Grössinger, R.; Bertorello, H.; Broto, J. M.; Davies, H. A.; Estevez-Rams, E.; Gonzalez, J.; Matutes, J.; Sinnecker, J. P.; Sagredo, V.

    2006-11-01

    The EC supported a network (under the Framework 5 ALFA Programme) designated HIFIELD (Project number II0147FI) and entitled: "Measurement methods involving high magnetic fields for advanced and novel materials". As a result, high field facilities were initiated, constructed or extended at the following laboratories in Latin America: University Cordoba (Argentina), CES, Merida (Venezuela), CIMAV, Chihuahua (Mexico), University Federal de Rio de Janeiro (Brazil).

  2. Dynamical Axion Field in Topological Magnetic Insulators

    OpenAIRE

    Li, Rundong; Jing WANG; Qi, Xiaoliang; Zhang, Shou-Cheng

    2009-01-01

    Axions are very light, very weakly interacting particles postulated more than 30 years ago in the context of the Standard Model of particle physics. Their existence could explain the missing dark matter of the universe. However, despite intensive searches, they have yet to be detected. In this work, we show that magnetic fluctuations of topological insulators couple to the electromagnetic fields exactly like the axions, and propose several experiments to detect this dynamical axion field. In ...

  3. The nucleon in a periodic magnetic field

    CERN Document Server

    Agadjanov, Andria; Rusetsky, Akaki

    2016-01-01

    The energy shift of a nucleon in a static periodic magnetic field is evaluated at second order in the external field strength in perturbation theory. It is shown that the measurement of this energy shift on the lattice allows one to determine the unknown subtraction function in the forward doubly-virtual Compton scattering amplitude. The limits of applicability of the obtained formula for the energy shift are discussed.

  4. Primordial magnetic fields and nonlinear electrodynamics

    OpenAIRE

    Kunze, Kerstin E.

    2007-01-01

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which pri...

  5. Magnetic fields and density functional theory

    International Nuclear Information System (INIS)

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules

  6. Heavy meson spectroscopy under strong magnetic field

    CERN Document Server

    Yoshida, Tetsuya

    2016-01-01

    Spectra of the neutral heavy mesons, $\\eta_c(1S,2S)$, $J/psi$, $\\psi(2S)$, $\\eta_b(1S,2S,3S)$, $\\Upsilon(1S,2S,3S)$, $D$, $D^\\ast$, $B$, $B^\\ast$, $B_s$ and $B_s^\\ast$, in a homogeneous magnetic field are analyzed in a potential model of constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic field are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  7. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  8. Laboratory Measurements of Astrophysical Magnetic Fields

    Science.gov (United States)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  9. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  10. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  11. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  12. Evolution of magnetic fields in supernova remnants

    NARCIS (Netherlands)

    Schure, K.M.; Vink, J.; Achterberg, A.; Keppens, R.

    2009-01-01

    Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 10(15) eV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as

  13. Electro-Mechanical Resonant Magnetic Field Sensor

    CERN Document Server

    Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

    2002-01-01

    We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

  14. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  15. Magnetic fields during primordial star formation

    CERN Document Server

    Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S; Federrath, Christoph; Arshakian, Tigran; Beck, Rainer; Spaans, Marco

    2011-01-01

    Recent FERMI observations provide a lower limit of 10^{-15} G for the magnetic field strength in the intergalactic medium (IGM). This is consistent with theoretical expectations based on the Biermann battery effect, which predicts such IGM fields already at redshifts z~10. During gravitational collapse, such magnetic fields can be amplified by compression and by turbulence, giving rise to the small-scale dynamo. On scales below the Jeans length, the eddy turnover timescale is much shorter than the free-fall timescale, so that saturation can be reached during collapse. This scenario has been tested and confirmed with magneto-hydrodynamical simulations following the collapse of a turbulent, weakly magnetized cloud. Based on a spectral analysis, we confirm that turbulence is injected on the Jeans scale. For the power spectrum of the magnetic field, we obtain the Kazantsev slope which is characteristic for the small-scale dynamo. A calculation of the critical length scales for ambipolar diffusion and Ohmic dissip...

  16. Magnetic fields of the W4 superbubble

    CERN Document Server

    Gao, X Y; Reich, P; Han, J L; Kothes, R

    2015-01-01

    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\\sqrt{fne} (\\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\\sq...

  17. Magnetic field affects enzymatic ATP synthesis.

    Science.gov (United States)

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair. PMID:18774801

  18. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  19. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  20. Primordial magnetic fields from the string network

    CERN Document Server

    Horiguchi, Kouichirou; Sugiyama, Naoshi

    2016-01-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar--, vector-- and tensor--type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as $a^2B(k,z)\\sim4\\times10^{-16}G\\mu/((1+z)/1000)^{4.25}(k/{\\rm Mpc}^{-1})^{3.5}$ Gauss on super-horizon scales, and $a^2B(k,z)\\sim2.4\\times10^{-17}G\\mu/((1+z)/1000)^{3.5}(k/{\\rm Mpc}^{-1})^{2.5}$ Gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, ...

  1. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  2. Primordial magnetic fields from self-ordering scalar fields

    CERN Document Server

    Horiguchi, Kouichirou; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-01-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by $B\\sim{10^{-9}}{((1+z)/10^3)^{-2.5}}({v}/{m_{\\rm pl}})^2({k}/{\\rm Mpc^{-1}})^{3.5}/{\\sqrt{N}}$ Gauss in the radiation dominated era for $k\\lesssim 1$ Mpc$^{-1}$, with $v$ being the vacuum ...

  3. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils.

    Science.gov (United States)

    Brys, T; Czekaj, S; Daum, M; Fierlinger, P; George, D; Henneck, R; Hochman, Z; Kasprzak, M; Kohlik, K; Kirch, K; Kuzniak, M; Kuehne, G; Pichlmaier, A; Siodmok, A; Szelc, A; Tanner, L

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  4. Effects of Traveling Magnetic Field on Dynamics of Solidification

    Science.gov (United States)

    2003-01-01

    The Lorentz body force induced in electrically conducting fluids can be utilized for a number of materials processing technologies. An application of strong static magnetic fields can be beneficial for damping convection present during solidification. On the other hand, alternating magnetic fields can be used to reduce as well as to enhance convection. However, only special types of time dependent magnetic fields can induce a non-zero time averaged Lorentz force needed for convection control. One example is the rotating magnetic field. This field configuration induces a swirling flow in circular containers. Another example of a magnetic field configuration is the traveling magnetic field (TMF). It utilizes axisymmetric magnetostatic waves. This type of field induces an axial recirculating flow that can be advantageous for controlling axial mass transport, such as during solidification in long cylindrical tubes. Incidentally, this is the common geometry for crystal growth research. The Lorentz force induced by TMF can potentially counter-balance the buoyancy force, diminishing natural convection, or even setting up the flow in reverse direction. Crystal growth process in presence of TMF can be then significantly modified. Such properties as the growth rate, interface shape and macro segregation can be affected and optimized. Melt homogenization is the other potential application of TMF. It is a necessary step prior to solidification. TMF can be attractive for this purpose, as it induces a basic flow along the axis of the ampoule. TMF can be a practical alloy mixing method especially suited for solidification research in space. In the theoretical part of this work, calculations of the induced Lorentz force in the whole frequency range have been completed. The basic flow characteristics for the finite cylinder geometry are completed and first results on stability analysis for higher Reynolds numbers are obtained. A theoretical model for TMF mixing is also developed

  5. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  6. Quadratic helicities and the energy of magnetic fields

    OpenAIRE

    Akhmet'ev, Petr M.

    2011-01-01

    Two non-local asymptotic invariants of magnetic fields for the ideal magnetohydrodynamics are introduced. The velocity of variation of the invariants for a non-ideal magnetohydrodynamics with a small magnetic dissipation is estimated. By means of the invariants the spectra of electromagnetic fields are investigated. A possible role of higher magnetic helicities during a relaxation of magnetic fields is discussed.

  7. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  8. Warm Magnetic Field Measurements of LARP HQ Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  9. Pollux: a stable weak dipolar magnetic field but no planet ?

    CERN Document Server

    Auriere, Michel; Espagnet, Olivier; Petit, Pascal; Roudier, Thierry; Charbonnel, Corinne; Donati, Jean-Francois; Wade, Gregg A

    2013-01-01

    Pollux is considered as an archetype of a giant star hosting a planet: its radial velocity (RV) presents sinusoidal variations with a period of about 590 d, which have been stable for more than 25 years. Using ESPaDOnS and Narval we have detected a weak (sub-gauss) magnetic field at the surface of Pollux and followed up its variations with Narval during 4.25 years, i.e. more than for two periods of the RV variations. The longitudinal magnetic field is found to vary with a sinusoidal behaviour with a period close to that of the RV variations and with a small shift in phase. We then performed a Zeeman Doppler imaging (ZDI) investigation from the Stokes V and Stokes I least-squares deconvolution (LSD) profiles. A rotational period is determined, which is consistent with the period of variations of the RV. The magnetic topology is found to be mainly poloidal and this component almost purely dipolar. The mean strength of the surface magnetic field is about 0.7 G. As an alternative to the scenario in which Pollux h...

  10. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    Science.gov (United States)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  11. The ESRF Miniature Pulsed Magnetic Field System

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-01

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  12. Magnetic field exposure among utility workers

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, T.D.; Senior, R.S. [T. Dan Bracken, Inc., Portland, OR (United States); Rankin, R.F. [Applied Research Services, Inc., Lake Oswego, OR (United States); Alldredge, J.R. [Washington State Univ., Pullman, WA (United States); Sussman, S.S. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-09-01

    The Electric and Magnetic Field Measurement Project for Utilities -- the Electric Power Research Institute (EPRI) Electric and Magnetic Field Digital Exposure (EMDEX) Project (the EPRI EMDEX Project) -- was a multifaceted project that entailed technology transfer, measurement protocol design, data management, and exposure assessment analyses. This paper addresses one specific objective of the project: the collection, analysis, and documentation of power-frequency magnetic filed exposures for a diverse population of utility employees at 59 sites in four countries between September, 1988, and September, 1989. Specially designed sampling procedures and data collection protocols were used to ensure uniform implementation across sites. Volunteers within 13 job classifications recorded which of eight work or three nonwork environments they occupied while wearing an EMDEX meter. Approximately 50,000 hours of magnetic field exposure records taken at 10 s intervals were obtained, about 70% of which were from work environments. Exposures and time spent in environments were analyzed by primary work environment, by occupied environment, and by job classification.

  13. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Science.gov (United States)

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  14. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  15. Jerks in Stochastic Synthetic Magnetic Fields

    Science.gov (United States)

    Brown, W. J.; Mound, J. E.; Livermore, P. W.

    2014-12-01

    The geomagnetic field is generated by the constant motion of the fluid outer core and varies on timescales from months to millions of years. Geomagnetic jerks are rapid changes in the secular variation of Earth's magnetic field, attributed primarily to changing flows near the surface of the outer core. Various generation mechanisms have been suggested for these rapid changes but none have conclusively explained the phenomena. Jerks can be seen in magnetic observatory records over the last 170~years and in satellite data of the last 15~years. This data coverage, spatially limited and/or temporally restricted, makes it difficult to interpret the true character of jerks at the surface or their origins in the core. This leads us to investigate what further insight we can gain from synthetic magnetic fields such as those which are described by modelling stochastic processes. Such fields are not restricted by the temporal smoothing of most magnetic field models and can better represent rapid variations such as jerks. We compare the characteristics of the synthetic fields with those of observatory and satellite data and hence, finding great similarity, study the presence of jerks in stochastic synthetic fields. Synthetic jerks are seen which resemble observed jerks, occurring frequently with regional periodic variations in amplitudes. These synthetic jerks occur without related features in the large scale secular acceleration power at the CMB. The flexible spatial and temporal sampling of the models creates a means of validating the robustness of observed features in the real field, which suffer from limited sampling. Initial results suggest that the distribution of magnetic observatories is sufficient to accurately recover the large scale features of jerks. As such comparisons between jerks seen in observatory and satellite data may be drawn. We further investigate the spectral properties of jerks in the synthetic fields using spherical harmonic analysis with a view to

  16. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.;

    2006-01-01

    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Ea...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  17. Laser plasma in a magnetic field

    International Nuclear Information System (INIS)

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  18. The energy budget of stellar magnetic fields

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Rosén, L.; Waite, I. A.

    2015-11-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5 M⊙. We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M⊙ having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.

  19. The energy budget of stellar magnetic fields

    CERN Document Server

    See, V; Vidotto, A A; Donati, J -F; Folsom, C P; Saikia, S Boro; Bouvier, J; Fares, R; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Rosen, L; Waite, I A

    2015-01-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5$\\,{\\rm M}_\\odot$. We find that the energy contained in toroidal fields has a power law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5$\\,{\\rm M}_\\odot$ having power indices of 0.72$\\pm$0.08 and 1.25$\\pm$0.06 respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the ste...

  20. Field measurement for large bending magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2008-02-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms.

  1. Evolution of Primordial Magnetic Fields from Phase Transitions

    CERN Document Server

    Kahniashvili, Tina; Brandenburg, Axel; Neronov, Andrii

    2012-01-01

    We consider the evolution of primordial magnetic fields generated during cosmological, electroweak or QCD, phase transitions. We assume that the magnetic field generation can be described as an injection of magnetic energy to cosmological plasma at a given scale determined by the moment of magnetic field generation. A high Reynolds number ensures strong coupling between magnetic field and fluid motions. The subsequent evolution of the magnetic field is governed by decaying hydromagnetic turbulence. Both our numerical simulations and a phenomenological description allow us to recover "universal" laws for the decay of magnetic energy and the growth of magnetic correlation length in the turbulent (low viscosity) regime. In particular, we show that during the radiation dominated epoch, energy and correlation length of non-helical magnetic fields scale as conformal time to the powers -1/2 and +1/2, respectively. For helical magnetic fields, energy and correlation length scale as conformal time to the powers -1/3 a...

  2. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field.

    Science.gov (United States)

    Nakajima, M; Namai, A; Ohkoshi, S; Suemoto, T

    2010-08-16

    We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted epsilon-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted epsilon-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

  3. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  4. On the origin of cosmic magnetic fields

    Science.gov (United States)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  5. Magnetic field gradients and their uses in the study of the earth's magnetic field

    Science.gov (United States)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  6. A topology for the penumbral magnetic fields

    CERN Document Server

    Almeida, J Sanchez

    2008-01-01

    We describe a scenario for the sunspot magnetic field topology that may account for recent observations of upflows and downflows in penumbrae. According to our conjecture, short narrow magnetic loops fill the penumbral volume. Flows along these field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario also fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild upward and downward velocities observed in p...

  7. Magnetic Fields in Population III Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  8. Validation of the CMS Magnetic Field Map

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Mulders, M; Calvelli, V; Hervé, A; Loveless, R

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4-T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 three-dimensional (3-D) Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.

  9. Measurement of the CMS Magnetic Field

    CERN Document Server

    Klyukhin, V I; Bergsma, F; Campi, D; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Korienek, J; Linde, F; Lindenmeyer, C; Loveless, R; Mulders, M; Nebel, T; Smith, R P; Stickland, D; Teafoe, G; Veillet, L; Zimmerman, J K

    2011-01-01

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the...

  10. Intergalactic magnetic fields in Stephan's Quintet

    CERN Document Server

    Nikiel-Wroczyński, B; Urbanik, M; Beck, R; Bomans, D J

    2013-01-01

    We present results of the VLA radio continuum total power and polarised intensity observations of Stephan's Quintet at 1.43 and 4.86 GHz along with complementary 4.85 and 8.35 GHz Effelsberg observations. Our study shows a large envelope of radio emission encompassing all the member galaxies and hence a large volume of intergalac- tic matter. Infall of the galaxy NGC 7318B produces a ridge of intergalactic, polarised emission, for which the magnetic field strength was estimated as 11.0 \\pm 2.2 {\\mu}G, with an ordered component of 2.6 \\pm 0.8 {\\mu}G. The energy density of the field within the ridge area is of the same order as estimates of the thermal component, implying a significant role of the magnetic field in the dynamics of the intergalactic matter. We also report that the tidal dwarf galaxy candidate SQ-B possesses a strong and highly anisotropic magnetic field with the total strength being equal to 6.5 \\pm 1.9 {\\mu}G and an ordered component reaching 3.5 \\pm 1.2 {\\mu}G, which is comparable to that foun...

  11. Hypersensitivity test to electric magnetic fields

    International Nuclear Information System (INIS)

    The so-called electromagnetic hypersensitivity (RH) syndrome includes a number of unspecific, medically unexplained symptoms attributed to exposure to electric and magnetic fields. As a whole, laboratory tests have provided inconclusive results, in part due to the fact that many individuals show nuclear, inconsistent responses to repeated experimental field-exposures. It has been proposed that such inconsistencies could be due in part to distress caused by the lab test itself. We have developed a test to be conducted at the patient's residence, allowing for long-term follow up of exposure-response assessment and avoiding the laboratory environment and the presence of the researcher as potential stressors and confounding factors. In a pilot test, EMDEX-II magnetometers were used to continuously recording power-frequency magnetic fields in the residence of a patient with perceived EH. The patient's symptoms included distress, headache and dizziness, among other ailments. Magnetographic data of a total of 123 recording days were plotted against the corresponding data on occurrence of the symptoms episodes. As a whole, the results did not show positive linear correlation between the daily occurrence of the episode and the exposures levels recorded during the day or during the day before. These preliminary results are little supportive of the hypothesis that the patient's ailments are caused or worsened by a putative hypersensitivity to residential exposure to power-frequency magnetic fields in the 0.02-4.00 μT range. (Author) 29 refs

  12. Direct determination of the microwave magnetic field

    International Nuclear Information System (INIS)

    A study was made of the splitting of a negative ENDOR line by an intense microwave field in an x-ray irradiated single crystal of N-acetylglycine. This splitting was shown to arise as a direct result of the microwave magnetic field, H2, in the cavity. Basic quantum mechanical considerations predict a splitting of magnitude gβH2/2 Dirac's constant. Based on this result, a technique is demonstrated for determining the microwave field in the cavity at the sample site. As an example of the above technique for the microwave field determination, the spin-lattice relaxation time, T1, is estimated for DPPH using the power saturation method. The values of T1 obtained in this manner is larger by an order of magnitude than the previously published values. This difference is attributed to the difference in the method used to determine the microwave field strength

  13. On the origin of cosmic magnetic fields

    International Nuclear Information System (INIS)

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  14. Magnetic Fields in a Sample of Nearby Spiral Galaxies

    CERN Document Server

    Van Eck, Cameron; Shukurov, Anvar; Fletcher, Andrew

    2014-01-01

    Both observations and modelling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media (ISM) of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and ISM parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit noticeable degree of correlation, suggesting a universal behaviour of the degree of order in galactic magnetic fields. We also compare the p...

  15. Magnetic field generation by intermittent convection

    CERN Document Server

    Chertovskih, R; Chimanski, E V

    2016-01-01

    Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.

  16. Galactic Magnetic Fields as a consequence of Inflation

    CERN Document Server

    Dimopoulos, K

    2001-01-01

    The generation of a magnetic field in the Early Universe is considered, due to the gravitational production of the Z-boson field during inflation. Scaled to the epoch of galaxy formation this magnetic field suffices to trigger the galactic dynamo and explain the observed galactic magnetic fields. The mechanism is independent of the inflationary model.

  17. Hanle Effect Diagnostics of the Coronal Magnetic Field - A Test Using Realistic Magnetic Field Configurations

    CERN Document Server

    Raouafi, N -E; Wiegelmann, T

    2008-01-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.

  18. Feynman's Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field

    Science.gov (United States)

    Nakamura, Nozomu; Yamasaki, Kazuhito

    2016-08-01

    We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

  19. Application of high magnetic fields in advanced materials processing

    Institute of Scientific and Technical Information of China (English)

    MA Yanwei; XIAO Liye; YAN Luguang

    2006-01-01

    Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical viewpoint of magnetization energy.

  20. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  1. Magnetic field properties caused by stress concentration

    Institute of Scientific and Technical Information of China (English)

    黄松岭; 李路明; 施克仁; 王晓凤

    2004-01-01

    Measurements of the effects of tensile stress on magnetic field properties, infrared thermography and acoustic emission of a cuboid sample with an elliptical hole in its center were presented. The tensile stress was applied perpendicularly to the sample by electro-tension machine according to a step-loading curve. The changes of the sample temperature was recorded by an infrared thermography system and the noise of domain reversal was inspected by two acoustic probes, which were placed on each end of the sample near the collets of the electro-tension machine,when the sample was in loading process. The magnetic fields on the surface of the sample were inspected with8mm lift-off when the loads were held. Valuable information about the changes of domains was obtained from analysis of acoustic emission signals in loading process. Infrared images of the sample provided complementary information about the state of the sample. The results show that stress concentration in ferromagnetic material affects the direction and structure of domain and generates net magnetic moment on its surface. The distribution and magnitude of the net magnetic moment are correlative with those of stress.

  2. Magnetic field control of fluorescent polymer nanorods

    International Nuclear Information System (INIS)

    Nanoscale objects that combine high luminescence output with a magnetic response may be useful for probing local environments or manipulating objects on small scales. Ideally, these two properties would not interfere with each other. In this paper, we show that a fluorescent polymer host material can be doped with high concentrations of 20–30 nm diameter magnetic γ-Fe2O3 particles and then formed into 200 nm diameter nanorods using porous anodic alumina oxide templates. Two different polymer hosts are used: the conjugated polymer polydioctylfluorene and also polystyrene doped with the fluorescent dye Lumogen Red. Fluorescence decay measurements show that 14% by weight loading of the γ-Fe2O3 nanoparticles quenches the fluorescence of the polydioctylfluorene by approximately 33%, but the polystyrene/Lumogen Red fluorescence is almost unaffected. The three-dimensional orientation of both types of nanorods can be precisely controlled by the application of a moderate strength (∼0.1 T) external field with sub-second response times. Transmission electron microscope images reveal that the nanoparticles cluster in the polymer matrix, and these clusters may serve both to prevent fluorescence quenching and to generate the magnetic moment that rotates in response to the applied magnetic field.

  3. Separation of inclusions from aluminum melt using alternating electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    李克; 王俊; 疏达; 李天晓; 孙宝德; 周尧和

    2002-01-01

    Effects of processing variables such as frequency of imposed magnetic field, imposed magnetic flux density, processing time, diameter of inclusions, and value of r1/δ on the electromagnetic separating(EMS) removal efficiency were analyzed theoretically. The higher the frequency, the wider the range of r1/δ will be. Removal efficiency reaches the maximum while r1/δ ranges from 1.5 to 2. And the experimental results on aluminum melt show that higher frequency and magnetic flux density make for higher removal efficiency, matching well with the theoretical results. When f is 15.6kHz, Be is 0.1T, and imposed time is 10s, more than 80% inclusion particles with 6μm diameter can be removed.

  4. Torsional oscillations of neutron stars with highly tangled magnetic fields

    CERN Document Server

    Sotani, Hajime

    2015-01-01

    To determine the frequencies of magnetic oscillations in the neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with the tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing the spectra, the critical field strength can play an important role, which is determined in such a way that the shear velocity is equi...

  5. Inflating Kahler Moduli and Primordial Magnetic Fields

    CERN Document Server

    Aparicio, Luis

    2016-01-01

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual "strong coupling problem" for primordial magnetogesis manifests itself by cycle sizes approaching the string scale, this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  6. Solar magnetic fields and terrestrial climate

    CERN Document Server

    Georgieva, Katya; Kirov, Boian

    2014-01-01

    Solar irradiance is considered one of the main natural factors affecting terrestrial climate, and its variations are included in most numerical models estimating the effects of natural versus anthropogenic factors for climate change. Solar wind causing geomagnetic disturbances is another solar activity agent whose role in climate change is not yet fully estimated but is a subject of intense research. For the purposes of climate modeling, it is essential to evaluate both the past and the future variations of solar irradiance and geomagnetic activity which are ultimately due to the variations of solar magnetic fields. Direct measurements of solar magnetic fields are available for a limited period, but can be reconstructed from geomagnetic activity records. Here we present a reconstruction of total solar irradiance based on geomagnetic data, and a forecast of the future irradiance and geomagnetic activity relevant for the expected climate change.

  7. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  8. Magnetic field and convection in Betelgeuse

    CERN Document Server

    Petit, P; Konstantinova-Antova, R; Morgenthaler, A; Perrin, G; Roudier, T; Donati, J -F

    2011-01-01

    We present the outcome of a highly-sensitive search for magnetic fields on the cool supergiant Betelgeuse. A time-series of six circularly-polarized spectra was obtained using the NARVAL spectropolarimeter at T\\'elescope Bernard Lyot (Pic du Midi Observatory), between 2010 March and April. Zeeman signatures were repeatedly detected in cross-correlation profiles, corresponding to a longitudinal component of about 1 G. The time-series unveils a smooth increase of the longitudinal field from 0.5 to 1.5 G, correlated with radial velocity fluctuations. We observe a strong asymmetry of Stokes V signatures, also varying in correlation with the radial velocity. The Stokes V line profiles are red-shifted by about 9 km/s with respect to the Stokes I profiles, suggesting that the observed magnetic elements may be concentrated in the sinking components of the convective flows.

  9. Magnetic Field in Superlattices Semiconductors of Crystals

    Directory of Open Access Journals (Sweden)

    Luciano Nascimento

    2015-05-01

    Full Text Available In this work we present a study on the super-semiconductor networks, using the Kronig-Penney model for the effective mass approximation, and then the calculations for the application of the magnetic field perpendicular and parallel to the layers of super lattices crystals. The magnetic field applied parallel to the layers, was used to adjust the resonance of a higher energy subband of a well by thermal excitation with a lower energy subband of the adjacent well, increasing energy levels in its tunneling rate. We use the formalism of Schrödinger equation of quantum mechanics. Introducing the calculations in a systematic way in superlattices for each semiconductor quantum well to assess their energy spectrum systematically studied.

  10. Ferrofluid drops in rotating magnetic fields

    CERN Document Server

    Lebedev, A V; Morozov, K I; Bauke, H

    2003-01-01

    Drops of a ferrofluid floating in a non-magnetic liquid of the same density and spun by a rotating magnetic field are investigated experimentally and theoretically. The parameters for the experiment are chosen such that different stationary drop shapes including non-axis-symmetric configurations could be observed. Within an approximate theoretical analysis the character of the occurring shape bifurcations, the different stationary drop forms, as well as the slow rotational motion of the drop is investigated. The results are in qualitative, and often quantitative agreement, with the experimental findings. It is also shown that a small eccentricity of the rotating field may have a substantial impact on the rotational motion of the drop.

  11. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG TAO; HOU JUN-DA; TANG BAO-YIN; P. K. CHU; I. G. BROWN

    2001-01-01

    The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components:a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.

  12. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software

    Institute of Scientific and Technical Information of China (English)

    Ren Liuyi; Zeng Shanglin; Zhang Yimin

    2015-01-01

    The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the magnetic separator. In this study, equilateral triangle, square, hexagonal, octagon, dode-cagon, and round shape sections of the assembled magnetic medium are chosen to study their influence on magnetic field distribution characteristics using the ANSYS analysis. This paper utilizes a single assem-bled magnetic medium to understand the relationship between the geometry of the assembled magnetic medium and its magnetic field distribution characteristics. The results show that high magnetic field, regional field, magnetic field gradient, and magnetic force formed by the different sections of the assem-bled magnetic medium in the same background magnetic field reduce in turn based on the triangle, square, hexagonal, octagon, dodecagon, and round. Based on the magnetic field characteristics analytic results, the magnetic separation tests of the ilmenite are carried out. The results indicate that the section shape of the toothed plate compared with the section shape of cylinder can improve the recovery of ilme-nite up to 45%in the same magnetizing current condition of 2 A, which is consistent with magnetic field characteristics analysis of different assembled magnetic medium section shapes.

  13. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin [Princeton Univ., NJ (United States). Plasma Physics Lab.; Rax, J.M. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1992-09-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  14. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin (Princeton Univ., NJ (United States). Plasma Physics Lab.); Rax, J.M. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee)

    1992-01-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  15. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  16. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    Science.gov (United States)

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  17. Convective intensification of magnetic fields in the quiet Sun

    CERN Document Server

    Bushby, P J; Proctor, M R E; Weiss, N O

    2008-01-01

    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field $B_e$, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field $B_p$ that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, ``granular'' motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than $B_e$, and the high magnetic pressur...

  18. Electron transport in argon in crossed electric and magnetic fields

    Science.gov (United States)

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  19. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders;

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... used by 42% while increasing the difference in flux density between a high and a low field region by 45%....

  20. Magnetostatic potential theory and the lunar magnetic dipole field

    Science.gov (United States)

    Goldstein, M. L.

    1975-01-01

    The lunar magnetic dipole moment is discussed. It is proposed that if a primordial core magnetic field existed, it would give rise to a present day nonzero external dipole magnetic field. This conclusion is based on the assumption that the lunar mantle is at least slightly ferromagnetic, and thus would maintain a permanent magnetization after the disappearance of the core magnetic field. Using a simple mathematical model of the moon, calculations are performed which support this hypothesis.

  1. A Magnetic Disturbance Compensation Method Based on Magnetic Dipole Magnetic Field Distributing Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Yun-tao; SHI Zhi-yong; L(U) Jian-gang; GUAN Zhen-zhen

    2009-01-01

    The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time, which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increase the geomagnetic measuring accuracy required for the geomagnetic matching localization, the strategy to eliminate the effect of connatural and induced magnetic fields of carrier on the geomagnetic measuring accuracy is investigated. The magnetic-dipoles magnetic field distributing theory is used to deduce the magnetic composition in the position of the sensor installed on the carrier. A geomagnetic measurement model is established by using the measuring data with the ideal sensor. Considering the magnetic disturbance of carrier and the error of sensor, a geomagnetic measuring compensation model is built. This model can be used to compensate the errors of carrier magnetic field and magnetic sensor in any case and its parameters have clear or specific physical meaning. The experimented results show that the model has higher geomagnetic measuring accuracy than that of others.

  2. Field modeling for transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B

    2015-01-01

    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications...... of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii...

  3. Magnetic Resonance Imaging at Ultrahigh Fields

    OpenAIRE

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of ...

  4. Magnetic field evolution in Bok globules

    CERN Document Server

    Wolf, S; Henning, T; Wolf, Sebastian; Launhardt, Ralf; Henning, Thomas

    2003-01-01

    Using the Submillimeter Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), we obtained submillimeter polarization maps of the Bok globules B335, CB230, and CB244 at 850micron. We find strongly aligned polarization vectors in the case of B335 and CB230, indicating a strong coupling of the magnetic field to the dust grains. Based on the distribution of the orientation and strength of the linear polarization we derive the magnetic field strengths in the envelopes of the globules. In agreement with previous submillimeter polarization measurements of Bok globules we find polarization degrees of several percent decreasing towards the centers of the cores. Furthermore, we compare the magnetic field topology with the spatial structure of the globules, in particular with the orientation of the outflows and the orientation of the nonspherical globule cores. In case of the globules B335 and CB230, the outflows are oriented almost perpendicular to the symmetry axis of the globule cores. The ...

  5. The Galactic Magnetic Field and UHECR Optics

    CERN Document Server

    Farrar, Glennys R; Khurana, Deepak; Sutherland, Michael

    2015-01-01

    A good model of the Galactic magnetic field is crucial for estimating the Galactic contribution in dark matter and CMB-cosmology studies, determining the sources of UHECRs, and also modeling the transport of Galactic CRs since the halo field provides an important escape route for by diffusion along its field lines. We briefly review the observational foundations of the Jansson-Farrar 2012 model for the large scale structure of the GMF, underscoring the robust evidence for a N-to-S directed, spiraling halo field. New results on the lensing effect of the GMF on UHECRs are presented, displaying multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity.

  6. Generation of a North/South Magnetic Field Component from Variations in the Photospheric Magnetic Field

    Science.gov (United States)

    Ulrich, Roger K.; Tran, Tham

    2016-04-01

    We address the problem of calculating the transverse magnetic field in the solar wind outside of the hypothetical sphere that is called the source surface where the solar wind originates. This calculation must overcome a widely used fundamental assumption about the source surface - the field is normally required to be purely radial at the source surface. Our model rests on the fact that a change in the radial field strength at the source surface is a change in the field line density. Surrounding field lines must move laterally to accommodate this field line density change. As the outward wind velocity drags field lines past the source surface, this lateral component of motion produces a tilt, implying there is a transverse component to the field. An analytic method of calculating the lateral translation speed of the field lines is developed. We apply the technique to an interval of approximately two Carrington rotations at the beginning of 2011 using 2-h averages of data from the Helioseismic Magnetic Imager instrument onboard the Solar Dynamics Observatory spacecraft. We find that the value of the transverse magnetic field is dominated on a global scale by the effects of high-latitude concentrations of field lines that are buffeted by supergranular motions.

  7. Probing into Magnetic Field and Initial Period of Neutron Star

    Institute of Scientific and Technical Information of China (English)

    BAI Hua; PENG Qiu-He

    2004-01-01

    Using the hybrid model and the neutrino jet rocket model, we calculate the magnetic fields and the initial periods of 72 pulsars. We probe into the possible connection among magnetic field, initial period, and initial quantum number.

  8. Extracting Spectral Index of Intergalactic Magnetic Field from Radio Polarizations

    CERN Document Server

    Tiwari, Prabhakar

    2015-01-01

    We explain the large scale correlations in radio polarization in terms of the correlations of primordial/source magnetic field. The radio waves are dominantly produced by the synchrotron mechanism and hence their polarization angle is deemed to be correlated with the magnetic field of the radio source. The primordial intergalactic magnetic field seeds the source magnetic field and hence it is possible that during the source evolution the correlations of primordial magnetic field survived. We model the intergalactic magnetic field in all $3D$ space and fit its correlations with JVAS/CLASS radio polarization alignments. We find that the radio polarization alignments are best fitted with the magnetic field spectral index given by $-2.43\\pm 0.02$. We show that primordial magnetic field correlation provides a good explanation of the observed radio polarization alignment.

  9. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  10. Zero-field-cooled and field-cooled magnetizations and magnetic susceptibility of itinerant ferromagnet SrRuO3

    Institute of Scientific and Technical Information of China (English)

    侯登录; 姜恩永; 白海力

    2002-01-01

    Zero-field-cooled (ZFC) magnetization, field-cooled (FC) magnetization, ac magnetic susceptibility and majorhysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from5 to 160 K. An empirical model is proposed to calculate the measured ZFC magnetization. The result indicates that thecalculated ZFC magnetization compares well with the measured one. Based on the generalized Preisach model, boththe ZFC and FC curves are reproduced by numerical simulations. The critical temperature and critical exponents aredetermined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinityof the point of phase transition.

  11. Optimal current loop systems for producing uniform magnetic fields

    International Nuclear Information System (INIS)

    This article presents magnetic field uniformity design data for several alternative current loop systems. Universal field symmetry properties of the class of current loop systems that is being considered are elucidated. A common property of the five loop systems that are investigated in detail is that they are all in a sense optimal. This 'Nth order' optimality criterion is defined and discussed. Parameters of selected Nth order current loop systems are quoted. Computations of the field uniformity of these loop systems are presented in graphical form, as 'isogauss' contours, and in tabular form, as the 'normalised volumes' enclosed by the isogauss contours. Information is provided about a current loop system that was actually constructed on the basis of the design data presented here

  12. Management of Vegetation by Alternative Practices in Fields and Roadsides

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2014-01-01

    Full Text Available In attempts to reduce the amounts of conventional herbicides used, alternative practices are sought in the management of roadside vegetation. In this investigation, alternative herbicides (citric-acetic acids, clove oil, corn gluten meal, limonene, and pelargonic acid, flaming, and mulching were assessed in management of annual and perennial, herbaceous vegetation in field and roadside plots. Several formulations of alternative herbicides applied singly or repeatedly during the growing season were evaluated and compared with conventional herbicides (glyphosate and glufosinate ammonium or with flaming or mulching. Citric-acetic acid formulations, clove oil, limonene, or pelargonic acid applied as foliar sprays immediately desiccated foliage, but the efficacy lasted for no longer than five weeks. Repeated applications were better than single applications of these herbicides in suppressing plant vegetative growth. Corn gluten meal imparted little or no early control and stimulated late-season growth of vegetation. A single flaming of vegetation gave no better control than the alternative herbicides, but repeated flaming strongly restricted growth. Mulching with wood chips or bark gave season-long suppression of vegetation. Glyphosate gave season-long inhibition of vegetation, but the efficacy of glufosinate ammonium waned as the growing season progressed. For season-long suppression of vegetation with alternative herbicides or flaming repeated applications will be required.

  13. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    Energy Technology Data Exchange (ETDEWEB)

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. At the still lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by prepolarizing the protons in a field B{sub p} of 0.3 T. Prepolarization (8) enhances the magnetic moment of an ensemble of protons over that produced by the lower precession field; after the polarizing field is removed, the higher magnetic moment produces a correspondingly larger signal during its precession in B{sub 0}. Using the same method, Stepisnik et al. (9) obtained MR images in the Earth's magnetic field ({approx} 50 {micro}T). Alternatively, one can enhance the signal

  14. Localized magnetic fields enhance the field sensitivity of the gyrotropic resonance frequency of a magnetic vortex

    Science.gov (United States)

    Fried, Jasper P.; Metaxas, Peter J.

    2016-02-01

    We have carried out micromagnetic simulations of the gyrotropic resonance mode of a magnetic vortex in the presence of spatially localized and spatially uniform out-of-plane magnetic fields. We show that the field-induced change in the gyrotropic mode frequency is significantly larger when the field is centrally localized over lengths which are comparable to or a few times larger than the vortex core radius. When aligned with the core magnetization, such fields generate an additional confinement of the core. This confinement increases the vortex stiffness in the small-displacement limit, leading to a resonance shift which is greater than that expected for a uniform out-of-plane field of the same amplitude. Fields generated by uniformly magnetized spherical particles having a fixed separation from the disk are found to generate analogous effects except that there is a maximum in the shift at intermediate particle sizes where field localization and stray field magnitude combine optimally to generate a maximum confinement.

  15. Construction of alternative Hamiltonian structures for field equations

    International Nuclear Information System (INIS)

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  16. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  17. Fast Diffusion of Magnetic Field in Turbulence and Origin of Cosmic Magnetism

    OpenAIRE

    Cho, Jungyeon

    2013-01-01

    Turbulence is believed to play important roles in the origin of cosmic magnetism. While it is well known that turbulence can efficiently amplify a uniform or spatially homogeneous seed magnetic field, it is not clear whether or not we can draw a similar conclusion for a localized seed magnetic field. The main uncertainty is the rate of magnetic field diffusion on scales larger than the outer scale of turbulence. To measure the diffusion rate of magnetic field on those large scales, we perform...

  18. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  19. Magnetoresistance of Rippled Graphene in a Parallel Magnetic Field

    Science.gov (United States)

    Wakabayashi, Junichi; Sano, Tomoya

    2011-12-01

    The magnetoresistance of a monolayer graphene in a random magnetic field(RMF) with zero mean has been investigated. The RMF was produced by applying a magnetic field parallel to the graphene plane utilizing ripples. The magnetoresistance has shown the same magnetic field dependence and, unexpectedly, the same carrier density dependence as the conventional two-dimensional electron systems in random magnetic fields. The relation between the characteristic length of ripples and the magnitude of the magnetoresistance is discussed.

  20. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.