WorldWideScience

Sample records for altering phagocyte behavior

  1. Altered release of chemokines by phagocytes from fibromyalgia patients: a pilot study.

    Science.gov (United States)

    García, Juan José; Carvajal-Gil, Julián; Guerrero-Bonmatty, Rafael

    2016-01-01

    Fibromyalgia (FM) is a syndrome characterized by widespread chronic pain and is associated with elevated systemic inflammatory biomarkers, and an elevated innate cellular response. The aim of this study was to determine if fibromyalgia patients have altered ability to release pro-inflammatory chemokines by isolated neutrophils and monocytes. The study participants were women diagnosed with FM (n = 6) and a control group of healthy women (HW) (n = 6). Supernatant concentrations of eotaxin (CCL11), human macrophage-derived chemokine (MDC) (CCL22) and growth regulated-oncogene (GRO-α) (CXCL1) released by both monocytes and neutrophils either resting or stimulated by LPS were determined by ELISA and compared between the FM and HW groups. Both resting and activated monocytes from FM patients released more eotaxin, MDC and GRO-α than those from HW. However, there were no significant differences in the release of chemokines from neutrophils of FM patients and the ones from healthy women. In conclusion, monocytes from women with FM are deregulated, releasing higher amounts of eotaxin, MDC and GRO-α than healthy individuals. This fact does not occur in neutrophils from women with FM. © The Author(s) 2015.

  2. Behçet's disease heterogeneity: cytokine production and oxidative burst of phagocytes are altered in patients with severe manifestations.

    Science.gov (United States)

    Perazzio, Sandro F; Soeiro-Pereira, Paulo Vitor; de Souza, Alexandre Wagner S; Condino-Neto, Antônio; Andrade, Luis Eduardo C

    2015-01-01

    To test the hypothesis that classical phagocytic functions are constitutively stimulated in patients with Behçet's disease (BD). Four study groups were analysed: active BD (aBD; n=30), inactive BD (iBD; n=31); septic patients (SP; n=25); healthy controls (HC; n=30). Microbicide activity against Streptococcus pneumoniae, Streptococcus sanguinis and Candida albicans was determined by means of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and absorbance read by ELISA. Flow cytometry analysis evaluated phagocytosis (zymosan particles and microrganisms) and oxidative burst by dihidrorhodamine oxidation before and after stimulation with phorbol myristate acetate (PMA). The supernatant of PBMC cultures under TLR or microbial stimuli and of neutrophil cultures under PMA, LPS or microbial stimuli were used for determination of cytokine production by ELISA. We found no significant differences between the BD patient groups and control groups with regard to oxidative burst, phagocytic activity, microbicide activity or cytokine production. However, the cells from patients with severe BD (based on clinical manifestation) exhibit significantly higher oxidative burst activity, both before and after PMA stimulation, compared to cells from patients with mild BD. Furthermore, we found significant correlations between the BD patients' scores on the simplified Behçet's Disease Current Activity Form adapted for Portuguese (BR-BDCAFs) and Streptococcus sanguinis-stimulated production of IL23 by PBMC and IL8 by neutrophils, and between BR-BDCAFs score and constitutive production of TNF-α, IFNγ, IL6 and IL23 by PBMC. Patients with severe active BD do exhibit phagocytic dysfunction and some evidence of constitutive activation regarding oxidative burst and cytokine production.

  3. Can Molecular Hippocampal Alterations Explain Behavioral ...

    Science.gov (United States)

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined genotypical outcomes in adult male and female offspring of rats exposed to variable stress during pregnancy. Dams (n=15/treatment) were subjected to several non-chemical stressors including intermittent noise, light, crowding, restraint, and altered circadian lighting, from gestational day (GD) 13 to 20. Tail blood was drawn on GD 12, 16 and 20 to verify a stress response. Corticosterone levels were not different between the stressed and non-stressed dams on GD12 but was significantly increased in stressed dams on GD 16 and 20 compared to controls. Dams gave birth on GD22 (postnatal day or PND 0). Several behavioral tests were used to assess the cognitive and behavioral phenotype of the offspring from PND 49 through 86, including the Morris water maze and novel object recognition. Male and female stressed offspring showed reduced reversal learning on the Morris water maze and stressed females did not show a significant preference for the novel object (57 ± 8%) while control females did (71 ± 3%). This indicates altered cognition in prenatally stressed offspring. On PND 91-92, offspring were necropsied and hippocampal tissue was collected. Genotypic outcomes of prenatal stress w

  4. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  5. Unravelling mononuclear phagocyte heterogeneity

    Science.gov (United States)

    Geissmann, Frédéric; Gordon, Siamon; Hume, David A.; Mowat, Allan M.; Randolph, Gwendalyn J.

    2011-01-01

    When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research. PMID:20467425

  6. Phagocytic activity of peripheral blood and crevicular phagocytes in health and periodontal disease

    Directory of Open Access Journals (Sweden)

    Asif K

    2010-01-01

    Full Text Available Background: Neutrophils constitute the main phagocytic cell system in mammalian host defense against an infecting agent. Abnormalities in leukocyte number and function are associated with increased susceptibility to periodontal diseases. The purpose of this study is to evaluate the in vitro phagocytic properties of crevicular and peripheral blood neutrophils in healthy and periodontitis subjects. Patients and Methods: A total of 30 subjects, that is, 10 patients in each of the following three groups: healthy controls, chronic periodontitis (CP, and localized aggressive periodontitis (LAP, were included in the study. The neutrophils were isolated from the peripheral blood and gingival crevice and tested for phagocytosis of Candida albicans. The percentage of leukocytes with ingested C. albicans was determined by light microscopy. Results: A significant reduction in the phagocytic activity of crevicular fluid polymorphonuclear neutrophils (CF-PMN of LAP subjects (mean: 54.3±7(P< 0.001 was observed, compared to healthy controls (mean: 74.2±9 and chronic periodontitis subjects (mean: 69±9(P=0.352. The mean percentage of peripheral blood polymorphonuclear neutrophils (PMNs with phagocytosis of opsonized C. albicans in LAP patients was significantly reduced (mean: 74.9±5(P< 0.0068 compared to the phagocytic activity of neutrophils from controls (mean:82.1±3 and chronic periodontitis subjects (mean: 82.0±5(P=0.970. There was no significant reduction in the phagocytic activity of CF PMNs (mean: 69±9 (P=0.35 and peripheral blood PMNs (mean: 82.5(P=0.97 in the chronic periodontitis group when compared to the control group. Conclusion: The phagocytic activity of both crevicular and peripheral neutrophils in subjects with periodontitis is altered, increasing the susceptibility to periodontitis. Thus individual susceptibility may be an additional and important modifying factor in the pathogenesis of periodontal disease.

  7. Altered Eating Behaviors in Female Victims of Intimate Partner Violence.

    Science.gov (United States)

    Wong, Susan P Y; Chang, Judy C

    2016-12-01

    Little is known about altered eating behaviors that are associated with the experience of intimate partner violence (IPV) victimization. Our aim was to explore the experiences and perspectives of IPV victims regarding their eating behaviors and their attitudes toward and use of food. We conducted focus groups and individual interviews with 25 IPV victims identified at a domestic violence agency and asked them about their eating behaviors and how, if at all, these behaviors related to their experience of IPV. Qualitative analysis of the transcribed encounters identified themes explicating the relationship between their eating behaviors and experiences of IPV. All women described altered eating behaviors related to IPV that were categorized into several major themes: (a) somatization (victims experience significant somatic symptoms as a result of abuse); (b) avoiding abuse (victims modify their eating behaviors to avoid abuse); (c) coping (victims use food to handle the psychological effects of abuse); (d) self-harm (victims use food to hurt themselves as a reaction to the abuse); and (e) challenging abusive partners (victims use their eating behaviors to retaliate against their abusers). IPV can provoke altered eating behaviors in victims that may be harmful, comforting, or a source of strength in their abusive relationships. Understanding the complex relationship between IPV and victims' altered eating behaviors is important in promoting healthy eating among victims. © The Author(s) 2015.

  8. Parathion alters incubation behavior of laughing gulls

    Science.gov (United States)

    White, D.H.; Mitchell, C.A.; Hill, E.F.

    1983-01-01

    One member of each pair of incubating laughing gulls at 9 nests was trapped, orally dosed with either 6 mg/kg parathion in corn oil or corn oil alone, and marked about the neck with red dye. Each nest was marked with a numbered stake and the treatment was recorded. A pilot study with captive laughing gulls had determined the proper dosage of parathion that would significantly inhibit their brain AChE activity (about 50% of normal) without overt signs of poisoning. After dosing, birds were released and the nests were observed for 2 1/2 days from a blind on the nesting island. The activities of the birds at each marked nest were recorded at 10-minute intervals. Results indicated that on the day of treatment there was no difference (P greater than 0.05, Chi-square test) in the proportion of time spent on the nest between treated and control birds. However, birds dosed with 6 mg/kg parathion spent significantly less time incubating on days 2 and 3 than did birds receiving only corn oil. By noon on the third day, sharing of nest duties between pair members in the treated group had approached normal, indicating recovery from parathion intoxication. These findings suggest that sublethal exposure of nesting birds to an organophosphate (OP) insecticide, such as parathion, may result in decreased nest attentiveness, thereby making the clutch more susceptible to predation or egg failure. Behavioral changes caused by sublethal OP exposure could be especially detrimental in avian species where only one pair member incubates or where both members are exposed in species sharing nest duties.

  9. Alteration behavior of 67 years old tunnel lining concrete

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Hasegawa, Hiroshi; Nakane, Sunao

    1992-01-01

    The objective of this study is to collect data on alteration of concrete under natural environmental conditions. Cementitious materials are examined for utilization in radioactive waste disposal with expectations of long life. To develop a predictive model of alteration behavior, it is important to investigate the alteration of concrete under various natural conditions for a long period of time. Taking into account environmental conditions anticipated for radioactive waste repositories, concrete cores are drilled from tunnel lining concrete 67 years in age. The investigations are conducted from chemical as well as physical points of view using various methods. The concrete examined is found to have been insignificantly altered, maintaining the strength and degree of impermeability hoped for. (orig.)

  10. Alterations in offspring behavior induced by chronic prenatal cocaine dosing.

    Science.gov (United States)

    Smith, R F; Mattran, K M; Kurkjian, M F; Kurtz, S L

    1989-01-01

    Sperm-positive female Long-Evans hooded rats were dosed subcutaneously with 10 mg/kg/day cocaine or an equal volume of vehicle (0.9% sterile saline) from gestation day 4 (GD4) through GD18. Offspring were assessed for development of negative geotaxis, righting reflex, spontaneous alternation, and open field activity, and for adult behaviors including DRL-20 acquisition, water maze, visual discrimination, barbiturate sleep time, shuttlebox avoidance, footshock sensitivity, and tail flick latency. Cocaine dosing produced no significant effects on dam weight gain, any measure of litter size and weight, or early postnatal behavioral tests, but there were significant drug effects on development of spontaneous alternation, development of open field activity, DRL-20 acquisition, water maze performance, tail flick, and footshock sensitivity. These data suggest that chronic administration of a modest dose of cocaine during gestation in the rat alters a number of behaviors in the offspring.

  11. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    Science.gov (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  12. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    Science.gov (United States)

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sertraline Induces Toxicity and Behavioral Alterations in Planarians

    Directory of Open Access Journals (Sweden)

    Isabela Salvador Thumé

    2017-01-01

    Full Text Available Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10 µM sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4 µM. Treatment with 4 µM sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.

  14. Sertraline Induces Toxicity and Behavioral Alterations in Planarians.

    Science.gov (United States)

    Thumé, Isabela Salvador; Frizzo, Marcos Emílio

    2017-01-01

    Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10  µ M sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures) followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4  µ M. Treatment with 4  µ M sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.

  15. Active behavioral coping alters the behavioral but not the endocrine response to stress

    Science.gov (United States)

    Helmreich, Dana L.; Tylee, Daniel; Christianson, John P.; Kubala, Kenneth H.; Govindarajan, Sindhuja T.; O’Neill, William E.; Becoats, Kyeesha; Watkins, Linda; Maier, Steve F.

    2012-01-01

    Summary Exposure to traumatic stressors typically causes lasting changes in emotionality and behavior. However, coping strategies have been shown to prevent and alleviate many stress consequences and the biological mechanisms that underlie coping are of great interest. Whereas the laboratory stressor inescapable tail-shock induces anxiety-like behaviors, here we demonstrate that permitting a rat to chew on a wooden dowel during administration of tail-shock prevented the development of anxiety like behaviors in the open field and juvenile social exploration tests. Uncontrollable stressors increase corticosterone and decrease thyroid hormone, and we hypothesized that coping would blunt these changes. While tail-shock did produce these effects, active coping did not alter hormone levels. The dissociation between behavioral resilience and circulating hormones is discussed with regard to the utility of these molecules as biomarkers for psychiatric disease. PMID:22578266

  16. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart

    Directory of Open Access Journals (Sweden)

    Matthew DeBerge

    2017-11-01

    Full Text Available Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.

  17. Neutrophils and macrophages: The main partners of phagocyte cell systems

    Directory of Open Access Journals (Sweden)

    Manuel T. Silva

    2012-07-01

    Full Text Available Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS, grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.

  18. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang

    2016-01-01

    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  19. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Bacterial behavior has been observed to change during spaceflight. Higher final cell counts enhanced biofilm formation increased virulence and reduced susceptibility...

  20. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-02

    Oct 2, 2013 ... (EMS), for their root growth behavior and salinity tolerance under hydroponic conditions. Six independent mutant lines .... Nagina 22 mutants were screened under hydroponic conditions and putative ..... Nacl resistant rice plant lines from another culture: Distribution pattern of K+/Na+ in callus and plant cells ...

  1. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    In this study, we have screened about 1500 mutants (M2 generation) generated by treating an upland drought tolerant genotype Nagina 22 with Ethyl Methane Sulfonate (EMS), for their root growth behavior and salinity tolerance under hydroponic conditions. Six independent mutant lines possessing significantly shorter ...

  2. Autophagy Proteins in Phagocyte Endocytosis and Exocytosis

    Directory of Open Access Journals (Sweden)

    Christian Münz

    2017-09-01

    Full Text Available Autophagy was initially described as a catabolic pathway that recycles nutrients of cytoplasmic constituents after lysosomal degradation during starvation. Since the immune system monitors products of lysosomal degradation via major histocompatibility complex (MHC class II restricted antigen presentation, autophagy was found to process intracellular antigens for display on MHC class II molecules. In recent years, however, it has become apparent that the molecular machinery of autophagy serves phagocytes in many more membrane trafficking pathways, thereby regulating immunity to infectious disease agents. In this minireview, we will summarize the recent evidence that autophagy proteins regulate phagocyte endocytosis and exocytosis for myeloid cell activation, pathogen replication, and MHC class I and II restricted antigen presentation. Selective stimulation and inhibition of the respective functional modules of the autophagy machinery might constitute valid therapeutic options in the discussed disease settings.

  3. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  4. Effects of water quality alterations on fish behavior

    International Nuclear Information System (INIS)

    Gray, R.H.; Haynes, J.M.; Montgomery, J.C.; Genoway, R.G.; Barraclough, S.A.; Anderson, D.R.; Thatcher, T.O.; Bean, R.M.; Page, T.L.

    1977-01-01

    Objectives of this project are to study behavioral patterns of ecologically or economically valuable fish. Information on sensory--avoidance behavior, or preferential foraging habits, if definitively established by systematic observation can be constructively used in both outfall and water intake design to ameliorate potentially noxious disturbances caused by these structures. The work is applicable to both nuclear and fossil fuel-fired steam electric plants. The instantaneous response of juvenile chinook salmon encountering a simulated river thermal plume interface was also evaluated in a model raceway. Tests indicate that juvenile chinook salmon perceive and avoid discharge temperatures greater than 9 to 11 0 C above ambient, regardless of acclimation temperature. Chlorine is a major chemical compound to reduce biofouling in steam electric power plants. Chlorination of large volumes of cooling waters poses the problem of the formation of chlorination by-products discharged to natural water systems. Long-term bioassays, both fresh and salt water, are underway with indepth analytical chemistry to determine the magnitude of the chlorination by-product problem

  5. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  6. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  7. Behavioral alterations in the gray dolphin Sotalia guianensis (Gervais, 1953 caused by sea traffi

    Directory of Open Access Journals (Sweden)

    Francielli Cristine Cunha Melo

    2006-03-01

    Full Text Available Behavioral responses by Sotalia guianensis dolphins in the presence of touristic sea traffic in the bay of Curral, Pipa-RN, Brazil, were measured. The dolphins changed their behavior when boats were closer than 100 meters. The main behavioral alterations were that the dolphins remained submerged for longer and that they formed a more cohesive group as the boats came closer. Although we concluded that the approach of the boats changed the dolphins’ behavioral pattern, we do not know what aspects of the boats caused the avoidance. We believe that the noise of the boats is probably responsible for repelling the animals.

  8. Innate Immunity to Leishmania Infection: Within Phagocytes

    Directory of Open Access Journals (Sweden)

    Marcela Freitas Lopes

    2014-01-01

    Full Text Available Infection by Leishmania takes place in the context of inflammation and tissue repair. Besides tissue resident macrophages, inflammatory macrophages and neutrophils are recruited to the infection site and serve both as host cells and as effectors against infection. Recent studies suggest additional important roles for monocytes and dendritic cells. This paper addresses recent experimental findings regarding the regulation of Leishmania major infection by these major phagocyte populations. In addition, the role of IL-4 on dendritic cells and monocytes is discussed.

  9. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  10. Transcriptional regulation of mononuclear phagocyte development

    Directory of Open Access Journals (Sweden)

    Roxane eTussiwand

    2015-10-01

    Full Text Available IntroductionThe mononuclear-phagocyte system (MPS, which comprises dendritic cells (DCs, macrophages and monocytes, is a heterogeneous group of myeloid cells. The complexity of the MPS is equally reflected by the plasticity in function and phenotype that characterizes each subset depending on their location and activation state. Specialized subsets of Mononuclear Phagocytes (MP reside in defined anatomical locations, are critical for the homeostatic maintenance of tissues, and provide the link between innate and adaptive immune responses during infections. The ability of MP to maintain or to induce the correct tolerogenic or inflammatory milieu also resides in their complex subset specialization. Such subset heterogeneity is obtained through lineage diversification and specification, which is controlled by defined transcriptional networks and programs. Understanding the MP biology means to define their transcriptional signature, which is required during lineage commitment, and which characterizes each subset’s features. This review will focus on the transcriptional regulation of the MPS; in particular what determines lineage commitment and functional identity; we will emphasizes recent advances in the field of single cell analysis and highlight unresolved questions in the field.

  11. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    Science.gov (United States)

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  12. The Peyer’s Patch Mononuclear Phagocyte System at Steady State and during Infection

    Directory of Open Access Journals (Sweden)

    Clément Da Silva

    2017-10-01

    Full Text Available The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the

  13. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Homeostasis in the mononuclear phagocyte system.

    Science.gov (United States)

    Jenkins, Stephen J; Hume, David A

    2014-08-01

    The mononuclear phagocyte system (MPS) is a family of functionally related cells including bone marrow precursors, blood monocytes, and tissue macrophages. We review the evidence that macrophages and dendritic cells (DCs) are separate lineages and functional entities, and examine whether the traditional view that monocytes are the immediate precursors of tissue macrophages needs to be refined based upon evidence that macrophages can extensively self-renew and can be seeded from yolk sac/foetal liver progenitors with little input from monocytes thereafter. We review the role of the growth factor colony-stimulating factor (CSF)1, and present a model consistent with the concept of the MPS in which local proliferation and monocyte recruitment are connected to ensure macrophages occupy their well-defined niche in most tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  16. Voluntary alcohol intake after noise exposure in adolescent rats: Hippocampal-related behavioral alterations.

    Science.gov (United States)

    Miceli, M; Molina, S J; Forcada, A; Acosta, G B; Guelman, L R

    2018-01-15

    Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  18. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-09-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  19. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-08-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  20. Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice.

    Science.gov (United States)

    Wisniewski, Amy B; Cernetich, Amy; Gearhart, John P; Klein, Sabra L

    2005-02-15

    Exposure to endocrine disrupting chemicals adversely affects reproductive development and behavior in males. The goal of this study was to determine if exposure to genistein, an isoflavone found in soy, during early periods of sex differentiation alters reproductive development and behavior in male mice. Female C57BL/6 mice were fed a phytoestrogen-free diet supplemented with 0, 5 or 300 mg/kg of genistein throughout gestation and lactation. Anogenital distance (AGD) and body mass of male offspring was measured weekly from postnatal days 2-21, timing of preputial separation was assessed at puberty, and in adulthood, reproductive organ masses, sperm and testosterone production, and reproductive and aggressive behaviors were assessed. Exposure to genistein resulted in smaller AGD are reduced body mass, with the low-dose diet exerting a greater effect. Timing of preputial separation, adult reproductive behavior, sperm concentrations and testosterone production were not influenced by genistein treatment at either dose. Aggressive behaviors were decreased, whereas defensive behaviors were increased, in males that received the low-dose genistein diet. Exposure to genistein during critical periods of sex differentiation results in concurrent and persistent demasculinization in male mice. Phenotypic and behavioral abnormalities induced by genistein showed a non-monotonic response, where treatment with a low dose exerted a greater effect than treatment with a high dose of genistein. Given the popularity of soy infant formulas, the influence isoflavone exposure on reproductive and behavioral health in boys and men should be considered.

  1. Alterations of male sexual behavior by learned aversions to hamster vaginal secretion.

    Science.gov (United States)

    Johnston, R E; Zahorik, D M; Immler, K; Zakon, H

    1978-02-01

    Male hamsters poisoned after their first adult exposure to the vaginal secretion of female hamsters became hesitant to approach and ingest the secretion. The same aversion-training procedure also altered the responses of males to estrous females, changing the latency, frequency, and duration of a variety of behaviors that are commonly taken as indexes of sexual attraction or arousal and of copulatory performance. The effects suggest that the aversions to vaginal secretion alter the perceived meaning of the secretion for male hamsters, and analysis of the correlations between various measures of sexual arousal and performance support the hypothesis that separate mechanisms underlie the effects of the secretion on appetitive and consummatory sexual behavior.

  2. Caenorhabditis elegans mutants having altered preference of chemotaxis behavior during simultaneous presentation of two chemoattractants.

    Science.gov (United States)

    Lin, Lin; Wakabayashi, Tokumitsu; Oikawa, Tomohiro; Sato, Tsutomu; Ogurusu, Tarou; Shingai, Ryuzo

    2006-11-01

    Upon presentation of two distinct chemoattractants such as sodium acetate and diacetyl simultaneously, the nematode Caenorhabditis elegans was preferentially attracted by one of these chemoattractants. We isolated two mutants having altered preference of chemotaxis behavior toward simultaneous presentation of sodium acetate and diacetyl. The chep-1(qr1) (CHEmosensory Preference) mutant preferred sodium acetate to diacetyl, while the chep-2(qr2) mutant preferred diacetyl to sodium acetate in simultaneous presentation of these chemoattractants. The chemotaxis behavior of chep-2(qr2) mutant in simultaneous presentation suggests a function of chep-2 gene products within the chemosensory informational integration pathway as well as in the chemosensory pathway.

  3. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  4. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring.

    Science.gov (United States)

    Sasaki, A; de Vega, W; Sivanathan, S; St-Cyr, S; McGowan, P O

    2014-07-11

    Maternal obesity and overconsumption of saturated fats during pregnancy have profound effects on offspring health, ranging from metabolic to behavioral disorders in later life. The influence of high-fat diet (HFD) exposure on the development of brain regions implicated in anxiety behavior is not well understood. We previously found that maternal HFD exposure is associated with an increase in anxiety behavior and alterations in the expression of several genes involved in inflammation via the glucocorticoid signaling pathway in adult rat offspring. During adolescence, the maturation of feedback systems mediating corticosteroid sensitivity is incomplete, and therefore distinct from adulthood. In this study, we examined the influence of maternal HFD on several measures of anxiety behavior and gene expression in adolescent offspring. We examined the expression of corticosteroid receptors and related inflammatory processes, as corticosteroid receptors are known to regulate circulating corticosterone levels during basal and stress conditions in addition to influencing inflammatory processes in the hippocampus and amygdala. We found that adolescent animals perinatally exposed to HFD generally showed decreased anxiety behavior accompanied by a selective alteration in the expression of the glucocorticoid receptor and several downstream inflammatory genes in the hippocampus and amygdala. These data suggest that adolescence constitutes an additional period when the effects of developmental programming may modify mental health trajectories. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A radiolabel release microassay for phagocytic killing of Candida albicans

    International Nuclear Information System (INIS)

    Bistoni, F.; Baccarini, M.; Blasi, E.; Marconi, P.; Puccetti, P.

    1982-01-01

    The chromium-51 release technique for quantifying intracellular killing of radiolabelled Candida albicans particles was exploited in a microassay in which murine and human phagocytes acted as effectors under peculiarly simple conditions. At appropriate effector: target ratios and with a 4 h incubation, up to 50% specific chromium release could be detected in the supernatant with no need for opsonization or lysis of phagocytes. This simple microassay permits easy-to-perform, simultaneous testing of a variety of different phagocytes even if only available in limited amounts, and provides an objective measurement of intracellular killing of Candida albicans. (Auth.)

  6. Iron inhibits respiratory burst of peritoneal phagocytes in vitro

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Jurek, Aleksandra; Kubit, Piotr

    2011-01-01

    Objective. This study examines the effects of iron ions Fe(3+) on the respiratory burst of phagocytes isolated from peritoneal effluents of continuous ambulatory peritoneal dialysis (CAPD) patients, as an in vitro model of iron overload in end-stage renal disease (ESRD). Material and Methods....... Respiratory burst of peritoneal phagocytes was measured by chemiluminescence method. Results. At the highest used concentration of iron ions Fe(3+) (100 µM), free radicals production by peritoneal phagocytes was reduced by 90% compared to control. Conclusions. Iron overload may increase the risk of infectious...

  7. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring.

    Science.gov (United States)

    Enes-Marques, Silvia; Giusti-Paiva, Alexandre

    2018-01-27

    Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.

  8. Postpartum behavioral profiles in Wistar rats following maternal separation - altered exploration and risk-assessment behavior in MS15 dams

    Directory of Open Access Journals (Sweden)

    Loudin Daoura

    2010-06-01

    Full Text Available The rodent maternal separation (MS model is frequently used to investigate the impact of early environmental factors on adult neurobiology and behavior. The majority of MS studies assess effects in the offspring and few address the consequences of repeated pup removal in the dam. Such studies are of interest since alterations detected in offspring subjected to MS may, at least in part, be mediated by variations in maternal behavior and the amount of maternal care provided by the dam. The aim of this study was to investigate how daily short (15 min; MS15 and prolonged (360 min; MS360 periods of MS affects the dam by examining postpartum behavioral profiles using the multivariate concentric square field™ (MCSF test. The dams were tested on postpartum days 24-25, i.e. just after the end of the separation period and weaning. The results reveal a lower exploratory drive and lower risk-assessment behavior in MS15 dams relative to MS360 or animal facility reared dams. The present results contrast some of the previously reported findings and provide new information about early post-weaning behavioral characteristics in a multivariate setting. Plausible explanations for the results are provided including a discussion how the present results fit into the maternal mediation hypothesis.

  9. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins

    Directory of Open Access Journals (Sweden)

    Joaquin N Lugo

    2014-04-01

    Full Text Available Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN. In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN.The knockout (KO mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile x mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.

  11. Survival and function of phagocytes in blood culture media

    DEFF Research Database (Denmark)

    Fischer, T K; Prag, J; Kharazmi, A

    1999-01-01

    The survival and function of human phagocytes in sterile aerobic and anaerobic blood culture media were investigated using neutrophil morphology, white blood cell count in a haemoanalyser, flow cytometry, oxidative burst response, and bactericidal effect in Colorbact and Septi-Chek blood culture...... media and Bact/Alert. When comparing agitation to stationary incubation no difference in phagocytic activity was found. The methods showed the same trends demonstrating that the phagocytes' viability and activity were prolonged by oxygen and shortened by anaerobic conditions and sodium polyethanol...... sulfonate (SPS). Best preserved activity and viability were found in the aerobic media containing less than 0.5 g/l SPS, in which significant phagocyte oxidative burst and bactericidal activity were found up to 4 days after inoculation. Considering that the majority of bacteremias are due to aerobic...

  12. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2015-01-01

    Full Text Available It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH mRNA and activating serotonin transporter (SERT in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study.

  14. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    Science.gov (United States)

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood.

    Science.gov (United States)

    Sasaki, A; de Vega, W C; St-Cyr, S; Pan, P; McGowan, P O

    2013-06-14

    Maternal obesity carries significant health risks for offspring that manifest later in life, including metabolic syndrome, cardiovascular disease and affective disorders. Programming of the hypothalamic-pituitary-adrenal (HPA) axis during development mediates both metabolic homeostasis and the response to psychosocial stress in offspring. A diet high in fat alters maternal systemic corticosterone levels, but effects in offspring on limbic brain areas regulating the HPA axis and anxiety behavior are poorly understood. In addition to their role in the response to psychosocial stress, corticosteroid receptors form part of the glucocorticoid signaling pathway comprising downstream inflammatory processes. Increased systemic inflammation is a hallmark of high-fat diet exposure, though altered expression of these genes in limbic brain areas has not been examined. We studied the influence of high-fat diet exposure during pre-weaning development in rats on gene expression in the amygdala and hippocampus by quantitative real-time polymerase chain reaction (PCR), anxiety behavior in the Open field, elevated plus maze and light-dark transition tasks, and corticosterone levels in response to stress by radioimmunoassay. As adults, offspring exposed to perinatal high-fat diet show increased expression of corticosterone receptors in the amygdala and altered pro-inflammatory and anti-inflammatory expression in the hippocampus and amygdala in genes known to be regulated by the glucocorticoid receptor. These changes were associated with increased anxiety behavior, decreased basal corticosterone levels and a slower return to baseline levels following a stress challenge. The data indicate that the dietary environment during development programs glucocorticoid signaling pathways in limbic areas relevant for the regulation of HPA function and anxiety behavior. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Invasive plant species alters consumer behavior by providing refuge from predation.

    Science.gov (United States)

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  17. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  18. Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Boscolo, Camila Nomura Pereira; Pereira, Thiago Scremin Boscolo; Batalhão, Isabela Gertrudes; Dourado, Priscila Leocadia Rosa; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-01-01

    Diuron and its biodegradation metabolites were recently reported to cause alterations in plasma steroid hormone concentrations with subsequent impacts on reproductive development in fish. Since steroid hormone biosynthesis is regulated through neurotransmission of the central nervous system (CNS), studies were conducted to determine whether neurotransmitters that control hormone biosynthesis could be affected after diuron and diuron metabolites treatment. As the same neurotransmitters and steroid hormones regulate behavioral outcomes, aggression was also evaluated in male Nile tilapia (Oreochromis niloticus). Male tilapias were exposed for 10 days to waterborne diuron and the metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenyl-N-methylurea (DCPMU), at nominal concentrations of 100 ng L -1 . In contrast to Diuron, DCA and DCPMU significantly diminished plasma testosterone concentrations (39.4% and 36.8%, respectively) and reduced dopamine levels in the brain (47.1% and 44.2%, respectively). In addition, concentrations of the stress steroid, cortisol were increased after DCA (71.0%) and DCPMU (57.8-%) exposure. A significant decrease in aggressive behavior was also observed in animals treated with the metabolites DCA (50.9%) and DCPMU (68.8%). These results indicate that biotransformation of diuron to active metabolites alter signaling pathways of the CNS which may impact androgen and the stress response as well as behavior necessary for social dominance, growth, and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Behavioral disturbances, not cognitive deterioration, are associated with altered food selection in seniors with Alzheimer's disease.

    Science.gov (United States)

    Greenwood, Carol E; Tam, Carolyn; Chan, Mae; Young, Karen W H; Binns, Malcolm A; van Reekum, Robert

    2005-04-01

    We previously reported alterations in circadian patterns of food intake that are associated with measures of functional and cognitive deterioration in seniors with probable Alzheimer's disease (AD). This study further explored disturbed eating patterns in AD, focusing on alterations in macronutrient (protein, carbohydrate, and fat) selection, and their association with measures of functional and behavioral losses. Forty-nine days of food intake collections were conducted on 32 residents (26 females, 6 males; age = 88.4 +/- 4.1 years; body mass index = 24.1 +/- 4.0 kg/m(2)) with probable AD residing at a nursing home (a fully accredited geriatric teaching facility affiliated with the University of Toronto's Medical School). All residents ate their meals independently. The relationships between patterns of habitual food consumption and measures of cognitive function (Severe Impairment Battery), behavioral disturbances (Neuropsychiatric Inventory-Nursing Home Version) and behavioral function (London Psychogeriatric Rating Scale) were examined, cross-sectionally. Consistent with our previous studies, breakfast intakes were not predicted by any of the measures of behavioral, cognitive, or functional deterioration, although those residents with greater functional deterioration, especially disengagement, attained lower 24-hour energy intakes. The presence of "psychomotor disturbances," including irritability, agitation, and disinhibition, were strongly associated with shifts in eating patterns toward carbohydrate and away from protein, placing individuals with these conditions at increased risk for inadequate protein intakes. Between-individual differences in intake patterns could not be explained by the use of either anorexic or orexigenic medications. Behavioral, not cognitive, deterioration is associated with appetite modifications that increase risk of poor protein intake, perhaps indicating a common monoaminergic involvement.

  20. Using dissolved carbon dioxide to alter the behavior of invasive round goby

    Science.gov (United States)

    Cupp, Aaron R.; Tix, John; Smerud, Justin R.; Erickson, Richard A.; Fredricks, Kim; Amberg, Jon; Suski, Cory D.; Wakeman, Robert

    2017-01-01

    Fisheries managers need effective methods to limit the spread of invasive round goby Neogobius melanostomus in North America. Elevating carbon dioxide (CO2) in water at pinch points of rivers (e.g., inside locks) is one approach showing potential to deter the passage of invasive fishes, such as bigheaded carps Hypophthalmichthys spp., but the effectiveness of this method to alter round goby behavior has not been determined. The goal for this study was to determine CO2 concentrations that alter round goby behavior across a range of water temperatures. Free-swimming avoidance (voluntary response) and loss of equilibrium (involuntary response) were quantified by exposing round goby to increasing CO2 concentrations at 5, 15, and 25 °C using a shuttle box choice arena and static tank. Water chemistry was measured concurrent with behavioral endpoints and showed that round goby avoided a threshold of 99–169 mg/L CO2(79,000–178,000 µatm) and lost equilibrium at 197–280 mg/L CO2 (163,000–303,000 µatm). Approximately 50% lower CO2 concentrations were found to modify behavior at 5 °C relative to 25 °C, suggesting greater effectiveness at lower water temperatures. We conclude that CO2 modified round goby behavior and concentrations determined in this study are intended to guide field testing of CO2 as an invasive fish deterrent.

  1. Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.

    Science.gov (United States)

    Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto

    2014-08-01

    Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Can group-based reassuring information alter low back pain behavior?

    DEFF Research Database (Denmark)

    Frederiksen, Pernille; Indahl, Aage; Andersen, Lars L.

    2017-01-01

    muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce. DESIGN: A cluster......BACKGROUND: Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary......-randomized controlled trial. METHODS: Publically employed workers (n = 505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non...

  3. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior.

    Directory of Open Access Journals (Sweden)

    Mark Lyte

    Full Text Available The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group and fed either a normal corn starch diet (NCS or diets rich in resistant starches HA7 diet (HA7 or octenyl-succinate HA7 diet (OS-HA7 for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001. Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to

  4. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  5. Awake Intranasal Insulin Delivery Modifies Protein Complexes and Alters Memory, Anxiety, and Olfactory Behaviors

    Science.gov (United States)

    Marks, D.R.; Tucker, K.; Cavallin, M.A.; Mast, T.G.; Fadool, D.A.

    2009-01-01

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of Diabetes mellitus and its associated metabolic and neuronal co-morbidities. The insulin receptor kinase (IR) is expressed at high levels in the olfactory bulb (OB), where it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a seven day intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and post-synaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor-discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made pre-diabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors. PMID:19458242

  6. Modulation ofTcf7l2 expression alters behavior in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Savic

    Full Text Available The comorbidity of type 2 diabetes (T2D with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI, which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further.

  7. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition.

    Science.gov (United States)

    Ormerod, Kiel G; LePine, Olivia K; Abbineni, Prabhodh S; Bridgeman, Justin M; Coorssen, Jens R; Mercier, A Joffre; Tattersall, Glenn J

    2017-07-03

    Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages.

  8. An image processing framework for automated analysis of swimming behavior in tadpoles with vestibular alterations

    Science.gov (United States)

    Zarei, Kasra; Fritzsch, Bernd; Buchholz, James H. J.

    2017-03-01

    Micogravity, as experienced during prolonged space flight, presents a problem for space exploration. Animal models, specifically tadpoles, with altered connections of the vestibular ear allow the examination of the effects of microgravity and can be quantitatively monitored through tadpole swimming behavior. We describe an image analysis framework for performing automated quantification of tadpole swimming behavior. Speckle reducing anisotropic diffusion is used to smooth tadpole image signals by diffusing noise while retaining edges. A narrow band level set approach is used for sharp tracking of the tadpole body. The use of level set method for interface tracking provides an inherent advantage of using level set based image segmentation algorithm (active contouring). Active contour segmentation is followed by two-dimensional skeletonization, which allows the automated quantification of tadpole deflection angles, and subsequently tadpole escape (or C-start) response times. Evaluation of the image analysis methodology was performed by comparing the automated quantifications of deflection angles to manual assessments (obtained using a standard grading scheme), and produced a high correlation (r2 = 0.99) indicating high reliability and accuracy of the proposed method. The methods presented form an important element of objective quantification of the escape response of the tadpole vestibular system to mechanical and biochemical manipulations, and can ultimately contribute to a better understanding of the effects of altered gravity perception on humans.

  9. Deletion of Rictor in catecholaminergic neurons alters locomotor activity and ingestive behavior.

    Science.gov (United States)

    Kaska, Sophia; Brunk, Rebecca; Bali, Vedrana; Kechner, Megan; Mazei-Robison, Michelle S

    2017-05-01

    While the etiology of depression is not fully understood, increasing evidence from animal models suggests a role for the ventral tegmental area (VTA) in pathogenesis. In this paper, we investigate the potential role of VTA mechanistic target of rapamycin 2 (TORC2) signaling in mediating susceptibility to chronic social defeat stress (CSDS), a well-established mouse model of depression. Utilizing genetic and viral knockout of Rictor (rapamycin-insensitive companion of target of rapamycin), a requisite component of TORC2, we demonstrate that decreasing Rictor-dependent TORC2 signaling in catecholaminergic neurons, or within the VTA specifically, does not alter susceptibility to CSDS. Opiate abuse and mood disorders are often comorbid, and previous data demonstrate a role for VTA TORC2 in mediating opiate reward. Thus, we also investigated its potential role in mediating changes in opiate reward following CSDS. Catecholaminergic deletion of Rictor increases water, sucrose, and morphine intake but not preference in a two-bottle choice assay in stress-naïve mice, and these effects are maintained after stress. VTA-specific knockout of Rictor increases water and sucrose intake after physical CSDS, but does not alter consummatory behavior in the absence of stress. These findings suggest a novel role for TORC2 in mediating stress-induced changes in consummatory behaviors that may contribute to some aspects of mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Soluble glucomannan isolated from Candida utilis primes blood phagocytes.

    Science.gov (United States)

    Hájková, Veronika; Svobodová, Aneta; Krejcová, Daniela; Cíz, Milan; Velebný, Vladimír; Lojek, Antonín; El-Benna, Jamel; Kubala, Lukás

    2009-10-12

    It is well documented that the polysaccharide glucomannan (GM), an abundant constituent of the fungal cell wall, in the form of particulate induces strong activation of phagocytes, however, the effects of soluble GM are not known. Activation of phagocyte anti-microbial mechanisms is a crucial part of the innate host defense against invading pathogens. However, under uncontrolled inflammatory conditions they contribute to damage of surrounding tissues. Thus, to prevent these deleterious effects, the activation of phagocytes is a tightly regulated process. Therefore, in this study we analyzed the effect of soluble GM on some neutrophil functions such as reactive oxygen species production, degranulation, and receptor mobilization at the plasma membrane. Soluble GM at the tested concentrations did not stimulate oxidative burst of phagocytes directly but significantly potentiated oxidative burst in response to opsonized zymosan particles. GM induced significant phosphorylation of p47phox subunit of NADPH oxidase on Ser345. This priming effect of GM was accompanied by time and concentration dependent degranulation characterized by increased surface expression of receptors stored in neutrophil granules (CD10, CD11b, CD14, CD35, and CD66b). Degranulation was further confirmed by increase of elastase activity in media. Thus, it could be suggested that soluble GM induces priming of phagocytes connected with their degranulation, the increase of surface receptor expression, and potentiation of oxidative burst response to opsonized particles through the activation of NADPH oxidase.

  11. ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations.

    Science.gov (United States)

    Johnson, Lance A; Zuloaga, Damian G; Bidiman, Erin; Marzulla, Tessa; Weber, Sydney; Wahbeh, Helane; Raber, Jacob

    2015-09-01

    Apolipoprotein E (apoE) is an essential component of lipoprotein particles in both the brain and periphery, and exists in three isoforms in the human population: E2, E3, and E4. ApoE has numerous, well-established roles in neurobiology. Most notably, E4 is associated with earlier onset and increased risk of Alzheimer's disease (AD). Although possession of E2 is protective in the context of AD, E2 appears to confer an increased incidence and severity of posttraumatic stress disorder (PTSD). However, the biological processes underlying this link remain unclear. In this study, we began to elucidate these associations by examining the effects of apoE on PTSD severity in combat veterans, and on PTSD-like behavior in mice with human apoE. In a group of 92 veterans with PTSD, we observed significantly higher Clinician-Administered PTSD Scale and PTSD Checklist scores in E2+ individuals, as well as alterations in salivary cortisol levels. Furthermore, we measured behavioral and biological outcomes in mice expressing human apoE after a single stressful event as well as following a period of chronic variable stress, a model of combat-related trauma. Mice with E2 showed impairments in fear extinction, and behavioral, cognitive, and neuroendocrine alterations following trauma. To the best of our knowledge, these data constitute the first translational demonstration of PTSD severity in men and PTSD-like symptoms in mice with E2, and point to apoE as a novel biomarker of susceptibility, and potential therapeutic target, for PTSD.

  12. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    Science.gov (United States)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  13. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Science.gov (United States)

    Elston, Thomas W; Pandian, Ashvini; Smith, Gregory D; Holley, Andrew J; Gao, Nanjing; Lugo, Joaquin N

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  14. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Thomas W Elston

    Full Text Available There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  15. Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice

    Science.gov (United States)

    Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  16. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity

    Science.gov (United States)

    Horn, E.; Agricola, H.; Böser, S.; Förster, S.; Kämper, G.; Riewe, P.; Sebastian, C.

    "Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (μg). The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of μg- or 3g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".

  17. Attention Alters Neural Responses to Evocative Faces in Behaviorally Inhibited Adolescents

    Science.gov (United States)

    Pérez-Edgar, Koraly; Roberson-Nay, Roxann; Hardin, Michael G.; Poeth, Kaitlin; Guyer, Amanda E.; Nelson, Eric E.; McClure, Erin B.; Henderson, Heather A.; Fox, Nathan A.; Pine, Daniel S.; Ernst, Monique

    2007-01-01

    Behavioral inhibition (BI) is a risk factor for anxiety disorders. While the two constructs bear behavioral similarities, previous work has not extended these parallels to the neural level. This study examined amygdala reactivity during a task previously used with clinically anxious adolescents. Adolescents were selected for enduring patterns of BI or non-inhibition (BN). We examined amygdala response to evocative emotion faces in BI (N=10, mean 12.8 years) and BN (N=17, mean 12.5 years) adolescents while systematically manipulating attention. Analyses focused on amygdala response during subjective ratings of internal fear (constrained attention) and passive viewing (unconstrained attention) during the presentation of emotion faces (Happy, Angry, Fearful, and Neutral). BI adolescents, relative to BN adolescents, showed exaggerated amygdala response during subjective fear ratings and deactivation during passive viewing, across all emotion faces. In addition, the BI group showed an abnormally high amygdala response to a task condition marked by novelty and uncertainty (i.e., rating fear state to a Happy face). Perturbations in amygdala function are evident in adolescents temperamentally at risk for anxiety. Attention state alters the underlying pattern of neural processing, potentially mediating the observed behavioral patterns across development. BI adolescents also show a heightened sensitivity to novelty and uncertainty, which has been linked to anxiety. These patterns of reactivity may help sustain early temperamental biases over time and contribute to the observed relation between BI and anxiety. PMID:17376704

  18. Nanoparticles of barium induce apoptosis in human phagocytes.

    Science.gov (United States)

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.

  19. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    impairment in memory. Both glyphosate and Roundup ® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup ® , altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The use of messages in altering risky gambling behavior in college students: an experimental analogue study.

    Science.gov (United States)

    Jardin, Bianca; Wulfert, Edelgard

    2009-01-01

    This study examined the effects of messages on altering risky gambling behavior in college students. While playing a chance-based computerized game with play money, three groups of participants either viewed occasional accurate messages that correctly described the contingencies of the game, neutral messages unrelated to the contingencies, or no messages. Participants in the accurate message condition spent overall less money gambling, played fewer trials in the final phase of the game when all trials resulted in losses, and were more likely to quit the game while they still had money remaining in the bank. The findings suggest that "reminders" about the random nature of games and the overall negative rate of return might lead to more responsible gaming.

  1. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Ellmore, Timothy M; Castriotta, Richard J; Hendley, Katie L; Aalbers, Brian M; Furr-Stimming, Erin; Hood, Ashley J; Suescun, Jessika; Beurlot, Michelle R; Hendley, Roy T; Schiess, Mya C

    2013-12-01

    Rapid eye movement sleep behavior disorder (RBD) is a condition closely associated with Parkinson disease (PD). RBD is a sleep disturbance that frequently manifests early in the development of PD, likely reflecting disruption in normal functioning of anatomical areas affected by neurodegenerative processes. Although specific neuropathological aspects shared by RBD and PD have yet to be fully documented, further characterization is critical to discovering reliable biomarkers that predict PD onset. In the current study, we tested the hypothesis of altered functional connections of the substantia nigra (SN) in patients in whom RBD was diagnosed. Between-groups, single time point imaging. UTHSC-H 3 telsa MRI center. Ten patients with RBD, 11 patients with PD, and 10 age-matched controls. NA. We measured correlations of SN time series using resting state blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) in patients with idiopathic RBD who were at risk for developing PD, patients in whom PD was diagnosed, and age-matched controls. Using voxelwise analysis of variance, different correlations (P < 0.01, whole-brain corrected) between left SN and left putamen were found in patients with RBD compared with controls and patients with PD. SN correlations with right cuneus/precuneus and superior occipital gyrus were significantly different for patients with RBD compared with both controls and patients with PD. The results suggest that altered nigrostriatal and nigrocortical connectivity characterizes rapid eye movement sleep behavior disorder before onset of obvious motor impairment. The functional changes are discussed in the context of degeneration in dopaminergic and cognition-related networks.

  2. DMPD: Regulation of phagocyte migration and recruitment by Src-family kinases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385944 Regulation of phagocyte migration and recruitment by Src-family kinases. B...how Regulation of phagocyte migration and recruitment by Src-family kinases. PubmedID 18385944 Title Regulation of phagocyte migratio

  3. The α1 Antagonist Doxazosin Alters the Behavioral Effects of Cocaine in Rats

    Directory of Open Access Journals (Sweden)

    Colin N. Haile

    2012-11-01

    Full Text Available Medications that target norepinephrine (NE neurotransmission alter the behavioral effects of cocaine and may be beneficial for stimulant-use disorders. We showed previously that the short-acting, α1-adrenergic antagonist, prazosin, blocked drug-induced reinstatement of cocaine-seeking in rats and doxazosin (DOX, a longer-acting α1 antagonist blocked cocaine’s subjective effects in cocaine-dependent volunteers. To further characterize DOX as a possible pharmacotherapy for cocaine dependence, we assessed its impact on the development and expression of cocaine-induced locomotor sensitization in rats. Rats (n = 6–8 were administered saline, cocaine (COC, 10 mg/kg or DOX (0.3 or 1.0 mg/kg alone or in combination for 5 consecutive days (development. Following 10-days of drug withdrawal, all rats were administered COC and locomotor activity was again assessed (expression. COC increased locomotor activity across days indicative of sensitization. The high dose (1.0 mg/kg, but not the low dose (0.3 mg/kg of DOX significantly decreased the development and expression of COC sensitization. DOX alone did not differ from saline. These results are consistent with studies showing that α1 receptors are essential for the development and expression of cocaine’s behavioral effects. Results also suggest that blockade of both the development and expression of locomotor sensitization may be important characteristics of possible pharmacotherapies for cocaine dependence in humans.

  4. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population

    Science.gov (United States)

    Ohayon, Maurice M.; Milesi, Cristina

    2016-01-01

    Study Objectives: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Methods: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10th Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Results: Living in areas with greater ONL was associated with delayed bedtime (P sleep duration (P sleep quantity and quality (P sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. Citation: Ohayon MM, Milesi C. Artificial outdoor nighttime lights associate with altered sleep behavior in the american general population. SLEEP 2016;39(6):1311–1320. PMID:27091523

  5. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    Science.gov (United States)

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  6. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  7. Soluble glucomannan isolated from Candida utilis primes blood phagocytes

    Czech Academy of Sciences Publication Activity Database

    Hájková, V.; Svobodová, Aneta; Krejčová, Daniela; Číž, Milan; Velebný, V.; Lojek, Antonín; El-Benna, J.; Kubala, Lukáš

    2009-01-01

    Roč. 344, č. 15 (2009), s. 2036-2041 ISSN 0008-6215 R&D Projects: GA ČR(CZ) GA524/06/1197 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : phagocyte * glucans * degranulation Subject RIV: BO - Biophysics Impact factor: 2.025, year: 2009

  8. In vivo evaluation of the antibacterial capacity of tissue phagocytes

    International Nuclear Information System (INIS)

    Guerra, H.

    1975-01-01

    The phagocytic activity of guinea pig liver to deal with bacterial infection was investigated on 14 C- or 32 P-labelled Brucella melitensis. Some in vitro work has been started, using immunoglobulins (IgG, IgM) with antibody activity against whole Brucella

  9. Survival and function of phagocytes in blood culture media

    DEFF Research Database (Denmark)

    Fischer, T K; Prag, J; Kharazmi, A

    1999-01-01

    The survival and function of human phagocytes in sterile aerobic and anaerobic blood culture media were investigated using neutrophil morphology, white blood cell count in a haemoanalyser, flow cytometry, oxidative burst response, and bactericidal effect in Colorbact and Septi-Chek blood culture...

  10. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  11. H1-antihistamines and oxidative burst of professional phagocytes

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Jančinová, V.; Moravcová, Jana; Lojek, Antonín; Číž, Milan; Mačičková, T.; Pečivová, J.

    2009-01-01

    Roč. 30, č. 1 (2009), s. 133-136 ISSN 0172-780X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemiluminescence * H1- antihistamines * phagocytes Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  12. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish.

    Science.gov (United States)

    Sachett, Adrieli; Bevilaqua, Fernanda; Chitolina, Rafael; Garbinato, Cristiane; Gasparetto, Henrique; Dal Magro, Jacir; Conterato, Greicy M; Siebel, Anna M

    2018-01-01

    The occurrence of ractopamine (RAC) hydrochloride in water bodies is of significant concern due to its ecological impacts and toxicity to humans. RAC hydrochloride is a β-adrenergic agonist drug used as a feed additive to (1) improve feed efficiency, (2) rate of weight gain, and (3) increase carcass leanness in animals raised for their meat. This drug is excreted by animals in urine and introduced into the environment affecting nontarget organisms including fish. In wastewater released from farms, RAC concentrations were detected from 0.124 µg/L to 30.1 µg/L, and in levels ranging from 1.3 × 10 -5 to 5.4 × 10 -4 μg/L in watersheds. The aim of this study was to examine the effects of exposure to RAC at 0.1, 0.2, 0.85, 8.5, or 85 µg/L dissolved in water on behavior and oxidative status in adult zebrafish. At 0.85 µg/L, RAC treatment increased exploratory behavior of zebrafish; while at 8.5 µg/L, decreased locomotor and exploratory activities were noted. With respect to oxidative stress biomarkers, results showed that RAC at 0.2 µg/L induced lipid peroxidation and elevated total thiol content in zebrafish brain. All drug tested concentrations produced a fall in nonprotein thiol content. Finally, RAC at 0.85, 8.5, or 85 µg/L increased catalase enzyme activity. Our results demonstrated that the exposure to RAC induced behavioral alterations and oxidative stress in zebrafish.

  13. DEPRESSIVE BEHAVIOR AND METABOLIC ALTERATIONS IN MICE ARE MUSICAL STYLE-DEPENDENT

    Directory of Open Access Journals (Sweden)

    V. S. Lima

    2015-10-01

    Full Text Available Nowadays, the world population has been affected by two serious psychological disorders, anxiety and depression, but there are few discoveries for new therapies to combat them. Studies have shown that music therapy has its beneficial behavioral effects. Therefore, the aim of the present study it was to investigate the possible effects of two music styles in some lipids and carbohydrate metabolism parameters resulting from behavioral changes related to anxiety and depression. So, mice were used with 30 days of age, divided into 6 groups: G1: saline, G2: Diazepam (DZP, G3: Fluoxetine (FLX, G4: control (no treatment, G5: Rock, and G6: Mozart Sonata. The animals from groups G1, G2 and G3 received treatments by oral route (gavage for 15 days. The music therapy sessions (2x/day 4 hours/day occurred in the same period of time at a 65dB frequency for G5 and G6 groups. After being evaluated in spontaneous locomotion, elevated plus maze and forced swimming tests, the animals were euthanized. The lactate, total cholesterol and plasma glucose levels were measured from the blood. No change was observed in spontaneous locomotion test and elevated plus maze. In the forced swimming test animals exposed to Rock showed an increase in immobility time. Furthermore, it was observed an increase in glucose and a reduction in cholesterol levels in the groups exposed to Rock and Mozart, while a decrease of lactate was observed only in group Rock. It was concluded that the auditory stimulus caused by music in mice was able to encourage depressive behavior and alter some lipids and carbohydrate metabolism parameters dependently of the musical style.

  14. Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna.

    Science.gov (United States)

    Parolini, Marco; De Felice, Beatrice; Ferrario, Claudia; Salgueiro-González, Noelia; Castiglioni, Sara; Finizio, Antonio; Tremolada, Paolo

    2018-01-01

    Several monitoring studies have shown that benzoylecgonine (BE) is the main illicit drug residue commonly measured in the aquatic system worldwide. Few studies have investigated the potential toxicity of this molecule towards invertebrate and vertebrate aquatic non-target organisms focusing on effects at low levels of the biological organization, but no one has assessed the consequences at higher ones. Thus, the present study was aimed at investigating the toxicity of a 48-h exposure to two concentrations of BE, similar to those found in aquatic ecosystems (0.5 μg/L and 1.0 μg/L), on the cladoceran Daphnia magna at different levels of the ecological hierarchy. We relied on a multi-level approach focusing on the effects at biochemical/biomolecular (biomarkers), individual (swimming activity) and population (reproduction) levels. We measured the amount of reactive oxygen species and of the activity of antioxidant (SOD, CAT, and GPx) and detoxifying (GST) enzymes to assess if BE exposure can alter the oxidative status of D. magna specimens, while the lipid peroxidation (TBARS) was measured as a marker of oxidative damage. Moreover, we also measured the acetylcholinesterase (AChE) activity because it is strictly related to behavioral changes in aquatic organisms. Changes in swimming behavior were investigated by a video tracking analysis, while the consequences on reproduction were assessed by a chronic toxicity test. Our results showed that BE concentrations similar to those found in aquatic ecosystems induced oxidative stress and inhibited AChE activity, affecting swimming behavior and the reproduction of Daphnia magna individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diet, age, and prior injury status differentially alter behavioral outcomes following concussion in rats.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; van Waes, Linda; Esser, Michael J

    2015-01-01

    Mild traumatic brain injury (mTBI) or concussion affects a large portion of the population and although many of these individuals recover completely, a small subset of people experience lingering symptomology and poor outcomes. Little is known about the factors that affect individual susceptibility or resilience to poor outcomes after mTBI and there are currently no biomarkers to delineate mTBI diagnosis or prognosis. Based upon the growing literature associated with caloric intake and altered neurological aging and the ambiguous link between repetitive mTBI and progressive neurodegeneration, the current study was designed to examine the effect of a high fat diet (HFD), developmental age, and repetitive mTBI on behavioral outcomes following a mTBI. In addition, telomere length was examined before and after experimental mTBI. Sprague Dawley rats were maintained on a HFD or standard rat chow throughout life (including the prenatal period) and then experienced an mTBI/concussion at P30, P30 and P60, or only at P60. Behavioral outcomes were examined using a test battery that was administered between P61-P80 and included; beam-walking, open field, elevated plus maze, novel context mismatch, Morris water task, and forced swim task. Animals with a P30 mTBI often demonstrated lingering symptomology that was still present during testing at P80. Injuries at P30 and P60 rarely produced cumulative effects, and in some tests (i.e., beam walking), the first injury may have protected the brain from the second injury. Exposure to the high fat diet exacerbated many of the behavioral deficits associated with concussion. Finally, telomere length was shortened following mTBI and was influenced by the animal's dietary intake. Diet, age at the time of injury, and the number of prior concussion incidents differentially contribute to behavioral deficits and may help explain individual variations in susceptibility and resilience to poor outcomes following an mTBI. Copyright © 2014

  16. Enhancement of Extinction Learning Attenuates Ethanol-Seeking Behavior and Alters Plasticity in the Prefrontal Cortex

    Science.gov (United States)

    Trantham-Davidson, Heather; Kassab, Amanda S.; Glen, William B.; Olive, M. Foster; Chandler, L. Judson

    2014-01-01

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. PMID:24872560

  17. Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex.

    Science.gov (United States)

    Gass, Justin T; Trantham-Davidson, Heather; Kassab, Amanda S; Glen, William B; Olive, M Foster; Chandler, L Judson

    2014-05-28

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. Copyright © 2014 the authors 0270-6474/14/347562-13$15.00/0.

  18. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    Werb, Z.; Chin, J.R.

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [ 35 S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D + secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  19. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    Science.gov (United States)

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID

  20. Short and long term neuro-behavioral alterations in type 1 diabetes mellitus pediatric population

    Science.gov (United States)

    Litmanovitch, Edna; Geva, Ronny; Rachmiel, Marianna

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most prevalent chronic conditions affecting individuals under the age of 18 years, with increasing incidence worldwide, especially among very young age groups, younger than 5. There is still no cure for the disease, and therapeutic goals and guidelines are a challenge. Currently, despite T1DM intensive management and technological interventions in therapy, the majority of pediatric patients do not achieve glycemic control goals. This leads to a potential prognosis of long term diabetic complications, nephrological, cardiac, ophthalmological and neurological. Unfortunately, the neurological manifestations, including neurocognitive and behavioral complications, may present soon after disease onset, during childhood and adolescence. These manifestations may be prominent, but at times subtle, thus they are often not reported by patients or physicians as related to the diabetes. Furthermore, the metabolic mechanism for such manifestations has been inconsistent and difficult to interpret in practical clinical care, as reported in several reviews on the topic of brain and T1DM. However, new technological methods for brain assessment, as well as the introduction of continuous glucose monitoring, provide new insights and information regarding brain related manifestations and glycemic variability and control parameters, which may impact the clinical care of children and youth with T1DM. This paper provides a comprehensive review of the most recently reported behavioral, cognitive domains, sleep related, electrophysiological, and structural alterations in children and adolescences from a novel point of view. The review focuses on reported impairments based on duration of T1DM, its timeline, and modifiable disease related risk parameters. These findings are not without controversy, and limitations of data are presented in addition to recommendations for future research direction. PMID:25789107

  1. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  2. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  3. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model.

    Science.gov (United States)

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Rezaei-Tavirani, Mostafa; Najafi Abedi, Akram

    2016-01-01

    Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40  Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.

  4. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol.

    Science.gov (United States)

    Bray, Jennifer G; Roberts, Amanda J; Gruol, Donna L

    2017-06-23

    Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). The consequences of alcohol-induced increases in CCL2 levels in the CNS have yet to be fully elucidated. Our studies focus on the hypothesis that increased levels of CCL2 in the CNS produce neuroadaptive changes that modify the actions of alcohol on the CNS. We utilized behavioral testing in transgenic mice that express elevated levels of CCL2 to test this hypothesis. The increased level of CCL2 in the transgenic mice involves increased astrocyte expression. Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior.

    Science.gov (United States)

    Viberg, Henrik; Fredriksson, Anders

    2011-01-01

    Sucralose, a high-intensity sweetener, has been approved as a general-purpose sweetener in all food since the late 1990s. Due to its good taste and physiochemical profile, its use has increased and sucralose is considered a way of managing health and an option to improve the quality of life in the diabetic population. Recently high concentrations of sucralose have been found in the environment. Other environmental pollutants have been shown to induce neurotoxic effects when administered during a period of rapid brain growth and development. This period of rapid brain growth and development is postnatal in mice and rats, spanning the first 3-4 wk of life, reaching its peak around postnatal day 10, whereas in humans, brain growth and development is perinatal. The proteins calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau play important roles during brain growth and development. In the present study, mice were orally exposed to 5-125 mg of sucralose per kilogram of body weight per day during postnatal days 8-12. Twenty-four hours after last exposure, brains were analyzed for calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau, and at the age of 2 mo the animals were tested for spontaneous behavior. The protein analysis showed no alterations in calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, or tau. Furthermore, there were no disturbances in adult behavior or habituation after neonatal sucralose exposure. The present study shows that repeated neonatal exposure to the artificial sweetener sucralose does not result in neurotoxicity, which supports that sucralose seems to be a safe alternative for people who want or need to reduce or substitute glucose in their diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Russell Vivienne A

    2009-06-01

    and prefrontal cortex while SD prefrontal cortex released more [3H]norepinephrine than WKY. SHR were resilient, cross-fostering did not reduce their ADHD-like behavior or change their neurochemistry. Cross-fostering of SD pups onto SHR or WKY dams increased their exploratory behavior without altering their anxiety-like behavior. Conclusion The ADHD-like behavior of SHR and their neurochemistry is genetically determined and not dependent on nurturing by SHR dams. The similarity between WKY and SD supports the continued use of WKY as a control for SHR and suggests that SD may be a useful additional reference strain for SHR. The fact that SD behaved similarly to WKY in the elevated-plus maze argues against the use of WKY as a model for anxiety-like disorders.

  7. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  8. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research

    Directory of Open Access Journals (Sweden)

    Sergio Tufik

    2009-09-01

    Full Text Available Sleep comprises approximately one-third of a person's lifetime, but its impact on health and medical conditions remains partially unrecognized. The prevalence of sleep disorders is increasing in modern societies, with significant repercussions on people's well-being. This article reviews past and current literature on the paradoxical sleep deprivation method as well as data on its consequences to animals, ranging from behavioral changes to alterations in the gene expression. More specifically, we highlight relevant experimental studies and our group's contribution over the last three decades.O sono ocupa cerca de um terço de nossas vidas, entretanto seu impacto na saúde e sua influência nas condições patológicas ainda não foi completamente elucidado. A prevalência dos distúrbios de sono é cada vez maior, sobretudo nas regiões mais industrializadas, repercutindo diretamente no bem-estar da população. Este artigo tem como objetivo sintetizar e atualizar a literatura a respeito do método de privação de sono paradoxal e seu panorama de conseqüências desde comportamentais até genéticas em animais. Ainda, destacamos a contribuição e relevância dos estudos experimentais realizados por nosso grupo nas ultimas três décadas.

  9. Alcohol during adolescence selectively alters immediate and long-term behavior and neurochemistry.

    Science.gov (United States)

    Maldonado-Devincci, Antoniette M; Badanich, Kimberly A; Kirstein, Cheryl L

    2010-02-01

    Alcohol use increases across adolescence and is a concern in the United States. In humans, males and females consume different amounts of alcohol depending on the age of initiation, and the long-term consequences of early ethanol consumption are not readily understood. The purpose of our work was to better understand the immediate and long-term impact of ethanol exposure during adolescence and the effects it can have on behavior and dopaminergic responsivity. We have assessed sex differences in voluntary ethanol consumption during adolescence and adulthood and the influence of binge ethanol exposure during adolescence. We have observed that males are sensitive to passive social influences that mediate voluntary ethanol consumption, and early ethanol exposure induces long-term changes in responsivity to ethanol in adulthood. Exposure to moderate doses of ethanol during adolescence produced alterations in dopamine in the nucleus accumbens septi during adolescence and later in adulthood. Taken together, all of these data indicate that the adolescent brain is sensitive to the impact of early ethanol exposure during this critical developmental period. 2010 Elsevier Inc. All rights reserved.

  10. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats.

    Science.gov (United States)

    Flora, Swaran J S; Bhatt, Kapil; Mehta, Ashish

    2009-10-15

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  11. Phagocytic activity and the response to autovaccines in recurrent staphylococcal boils

    Directory of Open Access Journals (Sweden)

    A C Karnik

    1990-01-01

    Full Text Available The present study was aimed to see the relationship between the phagocytic function as determined by NBT reduction test and the response to the staphylococal boils. Of the 34 cases of recurrent staphylococcal cutaneous infections, 19 showed normal phagocytic activity while 2 had marginally diminished and 13 had grossly diminished phagocytic activity. Sixteen of the vaccines (84% with normal phagocytic funetion responded well to the vaccine therapy while only 3 of the 13 (23% with poor phagocytic function showed the beneficial effects of the autovaccines. Thus the findings recommend the use of staphyloccoccal autovaccines in the cases with adequate phagocytic activity as seen by NBT reduction test but not as much for those with inadequate phagocytic function.

  12. Modulation of rat blood phagocyte activity by serotonin

    Czech Academy of Sciences Publication Activity Database

    Okénková, Kateřina; Lojek, Antonín; Kubala, Lukáš; Číž, Milan

    2007-01-01

    Roč. 101, č. 14 (2007), s245-s246 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GA524/04/0897 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : phagocytes * serotonin * reactive oxygen species Subject RIV: BO - Biophysics

  13. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  14. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  15. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2017-09-01

    revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.

  16. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  17. Effects of Cottonseed Meal on Hematological, Biochemical and Behavioral Alterations in Male Japanese Quail (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    M. Moazam Jalees, M. Zargham Khan*, M. Kashif Saleemi and Ahrar Khan

    2011-06-01

    Full Text Available The present study was carried out to find toxico-pathological effects of cottonseed meal (CSM in male Japanese quail (Coturnix japonica. Male birds (n=48 were equally divided into four groups (A to D. Three isonitric and isocaloric experimental feeds were formulated by replacing soybean meal with three levels of CSM i.e., 13, 27 and 41%. The respective feed was offered to the birds ad libitum for the duration of experiment (42 days. Clinical signs, behavioral alterations, feed consumption, body weight, absolute and relative organ weight, hematological and biochemical parameters along with gross and histopathological lesions were studied. In group B and C, birds were temporarily depressed but later on became active. In group D, birds remained dull and depressed and 66.7% mortality was recorded. Body weight, absolute and relative organ weight was non-significantly different in treatment groups compared with control. Feed intake at week 1 was significantly low in group D while during remaining experiment; it differed non-significantly in all the treatment groups compared with control. Testicular volume at day 21 was significantly (P<0.05 low in group D. Significantly low serum total proteins and albumin in groups B and C and hematocrit values in all the groups and hemoglobin concentration in group D were recorded at day 42 of experiment. It was concluded that CSM 13% level did not have any deleterious effect on the feed conversion and body weight but the reproductive performance of the male Japanese quail was affected.

  18. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep.

    Science.gov (United States)

    Capper, Judith L; Wilkinson, Robert G; Mackenzie, Alexander M; Sinclair, Liam A

    2006-02-01

    The objectives of the study were to determine whether supplementation of pregnant ewes with long-chain (n-3) fatty acids present in fish oil, in combination with dietary vitamin E, would alter neonatal behavior in sheep. Twin- (n=36) and triplet- (n=12) bearing ewes were allocated at d 103 of gestation to 1 of 4 dietary treatments containing 1 of 2 fat sources [Megalac, a calcium soap of palm fatty acid distillate or a fish oil mixture, high in 20:5(n-3) and 22:6(n-3)] and 1 of 2 dietary vitamin E concentrations (50 or 500 mg/kg) in a 2 x 2 factorial design. Feeding fish oil increased gestation length by 2 d and increased the proportion of 22:6(n-3) within neonatal plasma by 5.1-fold and brain by 10%, whereas brain 20:5(n-3) was increased 5-fold. Supranutritional dietary vitamin E concentrations decreased the latency of lambs to stand in ewes fed fish oil but not Megalac, whereas latency to suckle was decreased from 43 to 34 min by fish oil supplementation. Supplementation with fish oil also substantially decreased the secretion rate (mL/h) of colostrum and the yield (g/h) of fat and protein. We conclude that supplementation of ewes with fish oil decreases the latency to suckle, increases gestation length and the 22:6(n-3):20:4(n-6) ratio in the neonatal brain, and may improve lamb survival rate. However, further work is required to determine how to mitigate the negative effects of fish oil on colostrum production.

  19. Mononuclear Phagocytes Are Dispensable for Cardiac Remodeling in Established Pressure-Overload Heart Failure.

    Directory of Open Access Journals (Sweden)

    Bindiya Patel

    Full Text Available Although cardiac and splenic mononuclear phagocytes (MPs, i.e., monocytes, macrophages and dendritic cells (DCs, are key contributors to cardiac remodeling after myocardial infarction, their role in pressure-overload remodeling is unclear. We tested the hypothesis that these immune cells are required for the progression of remodeling in pressure-overload heart failure (HF, and that MP depletion would ameliorate remodeling.C57BL/6 mice were subjected to transverse aortic constriction (TAC or sham operation, and assessed for alterations in MPs. As compared with sham, TAC mice exhibited expansion of circulating LyC6hi monocytes and pro-inflammatory CD206- cardiac macrophages early (1 w after pressure-overload, prior to significant hypertrophy and systolic dysfunction, with subsequent resolution during chronic HF. In contrast, classical DCs were expanded in the heart in a biphasic manner, with peaks both early, analogous to macrophages, and late (8 w, during established HF. There was no significant expansion of circulating DCs, or Ly6C+ monocytes and DCs in the spleen. Periodic systemic MP depletion from 2 to 16 w after TAC in macrophage Fas-induced apoptosis (MaFIA transgenic mice did not alter cardiac remodeling progression, nor did splenectomy in mice with established HF after TAC. Lastly, adoptive transfer of splenocytes from TAC HF mice into naïve recipients did not induce immediate or long-term cardiac dysfunction in recipient mice.Mononuclear phagocytes populations expand in a phasic manner in the heart during pressure-overload. However, they are dispensable for the progression of remodeling and failure once significant hypertrophy is evident and blood monocytosis has normalized.

  20. Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii.

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Lakhundi, Sahreena; Khan, Naveed Ahmed

    2015-06-01

    Several lines of evidence suggest that Acanthamoeba interact with bacteria, which may aid in pathogenic bacterial transmission to susceptible hosts, and these interactions may have influenced evolution of bacterial pathogenicity. In this study, we tested if Gram-negative Pseudomonas aeruginosa and Gram-positive Corynebacterium spp. can associate/invade and survive inside Acanthamoeba castellanii trophozoites and cysts, as well as non-phagocytic human brain microvascular endothelial cells. The results revealed that both Corynebacterium spp. and P. aeruginosa were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. In contrast, P. aeruginosa exhibited higher association as well as invasion of non-phagocytic HBMEC compared with Corynebacterium spp. Notably, P. aeruginosa remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (74.54 bacteria per amoebae) compared with Corynebacterium spp. (2.69 bacteria per amoeba) (P Acanthamoeba cysts can be airborne, these findings suggest that Acanthamoeba is a potential vector in the transmission of P. aeruginosa to susceptible hosts. When bacterial-ridden amoebae were exposed to favourable (nutrient-rich) conditions, A. castellanii emerged as vegetative trophozoites and remained viable, and likewise viable P. aeruginosa were also observed but rarely any Corynebacterium spp. were observed. Correspondingly, P. aeruginosa but not Corynebacterium spp. exhibited higher cytotoxicity to non-phagocytic HBMEC, producing more than 75% cell death in 24 h, compared to 20% cell death observed with Corynebacterium spp. Additionally, it was observed that the bacterial conditioned medium had no negative effect on A. castellanii growth. Further characterization of amoebal and bacterial interactions will assist in identifying the role of Acanthamoeba in the transmission and evolution of pathogenic bacteria.

  1. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-01-01

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  2. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus.

    Science.gov (United States)

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Hartmann, Klaas; Semmens, Jayson M

    2017-10-03

    Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic "flinch" response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops.

  3. Determining the Phagocytic Activity of Clinical Antibody Samples

    Science.gov (United States)

    McAndrew, Elizabeth G.; Dugast, Anne-Sophie; Licht, Anna F.; Eusebio, Justin R.; Alter, Galit; Ackerman, Margaret E.

    2011-01-01

    Antibody-driven phagocytosis is induced via the engagement of Fc receptors on professional phagocytes, and can contribute to both clearance as well as pathology of disease. While the properties of the variable domains of antibodies have long been considered critical to in vivo function, the ability of antibodies to recruit innate immune cells via their Fc domains has become increasingly appreciated as a major factor in their efficacy, both in the setting of recombinant monoclonal antibody therapy, as well as in the course of natural infection or vaccination1-3. Importantly, despite its nomenclature as a constant domain, the antibody Fc domain does not have constant function, and is strongly modulated by IgG subclass (IgG1-4) and glycosylation at Asparagine 2974-6. Thus, this method to study functional differences of antigen-specific antibodies in clinical samples will facilitate correlation of the phagocytic potential of antibodies to disease state, susceptibility to infection, progression, or clinical outcome. Furthermore, this effector function is particularly important in light of the documented ability of antibodies to enhance infection by providing pathogens access into host cells via Fc receptor-driven phagocytosis7. Additionally, there is some evidence that phagocytic uptake of immune complexes can impact the Th1/Th2 polarization of the immune response8. Here, we describe an assay designed to detect differences in antibody-induced phagocytosis, which may be caused by differential IgG subclass, glycan structure at Asn297, as well as the ability to form immune complexes of antigen-specific antibodies in a high-throughput fashion. To this end, 1 μm fluorescent beads are coated with antigen, then incubated with clinical antibody samples, generating fluorescent antigen specific immune complexes. These antibody-opsonized beads are then incubated with a monocytic cell line expressing multiple FcγRs, including both inhibitory and activating. Assay output can

  4. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  5. Depressive-like history alters persistent pain behavior in rats: Opposite contribution of frontal cortex and amygdala implied.

    Science.gov (United States)

    Qi, Wei-Jing; Wang, Wei; Wang, Ning; Wang, Jin-Yan; Luo, Fei

    2013-08-01

    Numerous studies have shown that pain perception is strongly influenced by depression. However, very few studies have examined whether pain perception is altered in the remission period of depression, and what role the fronto-limbic circuits may play in the behavioral changes associated with remission. Using an unpredictable chronic mild stress (UCMS) animal model of depression, the present study investigated pain-related behaviors in rats with prior exposure to a UCMS stimulus. The γ-aminobutyric acid (GABA) A receptor agonist muscimol was microinjected bilaterally into the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) to examine the modulation of pain by these brain regions in the recovery state. Rats with a depression-like history displayed increased ongoing pain behavior in the formalin test, although their thermal pain thresholds were unchanged. Intra-BLA muscimol during the recovery phase dramatically decreased formalin-induced pain behavior and also significantly increased rats' sucrose preference. By contrast, in the mPFC, muscimol produced the opposite effect, suggesting different, perhaps opposing, roles of the BLA and mPFC in mediating the influence of prior UCMS exposure on pain perception. Taken together, these results demonstrated that a depressive experience may cause long-term alterations in limbic circuit excitability and thus lead to long-lasting changes in pain perception.

  6. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation

    Directory of Open Access Journals (Sweden)

    Michail Pavlidis

    2017-04-01

    Full Text Available Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant—subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L−1, and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004 cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr, neural activity (bdnf, c-fos, and the serotonergic system (htr2b, slc6a4b. The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.

  7. Dietary exposure to technical hexabromocyclododecane (HBCD) alters courtship, incubation and parental behaviors in American kestrels (Falco sparverius).

    Science.gov (United States)

    Marteinson, Sarah C; Bird, David M; Letcher, Robert J; Sullivan, Katrina M; Ritchie, Ian J; Fernie, Kim J

    2012-11-01

    Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant that has been detected in the environment and wildlife at increasing concentrations. This study was designed to determine potential effects of dietary exposure to environmentally relevant levels of HBCD on behavior during reproduction in captive American kestrels. Twenty kestrel pairs were exposed to 0.51 μg technical HBCD g(-1) kestrel d(-1) from 4 weeks prior to pairing until chicks hatched (~75 d). Ten pairs of controls received the safflower oil vehicle only and were used for comparison. During the courtship period the chitter-calls were reduced in both sexes (p=0.038) and females performed fewer bonding displays (p=0.053). Both sexes showed a propensity to be less active than controls during courtship. The reduction in male courtship behavior was correlated with reduced courtship behaviors of females (p=0.008) as well as reduced egg mass (p=0.019). During incubation, nest temperatures of treatment pairs were lower at mid-incubation (p=0.038). HBCD-exposed males performed fewer key parental behaviors when rearing nestlings, including entering the nest-box, pair-bonding displays and food-retrievals. HBCD-exposed females appeared to compensate for the reduced parental behavior of their mates by performing these same behaviors more frequently than controls (p=0.004, p=0.027, p=0.025, respectively). This study demonstrates that HBCD affects breeding behavior in American kestrels throughout the reproductive season and behavioral alterations were linked to reproductive changes (egg size). This is the first study to report HBCD effects on reproductive behavior in any animal model. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Altered diurnal pattern of steroid hormones in relation to various behaviors, external factors and pathologies: A review.

    Science.gov (United States)

    Collomp, K; Baillot, A; Forget, H; Coquerel, A; Rieth, N; Vibarel-Rebot, N

    2016-10-01

    The adrenal and gonadal stress steroids [i.e., cortisol, testosterone and dehydroepiandrosterone (DHEA)] have gathered considerable attention in the last few decades due to their very broad physiological and psychological actions. Their diurnal patterns have become a particular focus following new data implicating altered diurnal hormone patterns in various endocrine, behavioral and cardiovascular risk profiles. In this review of the current literature, we present a brief overview of the altered diurnal patterns of these hormones that may occur in relation to chronic stress, nutritional behaviors, physical exercise, drugs and sleep deprivation/shift. We also present data on the altered diurnal hormone patterns implicated in cardiometabolic and psychiatric/neurologic diseases, cancer and other complex pathologies. We consider the occasionally discrepant results of the studies, and summarize the current knowledge in this new field of interest, underlining the potential effects on both biological and psychological functioning, and assess the implications of these effects. Last, we conclude with some practical considerations and perspectives. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    The establishment of cause–effect relationships is fundamental for the interpretation and the predictive value of biomarker responses measured at all levels of biological complexity. In the present study, the biochemical exposure biomarker acetylcholinesterase (AChE) inhibition was related...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer......-dependent difference in behavioral sensitivity to minor AChE depressions. The results demonstrate that automated measurements of locomotor behavior is at least as sensitive an endpoint to organophosphate poisoning as the AChE assay. Further, the correlation between the molecular and behavioral responses in individual...

  10. Effects of creosote exposure on rainbow trout pronephros phagocyte activity and the percentage of lymphoid B cells.

    Science.gov (United States)

    Karrow, N A; Bols, N C; Whyte, J J; Solomon, K R; Dixon, D G; Boermans, H J

    2001-07-06

    An outdoor microcosm study was conducted in order to evaluate the kinetics of immunomodulation in rainbow trout (Oncorhynchus mykiss) exposed to liquid creosote. Fish were sampled on d 7, 14, 21, and 28 from microcosms dosed initially with 0, 3, and 10 microl/L of creosote. Pronephros leukocytes were monitored for phagocytic activity, oxidative burst, and surface immunoglobulin-positive (Slg+) B-cell counts. Oxidative burst was inhibited by creosote exposure; however, by sampling d 28, the burst response returned to near control levels. Phagocytic activity, on the other hand, was stimulated, peaking on sampling d 7, then returning to near control levels by d 28. Although control Slg+ B-cell counts were quite variable across sampling days, Slg+ B-cell counts were also elevated in creosote-exposed fish after seven days of exposure. Slg+ B-cell numbers decreased significantly to near control levels during the remainder of the study. The overall results from this study confirm that creosote has the potential to alter certain immune parameters, and emphasize the importance of monitoring changes in the immune system during exposure. Polycyclic aromatic hydrocarbons (PAHs), a major constituent of liquid creosote, are the suspected immune-altering agents.

  11. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation.

    Science.gov (United States)

    André, Caroline; Dinel, Anne-Laure; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-10-01

    Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated

  12. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures. Copyright © 2017 Endocrine Society.

  13. 5-HT2Areceptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress.

    Science.gov (United States)

    Jaggar, Minal; Weisstaub, Noelia; Gingrich, Jay A; Vaidya, Vidita A

    2017-12-01

    Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin 2A (5-HT 2A ) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT 2A receptor knockout (5-[Formula: see text]) and wild-type mice of both sexes. While 5-[Formula: see text] male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-[Formula: see text] female mice with a hyperlipidemic baseline phenotype. 5-[Formula: see text] male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes ( Crh , Crhr1 , Nr3c1, and Nr3c2 ), trophic factors ( Bdnf , Igf1 ) and immediate early genes (IEGs) ( Arc , Fos , Fosb , Egr1-4 ) in the PFC and hippocampus were altered in 5-[Formula: see text] mice both under baseline and CUS conditions. Our results support a role for the 5-HT 2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT 2A receptor to stress-evoked changes is sexually dimorphic.

  14. Residential development alters behavior, movement, and energetics in an apex predator, the puma

    OpenAIRE

    Wang, Yiwei; Smith, Justine A.; Wilmers, Christopher C.

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and pro...

  15. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Science.gov (United States)

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  16. THE ESTROGENIC AND ANTIANDROGENIC PESTICIDE METHOXYCHLOR ALTERS THE REPRODUCTIVE TRACT AND BEHAVIOR WITHOUT AFFECTING PITUITARY SIZE OR LH AND PROLACTIN SECRETION IN MALE RATS

    Science.gov (United States)

    The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats.Gray LE Jr, Ostby J, Cooper RL, Kelce WR.Endocrinology Branch, United States Environment...

  17. The Eating-Disorder Associated HDAC4A778TMutation Alters Feeding Behaviors in Female Mice.

    Science.gov (United States)

    Lutter, Michael; Khan, Michael Z; Satio, Kenji; Davis, Kevin C; Kidder, Ian J; McDaniel, Latisha; Darbro, Benjamin W; Pieper, Andrew A; Cui, Huxing

    2017-05-01

    While eating disorders (EDs) are thought to result from a combination of environmental and psychological stressors superimposed on genetic vulnerability, the neurobiological basis of EDs remains incompletely understood. We recently reported that a rare missense mutation in the gene for the transcriptional repressor histone deacetylase 4 (HDAC4) is associated with the risk of developing an ED in humans. To understand the biological consequences of this missense mutation, we created transgenic mice carrying this mutation by introducing the alanine to threonine mutation at position 778 of mouse Hdac4 (corresponding to position 786 of the human protein). Bioinformatic analysis to identify Hdac4-regulated genes was performed using available databases. Male mice heterozygous for HDAC4 A778T did not show any metabolic or behavioral differences. In contrast, female mice heterozygous for HDAC4 A778T display several ED-related feeding and behavioral deficits depending on housing condition. Individually housed HDAC4 A778T female mice exhibit reduced effortful responding for high-fat diet and compulsive grooming, whereas group-housed female mice display increased weight gain on high-fat diet, reduced behavioral despair, and increased anxiety-like behaviors. Bioinformatic analysis identifies mitochondrial biogenesis including synthesis of glutamate/gamma-aminobutyric acid as a potential transcriptional target of HDAC4 A778T activity relevant to the behavioral deficits identified in this new mouse model of disordered eating. The HDAC4 A778T mouse line is a novel model of ED-related behaviors and identifies mitochondrial biogenesis as a potential molecular pathway contributing to behavioral deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Reciprocal upregulation of scavenger receptors complicates interpretation of nanoparticle uptake in non-phagocytic cells

    NARCIS (Netherlands)

    Prapainop, Kanlaya; Miao, Rong; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2017-01-01

    Nanoparticles have great potential as drug delivery vehicles or as imaging agents for treatment and diagnosis of various diseases. It is therefore crucial to understand how nanoparticles are taken up by cells, both phagocytic and non-phagocytic. Small interference RNA has previously been used to

  19. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary

    Directory of Open Access Journals (Sweden)

    Sandy B. Serizier

    2017-11-01

    Full Text Available For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells. Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  20. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary.

    Science.gov (United States)

    Serizier, Sandy B; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  1. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway.

    Science.gov (United States)

    Morizawa, Yosuke M; Hirayama, Yuri; Ohno, Nobuhiko; Shibata, Shinsuke; Shigetomi, Eiji; Sui, Yang; Nabekura, Junichi; Sato, Koichi; Okajima, Fumikazu; Takebayashi, Hirohide; Okano, Hideyuki; Koizumi, Schuichi

    2017-06-22

    Astrocytes become reactive following various brain insults; however, the functions of reactive astrocytes are poorly understood. Here, we show that reactive astrocytes function as phagocytes after transient ischemic injury and appear in a limited spatiotemporal pattern. Following transient brain ischemia, phagocytic astrocytes are observed within the ischemic penumbra region during the later stage of ischemia. However, phagocytic microglia are mainly observed within the ischemic core region during the earlier stage of ischemia. Phagocytic astrocytes upregulate ABCA1 and its pathway molecules, MEGF10 and GULP1, which are required for phagocytosis, and upregulation of ABCA1 alone is sufficient for enhancement of phagocytosis in vitro. Disrupting ABCA1 in reactive astrocytes result in fewer phagocytic inclusions after ischemia. Together, these findings suggest that astrocytes are transformed into a phagocytic phenotype as a result of increase in ABCA1 and its pathway molecules and contribute to remodeling of damaged tissues and penumbra networks.Astrocytic phagocytosis has been shown to play a role in synaptic pruning during development, but whether adult astrocytes possess phagocytic ability is unclear. Here the authors show that following brain ischemia, reactive astrocytes become phagocytic and engulf debris via the ABCA1 pathway.

  2. Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki.

    Directory of Open Access Journals (Sweden)

    Michael L Middlebrooks

    Full Text Available It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation.

  3. Preschool-Aged Children with Iron Deficiency Anemia Show Altered Affect and Behavior1,2

    Science.gov (United States)

    Lozoff, Betsy; Corapci, Feyza; Burden, Matthew J.; Kaciroti, Niko; Angulo-Barroso, Rosa; Sazawal, Sunil; Black, Maureen

    2012-01-01

    This study compared social looking and response to novelty in preschool-aged children (47–68 mo) with or without iron deficiency anemia (IDA). Iron status of the participants from a low-income community in New Delhi, India, was based on venous hemoglobin, mean corpuscular volume, and red cell distribution width. Children’s social looking toward adults, affect, and wary or hesitant behavior in response to novelty were assessed in a semistructured paradigm during an in-home play observation. Affect and behavior were compared as a function of iron status: IDA (n = 74) vs. nonanemic (n = 164). Compared with nonanemic preschoolers, preschoolers with IDA displayed less social looking toward their mothers, moved close to their mothers more quickly, and were slower to display positive affect and touch novel toys for the first time. These results indicate that IDA in the preschool period has affective and behavioral effects similar to those reported for IDA in infancy. PMID:17311960

  4. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.

    Science.gov (United States)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders; Linse, Sara; Malmendal, Anders; Cedervall, Tommy

    2015-01-06

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them.

  5. Neonatal oxytocin and vasopressin manipulation alter social behavior during the juvenile period in Mongolian gerbils.

    Science.gov (United States)

    Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2017-07-01

    Oxytocin and vasopressin are important modulators of a wide variety of social behaviors, and increasing evidence is showing that these neuropeptides are important organizational effectors of later-life behavior as well. We treated day-old gerbil pups with oxytocin, vasopressin, an oxytocin receptor antagonist, a vasopressin V1a receptor antagonist, or saline control, and then measured received parental responsiveness during the early postnatal period and juvenile social behavior during weaning. Neonatal vasopressin treatment enhanced sociality in males, but not females, at both developmental time points. When pups were individually placed outside the nest, parents were more responsive to male pups treated with vasopressin compared with littermates, and vasopressin treated male pups exhibited increased play with littermates as juveniles. These results show that vasopressin during very early life can enhance social interactions throughout early development. © 2017 Wiley Periodicals, Inc.

  6. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression.

    Science.gov (United States)

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D

    2015-07-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and depression has not been established. Here, a genetic mouse model of Cry2 deficiency (Cry2 (-/-) mice) was employed to test the direct relevance of Cry2 for depression-like behavior. Augmented anhedonic behavior in the sucrose preference test, without alterations in behavioral despair, was observed in Cry2 (-/-) mice. The novelty suppressed feeding paradigm revealed reduced hyponeophagia in Cry2 (-/-) mice compared to wild-type littermates. Given the importance of the amygdala in the regulation of emotion and their relevance for the pathophysiology of depression, potential alterations in diurnal patterns of basolateral amygdala gene expression in Cry2 (-/-) mice were investigated focusing on core clock genes and neurotrophic factor systems implicated in the pathophysiology of depression. Differential expression of the clock gene Bhlhe40 and the neurotrophic factor Vegfb were found in the beginning of the active (dark) phase in Cry2 (-/-) compared to wild-type animals. Furthermore, amygdala tissue of Cry2 (-/-) mice contained lower levels of Bdnf-III. Collectively, these results indicate that Cry2 exerts a critical role in the control of depression-related emotional states and modulates the chronobiological gene expression profile in the mouse amygdala.

  7. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  8. Modulation of metabolic activity of phagocytes by antihistamines

    Science.gov (United States)

    Lojek, Antonin; Číž, Milan; Pekarová, Michaela; Ambrožová, Gabriela; Vašíček, Ondřej; Moravcová, Jana; Kubala, Lukáš; Drábiková, Katarína; Jančinová, Viera; Perečko, Tomáš; Pečivová, Jana; Mačičková, Tatiana; Nosál, Radomír

    2011-01-01

    The purpose of the study was to investigate the effects of H1-antihistamines of the 1st generation (antazoline, bromadryl, brompheniramine, dithiaden, cyclizine, chlorcyclizine, chlorpheniramine, clemastine) and the 2nd generation (acrivastine, ketotifen, and loratadine) on the respiratory burst of phagocytes. Reactive oxygen species generation in neutrophils isolated from rat blood was measured using luminol-enhanced chemiluminescence. Changes in nitrite formation and iNOS protein expression by RAW 264.7 macrophages were analysed using Griess reaction and Western blotting. The antioxidative properties of drugs in cell-free systems were detected spectrophotometrically, luminometrically, fluorimetrically, and amperometrically. The majority of the H1-antihistamines tested (bromadryl, brompheniramine, chlorcyclizine, chlorpheniramine, clemastine, dithiaden, and ketotifen) exhibited a significant inhibitory effect on the chemiluminescence activity of phagocytes. H1-antihistamines did not show significant scavenging properties against superoxide anion and hydroxyl radical, thus this could not contribute to the inhibition of chemiluminescence. H1-antihistamines had a different ability to modulate nitric oxide production by LPS-stimulated macrophages. Bromadryl, clemastine, and dithiaden were the most effective since they inhibited iNOS expression, which was followed by a significant reduction in nitrite levels. H1-antihistamines had no scavenging activity against nitric oxide. It can be concluded that the effects observed in the H1-antihistamines tested are not mediated exclusively via H1-receptor pathway or by direct antioxidative properties. Based on our results, antihistamines not interfering with the microbicidal mechanisms of leukocytes (antazoline, acrivastine and cyclizine) could be used preferentially in infections. Other antihistamines should be used, under pathological conditions accompanied by the overproduction of reactive oxygen species. PMID:21577279

  9. Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model.

    Science.gov (United States)

    Vloeberghs, Ellen; Van Dam, Debby; Franck, Frieda; Serroyen, Jan; Geert, Molenberghs; Staufenbiel, Matthias; De Deyn, Peter Paul

    2008-06-01

    Transgenic APP23 mice were generated to model Alzheimer's disease. The APP23 model develops pathological features, learning deficits, and memory deficits analogous to dementing patients. In this report, transgenic mice exhibited several behavioral disturbances indicating the presence of neuropsychiatric symptoms of dementia. Aiming to verify whether the model also develops other behavioral problems, the authors investigated ingestive behavior in APP23 males of 3, 6 and 12 months. In addition, body weights of a naive male group were longitudinally monitored starting at weaning. Olfactory acuity was evaluated in mice of different age groups. Although olfactory functioning of APP23 mice appeared intact, they drank more and took more food pellets compared with wild-type littermates during a 1-week registration period. From the age of 4.5 weeks onward, APP23 males weighed significantly less than their control littermates, whereas this difference became more prominent with increasing age. Our results suggest the presence of a hypermetabolic state in this model. This is the first report, evidencing the presence of changes in eating and drinking behavior in a single transgenic Alzheimer mouse model. (Copyright) 2008 APA, all rights reserved.

  10. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    Science.gov (United States)

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  11. Effect of St. John's Wort (Hypericum perforatum treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Directory of Open Access Journals (Sweden)

    Prakash Atish K

    2010-05-01

    Full Text Available Abstract Background A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (Hypericum perforatum in restraint stress-induced behavioral and biochemical alterations in mice. Methods Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein subsequently. Results 6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect and oxidative damage as compared to control (restraint stress. Conclusion Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.

  12. Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats.

    Science.gov (United States)

    Li, Yuan; Kim, Jonghan; Buckett, Peter D; Böhlke, Mark; Maher, Timothy J; Wessling-Resnick, Marianne

    2011-12-01

    Iron deficiency in early human life is associated with abnormal neurological development. The objective of this study was to evaluate the effect of postnatal iron deficiency on emotional behavior and dopaminergic metabolism in the prefrontal cortex in a young male rodent model. Weanling, male, Sprague-Dawley rats were fed standard nonpurified diet (220 mg/kg iron) or an iron-deficient diet (2-6 mg/kg iron). After 1 mo, hematocrits were 0.42 ± 0.0043 and 0.16 ± 0.0068 (mean ± SEM; P emotional behavior. Iron-deficient rats displayed anxious behavior with fewer entries and less time spent in open arms compared to control rats (0.25 ± 0.25 vs. 1.8 ± 0.62 entries; 0.88 ± 0.88 vs. 13 ± 4.6 s; P effects were associated with reduced concentrations of extracellular dopamine in the prefrontal cortex of the iron-deficient rats (79 ± 7.0 vs. 110 ± 14 ng/L; P < 0.05; n = 4). Altered dopaminergic signaling in the prefrontal cortex most likely contributes to the anxious behavior observed in young male rats with severe iron deficiency.

  13. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  14. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  15. The effect of dietary alterations during rearing on growth, productivity, and behavior in broiler breeder females.

    Science.gov (United States)

    Morrissey, K L H; Widowski, T; Leeson, S; Sandilands, V; Arnone, A; Torrey, S

    2014-02-01

    Parent stocks of meat birds are severely feed restricted to avoid obesity-related health and fertility problems. This restriction often leads to chronic hunger, accompanied by stereotypic behavior. Research based in the United Kingdom has shown that using diets containing fiber and appetite suppressants may relieve some of the symptoms of hunger. However, few data are available regarding North American-sourced ingredients or nondaily feeding regimens. This study investigated the effects of 2 alternative diets, in combination with 2 feeding frequencies on growth, productivity, and behavior in broiler breeders. Six dietary treatments were tested, each with 5 replicate pens of 12 or 13 birds. Control diets consisted of a commercial crumble, fed on a daily or skip-a-day (SAD) basis. Alternative diets included soybean hulls as a fiber source, and calcium propionate as an appetite suppressant of either a feed-grade or purified quality, fed on either a daily or SAD basis. Birds were weighed weekly and egg production was recorded daily. Video cameras were used to record behavior during and following the morning feeding bout every 2 wk from 11 to 28 wk. Data were analyzed with a mixed model ANOVA, with repeated measures. Diet, feeding frequency, time, or an interaction of the 3 had significant effects on all observed behavior during rearing. These differences appeared to diminish during lay, with most stereotypic behavior no longer present. Very little object pecking and aggression was observed during and immediately following feeding bouts; however, daily-fed control birds still displayed this behavior more often, especially during rearing (P = 0.015). During feeding bouts, SAD birds feather pecked (P = 0.003) and rested more (P = 0.0002) than daily-fed birds. Control birds feather pecked most often (P = 0.033) after feeding bouts. Overall, the feed-grade diet appeared most effective at reducing hunger-related behavior, and the control diet appeared the least effective

  16. Altered behavior in mice with deletion of the alpha2-antiplasmin gene.

    Directory of Open Access Journals (Sweden)

    Eri Kawashita

    Full Text Available BACKGROUND: The α2-antiplasmin (α2AP protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear. OBJECTIVES: The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice. METHODS: The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior. RESULTS AND CONCLUSIONS: The α2AP knockout (α2AP-/- mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP-/- mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.

  17. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.

    Science.gov (United States)

    Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A

    2017-11-01

    Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.

  18. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.

    Science.gov (United States)

    Hirsch, Mauro Mozael; Deckmann, Iohanna; Fontes-Dutra, Mellanie; Bauer-Negrini, Guilherme; Della-Flora Nunes, Gustavo; Nunes, Walquiria; Rabelo, Bruna; Riesgo, Rudimar; Margis, Rogerio; Bambini-Junior, Victorio; Gottfried, Carmem

    2018-03-03

    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Copyright © 2018. Published by Elsevier Ltd.

  19. Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata.

    Science.gov (United States)

    Smith, Adam S; Agmo, Anders; Birnie, Andrew K; French, Jeffrey A

    2010-02-01

    The establishment and maintenance of stable, long-term male-female relationships, or pair-bonds, are marked by high levels of mutual attraction, selective preference for the partner, and high rates of sociosexual behavior. Central oxytocin (OT) affects social preference and partner-directed social behavior in rodents, but the role of this neuropeptide has yet to be studied in heterosexual primate relationships. The present study evaluated whether the OT system plays a role in the dynamics of social behavior and partner preference during the first 3 weeks of cohabitation in male and female marmosets, Callithrix penicillata. OT activity was stimulated by intranasal administration of OT, and inhibited by oral administration of a non-peptide OT-receptor antagonist (L-368,899; Merck). Social behavior throughout the pairing varied as a function of OT treatment. Compared to controls, marmosets initiated huddling with their social partner more often after OT treatments but reduced proximity and huddling after OT antagonist treatments. OT antagonist treatment also eliminated food sharing between partners. During the 24-h preference test, all marmosets interacted more with an opposite-sex stranger than with the partner. By the third-week preference test, marmosets interacted with the partner and stranger equally with the exception that intranasal-OT treatments facilitated initial partner-seeking behavior over initial contact with the stranger. Our findings demonstrate that pharmacological manipulations of OT activity alter partner-directed social behavior during pair interactions, suggesting that central OT may facilitate the process of pair-bond formation and social relationships in marmoset monkeys. Published by Elsevier Inc.

  20. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  1. Clinical biomechanic correlates of cervical dysfunction: Part 4. Altered regional motor behavior.

    Science.gov (United States)

    Vorro, J; Johnston, W L

    1998-06-01

    The present study examined organizational patterns of individual muscular contributions to head and neck motion. Previous studies of asymptomatic subjects with cervical motor asymmetry identified significant kinematic and myoelectric alterations. The current study evaluated 34 asymptomatic subjects categorized as to symmetry group based on initial palpatory test comparing regional motion responses of the head and neck to sidebending right and left. Electromyographic techniques were used to study muscular activity, indicating contraction frequency for each muscle monitored during active and passive test motions. Subjects with diagnosed regional motion asymmetry exhibited a significantly altered organization of electrically active and electrically silent muscles. Their pattern of muscle contraction was compromised just as frequently in the passive as in the active phases of motion. A positive sign of motion asymmetry on physical examination of the cervical region alerts the physician early to the presence of significant dysfunction in motor organization for efficient head/neck movement. The adaptive motor patterning in dysfunction can occur before the appearance of subjective pain.

  2. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  3. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered

  4. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  5. Sublethal Lead Exposure Alters Movement Behavior in Free-Ranging Golden Eagles.

    Science.gov (United States)

    Ecke, Frauke; Singh, Navinder J; Arnemo, Jon M; Bignert, Anders; Helander, Björn; Berglund, Åsa M M; Borg, Hans; Bröjer, Caroline; Holm, Karin; Lanzone, Michael; Miller, Tricia; Nordström, Åke; Räikkönen, Jannikke; Rodushkin, Ilia; Ågren, Erik; Hörnfeldt, Birger

    2017-05-16

    Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.

  6. Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system.

    Science.gov (United States)

    Lee, Minkyung; Ryu, Young Hoon; Cho, Won Gil; Kang, Yeo Wool; Lee, Soo Jin; Jeon, Tae Joo; Lyoo, Chul Hyoung; Kim, Chul Hoon; Kim, Dong Goo; Lee, Kyochul; Choi, Tae Hyun; Choi, Jae Yong

    2015-09-01

    Depression frequently accompanies in Parkinson's disease (PD). Previous research suggested that dopamine (DA) and serotonin systems are closely linked with depression in PD. However, comprehensive studies about the relationship between these two neurotransmitter systems are limited. Therefore, the purpose of this study is to evaluate the effect of dopaminergic destruction on the serotonin system. The interconnection between motor and depression was also examined. Two PET scans were performed in the 6-hydroxydopamine (6-OHDA) lesioned and sham operated rats: [(18) F]FP-CIT for DA transporters and [(18) F]Mefway for serotonin 1A (5-HT(1A)) receptors. Here, 6-OHDA is a neurotoxin for dopaminergic neurons. Behavioral tests were used to evaluate the severity of symptoms: rotational number for motor impairment and immobility time, acquired from the forced swim test for depression. Region-of-interests were drawn in the striatum and cerebellum for the DA system and hippocampus and cerebellum for the 5-HT system. The cerebellum was chosen as a reference region. Nondisplaceable binding potential in the striatum and hippocampus were compared between 6-OHDA and sham groups. As a result, the degree of DA depletion was negatively correlated with rotational behavior (R(2)  = 0.79, P = 0.003). In 6-OHDA lesioned rats, binding values for 5-HT(1A) receptors was 22% lower than the sham operated group. This decrement of 5-HT(1A) receptor binding was also correlated with the severity of depression (R(2)  = 0.81, P = 0.006). Taken together, this research demonstrated that the destruction of dopaminergic system causes the reduction of the serotonergic system resulting in the expression of depressive behavior. The degree of dopaminergic dysfunction was positively correlated with the impairment of the serotonin system. Severity of motor symptoms was also closely related to depressive behavior. © 2015 Wiley Periodicals, Inc.

  7. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Science.gov (United States)

    Wang, Yiwei; Smith, Justine A; Wilmers, Christopher C

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  8. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Directory of Open Access Journals (Sweden)

    Yiwei Wang

    Full Text Available Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  9. Caffeine consuming children and adolescents show altered sleep behavior and deep sleep

    OpenAIRE

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar; Huber, Reto

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children?s and adolescents? sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10?16 years). While later habitual bedtimes (Caffeine 23:14 ? 11...

  10. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  11. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  12. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika

    2009-02-01

    Chronic fatigue syndrome (CFS) is characterized by profound fatigue, which substantially interferes with daily activities. The aim of this study was to explore the protective effects of antidepressants in an animal model of CFS in mice. Male albino mice were forced to swim individually for a period of 6-min session each for 7 days. Imipramine (10 and 20 mg/kg), desipramine (10 and 20 mg/kg) and citalopram (5 and 10 mg/kg) were administered 30 min before forced swimming test on each day. Various behavior tests (immobility time, locomotor activity, anxiety-like behavior by plus maze and mirror chamber) followed by biochemical parameters (lipid peroxidation, reduced glutathione, catalase and nitrite level) were assessed in chronic stressed mice. Chronic forced swimming for 7 days significantly caused increase in immobility period, impairment in locomotor activity, anxiety-like behavior, and oxidative stress (raised lipid peroxidation, nitrite activity and reduced glutathione and catalase activity) as compared with naïve mice (P immobility time, improved locomotor activity and anti-anxiety effect (in both plus maze and mirror chamber test), and attenuated oxidative stress in chronic stressed mice as compared with control (chronic fatigues) (P < 0.05). These results suggested that these drugs have protective effect and could be used in the management of chronic fatigue like conditions.

  13. Subchronic and mild social defeat stress alter mouse nest building behavior.

    Science.gov (United States)

    Otabi, Hikari; Goto, Tatsuhiko; Okayama, Tsuyoshi; Kohari, Daisuke; Toyoda, Atsushi

    2016-01-01

    Behavioral and physiological evaluations of animal models of depression are essential to thoroughly understand the mechanisms of depression in humans. Various models have been developed and characterized, and the socially defeated mouse has been widely used for studying depression. Here, we developed and characterized a mouse model of social aversion using a subchronic and mild social defeat stress (sCSDS) paradigm. Compared to control mice, sCSDS mice showed significantly increased body weight gain, water intake, and social aversion to dominant mice on the social interaction test. We observed nest building behavior in sCSDS mice using the pressed cotton as a nest material. Although sCSDS mice eventually successfully built nests, the onset of nest building was severely delayed compared to control mice. The underlying mechanism of this significant delay in nest building by sCSDS mice is unclear. However, our results demonstrate that nest building evaluation is a simple and useful assay for understanding behavior in socially defeated mice and screening drugs such as antidepressants. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    Directory of Open Access Journals (Sweden)

    Vivek Murthy

    2008-07-01

    Full Text Available Neuromolecular Imaging (NMI with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from electron transfer is proportional to neurotransmitter concentration. Selective electron transfer properties of these biosensors permit the imaging of neurotransmitters, metabolites and precursors. The novel BRODERICK PROBE® biosensors we have developed, differ in formulation and detection capabilities from biosensors/electrodes used in conventional electrochemistry/ voltammetry. In these studies, NMI, specifically, the BRODERICK PROBE® laurate biosensor images neurotransmitter signals within mesolimbic neuronal terminals, nucleus accumbens (NAc; dopamine (DA, serotonin (5-HT, homovanillic acid (HVA and Ltryptophan (L-TP are selectively imaged. Simultaneously, we use infrared photobeams to monitor open-field movement behaviors on line with NMI in the same animal subjects. The goals are to investigate integrated neurochemical and behavioral effects of cocaine and caffeine alone and co-administered and further, to use ketanserin to decipher receptor profiles for these psychostimulants, alone and co-administered. The rationale for selecting this medication is: ketanserin (a is an antihypertensive and cocaine and caffeine produce hypertension and (b acts at 5-HT2A/2C receptors, prevalent in NAc and implicated in hypertension and cocaine addiction. Key findings are: (a the moderate dose of caffeine simultaneously potentiates cocaine's neurochemical and behavioral responses. (b ketanserin simultaneously inhibits cocaine-increased DA and 5-HT release in

  15. The study of the mineralogy and rare earth elements behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

    International Nuclear Information System (INIS)

    Esmaeily, D.; Afshooni, S. Z.; Valizadeh, M. V.

    2009-01-01

    The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural zone. These intrusive rocks which are mainly composed of gronodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by p H, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals

  16. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters.

    Science.gov (United States)

    Catanese, Mary C; Vandenberg, Laura N

    2017-03-01

    Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications. Copyright © 2017 by the Endocrine Society.

  17. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation.

    Directory of Open Access Journals (Sweden)

    David Zada

    2014-09-01

    Full Text Available The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2 gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8-/- zebrafish using zinc-finger nuclease (ZFN-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8-/- larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8-/- larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8-/- larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8-/- larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit

  18. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  19. Assessment of phagocytic activity of neutrophils in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Lalitha Shanmugam

    2015-01-01

    Full Text Available Aim: To assess the phagocytic activity of neutrophils in subjects with chronic obstructive pulmonary disease (COPD. Background/Need of Study: There is a paucity of data in relation to phagocytic function in COPD. By this multidisciplinary study, a better understanding about the etiology of lung destruction among COPD patients is being sought. Materials and Methods: The study was conducted among 28 subjects with COPD and 25 controls in a private tertiary hospital in Chennai after obtaining Institutional Ethical Clearance. Known cases of COPD as proven by clinical findings and spirometry were included in the study, and subjects with any other source of infection, recent surgery, or chronic granulomatous disease were excluded. The study subjects were divided into three groups based on the severity of COPD as determined by spirometry, and healthy volunteers were taken as Group 4. After obtaining informed consent, validated respiratory health questionnaire was administered. The phagocytic function was assessed by Candida phagocytic test and Nitroblue Tetrazolium (NBT Reduction Test. Results: Significantly impaired phagocytic function as indicated by lower phagocytic, lytic indices and decreased NBT reduction of neutrophils was seen in COPD subjects compared to normal healthy controls (P <.001. Conclusion: This study showed that there is phagocytic dysfunction in COPD subjects when compared with normal subjects. This could be due to underlying inflammation in human airway. Understanding the role of neutrophils may lead to improved understanding of the pathogenesis of COPD, which in turn may pave way for implementing modified therapeutic intervention strategies.

  20. Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza

    Directory of Open Access Journals (Sweden)

    Kasia A. Pawelek

    2017-06-01

    Full Text Available Influenza remains one of the major infectious diseases that targets humankind. Understanding within-host dynamics of the virus and how it translates into the spread of the disease at a population level can help us obtain more accurate disease outbreak predictions. We created an ordinary differential equation model with parameter estimates based on the disease symptoms score data to determine various disease stages and parameters associated with infectiousness and disease progression. Having various stages with different intensities of symptoms enables us to incorporate spontaneous behavior change due to the onset/offset of disease symptoms. Additionally, we incorporate the effect of a waning vaccine on delaying the time and decreasing the size of an epidemic peak. Our results showed that the epidemic peak in the model was significantly lowered when public vaccination was performed up to two months past the onset of an epidemic. Also, behavior change in the earliest stages of the epidemic lowers and delays the epidemic peak. This study further provides information on the potential impact of pharmaceutical and non-pharmaceutical interventions during an influenza epidemic.

  1. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    Science.gov (United States)

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (Paluminium-induced cognitive dysfunction and oxidative damage.

  2. Exposure to sublethal levels of waterborne lead alters reproductive behavior patterns in fathead minnows (Pimephales promelas).

    Science.gov (United States)

    Weber, D N

    1993-01-01

    Lead (Pb) caused multiple effects on reproductive behavior and overall reproductive success. Adult fathead minnows (Pimephales promelas) were acclimated at a 16L:8D photoperiod to stimulate reproductive development. Reproductively mature adults were separated as male-female pairs and maintained for 4 weeks in either 0.0 or 0.5 ppm Pb. High lead accumulations occurred in testes and ovaries of treated fish; lead concentrations in control fish gonads were not detectable. Lead suppressed spermatocyte production and retarded ovarian development, although no lead-induced gonadosomatic index changes for either sex were noted. Lead decreased the number of eggs oviposited, increased interspawn periods and suppressed embryo development. Control males displayed maximum secondary sex characteristic development (banding, tubercle formation, head and eye darkening); lead-exposed fish displayed less. Control males spent more time in ceiling-directed behaviors associated with nest preparation and maintenance than lead-exposed. These variables were affected differentially with respect to stage of reproductive maturity at time of lead exposure, i.e., fish displaying greater secondary sex characteristic development before exposure were less affected by lead than those fish that showed less development.

  3. Does respondent driven sampling alter the social network composition and health-seeking behaviors of illicit drug users followed prospectively?

    Directory of Open Access Journals (Sweden)

    Abby E Rudolph

    2011-05-01

    Full Text Available Respondent driven sampling (RDS was originally developed to sample and provide peer education to injection drug users at risk for HIV. Based on the premise that drug users' social networks were maintained through sharing rituals, this peer-driven approach to disseminate educational information and reduce risk behaviors capitalizes and expands upon the norms that sustain these relationships. Compared with traditional outreach interventions, peer-driven interventions produce greater reductions in HIV risk behaviors and adoption of safer behaviors over time, however, control and intervention groups are not similarly recruited. As peer-recruitment may alter risk networks and individual risk behaviors over time, such comparison studies are unable to isolate the effect of a peer-delivered intervention. This analysis examines whether RDS recruitment (without an intervention is associated with changes in health-seeking behaviors and network composition over 6 months. New York City drug users (N = 618 were recruited using targeted street outreach (TSO and RDS (2006-2009. 329 non-injectors (RDS = 237; TSO = 92 completed baseline and 6-month surveys ascertaining demographic, drug use, and network characteristics. Chi-square and t-tests compared RDS- and TSO-recruited participants on changes in HIV testing and drug treatment utilization and in the proportion of drug using, sex, incarcerated and social support networks over the follow-up period. The sample was 66% male, 24% Hispanic, 69% black, 62% homeless, and the median age was 35. At baseline, the median network size was 3, 86% used crack, 70% used cocaine, 40% used heroin, and in the past 6 months 72% were tested for HIV and 46% were enrolled in drug treatment. There were no significant differences by recruitment strategy with respect to changes in health-seeking behaviors or network composition over 6 months. These findings suggest no association between RDS recruitment and changes in

  4. Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex.

    Science.gov (United States)

    Broster, Lucas S; Li, Juan; Wagner, Benjamin; Smith, Charles D; Jicha, Gregory A; Schmitt, Frederick A; Munro, Nancy; Haney, Ryan H; Jiang, Yang

    2018-02-20

    Individuals with dementia of the Alzheimer type (AD) classically show disproportionate impairment in measures of working memory, but repetition learning effects are relatively preserved. As AD affects brain regions implicated in both working memory and repetition effects, the neural basis of this discrepancy is poorly understood. We hypothesized that the posterior repetition effect could account for this discrepancy due to the milder effects of AD at visual cortex. Participants with early AD, amnestic mild cognitive impairment (MCI), and healthy controls performed a working memory task with superimposed repetition effects while electroencephalography was collected to identify possible neural mechanisms of preserved repetition effects. Participants with AD showed preserved behavioral repetition effects and a change in the posterior repetition effect. Visual cortex may play a role in maintained repetition effects in persons with early AD.

  5. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Jackson, Bryan T; Brewster, Carlyle C; Paulson, Sally L

    2012-11-01

    The effects of La Crosse virus (LACV) infection on blood feeding behavior in Aedes triseriatus (Say) and Aedes albopictus (Skuse) were investigated in the laboratory by measuring the size of the bloodmeal imbibed and the extent of refeeding by virus-infected and uninfected mosquitoes. LACV-infected Ae. triseriatus and Ae. albopictus took significantly less blood compared with uninfected mosquitoes. Twice as many virus-infected Ae. triseriatus mosquitoes refed compared with uninfected individuals (18 vs. 9%; P < 0.05); however, virus infection had no significant effect on the refeeding rate of Ae. albopictus. Reduction in bloodmeal size followed by an increased avidity for refeeding may lead to enhanced horizontal transmission of the LACV by its principal vector, Ae. triseriatus.

  6. Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats.

    Science.gov (United States)

    Barreto-Medeiros, J M; Feitoza, E G; Magalhaes, K; Cabral-Filho, J E; Manhaes-De-Castro, F M; De-Castro, C M; Manhaes-De-Castro, R

    2004-02-01

    Malnutrition effect during the suckling period on aggressive behavior was investigated in adult rats treated and not treated with fluoxetine, a selective serotonin reuptake inhibitor. Sixty-four Wistar male rats were allocated in two groups, according to their mothers' diet during lactation. The well-nourished group was fed by mothers receiving a 23% protein diet; the malnourished one by mothers receiving a 8% protein diet. Following weaning, all rats received the 23% protein diet. On the 90th day after birth, each nutritional group was divided into two subgroups, one receiving a single daily injection of fluoxetine (10 mg/kg) and the other of a saline solution (0.9% NaCl) for 14 days. Treatment with Fluoxetine reduced aggressive response in well-nourished but not in malnourished rats. These findings suggest that the serotoninergic system was affected by malnutrition during the critical period of brain development, and persisted even after a long period of nutritional recovery.

  7. Human Lung Mononuclear Phagocytes in Health and Disease

    Directory of Open Access Journals (Sweden)

    Anna Smed-Sörensen

    2017-05-01

    Full Text Available The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs—together termed mononuclear phagocytes (MNPs—line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may

  8. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  9. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Perfluorooctane sulfonate (PFOS is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response, and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.

  10. Does switching to reduced ignition propensity cigarettes alter smoking behavior or exposure to tobacco smoke constituents?

    Science.gov (United States)

    O'Connor, Richard J; Rees, Vaughan W; Norton, Kaila J; Cummings, K Michael; Connolly, Gregory N; Alpert, Hillel R; Sjödin, Andreas; Romanoff, Lovisa; Li, Zheng; June, Kristie M; Giovino, Gary A

    2010-10-01

    Since 2004, several jurisdictions have mandated that cigarettes show reduced ignition propensity (RIP) in laboratory testing. RIP cigarettes may limit fires caused by smoldering cigarettes, reducing fire-related deaths and injury. However, some evidence suggests that RIP cigarettes emit more carbon monoxide and polycyclic aromatic hydrocarbons, and smokers may alter their smoking patterns in response to RIP cigarettes. Both of these could increase smokers' exposures to harmful constituents in cigarettes. An 18-day switching study with a comparison group was conducted in Boston, MA (N = 77), and Buffalo, NY (N = 83), in 2006-2007. Current daily smokers completed 4 laboratory visits and two 48-hr field data collections. After a 4-day baseline, Boston participants switched to RIP cigarettes for 14 days, whereas Buffalo participants smoked RIP cigarettes throughout. Outcome measures included cigarettes smoked per day; smoking topography; salivary cotinine; breath CO; and hydroxylated metabolites of pyrene, naphthalene, phenanthrene, and fluorene. Because the groups differed demographically, analyses adjusted for race, age, and sex. We observed no significant changes in smoking topography or CO exposure among participants who switched to RIP cigarettes. Cigarette use decreased significantly in the switched group (37.7 cigarettes/48 hr vs. 32.6 cigarettes/48 hr, p = .031), while hydroxyphenanthrenes increased significantly (555 ng/g creatinine vs. 669 ng/g creatinine, p = .007). No other biomarkers were significantly affected. Small increases in exposure to phenanthrene among smokers who switched to RIP versions were observed, while other exposures and smoking topography were not significantly affected. Toxicological implications of these findings are unclear. These findings should be weighed against the potential public health benefits of adopting RIP design standards for cigarette products.

  11. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  12. Altered explicit recognition of facial disgust associated with predisposition to suicidal behavior but not depression.

    Science.gov (United States)

    Richard-Devantoy, Stéphane; Guillaume, Sébastien; Olié, Emilie; Courtet, Philippe; Jollant, Fabrice

    2013-09-05

    Suicidal acts result from a complex interplay between vulnerability factors, such as reduced social and cognitive abilities, social stressors. To our knowledge nothing is known about the explicit recognition of others' facial emotions, a major component of social interactions, in patients at long-term risk for suicide. Thirty-five non-depressed patients with a history of a serious suicide attempt and mood disorders were compared with 31 patients with a history of mood disorders but no personal history of suicidal acts, and with 37 healthy controls with no personal history of mood disorders or suicide attempts. The explicit recognition of six facial emotions (anger, disgust, fear, sadness, happiness, and neutral) was assessed. Suicide attempters made significantly more errors in the explicit recognition of disgust, relative to the other groups, with no differences between the control groups or for the other emotions examined. Semantic verbal fluency and verbal working memory performances were also reduced in suicide attempters relative to the other two groups but could not explain the facial recognition deficits. Our results need replication with a larger sample size. Most patients were medicated. Explicit recognition of disgust appears to be specifically altered in relation to vulnerability to suicide but not to depression. Reduced ability to recognize some social emotions may impair the patient's capacity to adequately interact with his own social environment, potentially increasing the risk of interpersonal conflict, negative emotions and suicidal crisis. Improving cognitive and social skills may be a target for future individual suicide prevention. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Schneider, Tomasz; Roman, Adam; Basta-Kaim, Agnieszka; Kubera, Marta; Budziszewska, Bogusława; Schneider, Karolina; Przewłocki, Ryszard

    2008-07-01

    Autism is a severe behavioral disorder characterized by pervasive impairments in social interactions, deficits in verbal and non-verbal communication, and stereotyped behaviors, with a four times higher incidence in boys than in girls. The core symptoms are frequently accompanied by a spectrum of neurobehavioral and immunological derangements, including: aberrant sensitivity to sensory stimulation, anxiety, and decreased cellular immune capacity. Recently, a new potential rodent model of autism induced by prenatal exposure to valproic acid (VPA rats) has been proposed. In order to determine if gender has an influence on alterations observed in VPA rats, male and female rats have been evaluated in a battery of behavioral, immunological, and endocrinological tests. A plethora of aberrations has been found in male VPA rats: lower sensitivity to pain, increased repetitive/stereotypic-like activity, higher anxiety, decreased level of social interaction, increased basal level of corticosterone, decreased weight of the thymus, decreased splenocytes proliferative response to concanavaline A, lower IFN-gamma/IL-10 ratio, and increased production of NO by peritoneal macrophages. Female VPA rats exhibited only increased repetitive/stereotypic-like activity and decreased IFN-gamma/IL-10 ratio. Sexual dimorphism characteristics for measured parameters have been observed in both groups of animals, except social interaction in VPA rats. Our results confirm existence of similarities between the observed pattern of aberrations in VPA rats and features of disturbed behavior and immune function in autistic patients, and suggest that they are gender-specific, which is intriguing in light of disproportion in boys to girls ratio in autism.

  14. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  15. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  16. Side of Onset in Parkinson’s Disease and Alterations in Religiosity: Novel Behavioral Phenotypes

    Directory of Open Access Journals (Sweden)

    Paul M. Butler

    2011-01-01

    Full Text Available Behavioral neurologists have long been interested in changes in religiosity following circumscribed brain lesions. Advances in neuroimaging and cognitive experimental techniques have been added to these classical lesion-correlational approaches in attempt to understand changes in religiosity due to brain damage. In this paper we assess processing dynamics of religious cognition in patients with Parkinson’s disease (PD. We administered a four-condition story-based priming procedure, and then covertly probed for changes in religious belief. Story-based priming emphasized mortality salience, religious ritual, and beauty in nature (Aesthetic. In neurologically intact controls, religious belief-scores significantly increased following the Aesthetic prime condition. When comparing effects of right (RO versus left onset (LO in PD patients, a double-dissociation in religious belief-scores emerged based on prime condition. RO patients exhibited a significant increase in belief following the Aesthetic prime condition and LO patients significantly increased belief in the religious ritual prime condition. Results covaried with executive function measures. This suggests lateral cerebral specialization for ritual-based (left frontal versus aesthetic-based (right frontal religious cognition. Patient-centered individualized treatment plans should take religiosity into consideration as a complex disease-associated phenomenon connected to other clinical variables and health outcomes.

  17. Does cognitive behavioral therapy alter mental defeat and cognitive flexibility in patients with panic disorder?

    Science.gov (United States)

    Nagata, Shinobu; Seki, Yoichi; Shibuya, Takayuki; Yokoo, Mizue; Murata, Tomokazu; Hiramatsu, Yoichi; Yamada, Fuminori; Ibuki, Hanae; Minamitani, Noriko; Yoshinaga, Naoki; Kusunoki, Muga; Inada, Yasushi; Kawasoe, Nobuko; Adachi, Soichiro; Oshiro, Keiko; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yoshimura, Kensuke; Nakazato, Michiko; Iyo, Masaomi; Nakagawa, Akiko; Shimizu, Eiji

    2018-01-12

    Mental defeat and cognitive flexibility have been studied as explanatory factors for depression and posttraumatic stress disorder. This study examined mental defeat and cognitive flexibility scores in patients with panic disorder (PD) before and after cognitive behavioral therapy (CBT), and compared them to those of a gender- and age-matched healthy control group. Patients with PD (n = 15) received 16 weekly individual CBT sessions, and the control group (n = 35) received no treatment. Patients completed the Mental Defeat Scale and the Cognitive Flexibility Scale before the intervention, following eight CBT sessions, and following 16 CBT sessions, while the control group did so only prior to receiving CBT (baseline). The patients' pre-CBT Mental Defeat and Cognitive Flexibility Scale scores were significantly higher on the Mental Defeat Scale and lower on the Cognitive Flexibility Scale than those of the control group participants were. In addition, the average Mental Defeat Scale scores of the patients decreased significantly, from 22.2 to 12.4, while their average Cognitive Flexibility Scale scores increased significantly, from 42.8 to 49.5. These results suggest that CBT can reduce mental defeat and increase cognitive flexibility in patients with PD Trial registration The study was registered retrospectively in the national UMIN Clinical Trials Registry on June 10, 2016 (registration ID: UMIN000022693).

  18. Obesity alters circadian behavior and metabolism in sex dependent manner in the volcano mouse Neotomodon alstoni.

    Science.gov (United States)

    Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Carmona-Castro, Agustín; Aguilar-González, Ivette; Cárdenas-Vázquez, René; Miranda-Anaya, Manuel

    2012-02-01

    The aim of the present study is to evaluate whether circadian locomotor activity, and the daily profile of plasma parameters related to metabolic syndrome (nutrients: glucose and triacylglycerides, and hormones: insulin and leptin), differ between male and female Neotomodon alstoni mice, both lean and obese. Young adult animals were captured in the field and kept at the laboratory animal facility. After 6 to 7 months feeding the animals ad libitum with a regular diet for laboratory rodents, 50-60% of mice became obese. Comparisons between sexes indicated that lean females were more active than males; however obese females reduced their nocturnal activity either in LD or DD, and advanced the phase of their activity-onset with respect to lights off. No differences in food intake between lean and obese mice, either during the day or night, were observed. Daily profiles of metabolic syndrome-related plasma parameters showed differences between sexes, and obesity was associated with increased values, especially leptin (500% in females and 273% in males) and insulin (150% in both females and males), as compared with lean mice. Our results indicate that lean mice display behavioral and endocrine differences between sexes, and obesity affects the parameters tested in a sex-dependent manner. The aforementioned leads us to propose N. alstoni, studied in captivity, could be an interesting model for the study of sex differences in the effects of obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population.

    Science.gov (United States)

    Ohayon, Maurice M; Milesi, Cristina

    2016-06-01

    Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Living in areas with greater ONL was associated with delayed bedtime (P sleep duration (P sleep quantity and quality (P sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. © 2016 Associated Professional Sleep Societies, LLC.

  20. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.

    Science.gov (United States)

    Rielly-Carroll, Elizabeth; Freestone, Amy L

    2017-03-01

    Seagrass, an important subtidal marine ecosystem, is being lost at a rate of 110 km 2  year -1 , leading to fragmented seagrass seascapes. Habitat fragmentation is predicted to affect trophic levels differently, with higher trophic levels being more sensitive, stressing the importance of a multi-trophic perspective. Utilizing the trophic relationship between the blue crab (Callinectes sapidus) and hard clam (Mercenaria mercenaria), where adult blue crabs prey on juvenile blue crabs, and juvenile blue crabs prey on small hard clams, we examined whether predation rates, abundance, and behavior of predators and prey differed between continuous and fragmented seagrass in a multi-trophic context at two sites in Barnegat Bay, NJ. We tested the hypothesis that fragmented habitats would differentially affect trophic levels within a tri-trophic system, and our results supported this hypothesis. Densities of adult blue crabs were higher in fragmented than continuous habitats. Densities of juvenile blue crabs, the primary predator of hard clams, were lower in fragmented habitats than continuous, potentially due to increased predation by adult blue crabs. Clams experienced lower predation and burrowed to a shallower depth in fragmented habitats than in continuous habitat, likely due in part to the low densities of juvenile blue crabs, their primary predator. Our results suggest that while trophic levels are differentially affected, the impact of habitat fragmentation may be stronger on intermediate rather than top trophic levels in some marine systems.

  1. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep.

    Science.gov (United States)

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G; Huber, Reto

    2015-10-15

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children's and adolescents' sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10-16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1-4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25-9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  2. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    Directory of Open Access Journals (Sweden)

    Andrina Aepli

    2015-10-01

    Full Text Available Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG in children and adolescents (10–16 years. While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4 and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1, morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects. Comparable reductions were found for alpha activity (8.25–9.75 Hz. These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  3. Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer.

    Science.gov (United States)

    Vichaya, Elisabeth G; Vermeer, Daniel W; Christian, Diana L; Molkentine, Jessica M; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2017-05-01

    Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic

  4. Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections.

    Science.gov (United States)

    Levin, Bruce R; Baquero, Fernando; Ankomah, Peter Pierre; McCall, Ingrid C

    2017-11-01

    Most antibiotic use in humans is to reduce the magnitude and term of morbidity of acute, community-acquired infections in immune competent patients, rather than to save lives. Thanks to phagocytic leucocytes and other host defenses, the vast majority of these infections are self-limiting. Nevertheless, there has been a negligible amount of consideration of the contribution of phagocytosis and other host defenses in the research for, and the design of, antibiotic treatment regimens, which hyper-emphasizes antibiotics as if they were the sole mechanism responsible for the clearance of infections. Here, we critically review this approach and its limitations. With the aid of a heuristic mathematical model, we postulate that if the rate of phagocytosis is great enough, for acute, normally self-limiting infections, then (i) antibiotics with different pharmacodynamic properties would be similarly effective, (ii) low doses of antibiotics can be as effective as high doses, and (iii) neither phenotypic nor inherited antibiotic resistance generated during therapy are likely to lead to treatment failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The role of Tec family kinases in mononuclear phagocytes.

    Science.gov (United States)

    Koprulu, Afitap Derya; Ellmeier, Wilfried

    2009-01-01

    Mononuclear phagocytes, including monocytcs, macrophages, and dendritic cells, play an important role in innate and adaptive immune responses and are important regulators of the inflammatory response. Among these, monocytes/macrophages are involved in virtually all aspects of inflammation, ranging from the detection and phagocytosis of pathogens up to the resolution of inflammation and repair of tissue damage. The stimulation of cell surface receptors, such as Toll-like receptors, leads to the initiation of intracellular signal transduction pathways regulating macrophagc activation and effector functions. One group of signaling molecules stimulated on macrophage activation is formed by the Tec kinasc family, which consists of five members (Bmx, Btk, Itk, Rlk, and Tec) and constitutes the second-largest family of nonreceptor protein tyrosine kinases in the immune system. Some Tec kinases have been shown to be major regulators of antigen receptor signaling in lymphocytes, and deficiencies in Tec family kinases cause several immunological defects in humans and mice. Much less is known about the role of Tec family kinases in the myeloid branch of the hematopoietic system. In this review, we discuss the current knowledge about the role of Tec family kinases in monocytes/macrophages, in dendritic cells, and in osteoclasts.

  6. Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder.

    Science.gov (United States)

    Goodman, Marianne; Carpenter, David; Tang, Cheuk Y; Goldstein, Kim E; Avedon, Jennifer; Fernandez, Nicolas; Mascitelli, Kathryn A; Blair, Nicholas J; New, Antonia S; Triebwasser, Joseph; Siever, Larry J; Hazlett, Erin A

    2014-10-01

    Siever and Davis' (1991) psychobiological framework of borderline personality disorder (BPD) identifies affective instability (AI) as a core dimension characterized by prolonged and intense emotional reactivity. Recently, deficient amygdala habituation, defined as a change in response to repeated relative to novel unpleasant pictures within a session, has emerged as a biological correlate of AI in BPD. Dialectical behavior therapy (DBT), an evidence-based treatment, targets AI by teaching emotion-regulation skills. This study tested the hypothesis that BPD patients would exhibit decreased amygdala activation and improved habituation, as well as improved emotion regulation with standard 12-month DBT. Event-related fMRI was obtained pre- and post-12-months of standard-DBT in unmedicated BPD patients. Healthy controls (HCs) were studied as a benchmark for normal amygdala activity and change over time (n = 11 per diagnostic-group). During each scan, participants viewed an intermixed series of unpleasant, neutral and pleasant pictures presented twice (novel, repeat). Change in emotion regulation was measured with the Difficulty in Emotion Regulation (DERS) scale. fMRI results showed the predicted Group × Time interaction: compared with HCs, BPD patients exhibited decreased amygdala activation with treatment. This post-treatment amygdala reduction in BPD was observed for all three pictures types, but particularly marked in the left hemisphere and during repeated-emotional pictures. Emotion regulation measured with the DERS significantly improved with DBT in BPD patients. Improved amygdala habituation to repeated-unpleasant pictures in patients was associated with improved overall emotional regulation measured by the DERS (total score and emotion regulation strategy use subscale). These findings have promising treatment implications and support the notion that DBT targets amygdala hyperactivity-part of the disturbed neural circuitry underlying emotional dysregulation

  7. Does cognitive behavior therapy alter emotion regulation in inpatients with a depressive disorder?

    Directory of Open Access Journals (Sweden)

    Forkmann T

    2014-05-01

    Full Text Available Thomas Forkmann,1 Anne Scherer,1 Markus Pawelzik,2 Verena Mainz,1 Barbara Drueke,1 Maren Boecker,1 Siegfried Gauggel11Institute of Medical Psychology and Medical Sociology, University Hospital of RWTH Aachen, Aachen, Germany; 2EOS Hospital for Psychotherapy, Hammer Münster, GermanyIntroduction: Emotion regulation plays an important role in the development and treatment of depression. The present study investigated whether the emotion regulation strategies, expressive suppression (ES and cognitive reappraisal (CR change in the course of cognitive behavior therapy (CBT of depressive inpatients. Furthermore, it also examined whether changes in CR and ES correlated with positive treatment outcomes.Methods: Forty-four inpatients from a psychotherapeutic hospital who suffered from a depressive disorder (mean age =36.4 years, standard deviation =13.4 years; 63.6% female filled in the Emotion Regulation Questionnaire and the Beck Depression Inventory at admission and discharge. To detect changes in emotion regulation, and depression across treatment, data were analyzed using multivariate analyses of variance (MANOVA for repeated measures, effect sizes, and Spearman correlations. A P-value of ≤0.05 was considered statistically significant.Results: Depression severity (F[1]=10.42, P=0.003; η2=0.22 and CR (F[1]=4.71, P=0.04; η2=0.11 changed significantly across CBT treatment. ES remained virtually stable. Post-treatment scores of CR were also positively correlated with reduction in depressive symptoms across treatment (ρ=0.30, P=0.05.Conclusion: The results suggest that CBT affects emotion regulation in depressive inpatients only for CR and that higher post-treatment scores in CR were related to greater reduction in depressive symptoms across treatment.Keywords: emotion regulation, depression, major depressive disorder, psychotherapy

  8. Change in Performance of BALB/c Mouse Pulmonary Macrophage Surface Receptor after Exercise and its Influence on Phagocytic Activity

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-09-01

    Full Text Available Objective: To study the effect of exercise on phagocytosis by pulmonary bronchoalveolar macrophages (BAMs. Methods: A total of 120 seven- to nine-week-old male BALB/c mice were randomly assigned into the following groups based on exercise intensity on a treadmill: control exercise (CE group, acute moderate exercise (ME group, and strenuous exercise group. Lung lavage was conducted to collect BAMs from the mice. Phagocytic behavior and surface receptor expression on BALB/c mouse BAMs were analyzed through fluorescence microscopy and flow cytometry. Results: In the SE group, expression levels of macrophage scavenger receptors (surface receptor [SR-A] type I/II and macrophage receptor [MARCO], complement receptor3 (CR3, and intercellular adhesion molecule 1 (ICAM-1 were upregulated; by contrast, expression level of extensive G-type immune globulin receptor (Fc Rs was not upregulated. The promoting percentage of phagocytosis in the CE group was 100%; the highest promoting percentage of phagocytosis was 161% observed in MARCO, followed by 116% detected in CR3; the promoting percentage of phagocytosis found in SR-A type I/II and ICAM-1 increased by approximately 65%. Indeed, these scavenger receptors were involved in phagocytosis induced by macrophages. MARCO was also necessary to elicit a stimulatory effect on macrophage phagocytic activity. Conclusions: The phagocytosis of unopsonized particles was possibly mediated by MARCO expression.

  9. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome.

    Science.gov (United States)

    Oliveira, Pathise Souto; Gazal, Marta; Flores, Natália Porto; Zimmer, Aline Rigon; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Kaster, Manuella Pinto; Tavares, Rejane Giacomelli; Spanevello, Roselia Maria; Lencina, Claiton Leoneti; Stefanello, Francieli Moro

    2017-04-01

    The aim of this study was to investigate the effect of blueberry (Vaccinium virgatum) fruit extract on metabolic, behavioral and oxidative stress parameters in the hippocampus and cerebral cortex of mice submitted to an experimental model of metabolic syndrome induced by a highly palatable diet (HPD). Mice C57BL/6 were divided into 4 experimental groups: (1) received standard chow and saline orally, (2) received standard chow and blueberry hydroalcoholic extract, (3) received HPD and saline orally, (4) received HPD and blueberry hydroalcoholic extract. The animals were treated for 150days. Our results showed that the animals fed with HPD presented insulin resistance, increased body weight, visceral fat, glucose, triglycerides, and total cholesterol when compared to the control group. The blueberry extract prevented the increase of these metabolic parameters. Also, the extract was able to reduce the levels of thiobarbituric acid reactive substances in the cerebral cortex and hippocampus of animals submitted to HPD. In contrast, no differences were observed in the total thiol content, activity of the antioxidant enzymes catalase and superoxide dismutase. In addition, the HPD fed animals showed a significant increase in immobility time in the forced swimming test and blueberry prevented this alteration, although no changes were observed in the ambulatory behavior, as well as in the anxiolytic profile of these animals. Overall, our findings suggest that chronic consumption of blueberry extract exhibits hypoglycemic, hypolipidemic, antidepressant-like and antiperoxidative effects in an animal model of metabolic syndrome. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Lack of long-term behavioral alterations after early postnatal treatment with tropisetron: implications for developmental psychobiology.

    Science.gov (United States)

    Inta, Dragos; Vogt, Miriam A; Lima-Ojeda, Juan M; Pfeiffer, Natascha; Schneider, Miriam; Gass, Peter

    2011-07-01

    The early postnatal period represents a critical time window for brain development. Transient Cajal-Retzius cells in layer I of the cortex play an important role in cortical lamination by modulating neuronal migration and maturation. Recent data have demonstrated that the 5-HT(3) receptor antagonist and alpha7 nicotinic receptor partial agonist tropisetron, acting via 5-HT(3) receptors expressed on Cajal-Retzius cells, can disturb the formation of cortical columns at perinatal stages. This process is thought to be involved in several neuropsychiatric disorders. Here we investigated the possible long-term behavioral effects of exposure to tropisetron at early postnatal stages in mice. We found that the administration of 1mg/kg, intraperitoneal (i.p.) tropisetron from postnatal days 2-12 (P2-P12) did not induce significant cognitive, schizophrenia-like or emotional alterations in tropisetron-treated animals as compared to controls, when tested in multiple behavioral assays. These results may be of relevance regarding the possible protracted deleterious neuropsychiatric effects of tropisetron during early life. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The Potency of Hyaluronan of Different Molecular Weights in the Stimulation of Blood Phagocytes

    Directory of Open Access Journals (Sweden)

    Barbora Safrankova

    2010-01-01

    Full Text Available The regulatory functions of glycosaminoglycan hyaluronan (HA are suggested to be dependent on its molecular weight (MW. Proinflammatory and stimulatory effects are proposed mainly for the low MW HA. However, the complex response of blood phagocytes to HA of different MW is unclear. Herein, the effects of highly purified HA of precisely defined MW (52, 250, and 970 kDa on human blood phagocytes were tested. All MW HA activated blood phagocytes, including the spontaneous production of ROS, degranulation, and the production of tumor necrosis factor alpha, with low MW HA 52 kDa having the highest potency and high MW HA 970 kDa having the lowest potency. Interestingly, HA inhibited ROS production stimulated by opsonized zymosan particles and, in contrast, potentiated starch-activated ROS production, mostly independent of MW. Data showed a significant effect of HA of different MW on blood phagocytes, including high MW HA.

  12. The potency of hyaluronan of different molecular weights in the stimulation of blood phagocytes.

    Science.gov (United States)

    Safrankova, Barbora; Gajdova, Silvie; Kubala, Lukas

    2010-01-01

    The regulatory functions of glycosaminoglycan hyaluronan (HA) are suggested to be dependent on its molecular weight (MW). Proinflammatory and stimulatory effects are proposed mainly for the low MW HA. However, the complex response of blood phagocytes to HA of different MW is unclear. Herein, the effects of highly purified HA of precisely defined MW (52, 250, and 970  kDa) on human blood phagocytes were tested. All MW HA activated blood phagocytes, including the spontaneous production of ROS, degranulation, and the production of tumor necrosis factor alpha, with low MW HA 52  kDa having the highest potency and high MW HA 970  kDa having the lowest potency. Interestingly, HA inhibited ROS production stimulated by opsonized zymosan particles and, in contrast, potentiated starch-activated ROS production, mostly independent of MW. Data showed a significant effect of HA of different MW on blood phagocytes, including high MW HA.

  13. Alarmins MRP8 and MRP14 Induce Stress Tolerance in Phagocytes under Sterile Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Judith Austermann

    2014-12-01

    Full Text Available Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4 but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs. Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14−/− mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation.

  14. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics

    Science.gov (United States)

    Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej

    2017-01-01

    Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272

  15. In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells.

    Science.gov (United States)

    Potter, Timothy M; Skoczen, Sarah L; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    This chapter provides a protocol for analysis of nanoparticle effects on the function of phagocytic cells. The protocol relies on luminol chemiluminescence to detect zymosan uptake. Zymosan is an yeast particle which is typically eliminated by phagocytic cells via the complement receptor pathway. The luminol, co-internalized with zymosan, is processed inside the phagosome to generate a chemiluminescent signal. If a test nanoparticle affects the phagocytic function of the cell, the amount of phagocytosed zymosan and, proportionally, the level of generated chemiluminescent signal change. Comparing the zymosan uptake of untreated cells with that of cells exposed to a nanoparticle provides information about the nanoparticle's effects on the normal phagocytic function. This method has been described previously and is presented herein with several changes. The revised method includes details about nanoparticle concentration selection, updated experimental procedure, and examples of the method performance.

  16. THE RELATION BETWEEN PHAGOCYTIC ACTIVITY OF THE NEUTROPHILS (PMN AND THE GLICEMIC LEVEL AT THE SPORTSMAN

    Directory of Open Access Journals (Sweden)

    D. Cotuna

    1999-01-01

    Full Text Available We tried to find a relation between the phagocytes activity of the neutrophils and the level of glicemy in athletes applying the ANOVA test, taking into account the fact that hyperglicemy reduces the phagocytes activity of the neutrophils which becomes so more spherical and burden after the contact with foreign particles. The phagocyte activity of neutrophils (PMN had been established through NBT technique and the glicemy level was determined by Hagerdon – Jansen method. From these notices processed by ANOVA test applied on the values of phagocyte activity of PMN and on glicemy level we conclude that does not exist a tendency of association of these two parameters in a relationship.

  17. Effects of Levamisole on Phagocytic Activity of Rainbow Trout (Oncorhynchus mykiss W.

    Directory of Open Access Journals (Sweden)

    U. Ispir

    2007-01-01

    Full Text Available In this study, activation of phagocytic cells was examined in rainbow trout (Oncorhynchus mykiss W. exposed to 1, 5 and 10 μg ml-1 concentrations of levamisole solution. For this purpose, blood samples were taken from fish on days 1, 7 and 14 of exposure. Potential killing activity was determined by measuring oxidative radical production and phagocytic activity of neutrophils and superoxide anion production of phagocytic cells against Y. ruckeri. The activity of phagocytic cells in fish exposed to each of three concentrations was found higher than that in controls and the differences were statistically significant (p p -1 concentration of levamisole solution was determined on day 7, it was observed that all indicators increased on day 14 of exposure. The present results suggest that the application of levamisole in fish farms could increase non-specific immunity and resistance to infection of fish and offer economics benefits.

  18. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    Science.gov (United States)

    Majeske, Audrey J; Bayne, Christopher J; Smith, L Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  19. Phagocytic and bactericidal activities of leukocytes in whole blood from atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasagawa, S.; Yoshimoto, Y.; Toyota, E.; Neriishi, S.; Yamakido, M.; Matsuo, M.; Hosoda, Y.; Finch, S.C.

    1990-01-01

    This study evaluated the phagocytic and bactericidal activities of peripheral blood leukocytes from Hiroshima and Nagasaki atomic bomb survivors for Staphylococcus aureus. The data were analyzed by multiple linear regression for age, sex, radiation exposure, city of exposure, and neutrophil counts. No significant radiation effect was observed for either blood phagocytic or bactericidal activities. The only significant variable for these functions was the neutrophil count

  20. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-02

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.

  1. Human and mouse mononuclear phagocyte networks: a tale of two species?

    Directory of Open Access Journals (Sweden)

    Gary eReynolds

    2015-06-01

    Full Text Available Dendritic cells (DCs, monocytes and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumour and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonise findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organisation of human and mouse mononuclear phagocyte networks.

  2. Differential analysis of behavior and diazepam-induced alterations in C57BL/6N and BALB/c mice using the modified hole board test.

    Science.gov (United States)

    Ohl, F; Sillaber, I; Binder, E; Keck, M E; Holsboer, F

    2001-01-01

    A variety of test procedures are used in preclinical research on behavioral pharmacology and to dissociate behavioral differences or pharmacologically induced behavioral alterations several independent tests are usually performed. In the present study we introduce a modified hole board procedure for mice which allows us to investigate a variety of behavioral parameters such as anxiety, risk assessment, exploration, locomotion, food-intake inhibition, novelty seeking, and arousal by using only one test. The modified hole board was established by investigating the behavior of two inbred mouse strains, C57BL/6 and BALB. Significant differences in terms of locomotor activity, general exploration, and other parameters were found. Moreover, strain-specific exploration strategies could be detected in the modified hole board. Further, the test was validated by investigating the effects of diazepam as standard anxiolytic on the behavior in both mouse strains. Acute administration of diazepam (1 and 3 mg/kg) induced strong sedative effects in a dose-dependent manner in C57BL/6 mice. In BALB mice, the lower dosage of diazepam showed an activating and anxiolytic action while the 3 mg dosage revealed a slight sedative but still anxiolytic effect in these animals. Taken together, the results demonstrate that the modified hole board enables to differentially investigate behavioral phenotypes and also pharmacologically-induced behavioral alterations in mice. Therefore, this new strategy allows to reduce the number of experimental animals and the time needed, thus, representing an effective screening-tool for behavioral investigations.

  3. Quantified F-Actin Morphology Is Predictive of Phagocytic Capacity of Stem Cell-Derived Retinal Pigment Epithelium

    Directory of Open Access Journals (Sweden)

    Claudia Müller

    2018-03-01

    Full Text Available Summary: With stem cell-derived retinal pigment epithelial (RPE replacement therapies in clinical testing, establishing potency of RPE prior to transplantation is imperative. Phagocytosis of photoreceptor outer segment fragments (POS is a key indicator of RPE functionality. Comparing RPE derived from different donor human adult RPE stem cell lines, we found that cells were either high-phagocytic or low-phagocytic despite sharing phagocytic receptors and ligands, junctional ZO-1, and lack of epithelial-mesenchymal transition. We found that low-phagocytic cells harbored F-actin stress fibers but lacked contiguous lateral circumferential F-actin and ezrin-rich microvilli of high-phagocytic cells. Rho kinase inhibition reversed the F-actin phenotype and restored phagocytic capacity to low-phagocytic RPE. Conversely, RhoA activation induced stress fiber formation and reduced phagocytic function of high-phagocytic RPE. These results demonstrate that a stress fiber-rich microfilament cytoskeleton causes phagocytic dysfunction of RPE cells. We propose F-actin assessment as a rapid, sensitive, and quantitative test to identify RPE populations lacking phagocytic capacity. : Here, Finnemann and colleagues demonstrate that F-actin stress fibers in adult stem cell-derived retinal pigment epithelial (RPE cells predict and cause poor phagocytic activity, a cardinal RPE function. ROCK inhibitor treatment of differentiated RPE monolayers suffices to revert F-actin phenotype and restore phagocytic function. The authors propose F-actin phenotype scoring as a rapid, sensitive, and quantitative assessment of RPE quality. Keywords: adult RPE stem cells, cytoskeleton, F-actin, phagocytosis, retinal pigment epithelium, RPE, RhoA/ROCK, stress fibers

  4. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    differences were not significant between the two treatments. LNG caused significant increases in the 4:6 anal fin ratio of males exposed to 100 ng/L, with no effects observed in the 10 ng/L treatment. In addition, the reproductive behavior of control males paired with female mosquitofish exposed to 100 ng/L LNG was also altered, for these males spent more time exhibiting no reproductive behavior, had decreased attending behavior, and a lower number of gonopodial thrusts compared to control males paired to control female mosquitofish. Given the rapid effects on both anal fin morphology and behavior observed in this study, the mosquitofish is an excellent sentinel species for the detection of exposure to LNG and likely other 19-nortestosterone derived contraceptive progestins in the environment.

  5. Exposure to the contraceptive progestin, gestodene, alters reproductive behavior, arrests egg deposition, and masculinizes development in the fathead minnow (Pimephales promelas)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Kolpin, Dana W.; Gillis, Amanda B.; Alvarez, David A.; Orlando, Edward F.

    2016-01-01

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.

  6. Exposure to the Contraceptive Progestin, Gestodene, Alters Reproductive Behavior, Arrests Egg Deposition, and Masculinizes Development in the Fathead Minnow (Pimephales promelas).

    Science.gov (United States)

    Frankel, Tyler E; Meyer, Michael T; Kolpin, Dana W; Gillis, Amanda B; Alvarez, David A; Orlando, Edward F

    2016-06-07

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.

  7. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Spinetta, Michael J; Thomas, Jennifer D; Riley, Edward P

    2011-01-01

    The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  9. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study.

    Science.gov (United States)

    Katti, Dinesh R; Katti, Kalpana S

    2017-12-01

    A robust computational model of a cancer cell is presented using finite element modeling. The model accurately captures nuances of the various components of the cellular substructure. The role of degradation of cytoskeleton on overall elastic properties of the cancer cell is reported. The motivation for degraded cancer cellular substructure, the cytoskeleton is the observation that the innate mechanics of cytoskeleton is disrupted by various anti-cancer drugs as therapeutic treatments for the destruction of the cancer tumors. We report a significant influence on the degradation of the cytoskeleton on the mechanics of cancer cell. Further, a simulations based study is reported where we evaluate mechanical properties of the cancer cell attached to a variety of substrates. The loading of the cancer cell is less influenced by nature of the substrate, but low modulus substrates such as osteoblasts and hydrogels indicate a significant change in unloading behavior and also the plastic deformation. Overall, softer substrates such as osteoblasts and other bone cells result in a much altered unloading response as well as significant plastic deformation. These substrates are relevant to metastasis wherein certain type of cancers such as prostate and breast cancer cells migrate to the bone and colonize through mesenchymal to epithelial transition. The modeling study presented here is an important first step in the development of strong predictive methodologies for cancer progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Havixbeck

    Full Text Available In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey, like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus and lamprey (P. marinus hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of

  11. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    . Unexpectedly, phagocytosis of CD47-/- myelin by SIRPα-KD phagocytes, which is not altered from normal when tested in serum-free medium, is augmented when serum is present. Therefore, both myelin CD47 and serum may each promote SIRPα-dependent down-regulation of myelin phagocytosis irrespective of the other. Conclusions Myelin down-regulates its own phagocytosis through CD47-SIRPα interactions. It may further be argued that CD47 functions normally as a marker of "self" that helps protect intact myelin and myelin-forming oligodendrocytes and Schwann cells from activated microglia and macrophages. However, the very same mechanism that impedes phagocytosis may turn disadvantageous when rapid clearance of degenerated myelin is helpful.

  12. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Ji

    Full Text Available BACKGROUND: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20 mg/kg/day by oral gavage revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson' trichrome staining in bleomycin treated (2.5 mg/kg, via oropharyngeal instillation male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6C(hi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+ of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c- remained unaffected by spironolactone during investigation. CONCLUSIONS/SIGNIFICANCE: The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.

  13. Wound repair in the Amphioxus (Branchiostoma platae), an animal deprived of inflammatory phagocytes.

    Science.gov (United States)

    Silva, J R; Mendes, E G; Mariano, M

    1995-03-01

    The existence of phagocytes in the Amphioxus is a matter of debate since early studies of Metchnikoff, who could not induce inflammation in this animal. To reinvestigate this important phenomenon, we sectioned the distal portion of the animal and analyzed, by morphological methods, the presence of phagocytes in the wound. The analysis of the wound by optical and electron microscopy did not detect cells with morphological characteristics of phagocytes in it. The wound is completely covered by the external cuticle of the animal 24 hr after the lesion was made. A second section of the animal leads to abnormal healing of the lesion. The insertion of a surgical silk thread in the muscle of the animals results--after 13 days--in a collection of cells surrounding the foreign body. The ultrastructural analysis of these cells showed they are endothelial cells rather than specialized phagocytes. Yet, the Amphioxus is able to mount an allograph rejection when the animals are tied together by suture. This intriguing capacity of the Amphioxus to cope with tissue healing, infection, and other pathologies without phagocytes is discussed.

  14. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease.

    Science.gov (United States)

    Gomez-Arboledas, Angela; Davila, Jose C; Sanchez-Mejias, Elisabeth; Navarro, Victoria; Nuñez-Diaz, Cristina; Sanchez-Varo, Raquel; Sanchez-Mico, Maria Virtudes; Trujillo-Estrada, Laura; Fernandez-Valenzuela, Juan Jose; Vizuete, Marisa; Comella, Joan X; Galea, Elena; Vitorica, Javier; Gutierrez, Antonia

    2018-03-01

    Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation of components of intermediate filaments, is a common feature in brains of Alzheimer's patients. Reactive astrocytes are found in close association with neuritic plaques; however, the precise role of these glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical techniques and light and electron microscopy, we report that plaque-associated reactive astrocytes enwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursor protein/presenilin-1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparently not engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% of amyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophic neurites was low, around 7% of total dystrophies around plaques at both ages. This fact, along with the accumulation of dystrophic neurites during disease course, suggests that the efficiency of the astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surrounding and engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer's patients by confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytes might contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limiting the amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytes may represent a potential therapy in Alzheimer's disease. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  15. Can group-based reassuring information alter low back pain behavior? A cluster-randomized controlled trial.

    Science.gov (United States)

    Frederiksen, Pernille; Indahl, Aage; Andersen, Lars L; Burton, Kim; Hertzum-Larsen, Rasmus; Bendix, Tom

    2017-01-01

    Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce. A cluster-randomized controlled trial. Publically employed workers (n = 505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non-threatening explanation for LBP-the 'functional-disturbance'-model. Data collections took place monthly over a 1-year period using text message tracking (SMS). Primary outcomes were self-reported days of cutting down usual activities and work participation. Secondary outcomes were self-reported back beliefs, work ability, number of healthcare visits, bothersomeness, restricted activity, use of pain medication, and sadness/depression. There was no between-group difference in the development of LBP during follow-up. Cumulative logistic regression analyses showed no between-group difference on days of cutting down activities, but increased odds for more days of work participation in the intervention group (OR = 1.83 95% CI: 1.08-3.12). Furthermore, the intervention group was more likely to report: higher work ability, reduced visits to healthcare professionals, lower bothersomeness, lower levels of sadness/depression, and positive back beliefs. Reassuring information involving a simple non-threatening explanation for LBP significantly increased the odds for days of work participation and higher work ability among

  16. Brain and behavioral evidence for altered social learning mechanisms among women with assault-related posttraumatic stress disorder.

    Science.gov (United States)

    Cisler, Josh M; Bush, Keith; Scott Steele, J; Lenow, Jennifer K; Smitherman, Sonet; Kilts, Clinton D

    2015-04-01

    Current neurocircuitry models of PTSD focus on the neural mechanisms that mediate hypervigilance for threat and fear inhibition/extinction learning. Less focus has been directed towards explaining social deficits and heightened risk of revictimization observed among individuals with PTSD related to physical or sexual assault. The purpose of the present study was to foster more comprehensive theoretical models of PTSD by testing the hypothesis that assault-related PTSD is associated with behavioral impairments in a social trust and reciprocity task and corresponding alterations in the neural encoding of social learning mechanisms. Adult women with assault-related PTSD (n = 25) and control women (n = 15) completed a multi-trial trust game outside of the MRI scanner. A subset of these participants (15 with PTSD and 14 controls) also completed a social and non-social reinforcement learning task during 3T fMRI. Brain regions that encoded the computationally modeled parameters of value expectation, prediction error, and volatility (i.e., uncertainty) were defined and compared between groups. The PTSD group demonstrated slower learning rates during the trust game and social prediction errors had a lesser impact on subsequent investment decisions. PTSD was also associated with greater encoding of negative expected social outcomes in perigenual anterior cingulate cortex and bilateral middle frontal gyri, and greater encoding of social prediction errors in the left temporoparietal junction. These data suggest mechanisms of PTSD-related deficits in social functioning and heightened risk for re-victimization in assault victims; however, comorbidity in the PTSD group and the lack of a trauma-exposed control group temper conclusions about PTSD specifically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Science.gov (United States)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-10-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  18. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-01-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  19. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, Naofumi, E-mail: kozai.naofumi@jaea.go.jp [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Ohnuki, Toshihiko [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, JAEA, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  20. Altered dermal fibroblast behavior in a collagen V haploinsufficient murine model of classic Ehlers-Danlos syndrome.

    Science.gov (United States)

    DeNigris, John; Yao, Qingmei; Birk, Erika K; Birk, David E

    2016-01-01

    Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS.

  1. Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome

    Data.gov (United States)

    National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...

  2. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  3. Infection-Mediated Priming of Phagocytes Protects against Lethal Secondary Aspergillus fumigatus Challenge.

    Directory of Open Access Journals (Sweden)

    Amélie Savers

    Full Text Available Phagocytes restrict the germination of Aspergillus fumigatus conidia and prevent the establishment of invasive pulmonary aspergillosis in immunecompetent mice. Here we report that immunecompetent mice recovering from a primary A. fumigatus challenge are protected against a secondary lethal challenge. Using RAGγc knock-out mice we show that this protection is independent of T, B and NK cells. In protected mice, lung phagocytes are recruited more rapidly and are more efficient in conidial phagocytosis and killing. Protection was also associated with an enhanced expression of CXCR2 and Dectin-1 on bone marrow phagocytes. We also show that protective lung cytokine and chemokine responses are induced more rapidly and with enhanced dynamics in protected mice. Our findings support the hypothesis that following a first encounter with a non-lethal dose of A. fumigatus conidia, the innate immune system is primed and can mediate protection against a secondary lethal infection.

  4. Blood phagocyte activity after race training sessions in Thoroughbred and Arabian horses.

    Science.gov (United States)

    Cywinska, Anna; Szarska, Ewa; Degorski, Andrzej; Guzera, Maciej; Gorecka, Renata; Strzelec, Katarzyna; Kowalik, Sylwester; Schollenberger, Antoni; Winnicka, Anna

    2013-10-01

    Intensive exercise and exertion during competition promote many changes that may result in the impairment of immunity and increased susceptibility to infections. The aim of this study was to evaluate the activity of "the first line of defense": neutrophils and monocytes in racing Thoroughbred and Arabian horses after routine training sessions. Twenty-three (12 Thoroughbred and 11 Arabian) horses were examined. Routine haematological (number of red blood cells - RBC, haemoglobin concentration - HGB, haematocrit - HCT, total number of white blood cells - WBC), biochemical (creatine phosphokinase activity - CPK and total protein concentration - TP) parameters, cortisol concentration as well as phagocytic and oxidative burst activity of neutrophils and monocytes were determined. The values of basic parameters and the activity of phagocytes differed between breeds and distinct patterns of exercise-induced changes were observed. The training sessions did not produce the decrease in phagocyte activity that might lead to the suppression of immunity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice.

    Science.gov (United States)

    Kurhe, Yeshwant; Radhakrishnan, Mahesh; Gupta, Deepali; Devadoss, Thangaraj

    2014-01-01

    The inconsistent therapeutic outcome necessitates identifying novel compounds for the treatment of depression. Therefore, the present study is aimed at evaluating the antidepressant-like effects of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations in mice. Animals were subjected to different stressors for a period of 28 days. Thereafter, battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM) and open field test (OFT) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase and superoxide dismutase (SOD) were assessed in brain homogenate. QCM-4 dose dependently reversed the CUMS induced behavioral and biochemical alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the percent time in open arm in EPM and increasing the ambulation along with the rearings and decreased number of fecal pellets in OFT. Further, biochemical alterations were attenuated by QCM-4 as indicated by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD. QCM-4 attenuated the behavioral and biochemical derangements induced by CUMS in mice, indicating antidepressant behavior of the novel compound. © 2013 Royal Pharmaceutical Society.

  6. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  7. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    Science.gov (United States)

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response.

    Directory of Open Access Journals (Sweden)

    Michael A Flierl

    Full Text Available Following our recent report that phagocytic cells (neutrophils, PMNs, and macrophages are newly discovered sources of catecholamines, we now show that both epinephrine and norepinephrine directly activate NFkappaB in macrophages, causing enhanced release of proinflammatory cytokines (TNFalpha, IL-1beta, IL-6. Both adrenal-intact (AD+ and adrenalectomized (ADX rodents were used, because ADX animals had greatly enhanced catecholamine release from phagocytes, facilitating our efforts to understand the role of catecholamines released from phagocytes. Phagocytes isolated from adrenalectomized rats displayed enhanced expression of tyrosine-hydroxylase and dopamine-beta-hydroxylase, two key enzymes for catecholamine production and exhibited higher baseline secretion of norepinephrine and epinephrine. The effects of upregulation of phagocyte-derived catecholamines were investigated in two models of acute lung injury (ALI. Increased levels of phagocyte-derived catecholamines were associated with intensification of the acute inflammatory response, as assessed by increased plasma leak of albumin, enhanced myeloperoxidase content in lungs, augmented levels of proinflammatory mediators in bronchoalveolar lavage fluids, and elevated expression of pulmonary ICAM-1 and VCAM-1. In adrenalectomized rats, development of ALI was enhanced and related to alpha(2-adrenoceptors engagement but not to involvement of mineralocorticoid or glucocorticoid receptors. Collectively, these data demonstrate that catecholamines are potent inflammatory activators of macrophages, upregulating NFkappaB and further downstream cytokine production of these cells. In adrenalectomized animals, which have been used to further assess the role of catecholamines, there appears to be a compensatory increase in catecholamine generating enzymes and catecholamines in macrophages, resulting in amplification of the acute inflammatory response via engagement of alpha(2-adrenoceptors.

  9. Evidence for a dual function of monocyte-derived mononuclear phagocytes during chronic intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    Mononuclear phagocytes derived from tissue-infiltrating monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. We and others showed that, upon recruitment to the intestinal mucosa, the differentiation of Ly6Chi monocytes into phagocytes with anti- versus pro...... cells pool in the inflamed intestinal mucosa. However, surprisingly, mice deficient for the chemokine receptor CCR2, which exhibit highly decreased amounts of intestinal MDP, develop an intestinal pathology similar to their wild type littermates. Preliminary experiments using the anti-CD40 colitis model...

  10. Whole-blood phagocytic and bactericidal activities of atomic bomb survivors, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Sasagawa, Sumiko; Yoshimoto, Yasuhiko; Toyota, Emiko; Neriishi, Shotaro; Yamakido, Michio; Matsuo, Miyo; Hosoda, Yutaka; Finch, S.C.

    1989-04-01

    This in vitro study evaluated the phagocytic and bactericidal activities of leukocytes in aliquots of whole blood from Hiroshima and Nagasaki atomic bomb survivors for Staphylococcus aureus. The data were analyzed by multiple linear regression. Any significant effects of exposure to A-bomb radiation could not be detected for both phagocytic and bactericidal activities of whole blood from A-bomb survivors. In addition, there were no significant effects of age categories, sex or city, except in neutrophil counts. (J.P.N.)

  11. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Audrey J Majeske

    Full Text Available Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered

  12. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    Science.gov (United States)

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Kelly A Foley

    Full Text Available Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD. The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS, a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA, a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg on gestation days G12-16, LPS (50 µg/kg on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg or vehicle twice a day, every second day from postnatal days (P 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42 in the elevated plus maze (EPM and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  14. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Science.gov (United States)

    Foley, Kelly A; Ossenkopp, Klaus-Peter; Kavaliers, Martin; Macfabe, Derrick F

    2014-01-01

    Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12-16, LPS (50 µg/kg) on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  15. Altered Behavioral and Autonomic Pain Responses in Alzheimer’s Disease Are Associated with Dysfunctional Affective, Self-Reflective and Salience Network Resting-State Connectivity

    Directory of Open Access Journals (Sweden)

    Paul A. Beach

    2017-09-01

    Full Text Available While pain behaviors are increased in Alzheimer’s disease (AD patients compared to healthy seniors (HS across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores and autonomic (heart rate, HR pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN and between the TLN and ventromedial prefrontal cortex (vmPFC; between default mode network (DMN subcomponents; between the DMN and ventral salience network (vSN. Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation.

  16. Maladaptive Sexual Behavior Following Concurrent Methamphetamine and Sexual Experience in Male Rats is Associated with Altered Neural Activity in Frontal Cortex.

    Science.gov (United States)

    Kuiper, Lindsey B; Frohmader, Karla S; Coolen, Lique M

    2017-09-01

    The use of psychostimulants is often associated with hypersexuality, and psychostimulant users have identified the effects of drug on sexual behavior as a reason for further use. It was previously demonstrated in male rats that methamphetamine (Meth), when administered concurrently with sexual behavior results in impairment of inhibition of sexual behavior in a conditioned sex aversion (CSA) paradigm where mating is paired with illness. This is indicative of maladaptive sex behavior following Meth and sex experience. The present study examined the neural pathways activated during inhibition of sexual behavior in male rats and the effects of concurrent Meth and sexual behavior on neural activity, using ERK phosphorylation (pERK). First, exposure to conditioned aversive stimuli in males trained to inhibit sexual behavior in the CSA paradigm increased pERK expression in medial prefrontal (mPFC), orbitofrontal cortex (OFC) and areas in striatum and amygdala. Second, effects of concurrent Meth and sex experience were tested in males that were exposed to four daily sessions of concurrent Meth (1 mg/kg) or saline and mating and subsequently exposed to CSA one week after last treatment. Meth and mating-treated males showed significant impairment of inhibition of mating, higher pERK expression under baseline conditions, and disrupted pERK induction by exposure to the conditioned aversive stimuli in mPFC and OFC. These alterations of pERK occurred in CaMKII-expressing neurons, suggesting changes in efferent projections of these areas. Altogether, these data show that concurrent Meth and mating experience causes maladapative sexual behavior that is associated with alterations in neural activation in mPFC and OFC.

  17. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Carolina R den Hartog

    Full Text Available Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs. In this study, we determined how expression of a mutant GluN1 subunit (F639A that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p. increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg. In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  18. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Alteration of rhyolitic (volcanic) glasses in natural Bolivian salt lakes. - Natural analogue for the behavior of radioactive waste glasses in rock salt repositories

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-06-01

    Alteration experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 CaCl 2 -saturated brine (formation of hydrotalcite and chlorite-serpentine at short-term and saponite at long-term). These results support the use of volcanic glasses alteration patterns in Mg-rich solutions (seawater, brines) to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The neoformed phases in the sediments are: Smectite, alunite, pyrite, barite, celestite and cerianite. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term in brines and the trapping of certain radionuclides in secondary phases. (orig.) [de

  20. Withania somnifera Leaf Extract Ameliorates Benzo[a]pyrene-Induced Behavioral and Neuromorphological Alterations by Improving Brain Antioxidant Status in Zebrafish (Danio rerio).

    Science.gov (United States)

    Mohanty, Ratnalipi; Das, Saroj Kumar; Singh, Nihar Ranjan; Patri, Manorama

    2016-06-01

    The aquatic environment provides a sink for the environmental pollutants that have potential to induce oxidative stress by altering neurobehavioral response of aquatic animals. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon is known to induce oxidative stress in the brain. Withania somnifera has been used traditionally for its neuroprotective effect in experimental models of neurological disorders. The present study is aimed to evaluate the neuroprotective potential of Withania somnifera leaf extract (WSLE) following exposure to waterborne B[a]P. Wild-type zebrafish (Danio rerio) were designated as naive, control (dimethyl sulfoxide), WSLE, B[a]P, and B[a]P + WSLE groups. Behavioral studies showed reversal in scototaxis (anxiety-like) behavior in B[a]P group and was restored by WSLE cosupplementation in B[a]P + WSLE group. B[a]P-induced altered antioxidant status was ameliorated by WSLE in the B[a]P + WSLE group. Previous studies showed that the periventricular gray zone (PGZ) of the optic tectum in zebrafish brain regulates scototaxis (anxiety-like) behavior. Our histopathological observation showed a significant increase in the pyknotic neuronal counts in PGZ of the B[a]P group and was ameliorated by WSLE cosupplementation. The study showed that the reversal in scototaxis behavior following exposure to waterborne B[a]P might be associated with neuromorphological alterations in PGZ, whereas a pioneer ethnopharmacological approach of WSLE cosupplementation showed its neuroprotective role to restore normal scototaxis of zebrafish. Future research directing toward understanding the role of visual circuit involved with impaired scototaxis behavior in zebrafish might provide new pathological outcomes following exposure to B[a]P.

  1. Effect of H1-antihistamines on the oxidative burst of rat phagocytes

    Czech Academy of Sciences Publication Activity Database

    Králová, Jana; Číž, Milan; Nosál, R.; Drábiková, K.; Lojek, Antonín

    2006-01-01

    Roč. 55, č. 1 (2006), S15-S16 ISSN 1023-3830 R&D Projects: GA ČR(CZ) GA305/04/0896 Institutional research plan: CEZ:AV0Z50040507 Keywords : H1-antihistamines * reactive oxygen species * phagocytes Subject RIV: BO - Biophysics Impact factor: 1.485, year: 2006

  2. The potency of hyaluronan of different molecular weights in the stimulation of blood phagocytes

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Barbora; Gajdová, Silvie; Kubala, Lukáš

    Vol. 2010, ID 380948 (2010), s. 1-98 ISSN 0962-9351 R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : phagocyte function * hyaluronan * inflammation Subject RIV: BO - Biophysics Impact factor: 2.059, year: 2010

  3. SURFACE MODIFICATION OF NANOPARTICLES TO OPPOSE UPTAKE BY THE MONONUCLEAR PHAGOCYTE SYSTEM

    NARCIS (Netherlands)

    STORM, G; BELLIOT, SO; DAEMEN, T; LASIC, DD

    1995-01-01

    An overview of recent advances in the surface modification of colloidal particles to oppose uptake by the mononuclear phagocyte system (MPS) is presented. First, we describe the colloidal particles and hydrophilic coating materials investigated, with particular focus on the literature concerning

  4. Trafficking of phagocytic peritoneal cells in hypoinsulinemic-hyperglycemic mice with systemic candidiasis.

    Science.gov (United States)

    Fraga-Silva, Thais Fernanda de Campos; Venturini, James; de Arruda, Maria Sueli Parreira

    2013-03-25

    Candidemia is a severe fungal infection that primarily affects hospitalized and/or immunocompromised patients. Mononuclear phagocytes have been recognized as pivotal immune cells which act in the recognition of pathogens, phagocytosis, inflammation, polarization of adaptive immune response and tissue repair. Experimental studies have showed that the systemic candidiasis could be controlled by activated peritoneal macrophages. However, the mechanism to explain how these cells act in distant tissue during a systemic fungal infection is still to be elucidated. In the present study we investigate the in vivo trafficking of phagocytic peritoneal cells into infected organs in hypoinsulinemic-hyperglycemic (HH) mice with systemic candidiasis. The red fluorescent vital dye PKH-26 PCL was injected into the peritoneal cavity of Swiss mice 24 hours before the intravenous inoculation with Candida albicans. After 24 and 48 hours and 7 days of infection, samples of the spleen, liver, kidneys, brain and lungs were submitted to the microbiological evaluation as well as to phagocytic peritoneal cell trafficking analyses by fluorescence microscopy. In the present study, PKH+ cells were observed in the peritoneum, kidney, spleen and liver samples from all groups. In infected mice, we also found PKH+ cells in the lung and brain. The HH condition did not affect this process. In the present study we have observed that peritoneal phagocytes migrate to tissues infected by C. albicans and the HH condition did not interfere in this process.

  5. Pheniramines and oxidative burst of blood phagocytes during ischaemia/reperfusion

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Jančinová, V.; Nosálová, V.; Perečko, T.; Číž, Milan; Lojek, Antonín

    2009-01-01

    Roč. 58, č. 1 (2009), S66-S67 ISSN 1023-3830 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : oxidative burst * phagocytes * pheniramines Subject RIV: BO - Biophysics Impact factor: 1.586, year: 2009

  6. Phagocytic activity of three Naegleria strains in the presence of erythrocytes of various types.

    Science.gov (United States)

    Alonso, P; Zubiaur, E

    1985-11-01

    The phagocytic activities of N. lovaniensis (Aq/9/1/45D) and N. gruberi (1518/1f and 1518/1e) were studied in the presence of erythrocytes of various species: chicken, rabbit, goat, and human (A+, B+, and AB+ were tested). The percentage of amoebae with ingested red cells, the phagocytic index (PhI), can be considered as an expression of phagocytic activity. Under given conditions (erythrocyte concentration, incubation time, age of amoebic cultures) each strain of Naegleria prefers one erythrocyte type. Thus, for 72-h cultures, N. lovaniensis ingested more A+ type erythrocytes than did N. gruberi strains but had very low affinity for rabbit red cells except when very high concentrations were tested. Naegleria gruberi 1f was the most active of the three strains towards rabbit and B+ and AB+ human erythrocytes, but very low PhIs were obtained with goat erythrocytes. Naegleria gruberi 1e exhibited high phagocytic activity for every erythrocyte type except for rabbit red cells.

  7. Lessons Learned from Phagocytic Function Studies in a Large Cohort of Patients with Recurrent Infections

    NARCIS (Netherlands)

    Wolach, Baruch; Gavrieli, Ronit; Roos, Dirk; Berger-Achituv, Sivan

    2012-01-01

    Background There is a paucity of data on the relationship between demographic characteristics, specific clinical manifestations, and neutrophil dysfunction, guiding physicians to decide which clinical signs and symptoms are a code for an underlying phagocytic disorder. Methods The data over a

  8. The phagocyte inhibitory receptor sirpα in the immune system

    NARCIS (Netherlands)

    Álvarez Zárate, J.

    2014-01-01

    Phagocytes play a central role in the host defense against pathogens, by virtue of amongst other things their ability to recognize and destroy them. These processes have to be tightly controlled to prevent unwanted inflammation that could harm the host. From previous studies it has become clear that

  9. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    Science.gov (United States)

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.

  10. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  11. Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics

    Directory of Open Access Journals (Sweden)

    Thien eVu Manh

    2015-06-01

    Full Text Available Mononuclear phagocytes are organized in a complex system of ontogenically and functionally-distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections.We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey, indicating conservation of the genetic support for mononuclear phagocyte organization throughout jawed vertebrates but likely not in agnathans. Altogether this work provides molecular clues to the definition and functions of mononuclear phagocyte subsets across vertebrates which shall be useful to rigorously identify these cells and to design universal strategies to manipulate them in many target species towards the goal to reach and maintain global health.

  12. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2015-05-01

    Full Text Available Eleonore Fröhlich Center for Medical Research, Medical University of Graz, Graz, Austria Abstract: Nanoparticles (NPs present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. Keywords: immunotoxicity, phagocytes, cytokines, respiratory burst, nitric oxide generation, phagocytosis

  13. Up-regulated expression of extracellular matrix remodeling genes in phagocytically challenged trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Kristine M Porter

    Full Text Available Cells in the trabecular meshwork (TM, the tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic function in TM cells is thought to play an important role in the normal functioning of the outflow pathway. Dysfunction of phagocytosis could lead to abnormalities of outflow resistance and increased intraocular pressure (IOP. However, the molecular mechanisms triggered by phagocytosis in TM cells are completely unknown.Gene expression profile analysis of human TM cells phagocytically challenged to E. coli or pigment under physiological and oxidative stress environment were performed using Affymetrix U133 plus 2.0 array and analyzed with Genespring GX. Despite the differential biological response elicited by E. coli and pigment particles, a number of genes, including MMP1, MMP3, TNFSF11, DIO2, KYNU, and KCCN2 showed differential expression with both phagocytic ligands in all conditions. Data was confirmed by qPCR in both human and porcine TM cells. Metacore pathway analysis and the usage of recombinant adenovirus encoding the dominant negative mutant of IkB identified NF-κB as a transcription factor mediating the up-regulation of at least MMP1 and MMP3 in TM cells with phagocytosis. In-gel zymography demonstrated increased collagenolytic and caseinolytic activities in the culture media of TM cells challenge to E. coli. In addition, collagenolytic I activity was further confirmed using the self-quenched fluorescent substrate DQ-Collagen I.Here we report for the first time the differential gene expression profile of TM cells phagocytically challenged with either E. coli or pigment. Our data indicate a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  14. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    Science.gov (United States)

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  15. Effects of the in vitro administered ethanol and lipopolysaccharide toxin on membrane properties, intracellular free calcium and phagocytic function of isolated rat kupffer cells

    Energy Technology Data Exchange (ETDEWEB)

    Victorov, A.; Smith, T.; Abril, E.; Hamlin, E.; Earnest, D. (Univ. of Arizona, Tucson (United States))

    1991-03-11

    Low concentrations of ethanol slightly stimulated phagocytosis of cultured Kupffer cells (KC), producing practically no effect on membrane microviscosity and cytosolic free (Ca{sup 2+}){sub i}. On the contrary, high concentrations of ethanol significantly suppressed phagocytic function, increased fluidity of membrane lipids and caused a sustained rise in (Ca{sup 2}){sub i}; above the resting level of 41-85 nM. Treatment of KC with colchicine and cytochalasin B dramatically destructurized the plasma membrane lipids. Short term preincubation of KC with high doses of alcohol stimulated the disordering effects of both drugs, suggesting direct interaction of ethanol with microtubule and microfilament structures. The authors hypothesize that ethanol impairs phagocytosis of KC by concerted actions on membrane lipid fluidity, cytosolic free Ca{sup 2+} and functioning of cytoskeleton. On the other hand, incubation of KC with low concentrations of lipopolysaccharide (LPS) produced no changes in (Ca{sup 2+}){sub i}; or plasma membrane fluidity but reduced by several fold the fluidizing effect of subsequently added ethanol. They suggested that low doses of LPS, by activating second messengers other than Ca{sup 2+}, alter the functioning of the cytoskeleton and cause reorganization of the plasma membrane thus making KC membranes more resistent to the fluidizing action of ethanol and partially restoring the phagocytic function.

  16. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Intermittent Ethanol during Adolescence Leads to Lasting Behavioral Changes in Adulthood and Alters Gene Expression and Histone Methylation in the PFC

    Directory of Open Access Journals (Sweden)

    Jennifer T. Wolstenholme

    2017-09-01

    Full Text Available Adolescents primarily consume alcohol in binges, which can be particularly harmful to the developing frontal cortex and increase risk for an adult alcohol use disorder. We conducted a study investigating immediate and long lasting changes to the prefrontal cortex (PFC transcriptome to determine the molecular mechanisms underlying adult ethanol behavioral sensitivity following binge ethanol in adolescence. DBA/2J mice were orally dosed with 4 g/kg ethanol intermittently from day 29 to 42. Adolescent mice were tested for anxiety-like behavior and ethanol sensitivity using the loss of righting reflex task. As adults, mice were tested for cognitive changes using the novel object recognition task, ethanol-induced anxiolysis and ethanol sensitivity. Adolescent binge ethanol altered ethanol sensitivity in young mice and led to lasting memory deficits in the object recognition test and greater ethanol sensitivity in adulthood. Using genomic profiling of transcripts in the PFC, we found that binge ethanol reduced myelin-related gene expression and altered chromatin modifying genes involved in histone demethylation at H3K9 and H3K36. We hypothesize that ethanol’s actions on histone methylation may be a switch for future transcriptional changes that underlie the behavioral changes lasting into adulthood.

  18. The prebiotics 3'Sialyllactose and 6'Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis.

    Science.gov (United States)

    Tarr, Andrew J; Galley, Jeffrey D; Fisher, Sydney E; Chichlowski, Maciej; Berg, Brian M; Bailey, Michael T

    2015-11-01

    There are extensive bidirectional interactions between the gut microbiota and the central nervous system (CNS), and studies demonstrate that stressor exposure significantly alters gut microbiota community structure. We tested whether oligosaccharides naturally found in high levels in human milk, which have been reported to impact brain development and enhance the growth of beneficial commensal microbes, would prevent stressor-induced alterations in gut microbial community composition and attenuate stressor-induced anxiety-like behavior. Mice were fed standard laboratory diet, or laboratory diet containing the human milk oligosaccharides 3'Sialyllactose (3'SL) or 6'Sialyllactose (6'SL) for 2 weeks prior to being exposed to either a social disruption stressor or a non-stressed control condition. Stressor exposure significantly changed the structure of the colonic mucosa-associated microbiota in control mice, as indicated by changes in beta diversity. The stressor resulted in anxiety-like behavior in both the light/dark preference and open field tests in control mice. This effect was associated with a reduction in immature neurons in the dentate gyrus as indicated by doublecortin (DCX) immunostaining. These effects were not evident in mice fed milk oligosaccharides; stressor exposure did not significantly change microbial community structure in mice fed 3'SL or 6'SL. In addition, 3'SL and 6'SL helped maintain normal behavior on tests of anxiety-like behavior and normal numbers of DCX+ immature neurons. These studies indicate that milk oligosaccharides support normal microbial communities and behavioral responses during stressor exposure, potentially through effects on the gut microbiota-brain axis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Altered behavior of adult obese rats by monosodium l-glutamate neonatal treatment is related to hypercorticosteronemia and activation of hypothalamic ERK1 and ERK2.

    Science.gov (United States)

    Guimarães, Ernesto da Silveira Goulart; de Caires Júnior, Luiz Carlos; Musso, Camila Manso; Macedo de Almeida, Mariana; Gonçalves, Cássio Francisco; Pettersen, Klaus Grossi; Paes, Santiago Tavares; González Garcia, Raúl Marcel; de Freitas Mathias, Paulo Cesar; Torrezan, Rosana; Mourao-Júnior, Carlos Alberto; Andreazzi, Ana Eliza

    2017-04-01

    Obesity is a metabolic and hormonal disorder with serious social and psychological impacts. There is a close relationship among obesity, neuroendocrine homeostasis and behavioral patterns. However, few data are available in the literature regarding this subject. This study assessed behavior and memory of adult obese rats by monosodium l-glutamate (MSG) neonatal treatment or highly palatable dietary treatment. MSG obesity was induced by subcutaneous injections of MSG (4 mg/g) during the first 5 days of life (Ob-MSG); control group (C-MSG), received saline solution equimolar. Both groups were fed with commercial chow. To induce dietary obesity, 21-day-old rats were assigned to two experimental diets: highly palatable diet (Ob-Diet) and control diet (C-Diet) composed of commercial chow. Ninety-day-old animals were submitted to behavioral assessment by the open-field test and short- and long-term memory by the object recognition test. Biometric variables were obtained, the Lee index was calculated and mass of retroperitoneal and perigonadal fat pads was measured. Furthermore, an altered behavioral profile was investigated by quantification of plasmatic corticosterone, expression, and activity of hypothalamic extracellular signal-regulated kinase protein (ERK) 1 and 2. Increased Lee index and fat pads were observed in Ob-MSG and Ob-Diet groups. Ob-MSG presented a higher level of anxiety and impaired long-term memory compared to C-MSG, while there was no difference between Ob-Diet and C-Diet. The Ob-MSG group presented a higher level of plasmatic corticosterone and increased phosphorylation of hypothalamic ERK1 and 2. Both treatments induced obesity but only Ob-MSG showed altered behavioral parameters, which is related to increased concentration of corticosterone and hypothalamic ERK1 and 2 activation.

  20. Progesterone regulates corticosterone elevation and alterations in spatial memory and exploratory behavior induced by stress in Wistar rats

    Directory of Open Access Journals (Sweden)

    Yolanda Diaz-Burke

    2010-02-01

    Full Text Available The hippocampus is sensitive to high levels of glucocorticoids during stress responses; it suffers biochemical and cellular changes that affect spatial memory and exploratory behavior, among others. We analyzed the influence of the neurosteroid progesterone (PROG on stress-induced changes in urinary corticosterone (CORT levels, spatial memory and exploratory behavior.Castrated adult male rats were implanted with PROG or vehicle (VEHI,and then exposed for ten days to chronic stress created by overcrowding or ultrasonic noise. PROG and CORT levels were assessed in urine using highperformanceliquid chromatography (HPLC. Implanted PROG inhibited the rise of stress-induced CORT, prevented spatial memory impairment in the Morris water maze, and eliminated increased exploratory behavior in the hole-board test. These results suggest a protective role of PROG, possibly mediated by its anxiolytic mechanisms, against corticosteroids elevation and the behavioral deficit generated by stressful situations.

  1. Prepubertal Ovariectomy Exaggerates Adult Affective Behaviors and Alters the Hippocampal Transcriptome in a Genetic Rat Model of Depression

    Science.gov (United States)

    Raghavan, Neha S.; Chen, Hao; Schipma, Matthew; Luo, Wendy; Chung, Sarah; Wang, Lei; Redei, Eva E.

    2018-01-01

    Major depressive disorder (MDD) is a debilitating illness that affects twice as many women than men postpuberty. This female bias is thought to be caused by greater heritability of MDD in women and increased vulnerability induced by female sex hormones. We tested this hypothesis by removing the ovaries from prepubertal Wistar Kyoto (WKY) more immobile (WMI) females, a genetic animal model of depression, and its genetically close control, the WKY less immobile (WLI). In adulthood, prepubertally ovariectomized (PrePubOVX) animals and their Sham-operated controls were tested for depression- and anxiety-like behaviors, using the routinely employed forced swim and open field tests, respectively, and RNA-sequencing was performed on their hippocampal RNA. Our results confirmed that the behavioral and hippocampal expression changes that occur after prepubertal ovariectomy are the consequences of an interaction between genetic predisposition to depressive behavior and ovarian hormone-regulated processes. Lack of ovarian hormones during and after puberty in the WLIs led to increased depression-like behavior. In WMIs, both depression- and anxiety-like behaviors worsened by prepubertal ovariectomy. The unbiased exploration of the hippocampal transcriptome identified sets of differentially expressed genes (DEGs) between the strains and treatment groups. The relatively small number of hippocampal DEGs resulting from the genetic differences between the strains confirmed the genetic relatedness of these strains. Nevertheless, the differences in DEGs between the strains in response to prepubertal ovariectomy identified different molecular processes, including the importance of glucocorticoid receptor-mediated mechanisms, that may be causative of the increased depression-like behavior in the presence or absence of genetic predisposition. This study contributes to the understanding of hormonal maturation-induced changes in affective behaviors and the hippocampal transcriptome as it

  2. Prepubertal Ovariectomy Exaggerates Adult Affective Behaviors and Alters the Hippocampal Transcriptome in a Genetic Rat Model of Depression

    Directory of Open Access Journals (Sweden)

    Neha S. Raghavan

    2018-01-01

    Full Text Available Major depressive disorder (MDD is a debilitating illness that affects twice as many women than men postpuberty. This female bias is thought to be caused by greater heritability of MDD in women and increased vulnerability induced by female sex hormones. We tested this hypothesis by removing the ovaries from prepubertal Wistar Kyoto (WKY more immobile (WMI females, a genetic animal model of depression, and its genetically close control, the WKY less immobile (WLI. In adulthood, prepubertally ovariectomized (PrePubOVX animals and their Sham-operated controls were tested for depression- and anxiety-like behaviors, using the routinely employed forced swim and open field tests, respectively, and RNA-sequencing was performed on their hippocampal RNA. Our results confirmed that the behavioral and hippocampal expression changes that occur after prepubertal ovariectomy are the consequences of an interaction between genetic predisposition to depressive behavior and ovarian hormone-regulated processes. Lack of ovarian hormones during and after puberty in the WLIs led to increased depression-like behavior. In WMIs, both depression- and anxiety-like behaviors worsened by prepubertal ovariectomy. The unbiased exploration of the hippocampal transcriptome identified sets of differentially expressed genes (DEGs between the strains and treatment groups. The relatively small number of hippocampal DEGs resulting from the genetic differences between the strains confirmed the genetic relatedness of these strains. Nevertheless, the differences in DEGs between the strains in response to prepubertal ovariectomy identified different molecular processes, including the importance of glucocorticoid receptor-mediated mechanisms, that may be causative of the increased depression-like behavior in the presence or absence of genetic predisposition. This study contributes to the understanding of hormonal maturation-induced changes in affective behaviors and the hippocampal

  3. Evaluation of possible failure of the mononuclear phagocyte system after total splenectomy in rats

    Directory of Open Access Journals (Sweden)

    Marques Ruy Garcia

    2004-01-01

    Full Text Available Young and adult Wistar rats were submitted to total splenectomy and compared to animals not submitted to any surgical manipulation in order to evaluate the phagocytic function of spleen. The animals were infected with Escherichia coli labeled with technetium-99m and killed 20 minutes later. Liver, lung, spleen and a blood clot sample were taken. No significant differences were found in the percentage of bacterial radioactivity uptake in mononuclear phagocyte system (MPS organs in young and adult splenectomized rats. However, phagocytosis index by macrophages of MPS organs was smaller in splenectomized animals than in control group. Splenectomized rats were associated with a higher blood bacterial radioactivity uptake than animals of the control group (p<0.0001 due to a larger bacterial remnant in the bloodstream. This finding suggested that some failure in the MPS occurred in the absence of the spleen, demonstrating the need to develop alternative surgical techniques for total splenectomy.

  4. Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes

    Science.gov (United States)

    Possamai, Muryllo Mendes; Honorio-França, Adenilda Cristina; Reinaque, Ana Paula Barcelos; França, Eduardo Luzia; Souto, Paula Cristina de Souza

    2013-01-01

    Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG) microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies. PMID:23509737

  5. Eat-me signals: Keys to molecular phagocyte biology and “appetite” control

    Science.gov (United States)

    Li, Wei

    2011-01-01

    Hundreds of billions of cells undergo apoptosis in our body everyday and are removed by immunologically silent phagocytosis to maintain tissue homeostasis. Impairments in phagocytosis result in autoimmune and/or degenerative diseases. Eat-me signals are the key to the recognition of extracellular cargos and the initiation of the phagocytosis process by activating phagocytic receptors and signaling cascades, and are convenient targets for therapeutic modulation. Despite their importance, eat-me signals and other phagocytosis players are mostly identified on case-by-case basis with daunting challenges. This Commentary focuses on our latest knowledge of the extracellular players, highlights our approaches to systematically map unknown pathways by functional genetic and proteomic technologies, and discusses future direction to unravel the mystery of molecular phagocyte biology. PMID:21520079

  6. The role of nitrite ion in phagocyte function—perspectives and puzzles

    Science.gov (United States)

    Cape, Jonathan L.; Hurst, James K.

    2009-01-01

    Macrophages and neutrophils are essential elements of host cellular defense systems that function, at least in part, by generating respiration-driven oxidative toxins in response to external stimuli. In both cells, encapsulation by phagocytosis provides a mechanism to direct the toxins against the microbes. The toxic chemicals formed by these two phagocytic cells differ markedly, as do the enzymatic catalysts that generate them. Nitrite ion is microbicidal under certain conditions, is generated by activated macrophages, and is present at elevated concentration levels at infection sites. In this review, we consider potential roles that nitrite might play in cellular disinfection by these phagocytes within the context of available experimental information. Although the suggested roles are plausible, based upon the chemical and biochemical reactivity of NO2−, studies to date provide little support for their implementation within phagosomes. PMID:19402211

  7. Effects of lethal and non-lethal malaria on the mononuclear phagocyte system

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    1983-03-01

    Full Text Available The effects ofone non-lethal species ofmalarialparasite, Plasmodium yoelii, and one lethal species, P. berghei, on the mononuclear phagocyte system (MPS of BALB/c mice were studied. P. yoelii caused a greater and more sustained expansion and activation of the MPS, and the two major populations of spleen phagocytic cells-red pulp and marginal zone macrophages - exhibited a greater increase in numbers in this infection. During the course of P. berghei mataria, the spleen was progressively occupied by haematopoietic tissue and, at the terminal stage of infection, an extensive depletion of lymphocytes and macrophages was apparent. The possibility was suggested that the outcome of mataria may be inftuenced by the particular way the parasite interacts with the MPS.

  8. The role of phagocytes and specific antibodies in gamma irradiated mice infected by intracellular bacterial pathogens

    International Nuclear Information System (INIS)

    Kovarova, H.; Stulik, J.; Ledvina, M.

    1987-01-01

    The activation of oxygen metabolism in peritoneal macrophages during the defence against Francisella tularensis infection was inhibited by gamma irradiation of mice with 4.0 Gy. The application of specific antibodies protected the irradiated mice from the lethal infection without reactivation of oxygen metabolism in mononuclear phagocytes. These results demonstrated that the protecting function of the specific antibodies in the defence system against intracellular bacterial pathogens will be mediated by the oxygen-independent mechanisms. (author)

  9. The effect of carvedilol on the oxidative burst of rat phagocytes

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Aneta; Lojek, Antonín; Číž, Milan; Pečivová, J.; Jančinová, V.; Nosál, R.

    2007-01-01

    Roč. 101, č. 14 (2007), s232-s233 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GA524/07/1511 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : carvedilol * phagocytes * oxidative burst Subject RIV: BO - Biophysics

  10. Neuropeptide s alters anxiety but not depression-like behaviors in the flinders sensitive line rats, a genetic animal model

    DEFF Research Database (Denmark)

    Mathe, A.; Wegener, Gregers; Finger, B.

    2010-01-01

    the effects of centrally administered NPS on depression- and anxiety-related behaviors, using a well validated animal model of depression, the Flinders Sensitive Line (FSL) rats and their controls the Flinders Resistant Line (FRL). Methods: Male and female were tested. Seven days following insertion......Background: Neuropeptide S (NPS) and its receptor (NPSR) have been implicated in the mediation of anxiolytic-like behavior in rodents. However, little knowledge is available to what extent the NPS system is involved in depression-related behaviors. The aim of the present work was to characterize...... of cannula, 0.25 or 1.0 nmol NPS, or vehicle/5 ml were infused into the lateral ventricle. 45 min after NPS infusion animals were tested on elevated plus maze (EPM). Five days later the animals were subjected to the two-day forced swim test (FST); NPS or vehicle were injected 45 min before the second day FST...

  11. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats

    Directory of Open Access Journals (Sweden)

    Daniela eNavarro

    2015-02-01

    Full Text Available Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic and vesicular inhibitory amino acid transporter (VGAT; GABAergic immunoreactive (ir boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism and E21 (early postnatal hypothyroidism until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention and the elevated plus-maze (anxiety-like assessment tests. The distribution, density and size of VGlut1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.

  12. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7.

    Science.gov (United States)

    Xu, Chang; Ma, Xin-Ming; Chen, Hui-Bin; Zhou, Meng-He; Qiao, Hui; An, Shu-Cheng

    2016-10-01

    Neuroimaging studies show that patients with major depression have reduced volume of the orbitofrontal cortex (OFC). Although the serotonin (5-HT) 2A receptor, which is abundant in the OFC, has been implicated in depression, the underlying mechanisms in the development of stress-induced depression remain unclear. Kalirin-7 (Kal7) is an essential component of mature excitatory synapses for maintaining dendritic spines density, size and synaptic functions. The aim of this study was to investigate the role of orbitofrontal 5-HT and 5-HT2A receptors in depressive-like behaviors and their associations with Kal7 and dendritic spines using chronic unpredictable mild stress (CUMS), an established animal model of depression. CUMS had no effect on the levels of 5-HT or the 5-HT2A receptor in the OFC. However, CUMS or microinjection of the 5-HT2A/2C receptor agonist (±)-1-(2, 5-Dimethoxy-4-iodophenyl)- 2-aminopropane hydrochloride (DOI, 5 μg/0.5 μL) into the OFC induced depressive-like behaviors, including anhedonia in the sucrose preference test and behavioral despair in the tail suspension test, a significant reduction in body weight gain and locomotor activity in the open field test, which were accompanied by decreased expression of Kal7 and PSD95 as well as decreased density of dendritic spines in the OFC. These alterations induced by CUMS were reversed by pretreatment with the 5-HT2A receptor antagonist Ketanserin (Ket, 5 μg/0.5 μL into the OFC). These results suggest that CUMS alters structural plasticity through activation of the orbital 5-HT2A receptor and is associated with decreased expression of Kal7, thereby resulting in depressive-like behaviors in rats, suggesting an important role of Kal7 in the OFC in depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats

    Science.gov (United States)

    Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.

    2015-01-01

    Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436

  14. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    Science.gov (United States)

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.

  15. Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells.

    Science.gov (United States)

    Maisonneuve, Elodie; Cateau, Estelle; Kaaki, Sihem; Rodier, Marie-Hélène

    2016-11-01

    Free living amoebae (FLA) are protists ubiquitously present in the environment. Aspergillus fumigatus is a mould responsible for severe deep-seated infections, and that can be recovered in the same habitats as the FLA. By conducting coculture experiments and fungal incubation with amoebal supernatants, we report herein that Vermamoeba vermiformis, a FLA present in hospital water systems, promotes filamentation and growth of A. fumigatus. This finding is of particular importance to institutions whose water systems might harbor FLA and could potentially be used by immunocompromised patients. Also, the relationships between V. vermiformis and A. fumigatus were compared to those between this fungus and two other phagocytic cells: Acanthamoeba castellanii, another FLA, and macrophage-like THP-1 cells. After 4 h of coincubation, the percentages of the three phagocytic cell types with adhered conidia were similar, even though the types of receptors between FLA and macrophagic cell seemed different. However, the percentage of THP-1 with internalized conidia was considerably lower (40 %) in comparison with the two other cell types (100 %). Thus, this study revealed that interactions between A. fumigatus and these three phagocytic cell types show similarities, even though it is premature to extrapolate these results to interpret relationships between A. fumigatus and macrophages.

  16. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    Science.gov (United States)

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  17. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes

    International Nuclear Information System (INIS)

    Burger, E.H.; Van der Meer, J.W.; van de Gevel, J.S.; Gribnau, J.C.; Thesingh, G.W.; van Furth, R.

    1982-01-01

    The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by 45 Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes

  18. Zebrafish kidney phagocytes utilize macropinocytosis and Ca+-dependent endocytic mechanisms.

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    Full Text Available BACKGROUND: The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. METHODOLOGY/PRINCIPAL FINDINGS: Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. CONCLUSIONS/SIGNIFICANCE: Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca(2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research.

  19. Molecular pharmacology of antihistamines in inhibition of oxidative burst of professional phagocytes.

    Science.gov (United States)

    Nosáľ, Radomír; Jančinová, Viera; Drábiková, Katarína; Perečko, Tomáš

    2015-04-01

    Antihistamines of the H₁and H₃/H₄groups interfere with oxidative burst of human professional phagocytes in vitro. In the concentration of 10 μM, H₁antihistamines of the 1st and 2nd generation inhibited oxidative burst of human neutrophils in the rank order of potency: dithiaden > loratadine > brompheniramine > chlorpheniramine > pheniramine. Of the H₁antihistamines, the most effective was dithiaden in suppressing oxidative burst of whole human blood and dose-dependently the chemiluminescence of isolated neutrophils at extra- and intracellular level. Inhibition of free oxygen radical generation in isolated neutrophils by dithiaden resulted from the inhibition of protein kinase C activation. The potentiation of recombinant caspase-3 by dithiaden is supportive of the antiinflammatory effect of dithiaden and suggestive of increasing the apoptosis of professional phagocytes. Of the H₃/H₄antihistamines, the most effective was JNJ7777120 in decreasing chemiluminescence in whole blood and also at extra- and intracellular sites of isolated neutrophils. JNJ 10191584 and thioperamide were less effective and the latter significantly potentiated free oxygen radical generation intracellularly. The results demonstrated that, compared with the H₃/H₄antihistamines investigated, H₁antihistamines were much more potent in inhibiting free oxygen radical generation in human professional phagocytes. This finding should be taken into account therapeutically.

  20. Vitamin D(3 availability and functional activity of peripheral blood phagocytes in experimental type 1 diabetes

    Directory of Open Access Journals (Sweden)

    D. О. Labudzynskyi

    2014-04-01

    Full Text Available The study was devoted to identifying the relation between vitamin D3 availability (assessed by the level of circulatory 25OHD3, content of vitamin D3 25-hydroxylase isozymes CYP27A1 and CYP2R1 in hepatic tissue and functional activity of peripheral blood phagocytes in mice with experimental type 1 diabetes. It has been shown that diabetes is accompanied by the development of vitamin D3-deficiency which is characterized by decreased 25OHD3 content in blood serum and determined by changes in tissue expression of the major isoforms of vitamin D3 25-hydroxylase. The level of hepatic CYP27A1 was revealed to be markedly reduced with a concurrent significant augmentation of CYP2R1. Cholecalciferol administration resulted in normalization of tissue levels of both isoforms of vitamin D3 25-hydroxylase and blood serum 25OHD3 content. Diabetes-associated vitamin D3 deficiency correlated with a decrease in phagocytic activity of granulocytes and monocytes, and their ability to produce antibacterial biooxidants such as reactive oxygen and nitrogen forms. Vitamin D3 efficacy to attenuate these abnormalities of immune function was established, indicating an important immunoregulatory role of cholecalciferol in the phagocytic mechanism of antigens elimination implemented by granulocytes and monocytes.

  1. Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior : considerations for neurodevelopmental diseases

    NARCIS (Netherlands)

    Fiore, M; Korf, J; Angelucci, F; Talamini, L; Aloe, L

    2000-01-01

    We did a single injection of methylazoxymethanol acetate (MAM) in pregnant rats on gestational day (GD) 11 or 12 to investigate the long-lasting effects of early entorhinal cortex (EC) and hippocampus maldevelopment on behavior, brain nerve growth factor (NGF) and brain-derived neurotrophic factor

  2. Acute Exposure to 17α-Ethinylestradiol Alters Aggressive Behavior of Mosquitofish (Gambusia affinis) Toward Japanese Medaka (Oryzias latipes).

    Science.gov (United States)

    Dang, Hieu M; Inagaki, Yoshihiko; Yamauchi, Yuta; Kurihara, Takaaki; Vo, Cong H; Sakakibara, Yutaka

    2017-05-01

    Behavior of the mosquitofish (Gambusia affinis) toward the Japanese medaka (Oryzias latipes) was tested under exposure to environmental 17α-ethinylestradiol (EE2), a synthetic derivative of natural estrogen, estradiol. The mosquitofish were exposed to EE2 at different concentrations-0, 0.5, 5.0, and 50.0 ng/L-for 2 days, before their behavioral changes toward the medaka were observed. Results indicate that female mosquitofish became more aggressive at the high level of EE2 (50 ng/L), in terms of how persistently they attempted to approach the medaka. The males showed increased aggressive behavior toward the medaka, by significantly increasing the number and persistence of approach attempts at the low (0.5 and 5 ng/L) levels of EE2. At the highest EE2 concentration (50 ng/L), however, the number of attempts decreased, while the persistence increased in the males showing the same pattern as in the females. All behavioral changes were reversed once EE2 was removed from the environment.

  3. Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors

    Directory of Open Access Journals (Sweden)

    Letícia Scheidt

    2015-09-01

    Full Text Available Objective:To investigate the effects of ethanol exposure in adolescent rats during adulthood by assesssing aggression and anxiety-like behaviors and measuring the levels of inflammatory markers.Methods:Groups of male Wistar rats (mean weight 81.4 g, n = 36 were housed in groups of four until postnatal day (PND 60. From PNDs 30 to 46, rats received one of three treatments: 3 g/kg of ethanol (15% w/v, orally, n = 16, 1.5 g/kg of ethanol (12.5% w/v, PO, n = 12, or water (n = 12 every 48 hours. Animals were assessed for aggressive behavior (resident x intruder test and anxiety-like behaviors (elevated plus maze during adulthood.Results:Animals that received low doses of alcohol showed reduced levels of brain-derived neurotrophic factor (BDNF in the hippocampus as compared to the control group. No significant difference was found in prefrontal cortex.Conclusions:Intermittent exposure to alcohol during adolescence is associated with lower levels of BDNF in the hippocampus, probably due the episodic administration of alcohol, but alcohol use did not alter the level agression toward a male intruder or anxiety-like behaviors during the adult phase.

  4. Early mood behavioral changes following exposure to monotonous environment during isolation stress is associated with altered hippocampal synaptic plasticity in male rats.

    Science.gov (United States)

    Das, Saroj Kumar; Baitharu, Iswar; Barhwal, Kalpana; Hota, Sunil Kumar; Singh, Shashi Bala

    2016-01-26

    Social isolation stress and its effect on mood have been well reported, but the effect of monotony (a state of repetition of events for a considerable period of time without variation) on mood and hippocampal synaptic plasticity needs to be addressed. Present study was conducted on male Sprague-Dawley rats. Singly housed (SH) rats were subjected to monotony stress by physical, visual and pheromonal separation in specially designed animal segregation chamber. Fluoxetine (a selective serotonin reuptake inhibitor) was administered orally. Behavioral assessment showed anxiety and depression like traits in SH group. Monotony stress exposure to SH group resulted in increased pyknosis, decreased apical dendritic arborization and increased asymmetric (excitatory) synapses with the corresponding decrease in the symmetric (inhibitory) synapses in the hippocampal CA3 region. Monotonous environment during isolation stress also decreased the serotonin level and reduced the expression of synaptophysin and pCREB in the hippocampus. Fluoxetine administration to singly housed rats resulted in amelioration of altered mood along with improvement in serotonin and decrease in excitatory synaptic density but no change in altered inhibitory synaptic density in the hippocampus. These findings suggest that monotony during isolation contributes to early impairment in mood state by altering hippocampal synaptic density and neuronal morphology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Adolescent opiate exposure in the female rat induces subtle alterations in maternal care and transgenerational effects on play behavior.

    Directory of Open Access Journals (Sweden)

    Nicole L. Johnson

    2011-06-01

    Full Text Available The non-medical use of prescription opiates, such as Vicodin® and MSContin®, has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females’ spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1 demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e. social grooming and social exploration. Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.

  6. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Science.gov (United States)

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  7. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  8. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  9. Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice.

    Science.gov (United States)

    Machado, Daniele G; Cunha, Mauricio P; Neis, Vivian B; Balen, Grasiela O; Colla, André R; Grando, Jaine; Brocardo, Patricia S; Bettio, Luis E B; Dalmarco, Juliana B; Rial, Daniel; Prediger, Rui D; Pizzolatti, Moacir G; Rodrigues, Ana Lúcia S

    2012-08-30

    Rosemary, Rosmarinus officinalis L., has several therapeutic applications in folk medicine for the treatment of a wide range of diseases, including depression. To evaluate the ability of Rosmarinus officinalis hydroalcoholic extract (ROHE), as compared to the positive control fluoxetine, to reverse behavioral (hyperactivity, anhedonic behavior and learning deficit in water maze) and biochemical alterations (serum glucose level and acetylcholinesterase, AChE, activity) induced by an animal model of depression, the olfactory bulbectomy (OB) in mice. Locomotor and exploratory behavior was assessed in the open-field, novel object and novel cage tests, anhedonic behavior was assessed in the splash test; cognitive deficits were evaluated in the water maze task. For the first set of experiments, ROHE (10-300 mg/kg) or fluoxetine (10mg/kg) was administered once daily (p.o.) for 14 days after OB and the behavioral tests were performed. For the second set of experiments, serum glucose and hippocampal and cerebrocortical AChE activity were determined in OB and SHAM-operated mice treated orally with ROHE (10mg/kg), fluoxetine (10mg/kg) or vehicle. ROHE (10-300 mg/kg), similar to fluoxetine, reversed OB-induced hyperactivity, increased exploratory and anhedonic behavior. OB needed significantly more trials in the training session to acquire the spatial information, but they displayed a similar profile to that of SHAM mice in the test session (24h later), demonstrating a selective deficit in spatial learning, which was not reversed by ROHE or fluoxetine. A reduced serum glucose level and an increased hippocampal AChE activity were observed in bulbectomized mice; only the latter effect was reversed by fluoxetine, while both effects were reversed by ROHE. ROHE exerted an antidepressant-like effect in bulbectomized mice and was able to abolish AchE alterations and hypoglycemia, but not spatial learning deficit induced by OB. Overall, results suggest the potential of Rosmarinus

  10. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior.

    Science.gov (United States)

    Scully, C M; Estill, C T; Amodei, R; McKune, A; Gribbin, K P; Meaker, M; Stormshak, F; Roselli, C E

    2018-01-01

    Prenatal androgens are largely responsible for growth and differentiation of the genital tract and testis and for organization of the control mechanisms regulating male reproductive physiology and behavior. The aim of the present study was to evaluate the impact of inappropriate exposure to excess testosterone (T) during the first trimester of fetal development on the reproductive function, sexual behavior, and fertility potential of rams. We found that biweekly maternal T propionate (100 mg) treatment administered from Day 30-58 of gestation significantly decreased (P sexually attracted to estrous females. In summary, these results suggest that exposure to exogenous T during the first trimester of gestation can negatively impact spermatogenesis and compromise the reproductive fitness of rams. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    Science.gov (United States)

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-07-09

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  12. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids.

    Science.gov (United States)

    Wheelan, Nicola; Kenyon, Christopher J; Harris, Anjanette P; Cairns, Carolynn; Al Dujaili, Emad; Seckl, Jonathan R; Yau, Joyce L W

    2018-03-01

    Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Acute nicotine fails to alter event-related potential or behavioral performance indices of auditory distraction in cigarette smokers.

    Science.gov (United States)

    Knott, Verner J; Scherling, Carole S; Blais, Crystal M; Camarda, Jordan; Fisher, Derek J; Millar, Anne; McIntosh, Judy F

    2006-04-01

    Behavioral studies have shown that nicotine enhances performance in sustained attention tasks, but they have not shown convincing support for the effects of nicotine on tasks requiring selective attention or attentional control under conditions of distraction. We investigated distractibility in 14 smokers (7 females) with event-related brain potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, both with and without embedded deviants. Nicotine gum (4 mg), administered in a randomized, double-blind, placebo-controlled crossover design, failed to counter deviant-elicited behavioral distraction (i.e., slower reaction times and increased response errors), and it did not influence the distracter-elicited mismatch negativity, the P300a, or the reorienting negativity ERP components reflecting acoustic change detection, involuntary attentional switching, and attentional reorienting, respectively. Results are discussed in relation to a stimulus-filter model of smoking and in relation to future research directions.

  14. Ketamine alters behavior and decreases BDNF levels in the rat brain as a function of time after drug administration

    Directory of Open Access Journals (Sweden)

    Daiane B. Fraga

    2013-09-01

    Full Text Available Objective: To evaluate behavioral changes and brain-derived neurotrophic factor (BDNF levels in rats subjected to ketamine administration (25 mg/kg for 7 days. Method: Behavioral evaluation was undertaken at 1 and 6 hours after the last injection. Results: We observed hyperlocomotion 1 hour after the last injection and a decrease in locomotion after 6 hours. Immobility time was decreased and climbing time was increased 6 hours after the last injection. BDNF levels were decreased in the prefrontal cortex and amygdala when rats were killed 6 hours after the last injection, compared to the saline group and to rats killed 1 hour after the last injection. BDNF levels in the striatum were decreased in rats killed 6 hours after the last ketamine injection, and BDNF levels in the hippocampus were decreased in the groups that were killed 1 and 6 hours after the last injection. Conclusion: These results suggest that the effects of ketamine on behavior and BDNF levels are related to the time at which they were evaluated after administration of the drug.

  15. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  16. Voluntary physical exercise alters attentional orienting and social behavior in a rat model of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Hopkins, Michael E; Sharma, Mita; Evans, Gretchen C; Bucci, David J

    2009-06-01

    The effects of voluntary physical exercise on attentional function and social behavior were examined in male and female spontaneously hypertensive rats (SHR), a commonly used animal model of attention-deficit/hyperactivity disorder (ADHD). Rats in the exercise groups had free access to a running wheel for 2 weeks and then all rats received nonreinforced presentations of a visual stimulus (light) during the 1st training session, followed by daily sessions in which the light was paired with food. Nonexercising male and female SHR rats exhibited more unconditioned orienting behavior than Wistar-Kyoto rats. SHRs also exhibited impaired conditioning when the light was paired with food. Exercise reduced orienting in female SHRs but not in male SHRs. In the social interaction task, nonexercising male and female SHRs interacted more with an unfamiliar rat than Wistar-Kyoto rats. Exercise reduced the number of social interactions in female SHRs but not male SHRs. There were no differences in general locomotor activity observed between the nonexercising and exercising SHRs. These data indicate that exercise may preferentially benefit female SHRs, and has implications for using exercise as an intervention for ADHD and for understanding sex differences in the effects of exercise on behavior. Copyright (c) 2009 APA, all rights reserved.

  17. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease.

    Science.gov (United States)

    Haik, K L; Shear, D A; Schroeder, U; Sabel, B A; Dunbar, G L

    2000-06-01

    Quinolinic acid (QA) is an N-methyl-d-aspartate agonist that has been shown to produce neurotoxic effects that mimic certain neurodegenerative diseases when administered to laboratory animals. Intrastriatal injections of QA in rats have been used extensively to produce some of the neuropathological and behavioral deficits that are analogous to Huntington's disease (HD). However, acute intrastriatal injections of QA produce symptoms that are not analogous to the progressive nature of HD. Thus far, models using chronic administration of QA that produce HD-like behavioral and neuroanatomical changes have necessitated the use of a relatively bulky and fragile microdialytic pump apparatus. The present study tested an alternative way of chronically administering QA. Specifically, this study tested whether gradual release of QA from ethylene vinylacetate (EVA) polymers could produce symptoms analogous to HD. Rats received either no implants or bilateral intrastriatal implants of polymers with or without QA. Subsequent tests for spontaneous motor activity (SMA), grip strength, balance, and learning ability in a radial-arm-water-maze task revealed QA-induced impairments in balance and learning ability, but did not affect grip strength or SMA. Histological analysis revealed QA-induced enlargement of lateral ventricles, striatal atrophy, and striatal neuronal loss, with relative sparing of NADPH-diaphorase-positive neurons. These results suggest that QA released from polymers can produce behavioral and neuropathological profiles analogous to early stages of HD and that EVA polymers offer a useful means of chronically delivering QA in rodent models of neurodegeneration. Copyright 2000 Academic Press.

  18. Extraction of RDC/TMD subscales from the symptom check list-90: does context alter respondent behavior?

    Science.gov (United States)

    Ohrbach, Richard; Sherman, Jeffrey; Beneduce, Carla; Zittel-Palamara, Kimberly; Pak, Youngju

    2008-01-01

    To test whether extraction of the 2 subscales in the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) affected the subscale score reliability and whether scores from the RDC/TMD subscales are comparable to the same scales when the whole Symptom Check List-90 (SCL-90R) is administered. The full SCL90-R and a modified version containing only the depression and somatization scales were administered in counterbalanced order to 103 subjects. As another test of context, a subset of participants completed the modified and full versions as part of a larger battery of instruments relevant to facial pain. Statistical analyses included internal reliability for item analysis and intraclass correlation (ICC) and Lin's concordance correlation coefficient (CCC) for total scale score reliability. Internal reliability was approximately 0.95 for depression and 0.87 for somatization, independent of test form. Total scale scores were reliable across test versions, with both ICC and CCC approximately 0.95 for depression and 0.91 for somatization. Permutation tests using the CCC indicated a mild influence on the somatization score but not the depression score due to order effects, but these effects were not significant when considering the 95% CIs based on resampling methods. Whether items from other subscales are present or not does not affect the internal reliability or parallel forms reliability of the total scores from either depression or somatization. Context of administration, via order of forms completion, does not alter total score or reliability of depressive items but may alter total scores for somatization.

  19. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  20. Adolescent Social Stress Increases Anxiety-like Behavior and Alters Synaptic Transmission, Without Influencing Nicotine Responses, in a Sex-Dependent Manner.

    Science.gov (United States)

    Caruso, Michael J; Crowley, Nicole A; Reiss, Dana E; Caulfield, Jasmine I; Luscher, Bernhard; Cavigelli, Sonia A; Kamens, Helen M

    2018-03-01

    Early-life stress is a risk factor for comorbid anxiety and nicotine use. Because little is known about the factors underlying this comorbidity, we investigated the effects of adolescent stress on anxiety-like behavior and nicotine responses within individual animals. Adolescent male and female C57BL/6J mice were exposed to chronic variable social stress (CVSS; repeated cycles of social isolation + social reorganization) or control conditions from postnatal days (PND) 25-59. Anxiety-like behavior and social avoidance were measured in the elevated plus-maze (PND 61-65) and social approach-avoidance test (Experiment 1: PND 140-144; Experiment 2: 95-97), respectively. Acute nicotine-induced locomotor, hypothermic, corticosterone responses, (Experiment 1: PND 56-59; Experiment 2: PND 65-70) and voluntary oral nicotine consumption (Experiment 1: PND 116-135; Experiment 2: 73-92) were also examined. Finally, we assessed prefrontal cortex (PFC) and nucleus accumbens (NAC) synaptic transmission (PND 64-80); brain regions that are implicated in anxiety and addiction. Mice exposed to adolescent CVSS displayed increased anxiety-like behavior relative to controls. Further, CVSS altered synaptic excitability in PFC and NAC neurons in a sex-specific manner. For males, CVSS decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents in the PFC and NAC, respectively. In females, CVSS decreased the amplitude of spontaneous inhibitory postsynaptic currents in the NAC. Adolescent CVSS did not affect social avoidance or nicotine responses and anxiety-like behavior was not reliably associated with nicotine responses within individual animals. Taken together, complex interactions between PFC and NAC function may contribute to adolescent stress-induced anxiety-like behavior without influencing nicotine responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Neurochemical and electrophysiological deficits in the ventral hippocampus and selective behavioral alterations caused by high-fat diet in female C57BL/6 mice.

    Science.gov (United States)

    Krishna, S; Keralapurath, M M; Lin, Z; Wagner, J J; de La Serre, C B; Harn, D A; Filipov, N M

    2015-06-25

    Mounting experimental evidence, predominantly from male rodents, demonstrates that high-fat diet (HFD) consumption and ensuing obesity are detrimental to the brain. To shed additional light on the neurological consequences of HFD consumption in female rodents and to determine the relatively early impact of HFD in the likely continuum of neurological dysfunction in the context of chronic HFD intake, this study investigated effects of HFD feeding for up to 12weeks on selected behavioral, neurochemical, and electrophysiological parameters in adult female C57BL/6 mice; particular focus was placed on the ventral hippocampus (vHIP). Selected locomotor, emotional and cognitive functions were evaluated using behavioral tests after 5weeks on HFD or control (low-fat diet) diets. One week later, mice were sacrificed and brain regional neurochemical (monoamine) analysis was performed. Behaviorally naïve mice were maintained on their respective diets for an additional 5-6weeks at which time synaptic plasticity was determined in ex vivo slices from the vHIP. HFD-fed female mice exhibited increased: (i) locomotor activity in the open field testing, (ii) mean turn time on the pole test, (iii) swimming time in the forced swim test, and (iv) number of marbles buried in the marble burying test. In contrast, the novel object recognition memory was unaffected. Mice on HFD also had decreased norepinephrine and dopamine turnover, respectively, in the prefrontal cortex and the vHIP. HFD consumption for a total of 11-12weeks altered vHIP synaptic plasticity, evidenced by significant reductions in the paired-pulse ratio and long-term potentiation (LTP) magnitude. In summary, in female mice, HFD intake for several weeks induced multiple behavioral alterations of mainly anxiety-like nature and impaired monoamine pathways in a brain region-specific manner, suggesting that in the female, certain behavioral domains (anxiety) and associated brain regions, i.e., the vHIP, are preferentially

  2. Altered Circulating Levels of Serotonin and Immunological Changes in Laying Hens Divergently Selected for Feather Pecking Behavior

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Kjaer, Jørgen B.; Labouriau, Rodrigo

    2006-01-01

    The aim of this study was to investigate the changes in immunological parameters as well as changes with respect to plasma levels of serotonin and tryptophan in lines selected for and against feather pecking (FP) behavior [high FP (HP) line and low FP (LP) line] for 5 generations. The hens from...... compared with the control and HP lines. Selection for or against FP, therefore, changes the number of white blood cells and the expression of MHC class I molecules on T and B cells, which may influence the health status of the birds...

  3. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    DEFF Research Database (Denmark)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  4. Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women.

    Science.gov (United States)

    Silva, Karina R; Liechocki, Sally; Carneiro, João R; Claudio-da-Silva, Cesar; Maya-Monteiro, Clarissa M; Borojevic, Radovan; Baptista, Leandra S

    2015-04-14

    Subcutaneous adipose tissue is an interesting source of autologous stem cells with a fundamental role in the pathophysiology of obesity, metabolic syndromes and insulin resistance. We hypothesize that obesity could alter the stromal-vascular fraction (SVF) and adipose stem cell (ASCs) functions, which could compromise its regenerative behavior. Furthermore, we aimed to evaluate whether ASCs derived from post bariatric surgery ex-obese women maintain their functions in a similar fashion as do those from individuals who have never been obese. The SVF of subcutaneous adipose tissue from control (n = 6, body mass index - BMI - 27.5 ± 0.5 kg/m(2)), obese (n = 12, BMI 46.2 ± 5.1 kg/m(2)) and post bariatric surgery ex-obese (n = 7, initial BMI 47.8 ± 1.3 kg/m(2); final BMI 28.1 ± 1.1 kg/m(2)) women were isolated and evaluated by flow cytometry. ASCs were tested for lipid accumulation by perilipin, adipose differentiation-related protein (ADRP) and Oil Red O staining after adipogenic stimulus. The cytokines secreted by the ASCs and after lipid accumulation induction were also evaluated. The subcutaneous adipose tissue of obese and post bariatric surgery ex-obese women was enriched in pericytes (p = 0.0345). The number of supra-adventitial cells was not altered in the obese patients, but it was highly enriched in the post bariatric surgery ex-obese women (p = 0.0099). The ASCs of the post bariatric surgery ex-obese patients secreted more MCP-1 (monocyte chemoattractant protein-1; p = 0.0078). After lipid accumulation induction, the ASCs of the patients in all groups secreted less IL-6 than the ASCs with no adipogenic stimulus (p post bariatric surgery ex-obese patients showed the highest levels of lipid accumulation whereas those from the obese women had the lowest levels (p < 0.0001). SVF content and ASC behavior are altered in the subcutaneous adipose tissue of morbid obese women; these changes are not completely restored

  5. HIV antiretroviral drug Efavirenz induces anxiety-like and depression-like behavior in rats: evaluation of neurotransmitter alterations in the striatum.

    Science.gov (United States)

    Cavalcante, Giuliana Ignácio Teixeira; Chaves Filho, Adriano José Maia; Linhares, Maria Isabel; de Carvalho Lima, Camila Nayane; Venâncio, Edith Teles; Rios, Emiliano Ricardo Vasconcelos; de Souza, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle; de França Fonteles, Marta Maria

    2017-03-15

    Efavirenz (EFV) is an effective antiretroviral drug with a favorable pharmacokinetic profile and widely used in combination regimens to treat HIV infection. However, there are major concerns about the safety of this drug. Patients treated with EFV often experience neuropsychiatric adverse effects, which frequently lead to switching to alternative EFV-free regimens. The mechanisms involved in the central action of EFV are intrinsically unclear. Thus, this study aimed to investigate the effects of acute and subchronic (2 weeks) EFV administration in a series of behavioral tests for anxiety-like and depression-like behavior in healthy rats. We also evaluated the effect of EFV treatment in striatal concentrations of monoamine neurotransmitters (serotonin, dopamine and noradrenaline) and their metabolites and the amino acid neurotransmitters glutamate and GABA. Our results showed that acute treatment with EFV induced an anxiogenic-like effect, while sub-chronic treatment induced both anxiogenic-like and depressive-like behavior which was dose related.. Additionally, EFV treatment caused marked alterations in the striatal concentrations of monoamines and their metabolites (and turnover rates) and the amino acid neurotransmitters glutamate and GABA. These changes were influenced by treatment duration and dose. These findings add more evidence about the neuropsychiatric adverse effects of EFV and propose potential new mechanisms for the toxic action of this drug in the central nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

    Directory of Open Access Journals (Sweden)

    Can Peng

    Full Text Available Nicotinic acetylcholine receptors containing α4 subunits (α4β2* nAChRs are critical for nicotinic cholinergic transmission and the addictive action of nicotine. To identify specific activities of these receptors in the adult mouse brain, we coupled targeted deletion of α4 nAChR subunits with behavioral and and electrophysiological measures of nicotine sensitivity. A viral-mediated Cre/lox approach allowed us to delete α4 from ventral midbrain (vMB neurons. We used two behavioral assays commonly used to assess the motivational effects of drugs of abuse: home-cage oral self-administration, and place conditioning. Mice lacking α4 subunits in vMB consumed significantly more nicotine at the highest offered nicotine concentration (200 μg/mL compared to control mice. Deletion of α4 subunits in vMB blocked nicotine-induced conditioned place preference (CPP without affecting locomotor activity. Acetylcholine-evoked currents as well as nicotine-mediated increases in synaptic potentiation were reduced in mice lacking α4 in vMB. Immunostaining verified that α4 subunits were deleted from both dopamine and non-dopamine neurons in the ventral tegmental area (VTA. These results reveal that attenuation of α4* nAChR function in reward-related brain circuitry of adult animals may increase nicotine intake by enhancing the rewarding effects and/or reducing the aversive effects of nicotine.

  7. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels.

    Directory of Open Access Journals (Sweden)

    Brian Fallica

    Full Text Available Most investigations into cancer cell drug response are performed with cells cultured on flat (2D tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D extracellular matrix (ECM is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.

  8. Presence of mother and unfamiliar female alters levels of testosterone, progesterone, cortisol, adrenocorticotropin, and behavior in maturing Guinea pigs.

    Science.gov (United States)

    Hennessy, Michael B; Maken, Deborah S; Graves, Franklynn C

    2002-08-01

    Although the guinea pig is characterized by precocial physical development and minimal active maternal care, studies suggest the presence of the mother can influence neuroendocrine and behavioral activity of offspring even well beyond weaning. Previous results may have been influenced by the procedure of housing weaned subjects with the mother to within 2 days of testing. The present study examined approximately 40-day-old guinea pigs housed apart from the mother for 0 (not rehoused), 2, or 10 days. Rehousing without the mother led to elevations in plasma testosterone (measured in males), progesterone (measured in females), cortisol, and adrenocorticotropin (ACTH) (both measured in males and females). Offspring housed without the mother for 10 days had the highest progesterone, cortisol, and ACTH levels. Testosterone elevations were observed in 2-day-, but not 10-day-, rehoused animals. Regardless of rehousing condition, 60 min isolation in a novel test cage elevated progesterone, cortisol, and ACTH, and reduced testosterone. These effects were all moderated if the subject was tested with the mother or another female. Sexual behavior toward the mother was observed frequently, but only in males housed apart from her prior to testing. Overall, males and females that had been housed apart from the mother interacted with her as they would an unfamiliar female. Our results corroborate previous findings, suggest the effect of housing apart from the mother on male testosterone is transitory, and indicate that continuous housing with the mother past weaning suppresses circulating progesterone in females and cortisol and ACTH in both sexes.

  9. Altered neural correlates of affective processing after internet-delivered cognitive behavior therapy for social anxiety disorder.

    Science.gov (United States)

    Månsson, Kristoffer N T; Carlbring, Per; Frick, Andreas; Engman, Jonas; Olsson, Carl-Johan; Bodlund, Owe; Furmark, Tomas; Andersson, Gerhard

    2013-12-30

    Randomized controlled trials have yielded promising results for internet-delivered cognitive behavior therapy (iCBT) for patients with social anxiety disorder (SAD). The present study investigated anxiety-related neural changes after iCBT for SAD. The amygdala is a critical hub in the neural fear network, receptive to change using emotion regulation strategies and a putative target for iCBT. Twenty-two subjects were included in pre- and post-treatment functional magnetic resonance imaging at 3T assessing neural changes during an affective face processing task. Treatment outcome was assessed using social anxiety self-reports and the Clinical Global Impression-Improvement (CGI-I) scale. ICBT yielded better outcome than ABM (66% vs. 25% CGI-I responders). A significant differential activation of the left amygdala was found with relatively decreased reactivity after iCBT. Changes in the amygdala were related to a behavioral measure of social anxiety. Functional connectivity analysis in the iCBT group showed that the amygdala attenuation was associated with increased activity in the medial orbitofrontal cortex and decreased activity in the right ventrolateral and dorsolateral (dlPFC) cortices. Treatment-induced neural changes with iCBT were consistent with previously reported studies on regular CBT and emotion regulation in general. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Deficiency of Serotonin in Raphe Neurons and Altered Behavioral Responses in Tryptophan Hydroxylase 2-Knockout Medaka (Oryzias latipes).

    Science.gov (United States)

    Ansai, Satoshi; Hosokawa, Hiroshi; Maegawa, Shingo; Naruse, Kiyoshi; Washio, Youhei; Sato, Kenji; Kinoshita, Masato

    2017-12-01

    Serotonin (5-hydroxytryptamine [5-HT]) is a bioactive monoamine that acts as a neurotransmitter in the central and peripheral nervous system of animals. Teleost fish species have serotonergic neurons in the raphe nuclei of the brainstem; however, the role of 5-HT in the raphe neurons in teleost fish remains largely unknown. Here, we established a medaka (Oryzias latipes) strain with targeted disruption of tryptophan hydroxylase 2 (tph2) gene that is involved in the 5-HT synthesis in the raphe nuclei. Immunohistochemistry and mass spectrometry analysis revealed that the homozygous mutants (tph2 Δ13/Δ13 ) lacked the ability to synthesize 5-HT in the raphe neurons. To investigate the effects of 5-HT deficiency in adult behaviors, the mutant fish were subjected to five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and two-fish social interaction). The homozygous mutation caused a longer duration of freezing response in all examined paradigms and reduced the number of entries to the top area in the diving test. In addition, the mutants exhibited a decreased number of mirror-biting in the males and an increased contact time in direct social interaction between the females. These results indicate that this tph2-knockout medaka serves as a good model to analyze the effects of 5-HT deficiency in the raphe neurons.

  11. Altering school climate through school-wide Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial.

    Science.gov (United States)

    Bradshaw, Catherine P; Koth, Christine W; Thornton, Leslie A; Leaf, Philip J

    2009-06-01

    Positive Behavioral Interventions and Supports (PBIS) is a universal, school-wide prevention strategy that is currently implemented in over 7,500 schools to reduce disruptive behavior problems. The present study examines the impact of PBIS on staff reports of school organizational health using data from a group-randomized controlled effectiveness trial of PBIS conducted in 37 elementary schools. Longitudinal multilevel analyses on data from 2,596 staff revealed a significant effect of PBIS on the schools' overall organizational health, resource influence, staff affiliation, and academic emphasis over the 5-year trial; the effects on collegial leadership and institutional integrity were significant when implementation fidelity was included in the model. Trained schools that adopted PBIS the fastest tended to have higher levels of organizational health at baseline, but the later-implementing schools tended to experience the greatest improvements in organizational health after implementing PBIS. This study indicated that changes in school organizational health are important consequences of the PBIS whole-school prevention model, and may in turn be a potential contextual mediator of the effect of PBIS on student performance.

  12. Postnatal protein malnutrition induces neurochemical alterations leading to behavioral deficits in rats: prevention by selenium or zinc supplementation.

    Science.gov (United States)

    Adebayo, Olusegun L; Adenuga, Gbenga A; Sandhir, Rajat

    2014-11-01

    Protein malnutrition (PM) is a worldwide problem affecting brain development in a large number of children. The present study was aimed at studying the perturbations in antioxidant defense system resulting from protein deficiency and to evaluate the preventive effect of Se and Zn on cortex and cerebellum. Well-fed (WF) and PM rats were fed on 16 and 5% protein diet, respectively. After 10 weeks, animals were supplemented with Se and Zn at a concentration of 0.15 and 227 mg/l in drinking water for 3 weeks. PM rats showed significant increase in lipid peroxidation, nitrite, and protein carbonyl levels. Reduction in the activity of antioxidant enzymes, thiol levels, GSH/GSSG ratio, and neurobehavioral deficits were observed in PM groups. Se and Zn supplementation reduced the levels of lipid peroxidation, nitrite, and protein carbonyl and restored the activity of antioxidant enzymes and thiol levels in the cortex and cerebellum of PM rats along with neurobehavioral deficits. The study showed that Se and Zn supplementation might be beneficial in preventing biochemical alterations and neurobehavioral deficits in PM children.

  13. Acute Restraint Stress Alters Wheel-Running Behavior Immediately Following Stress and up to 20 Hours Later in House Mice.

    Science.gov (United States)

    Malisch, Jessica L; deWolski, Karen; Meek, Thomas H; Acosta, Wendy; Middleton, Kevin M; Crino, Ondi L; Garland, Theodore

    In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations

  14. Adolescent ethanol experience alters immediate and long-term behavioral responses to ethanol odor in observer and demonstrator rats

    Directory of Open Access Journals (Sweden)

    Eade Amber M

    2009-06-01

    Full Text Available Abstract Background The social transmission of food preference paradigm centers on the finding that observers obtain dietary information through olfactory cues on the breath of a demonstrator peer that has ingested a novel substance. This phenomenon plays a role in ethanol acceptability. Historically, studies using this technique have focused on observer animals in order to study the social transmission process. With respect to ethanol, studies of acute intoxication have shown that the pharmacologic properties of ethanol and hematogenic olfaction can influence the subsequent ethanol odor-mediated responses of the intoxicated animals. These acute studies, however, demonstrate odor aversion. The present study compared the effect of adolescent ethanol exposure, via the social transmission paradigm, on the behavioral response to ethanol odor in both observer and demonstrator animals in adolescence (postnatal day (P 37 and the persistence of these effects into adulthood (P90. Methods Beginning on P29, naïve rats received four ethanol or water exposures: one every 48 hours through either direct intragastric infusion or social interaction with an infused peer. The reflexive sniffing response of observers and demonstrators to ethanol odor was tested at P37 or P90 using whole-body plethysmography. Results The behavioral response of adolescent ethanol observers and demonstrators significantly differed between themselves and from their respective water controls. Ethanol and water observers both displayed a greater response to ethanol odor than their respective demonstrator counterparts. Compared to controls, both modes of ethanol exposure produced similar magnitudes of enhancement. At P90, both forms of exposure displayed similar responses to ethanol odor and similar magnitudes of enhancement. Only demonstrators displayed equivalent enhanced responses in both sexes. Conclusion In contrast to previous studies showing odor aversion following acute ethanol

  15. Antiretroviral treatment initiation does not differentially alter neurocognitive functioning over time in youth with behaviorally acquired HIV.

    Science.gov (United States)

    Nichols, Sharon L; Bethel, James; Kapogiannis, Bill G; Li, Tiandong; Woods, Steven P; Patton, E Doyle; Ren, Weijia; Thornton, Sarah E; Major-Wilson, Hanna O; Puga, Ana M; Sleasman, John W; Rudy, Bret J; Wilson, Craig M; Garvie, Patricia A

    2016-04-01

    Although youth living with behaviorally acquired HIV (YLWH) are at risk for cognitive impairments, the relationship of impairments to HIV and potential to improve with antiretroviral therapy (ART) are unclear. This prospective observational study was designed to examine the impact of initiation and timing of ART on neurocognitive functioning in YLWH in the Adolescent Medicine Trials Network for HIV/AIDS Interventions. Treatment naïve YLWH age 18-24 completed baseline and four additional assessments of attention/working memory, complex executive, and motor functioning over 3 years. Group 1 co-enrolled in an early ART initiation study and initiated ART at enrollment CD4 >350 (n = 56); group 2 had CD4 >350 and were not initiating ART (n = 66); group 3 initiated ART with CD4 treatment guidelines at the time. Treatment was de-intensified to boosted protease inhibitor monotherapy at 48 weeks for those in group 1 with suppressed viral load. Covariates included demographic, behavioral, and medical history variables. Analyses used hierarchical linear modeling. All groups showed improved performance with peak at 96 weeks in all three functional domains. Trajectories of change were not significantly associated with treatment, timing of treatment initiation, or ART de-intensification. Demographic variables and comorbidities were associated with baseline functioning but did not directly interact with change over time. In conclusion, YLWH showed improvement in neurocognitive functioning over time that may be related to practice effects and nonspecific impact of study participation. Neither improvement nor decline in functioning was associated with timing of ART initiation or therapy de-intensification.

  16. Larval Fish Swimming Behavior Alters Dispersal Patterns From Marine Protected Areas in the North-Western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Robin Faillettaz

    2018-03-01

    Full Text Available Most demersal fishes undergo a dispersal phase as larvae, which strongly influences the connectivity among adult populations and, consequently, their genetic structure and replenishment opportunities. Because this phase is difficult to observe directly, it is frequently simulated through numerical models, most of which consider larvae as passive or only vertically migrating. However, in several locations, including the Mediterranean Sea, many species have been shown to swim fast and orient. Here we use a Lagrangian model to study connectivity patterns among three Mediterranean Marine Protected Areas (MPAs and compare simulations in which virtual larvae are passive to simulations in which oriented swimming is implemented. The parameterization of behavior is based on observations for two groups of species of the family Sparidae: species with small larvae (i.e., 9–11 mm, displaying a maximum swimming speed of 6 cm s−1 and a pelagic larval duration of 13–19 days (e.g., Diplodus annularis L., Oblada melanura L. and species with large larvae (i.e., 14–16 mm, displaying a maximum swimming speed of 10 cm s−1 and a PLD of 28–38 days (e.g., Spondyliosoma cantharus L.. Including larval behavior in the model (i increased the overall proportion of successful settlers, (ii enhanced self-recruitment within the MPAs, but also (iii increased the intensity, and (iv widened the export of eggs and larvae (recruitment subsidy from the MPAs; overall, it significantly changed connectivity patterns. These results highlight the need to gather the observational data that are required to correctly parameterize connectivity models.

  17. Gestational Exposure to the Synthetic Cathinone Methylenedioxypyrovalerone Results in Reduced Maternal Care and Behavioral Alterations in Mouse Pups

    Directory of Open Access Journals (Sweden)

    László I. Gerecsei

    2018-02-01

    Full Text Available The member of synthetic cathinone family, methylenedioxypyrovalerone (MDPV, is a frequently used psychoactive drug of abuse. The objective of our study was to determine the effect of MDPV (administered from the 8th to the 14th day of gestation on the behavior of neonatal and adolescent mice, as well as its effect on maternal care. We measured maternal care (pup retrieval test, nest building, locomotor activity (open field test, and motor coordination (grip strength test of dams, whereas on pups we examined locomotor activity at postnatal day 7 and day 21 (open field test and motor coordination on day 21 (grip strength test. On fresh-frozen brain samples of the dams we examined the expression of two important peptides implicated in the regulation of maternal behavior and lactation: tuberoinfundibular peptide 39 (TIP39 mRNA in the thalamic posterior intralaminar complex, and amylin mRNA in the medial preoptic nucleus. We detected decreased birth rate and survival of offspring, and reduced maternal care in the drug-treated animals, whereas there was no difference between the motility of treated and control mothers. Locomotor activity of the pups was increased in the MDPV treated group both at 7 and 21 days of age, while motor coordination was unaffected by MDPV treatment. TIP39 and amylin were detected in their typical location but failed to show a significant difference of expression between the drug-treated and control groups. The results suggest that chronic systemic administration of the cathinone agent MDPV to pregnant mice can reduce birth rate and maternal care, and it also enhances motility (without impairment of motor coordination of the offspring.

  18. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio).

    Science.gov (United States)

    Dishaw, Laura V; Hunter, Deborah L; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M

    2014-12-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology.All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Altered behavioral responses to gamma-aminobutyric acid pharmacological agents in a mouse model of Huntington's disease.

    Science.gov (United States)

    Hsu, Yi-Ting; Chang, Ya-Gin; Chang, Ching-Pang; Siew, Jian-Jing; Chen, Hui-Mei; Tsai, Chon-Haw; Chern, Yijuang

    2017-11-01

    Disruptions in gamma-aminobutyric (GABA) acid signaling are believed to be involved in Huntington's disease pathogenesis, but the regulation of GABAergic signaling remains elusive. Here we evaluated GABAergic signaling by examining the function of GABAergic drugs in Huntington's disease and the expression of GABAergic molecules using mouse models and human brain tissues from Huntington's disease. We treated wild-type and R6/2 mice (a transgenic Huntington's disease mouse model) acutely with vehicle, diazepam, or gaboxadol (drugs that selectively target synaptic or extrasynaptic GABA A receptors) and monitored their locomotor activity. The expression levels of GABA A receptors and a major neuron-specific chloride extruder (potassium-chloride cotransporter-2) were analyzed by real-time quantitative polymerase chain reaction, Western blot, and immunocytochemistry. The R6/2 mice were less sensitive to the sedative effects of both drugs, suggesting reduced function of GABA A receptors. Consistently, the expression levels of α1/α2 and δ subunits were lower in the cortex and striatum of R6/2 mice. Similar results were also found in 2 other mouse models of Huntington's disease and in Huntington's disease patients. Moreover, the interaction and expression levels of potassium-chloride cotransporter-2 and its activator (brain-type creatine kinase) were decreased in Huntington's disease neurons. These findings collectively suggest impaired chloride homeostasis, which further dampens GABA A receptor-mediated inhibitory signaling in Huntington's disease brains. The dysregulated GABAergic responses and altered expression levels of GABA A receptors and potassium-chloride cotransporter-2 in Huntington's disease mice appear to be authentic and may contribute to the clinical manifestations of Huntington's disease patients. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  20. Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized byEx VivoLive Multiphoton Imaging.

    Science.gov (United States)

    Rawji, Khalil S; Kappen, Janson; Tang, Weiwen; Teo, Wulin; Plemel, Jason R; Stys, Peter K; Yong, V Wee

    2018-02-21

    whether the dynamic activity of cells within lesions is also altered with age. Herein, using high-resolution multiphoton ex vivo live imaging with several novel features, we report that myeloid cells within demyelinated lesions of aging mice have reduced motility, surveillance, and phagocytic activity, suggesting an intralesional impairment that may contribute to the age-related decline in remyelination efficiency. Medications to stimulate deficient aging myeloid cells should not only increase their representation, but also enter into lesions to stimulate their activity. Copyright © 2018 the authors 0270-6474/18/381973-16$15.00/0.

  1. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse.

    Science.gov (United States)

    Onakomaiya, Marie M; Porter, Donna M; Oberlander, Joseph G; Henderson, Leslie P

    2014-07-01

    Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Sex and Exercise Interact to Alter the Expression of Anabolic Androgenic Steroid-Induced Anxiety-Like Behaviors in the Mouse

    Science.gov (United States)

    Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.

    2014-01-01

    Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711

  3. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Science.gov (United States)

    Busby, Ellen R; Sherwood, Nancy M

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  4. Repeated administration of an aqueous spray-dried extract of the leaves of Passiflora alata Curtis (Passifloraceae) inhibits body weight gain without altering mice behavior.

    Science.gov (United States)

    Braga, Andressa; Stein, Ana Cristina; Dischkaln Stolz, Eveline; Dallegrave, Eliane; Buffon, Andréia; do Rego, Jean-Claude; Gosmann, Grace; Fialho Viana, Alice; Kuze Rates, Stela Maris

    2013-01-09

    Passiflora alata is a Southern American species that constitutes many traditional remedies as well as phytomedicines used for sedative and anxiolytic purposes in Brazil. However studies on repeated treatment effects are scarce. To evaluate behavioral, physiological and biochemical effects of the repeated treatment with an aqueous spray-dried extract of Passiflora alata leaves containing 2.5% (w/v) of flavonoids (PA) in mice. Male adult CF1 mice were treated (p.o.) for 14 days with PA (2.5; 25 or 250 mg/kg). The feeding behavior was evaluated at the beginning (1h after the first administration) and at the end of the treatment (15th day). The body weight gain and food consumption were monitored along the days. On day 15 mice were evaluated on plus maze, spontaneous locomotor activity, catalepsy and barbiturate sleeping time tests. Serum glucose, lipids, ALT and AST enzymes were determined. Liver, kidney, perirenal fat, epididymal and peritoneal fat were analyzed. The repeated treatment with the highest dose tested (250 mg/kg) did not alter the mice behavior on open field, elevated plus maze, catalepsy and barbiturate sleeping time tests. Repeated administration of PA 250 decreased mice feeding behavior and weight gain. PA 25 and PA 250 reduced mice relative liver weight and caused mild hepatic hydropic degeneration as well as a decrease in alanine aminotransferase (ALT) serum level. These results indicate that Passiflora alata does not present central cumulative effects and point to the needs of further studies searching for its hepatotoxicity as well as potential anorexigenic. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  6. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes.

    Directory of Open Access Journals (Sweden)

    Noton K Dutta

    Full Text Available The Mycobacterium tuberculosis stress response factor SigH plays a crucial role in modulating the pathogen's response to heat, oxidative-stress, envelope damage and hypoxia. We hypothesized that the lack of this key stress response factor would alter the interaction between the pathogen and its host cells. We compared the interaction of Mtb, Mtb:Δ-sigH and a strain where the mutation had been genetically complemented (Mtb: Δ-sigH:CO with primary rhesus macaque bone marrow derived macrophages (Rh-BMDMs. The expression of numerous inducible and homeostatic (CCL β-chemokines and several apoptotic markers was induced to higher levels in the cells infected with Mtb:Δ-sigH, relative to Mtb or the complemented strain. The differential expression of these genes manifested into functional differences in chemotaxis and apoptosis in cells infected with these two strains. The mutant strain also exhibited reduced late-stage survival in Rh-BMDMs. We hypothesize that the product of one or more SigH-dependent genes may modulate the innate interaction of Mtb with host cells, effectively reducing the chemokine-mediated recruitment of immune effector cells, apoptosis of infected monocytes and enhancing the long-term survival and replication of the pathogen in this milieu The significantly higher induction of Prostaglandin Synthetase 2 (PTGS2 or COX2 in Rh-BMDMs infected with Mtb relative to Mtb: Δ-sigH may explain reduced apoptosis in Mtb-infected cells, as PTGS2 is known to inhibit p53-dependent apoptosis.The SigH-regulon modulates the innate interaction of Mtb with host phagocytes, perhaps as part of a strategy to limit its clearance and prolong its survival. The SigH regulon appears to be required to modulate innate immune responses directed against Mtb.

  7. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    Energy Technology Data Exchange (ETDEWEB)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. (Univ. of California-Los Angeles School of Medicine (USA))

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  8. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    International Nuclear Information System (INIS)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P.

    1991-01-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of [ 3 H]thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of [ 3 H]thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of [ 3 H]thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke

  9. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    Science.gov (United States)

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Altered Neuronal Dynamics in the Striatum on the Behavior of Huntingtin Interacting Protein 14 (HIP14 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Ana María Estrada-Sánchez

    2013-11-01

    Full Text Available Huntington’s disease (HD, a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, impairs information processing in the striatum, which, as part of the basal ganglia, modulates motor output. Growing evidence suggests that huntingtin interacting protein 14 (HIP14 contributes to HD neuropathology. Here, we recorded local field potentials (LFPs in the striatum as HIP14 knockout mice and wild-type controls freely navigated a plus-shaped maze. Upon entering the choice point of the maze, HIP14 knockouts tend to continue in a straight line, turning left or right significantly less often than wild-types, a sign of motor inflexibility that also occurs in HD mice. Striatal LFP activity anticipates this difference. In wild-types, the power spectral density pattern associated with entry into the choice point differs significantly from the pattern immediately before entry, especially at low frequencies (≤13 Hz, whereas HIP14 knockouts show no change in LFP activity as they enter the choice point. The lack of change in striatal activity may explain the turning deficit in the plus maze. Our results suggest that HIP14 plays a critical role in the aberrant behavioral modulation of striatal neuronal activity underlying motor inflexibility, including the motor signs of HD.

  11. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  12. Instruction in behavior modification can significantly alter soil-transmitted helminth (STH) re-infection following therapeutic de-worming.

    Science.gov (United States)

    Albright, Julia W; Basaric-Keys, Jasna

    2006-01-01

    Five elementary ("prototypic") schools located in five districts in central Java were selected and the children examined for helminth infections (Ascaris, Trichuris, hookworm). They were de-wormed with a course of mebendazole and provided with 6-7 months of "behavioral remediation instruction" (BRI). In other ("control") schools, children were treated with mebendazole but were not provided BRI. The objective was to determine the effectiveness of BRI in minimizing infection/re-infection following deworming. After the 6-7 month course of BRI in the prototypic schools, all the children (in both the prototypic and control schools) were re-examined for geohelminth infection. The schools in two of the five districts were omitted from further analysis because the overall prevalence of infection was low (<10%) and the infections were dominated by hookworm which are only moderately susceptible to mebendazole. Comparisons of prototypic and control schools in the other three districts provided compelling evidence that BRI was quite effective in reducing both the frequency and intensity of infection with Ascaris and Trichuris. We suggest that instructing children and adults corrects personal habits which are conducive to infection and can be an effective and safe substitute for repeated deworming, reducing the opportunity for the emergence of drug-resistant helminthes, which should prolong the time benzimidazoles may be used for treatment of geohelminth infection.

  13. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors

    Directory of Open Access Journals (Sweden)

    Hinkle Kelly M

    2012-05-01

    Full Text Available Abstract Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation. We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis. Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes.

  15. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice

    Directory of Open Access Journals (Sweden)

    Rhonda Charles

    2014-08-01

    Full Text Available Central arginine vasopressin receptor 1A (AVPR1A modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory

  16. The modulatory role of cytokines IL-4 and IL-17 in the functional activity of phagocytes in diabetic pregnant women.

    Science.gov (United States)

    Fagundes, Danny L G; França, Eduardo L; Gonzatti, Michelangelo B; Rugde, Marilza V C; Calderon, Iracema M P; Honorio-França, Adenilda C

    2018-01-01

    The study investigated the role of cytokines IL-4 and IL-17 in the modulation of the functional activity of mononuclear phagocytes in diabetic pregnant women with hyperglycemia. Sixty pregnant women were assigned to the following groups: nondiabetic (ND), mild gestational hyperglycemia (MGH), gestational diabetes mellitus (GDM), or type 2 diabetes mellitus (DM2). The functional activity of phagocytes from maternal blood, cord blood, and colostrum was assessed by determining their superoxide release, phagocytosis, microbicidal activity, and intracellular Ca 2+ release. Irrespective of glycemic status, colostrum and blood cells treated with IL-4 and IL-17 increased superoxide release in the presence of enteropathogenic Escherichia coli (EPEC). The highest phagocytosis rate was observed in cells from the DM2 group treated with IL-4. In all the groups, phagocytes from colostrum, maternal blood, and cord blood exhibited higher microbicidal activity against EPEC when treated with cytokines. IL-17 increased intracellular Ca 2+ release by colostrum phagocytes in diabetic groups. The results indicate that the IL-4 and IL-17 modulate the functional activity of phagocytes in the maternal blood, cord blood, and colostrum of diabetic mother. The natural immunity resulting from the interaction between the cells and cytokines tested may be an alternative procedure to improve the prognosis of maternal and newborn infections. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  17. Lipopolysaccharides Derived from Pantoea agglomerans Can Promote the Phagocytic Activity of Amyloid β in Mouse Microglial Cells.

    Science.gov (United States)

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Kobara, Hideki; Masaki, Tsutomu; Soma, Gen-Ichiro

    2017-07-01

    Recent studies reported that lipopolysaccharide (LPS) exhibits beneficial effects on prevention of immune-related diseases by activating macrophages. We previously demonstrated that pre-treatment with LPS derived from Pantoea agglomerans (LPSp) activated amyloid β (Aβ) phagocytosis in mouse primary microglia. In the present study, we further examined the promotory effect on phagocytosis of phagocytic particles in the C8-B4 microglia cell line. Phagocytic analysis of C8-B4 cells was evaluated using phagocytic particles (latex beads or HiLyte™ Fluor 488-conjugated Aβ 1-42 ). The phagocytic activity of latex beads was dependent on the concentration of beads and incubation time. LPSp, at as low as 100 pg/ml, significantly increased phagocytosis against the beads. In the experiment of Aβ 1-42 phagocytosis, LPSp significantly increased Aβ phagocytic activity. LPSp treatment was confirmed to enhance Aβ 1-42 phagocytosis by mouse microglia. It is suggested that the use of LPSp may be a potential promising candidate for the prevention of Alzheimer's disease. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Directory of Open Access Journals (Sweden)

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  19. Morphine and buprenorphine do not alter leukocyte cytokine production capacity, early apoptosis, or neutrophil phagocytic function in healthy dogs.

    Science.gov (United States)

    Monibi, Farrah A; Dodam, John R; Axiak-Bechtel, Sandra M; Amorim, Juliana; Zhang, Yan; Tsuruta, Kaoru; Mann, F A; DeClue, Amy E

    2015-04-01

    Opioids have immunomodulatory properties in many species, but there is little information pertaining to these properties in dogs. Our objective was to compare the in vivo effects of morphine, buprenorphine, and control solution on innate immune system function and apoptosis in healthy dogs. Six adult dogs received a 24-hour infusion of morphine, buprenorphine, or control solution (saline) in a randomized, controlled, crossover block design. Leukocyte apoptosis, phagocytosis, and oxidative burst were evaluated using flow cytometry. Lipopolysaccharide, lipoteichoic acid, and peptidoglycan-stimulated leukocyte production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 were determined using canine specific multiplex assays. No significant treatment effects were detected among groups. These data suggest that healthy dogs could be less sensitive to the immunomodulatory effects of acute opioid administration compared with other species. Larger investigations in healthy and immunologically challenged dogs are recommended prior to application of these results in clinical patients. Copyright © 2015. Published by Elsevier Ltd.

  20. Respon Fagositosis Leukosit Polimorf Babi (in vitro Terhadap Streptoccocus equi Subsp. Zooepidemicus (PHAGOCYTIC RESPONSE OF SWINE POLYMORPH LEUCOCYTES (IN VITRO TO STREPTOCCOCUS EQUI SUBSP. ZOOEPIDEMICUS

    Directory of Open Access Journals (Sweden)

    Iwan Harjono Utama

    2016-08-01

    Full Text Available Respon Fagositosis Leukosit Polimorf Babi (in vitro Terhadap Streptoccocus equi Subsp. Zooepidemicus (PHAGOCYTIC RESPONSE OF SWINE POLYMORPH LEUCOCYTES (IN VITRO TO STREPTOCCOCUS EQUI SUBSP. ZOOEPIDEMICUS

  1. Intermittent physical stress during early- and mid-adolescence differentially alters rats' anxiety- and depression-like behaviors in adulthood.

    Science.gov (United States)

    Wilkin, Meaghan M; Waters, Pattti; McCormick, Cheryl M; Menard, Janet L

    2012-04-01

    Prior work showed that exposing rats to stress from weaning through to late adolescence (PD23-51) increased anxiety- and depression-related responses in adulthood. In the current study, we tested the hypothesis that the outcome of adolescent stress depends on the specific timing of adversity in adolescence. Male and female rats were exposed to intermittent, physical stress during either early (PD22-33) or mid -(PD35-46) adolescence, and then their anxiety- and depression-related responses to acute stressors were tested in adulthood. Early adolescent stress decreased rats' open-arm exploration in the elevated plus-maze in both male and female rats. Early adolescent stress also increased the duration of time rats spent burying in the shock-probe test and the duration of time they spent immobile in the forced swim test, but these effects were only seen in males. Stress in mid-adolescence did not increase rats' anxiety-related responding in adulthood. Instead, we observed paradoxical increases in open-arm exploration and only modest increases in shock-probe burying that failed to reach significance. Mid-adolescent stress also tended to increase depression-related immobility in the swim test. Thus, the current findings underscore the importance of timing of adolescent adversity to long-term outcomes. It appears that stress in early adolescence leads to a broader range of outcomes in adulthood, at least in male rats. By contrast, stress in mid-adolescence might have more predominant effects on risk-taking behavior (indexed by increases in open-arm activity), a possibility that merits further investigation. (c) 2012 APA, all rights reserved

  2. Mouse model for PTPRD associations with WED/RLS and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference.

    Science.gov (United States)

    Drgonova, Jana; Walther, Donna; Wang, Katherine J; Hartstein, G Luke; Lochte, Bryson; Troncoso, Juan; Uetani, Noriko; Iwakura, Yoichiro; Uhl, George R

    2015-07-14

    The receptor type protein tyrosine phosphatase D (PTPRD) gene encodes a cell adhesion molecule likely to influence development and connections of addiction-, locomotion- and sleep-related brain circuits in which it is expressed. The PTPRD gene harbors genome wide association signals in studies of restless leg syndrome (Willis-Ekbom/RLS; p p > 10 -8 associations in several reports). We now report work that seeks a) association between PTPRD genotypes and expression of its mRNA in postmortem human brains and b) RLS-related, addiction-related and comparison behavioral phenotypes in hetero- and homozygous PTPRD knockout mice. We identify associations between PTPRD SNPs and levels of PTPRD mRNA in human brain samples that support validity of mouse models with altered PTPRD expression. Knockouts display less behaviorally-defined sleep at the end of their active periods. Heterozygotes move more despite motor weakness/impersistence. Heterozygotes display shifted dose-response relationships for cocaine reward. They display greater preference for places paired with 5 mg/kg cocaine and less preference for places paired with 10 or 20 mg/kg. The combined data provide support for roles for common, level-of-expression PTPRD variation in locomotor, sleep and drug reward phenotypes relevant to RLS and addiction. Taken together, mouse and human results identify PTPRD as a novel therapeutic target for RLS and addiction phenotypes.

  3. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  4. Quantitation of microbicidal activity of mononuclear phagocytes: an in vitro technique.

    Directory of Open Access Journals (Sweden)

    Rege N

    1993-01-01

    Full Text Available An in vitro assay technique was set up to determine the phagocytic and microbicidal activity of a monocyte-macrophage cell line using Candida species as test organisms. The norms were determined for the activity of peritoneal macrophages of rats (24.69 +/- 2.6% phagocytosis and 35.4 +/- 5.22% ICK and human (27.89 +/- 3.63% phagocytosis and 50.91 +/- 6.3% ICK. The assay technique was used to test the degree of activation of macrophages induced by metronidazole, Tinospora cordifolia and Asparaqus racemousus and to compare their effects with a standard immunomodulator muramyl-dipeptide. All the three test agents increased the phagocytic and killing capacity of macrophages in a dose dependent manner upto a certain dose, beyond which either these activities were found to have plateaued or decreased. The optimal doses for MDP, Metronidazole, Asparagus racemosus and Tinospora cordifolia were found to be 100 micrograms, 300 mg/kg, 200 mg/kg and 100 mg/kg respectively. Patients with cirrhosis were screened for defects in monocyte function. The depressed monocyte function (20.58 +/- 5% phago and 41.24 +/- 12.19% ICK; P < 0.05 was observed indicating a compromised host defense. The utility of this candidicidal assay in experimental and clinical studies is discussed.

  5. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    Science.gov (United States)

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  6. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans.

    Science.gov (United States)

    Behnsen, Judith; Narang, Priyanka; Hasenberg, Mike; Gunzer, Frank; Bilitewski, Ursula; Klippel, Nina; Rohde, Manfred; Brock, Matthias; Brakhage, Axel A; Gunzer, Matthias

    2007-02-01

    The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D) environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D) extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why "delocalized" Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals.

  7. Dictyostelium discoideum as a novel host system to study the interaction between phagocytes and yeasts

    Directory of Open Access Journals (Sweden)

    Barbara Koller

    2016-10-01

    Full Text Available The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae and pathogenic (Candida sp. yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2- or decrease (atg6- the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1 contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.

  8. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  9. Aminopeptidase N (CD13 Is Involved in Phagocytic Processes in Human Dendritic Cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Mónica I. Villaseñor-Cardoso

    2013-01-01

    Full Text Available Aminopeptidase N (APN or CD13 is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs. In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages.

  10. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  11. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans.

    Directory of Open Access Journals (Sweden)

    Judith Behnsen

    2007-02-01

    Full Text Available The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why "delocalized" Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals.

  12. A Simple, Reproducible, Inexpensive, Yet Old-Fashioned Method for Determining Phagocytic and Bactericidal Activities of Macrophages.

    Science.gov (United States)

    Kaneko, Masakazu; Emoto, Yoshiko; Emoto, Masashi

    2016-03-01

    Macrophages (Mφ) play a pivotal role in the protection system by recognizing and eliminating invading pathogenic bacteria. Phagocytosis and the killing of invading bacteria are major effector functions of Mφ. Although the phagocytic and bactericidal activities of Mφ have been analyzed via several methods using a light microscope, a fluorescence microscope, or a fluorescence-activated cell sorter, expensive materials and equipment are usually required, and the methods are rather complicated. Moreover, it is impossible to determine both the phagocytic and bactericidal activities of Mφ simultaneously using these methods. In this review, we describe a simple, reproducible, inexpensive, yet old-fashioned method (antibiotic protection assay) for determining the phagocytic and bactericidal activities of Mφ.

  13. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    Directory of Open Access Journals (Sweden)

    Ana Flavia Popi

    Full Text Available The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP, and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/- mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11 that is often found in B-1 cells. These results strongly suggest that op/op((-/- peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of

  14. DMPD: CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8485905 CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities...) (.html) (.csml) Show CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities...d NK cell membrane receptor with multipleligand specificities and functions. Authors Ross GD, Vetvicka V. Pu

  15. Prenatal noise and restraint stress interact to alter exploratory behavior and balance in juvenile rats, and mixed stress reverses these effects.

    Science.gov (United States)

    Badache, Soumeya; Bouslama, Slim; Brahmia, Oualid; Baïri, Abdel Madjid; Tahraoui, Abdel Krim; Ladjama, Ali

    2017-05-01

    We aimed to investigate in adolescent rats the individual and combined effects of prenatal noise and restraint stress on balance control, exploration, locomotion and anxiety behavior. Three groups of pregnant rats were exposed to daily repeated stress from day 11 to day 19 of pregnancy: 3 min noise (Noise Stress, NS); 10 min restraint (restraint stress, RS); or 3 min noise followed by 10 min restraint (mixed stress, MS). On postnatal days (PND) 44, 45 and 46, four groups of male rats (Control, NS, RS:, MS; 16 rats each), were tested as follows: (1) beam walking (BW), (2) open field (OF) and (3) elevated plus maze (EPM). Our results show that the NS group had significantly impaired balance control, locomotion and both horizontal and vertical exploration (p prenatal stressors exert non-additive effects on locomotion, exploration and balance control, but induce greater anxiety through additive effects. Terminal plasma ACTH concentration was increased by prenatal stress, especially noise, which group had the largest adrenal glands. Overall, contrary to expectation, combined prenatal stressors can interact to increase anxiety level, but diminish alteration of exploration, locomotion and impaired balance control, which were strongly induced by noise stress. Lay summary: Experience of stress in pregnancy can have negative effects on the offspring that are long-lasting. Here, we used laboratory rats to see whether repeated episodes of exposure to loud noise or preventing free movement, alone or together, during pregnancy had different effects on behaviors of the adolescent offspring. Using standard tests, we found the prenatal stresses caused the offspring to be anxious, and not to balance when moving around as well as normal offspring; the degree of impairment depended on the type of stress - loud noise exposure had the greatest effects, but if the stresses were combined the effects were not worse. The results point to the need to aim to avoid stress in pregnant

  16. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration.

    Science.gov (United States)

    Galván-Arzate, Sonia; Pedraza-Chaverrí, José; Medina-Campos, Omar N; Maldonado, Perla D; Vázquez-Román, Beatriz; Ríos, Camilo; Santamaría, Abel

    2005-07-01

    Thallium (Tl+) toxicity has been related with the generation of reactive oxygen species (ROS) and oxidative stress (OS) in the central nervous system. Since changes in endogenous antioxidant systems might contribute to acute Tl+-induced OS and neurotoxicity, in this study we measured the metal concentration and the levels of lipid peroxidation (LP) in different brain regions (hypothalamus (Ht); cerebellum (Ce); striatum (S); hippocampus (Hc) and frontal cortex (Cx)) in possible correlation with the content of reduced glutathione (GSH), the activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD), and the animal performance in behavioral tests, all evaluated after a single administration of thallium acetate (8 or 16 mg/kg, i.p.) to rats. Seven days after Tl+ administration, the metal was homogeneously and dose-dependently accumulated in all regions evaluated. LP was increased in Ht, Ce and S, while GSH was depleted in S. Cu,Zn-SOD activity was also decreased in Ht and S. All these changes occurred with 16 mg/kg dose and at 7 days after treatment, but not at 1 or 3 days. In addition, Tl+-treated animals exhibited general hypokinesis, but no changes were observed in spatial learning. Our findings suggest that a delayed response of the brain to Tl+ may be the result of its residual levels. Also, despite the regional alterations produced by Tl+ in LP and the limited changes in endogenous antioxidants, there is a correlation between the Tl+-induced oxidative damage and the affected behavioral tasks, suggesting that, although still moderate, Tl+ evokes neurotoxic patterns under the experimental conditions tested.

  17. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  18. Mosquitofish (Gambusia affinis preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth.

    Directory of Open Access Journals (Sweden)

    Giovanni Polverino

    Full Text Available Mosquitofish (Gambusia affinis is an example of a freshwater fish species whose remarkable diffusion outside its native range has led to it being placed on the list of the world's hundred worst invasive alien species (International Union for Conservation of Nature. Here, we investigate mosquitofish shoaling tendency using a dichotomous choice test in which computer-animated images of their conspecifics are altered in color, aspect ratio, and swimming level in the water column. Pairs of virtual stimuli are systematically presented to focal subjects to evaluate their attractiveness and the effect on fish behavior. Mosquitofish respond differentially to some of these stimuli showing preference for conspecifics with enhanced yellow pigmentation while exhibiting highly varying locomotory patterns. Our results suggest that computer-animated images can be used to understand the factors that regulate the social dynamics of shoals of Gambusia affinis. Such knowledge may inform the design of control plans and open new avenues in conservation and protection of endangered animal species.

  19. Studies on the role of mononuclear phagocytes in resistance to acute lymphocytic choriomeningitis virus infection

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Volkert, M

    1983-01-01

    killer response was also unimpaired by this treatment. Taken together, these findings suggest that resident macrophages constitute a barrier to the initial multiplication of LCMV. A breakdown of this macrophage barrier results in a more disseminated infection, which the specific immune response has...... with early events in the host response to the virus. Correspondingly, carrageenan enhanced early virus multiplication. Pretreatment with carrageenan apparently did not inhibit induction of the T-cell response and had little or no direct effect on T-cell-dependent anti-viral activity. The LCMV-induced natural......The role of mononuclear phagocytes in various phases of the acute lymphocytic choriomeningitis virus (LCMV) infection was studied. The anti-macrophage agent carrageenan delayed virus clearance. Carrageenan was most effective when given before virus inoculation, suggesting that it interfered...

  20. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  1. Chronic administration during early adulthood does not alter the hormonally-dependent disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on complex behavior in female rats.

    Science.gov (United States)

    Winsauer, Peter J; Sutton, Jessie L

    2014-02-01

    This study examined whether chronic Δ(9)-THC during early adulthood would produce the same hormonally-dependent deficits in learning that are produced by chronic Δ(9)-THC during adolescence. To do this, either sham-operated (intact) or ovariectomized (OVX) female rats received daily saline or 5.6 mg/kg of Δ(9)-THC i.p. for 40 days during early adulthood. Following chronic administration, and a drug-free period to train both a learning and performance task, acute dose-effect curves for Δ(9)-THC (0.56-10 mg/kg) were established in each of the four groups (intact/saline, intact/THC, OVX/saline and OVX/THC). The dependent measures of responding under the learning and performance tasks were the overall response rate and the percentage of errors. Although the history of OVX and chronic Δ(9)-THC in early adulthood did not significantly affect non-drug or baseline behavior under the tasks, acute administration of Δ(9)-THC produced both rate-decreasing and error-increasing effects on learning and performance behavior, and these effects were dependent on their hormone condition. More specifically, both intact groups were more sensitive to the rate-decreasing and error-increasing effects of Δ(9)-THC than the OVX groups irrespective of chronic Δ(9)-THC administration, as there was no significant main effect of chronic treatment and no significant interaction between chronic treatment (saline or Δ(9)-THC) and the dose of Δ(9)-THC administered as an adult. Post mortem examination of 10 brain regions also indicated there were significant differences in agonist-stimulated GTPγS binding across brain regions, but no significant effects of chronic treatment and no significant interaction between the chronic treatment and cannabinoid signaling. Thus, acute Δ(9)-THC produced hormonally-dependent effects on learning and performance behavior, but a period of chronic administration during early adulthood did not alter these effects significantly, which is contrary to what we

  2. Forced traffic in automatic milking systems effectively reduces the need to get cows, but alters eating behavior and does not improve milk yield of dairy cattle.

    Science.gov (United States)

    Bach, A; Devant, M; Igleasias, C; Ferrer, A

    2009-03-01

    Eighty-five lactating Holstein dairy cows in loose housing conditions in 2 symmetrical pens, each containing 28 feeding places, 3 waterers, and 1 automatic milking system (AMS), were used to evaluate the effects of the traffic type imposed on lactating cows through an AMS on milking frequency, feeding behavior, and milk production. The study was a crossover design with 2 periods and 2 treatments. Each period lasted 3 mo, with 1 mo of adaptation within each period. All cows were fed a partial mixed ration twice daily and up to 3 kg/d of a concentrate during the visits to the AMS. Treatments consisted of allowing free traffic of cows throughout the pen or forcing cows to pass through the AMS to access the feed troughs (forced traffic). Individual eating behavior and feed consumption were continuously monitored throughout the study using a computerized system. Individual milk production was recorded at each milking, and milk composition was recorded monthly. In addition, the number of cows brought to the AMS was recorded. The number of daily meals was less, whereas meal duration and meal size were greater with forced traffic (6.6 +/- 0.3 meals/d, 20.4 +/- 0.65 min/meal, and 2.7 +/- 0.09 kg/meal, respectively) than with free traffic (10.1 +/- 0.3 meals/d, 15.7 +/- 0.65 min/meal, and 1.8 +/- 0.09 kg/meal, respectively). Total dry matter intake (21.1 +/- 0.5 and 20.4 +/- 0.58 kg/d, respectively) and milk production (29.8 +/- 0.79 and 30.9 +/- 0.79 kg/d, respectively) were similar in the 2 systems. The number of voluntary and total daily milkings was greater with forced traffic (2.4 +/- 0.04 and 2.5 +/- 0.06 milkings/d, respectively) than with free traffic (1.7 +/- 0.06 and 2.2 +/- 0.04 milkings/d, respectively). Forced traffic improved the number of voluntary milkings, but altered milk quality and eating behavior of dairy cattle.

  3. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters.

    Science.gov (United States)

    Yu, Wei-Chun; Liu, Ching-Yi; Lai, Wen-Sung

    2016-01-01

    , intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the "social threat" group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats.

  4. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  5. Impaired activity of phagocytic cells in Candida albicans infection after exposure to chronic varied stress.

    Science.gov (United States)

    Rodriguez-Galán, M C; Correa, S G; Cejas, H; Sotomayor, C E

    2001-01-01

    Candidiasis is a prototypic opportunistic fungal disease that may follow severe modulations of the immune system of the host. The purpose of this study was to evaluate which innate immune mechanisms involved in the protection against fungal invasion are impaired under stress conditions. Wistar rats were infected intraperitoneally with Candida albicans and immediately exposed to chronic varied stress (CVS) over 10 days (CVS; Ca-S); the fungal burden (CFU), histopathological lesion and ACTH levels were evaluated. Additionally, functional assessment of peritoneal cells (PC) included the phagocytic and anticandidacidal activities and the production of H(2)O(2) and NO. In the only infected animals (Ca), C. albicans colonization stimulated an efficient inflammatory response, while in Ca-S rats poor tissue reactions were associated with increased CFU in livers and kidneys (p process was not modified, the candidacidal activity of PC was significantly decreased after the application of CVS (p < 0.001, Ca vs. Ca-S). The H(2)O(2) production by macrophages and neutrophils was downregulated by the infection, and while at early intervals these cells possessed a residual oxidative capacity, by day 10, the production of this metabolite was blocked. Spontaneous NO production by macrophages was significantly increased in both Ca and Ca-S animals (p < 0.001), but in stressed rats, this reactive nitrogen intermediate was noticeably downregulated (p < 0.05, Ca vs. Ca-S). The hyperactivity of hypothalamus-pituitary-adrenal axis after exposure to stress was confirmed by an increase in baseline plasma ACTH levels. These results show that during infection with C. albicans, the exposure to CVS contributes to the spread of the fungus and downregulates critical functions of phagocytic cells involved in the control of this opportunistic pathogen. Copyright 2002 S. Karger AG, Basel

  6. Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans-Induced Inflammation in Mouse Lungs.

    Science.gov (United States)

    Endo, Daiki; Fujimoto, Kenta; Hirose, Rika; Yamanaka, Hiroko; Homme, Mizuki; Ishibashi, Ken-Ichi; Miura, Noriko; Ohno, Naohito; Aratani, Yasuaki

    2017-02-01

    Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.

  7. A new non-phagocytic TLR6 with broad recognition ligands from Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Wang, Weilin; Zhang, Tao; Wang, Lingling; Xu, Jiachao; Li, Meijia; Zhang, Anguo; Qiu, Limei; Song, Linsheng

    2016-12-01

    Toll like receptors (TLRs) are evolutionarily prevalent recognition molecules in the Animalia and Plantae kingdom, which play vital roles in immune defense and homeostasis maintenance. Recently, the expansion of TLRs has been reported in invertebrate genomes, but the characters and immune functions of these expanded TLRs were still not well known. In the present study, a new member of TLR family with five LRR domains was identified in Crassostrea gigas (designated CgTLR6). It shared homology with TLRs from other organisms with the closest phylogenic relationship with molluscan TLRs. The recombinant protein of CgTLR6 (rCgTLR6) displayed direct bind activity to gram-negative bacteria Vibrio anguillarum and Vibrio splendidus, gram-positive bacteria Staphylococci aureus and Micrococcus luteus, and fungi Pichia pastoris, but not to fungi Yarrowia lipolytica. It also exhibited affinity to lipopolysaccharide (LPS) and peptidoglycan (PGN), while no affinity to mannan (MAN). The mRNA of CgTLR6 was mainly detected in hemocytes and hepatopancreas, and was significantly induced (p < 0.01) in hemocytes after the oyster was stimulated with LPS, PGN or bacteria V. splendidus. Immunofluorescence analysis indicated that CgTLR6 was mainly located at the membrane of hemocytes. The blockage of CgTLR6 by anti-rCgTLR6 antibody did not significantly inhibit the phagocytic rates of hemocytes toward recognized gram-negative bacteria V. anguillarum and V. splendidus, and unrecognized fungi Y. lipolytica. These results collectively implied that CgTLR6 was a novel non-phagocytic receptor of C. gigas to mediate humoral immune response by recognizing pathogen-associated molecular patterns on the invaders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Expanding the tools for identifying mononuclear phagocyte subsets in swine: Reagents to porcine CD11c and XCR1

    Czech Academy of Sciences Publication Activity Database

    Deloizy, Ch.; Bouguyon, E.; Fossum, E.; Šebo, Peter; Osička, Radim; Bole, A.; Pierres, M.; Biacchesi, S.; Dalod, M.; Bogen, B.; Bertho, N.; Schwartz-Cornil, I.

    2016-01-01

    Roč. 65, December 2016 (2016), s. 31-40 ISSN 0145-305X R&D Projects: GA ČR GA15-09157S Institutional support: RVO:61388971 Keywords : Mononuclear phagocytes * Dendritic cells * Pig model Subject RIV: EE - Microbiology, Virology Impact factor: 3.218, year: 2016

  9. Depletion of Phagocytic Cells during Nonlethal Plasmodium yoelii Infection Causes Severe Malaria Characterized by Acute Renal Failure in Mice.

    Science.gov (United States)

    Terkawi, Mohamad Alaa; Nishimura, Maki; Furuoka, Hidefumi; Nishikawa, Yoshifumi

    2016-01-11

    In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Effect of Lipopolysaccharide Derived from Pantoea agglomerans on the Phagocytic Activity of Amyloid β by Primary Murine Microglial Cells.

    Science.gov (United States)

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Soma, Gen-Ichiro

    2016-07-01

    Monophosphoryl lipid A, lipopolysaccharide (LPS)-derived Toll-like receptor (TLR) 4 agonist, has been shown to be effective in the prevention of Alzheimer's disease (AD) by enhancing phagocytosis of amyloid β (Aβ) by brain microglia. Our recent study demonstrated that oral administration of LPS derived from Pantoea agglomerans (LPSp) activates peritoneal macrophages and enhances the phagocytic activity via TLR4 signaling pathway; however, the effect of LPSp on Aβ phagocytosis in microglia is still unknown. Primary microglial cells were isolated from adult mouse brain by enzymatic digestion, following myelin removal and magnetic separation of cluster of differentiation (CD) 11b. Phagocytic analysis of the primary microglia was measured by using HiLyte™ Fluor 488-conjugated Aβ1-42 RESULTS: Using our protocols, the average yield of isolated CD11b(+) cells was around 2.2×10(5) cells per brain. CD11b(+)CD45(+)CD39(+) cells were defined here as microglia. The phagocytic activity of Aβ1-42 by the isolated microglia was confirmed. LPSp (10 ng/ml) pre-treatment for 18 h significantly increased Aβ phagocytic activity. The enhancement of Aβ1-42 phagocytosis by LPSp treatment in the primary mouse microglia was demonstrated for the first time. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Phagocytic and oxidative-burst activity of blood leukocytes in rats fed a protein-free diet

    DEFF Research Database (Denmark)

    Sawosz, Ewa; Winnicka, Anna; Chwalibog, André

    2009-01-01

    The objective of this study was to evaluate the effects of two weeks' protein deprivation on the cellular parameters of non-specific immunity in rats. Wistar rats (200-250 g) were divided into two groups (2x12) and were fed two isoenergetic (control and protein-free) diets. The phagocytic activit...

  12. Comparative investigations of the influence of H1-antihistamines on the generation of reactive oxygen species by phagocytes

    Czech Academy of Sciences Publication Activity Database

    Králová, Jana; Nosál, R.; Drábiková, K.; Jančinová, V.; Denev, P.; Moravcová, Aneta; Kubala, Lukáš; Číž, Milan; Lojek, Antonín

    2008-01-01

    Roč. 57, č. 1 (2008), S01-S02 ISSN 1023-3830 R&D Projects: GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : H1- antihistamines * phagocytes * ROS Subject RIV: BO - Biophysics Impact factor: 1.457, year: 2008

  13. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Directory of Open Access Journals (Sweden)

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  14. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  15. Behavior

    NARCIS (Netherlands)

    Bouwman, L.I.

    2014-01-01

    Health behaviors are people’s actions, some purposefully deployed to promote or protect health; some thoughtlessly undertaken without concern for their potential risk to health; some consciously, even defiantly, deployed regardless of consequences to health. Risk behaviors are specific forms of

  16. Adolescent Social Defeat Induced Alterations in Social Behavior and Cognitive Flexibility in Adult Mice: Effects of Developmental Stage and Social Condition

    Science.gov (United States)

    Zhang, Fan; Yuan, Sanna; Shao, Feng; Wang, Weiwen

    2016-01-01

    Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using “resident-intruder” stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In Experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, postnatal days [PND] 28–37), late adolescence (LA, PND 38–47), and adulthood (ADULT, PND 70–79) and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST), were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning (RL) on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting (EDS) in adulthood but not during adolescence. In Experiment 2, we further examined the effects of social condition (isolation or social housing after stress) on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in Experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive

  17. Adolescent social defeat induced alterations in anxious behavior and cognitive flexibility in adult mice: effects of developmental stage and social condition

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2016-07-01

    Full Text Available Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using resident-intruder stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, PND 28-37, late adolescence (LA, PND 38-47, and adulthood (ADULT, PND 70-79 and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST, were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting in adulthood but not during adolescence. In experiment 2, we further examined the effects of social condition (isolation or social housing after stress on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive function are differentially

  18. Adolescent Social Defeat Induced Alterations in Social Behavior and Cognitive Flexibility in Adult Mice: Effects of Developmental Stage and Social Condition.

    Science.gov (United States)

    Zhang, Fan; Yuan, Sanna; Shao, Feng; Wang, Weiwen

    2016-01-01

    Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using "resident-intruder" stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In Experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, postnatal days [PND] 28-37), late adolescence (LA, PND 38-47), and adulthood (ADULT, PND 70-79) and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST), were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning (RL) on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting (EDS) in adulthood but not during adolescence. In Experiment 2, we further examined the effects of social condition (isolation or social housing after stress) on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in Experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive function are

  19. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations

    Science.gov (United States)

    Kumar, Anil; Lalitha, Sree; Mishra, Jitendriya

    2014-01-01

    Aim: Epilepsy is a chronic neurological disorder with complex pathophysiology. Several evidences suggest a role of oxidative stress and mitochondrial dysfunction in pathophysiology of epilepsy. Hesperidin (Hesp) acts as a powerful anti-oxidant agent against superoxide, singlet oxygen, and hydroxyl radicals. Thus, this study was undertaken to evaluate the possible neuroprotective mechanism of Hesp against pentylenetetrazole (PTZ)-induced convulsions in mice. Materials and Methods: Sixty males Laca mice (20-25 g) were randomly divided into 10 treatment groups (n = 6). Seven days pretreatment of Hesp (100, 200 mg/kg, p.o.) was carried out before PTZ (80 mg/kg, intraperitoneal [i.p.]) challenge, whereas diazepam (DZP) (0.2, 0.5 mg/kg) and gabapentin (Gbp) (10, 20 mg/kg) were administered i.p. 30 min before PTZ administration, that is, on 7th day. Following PTZ challenge, severity of convulsions (onset of jerks, myoclonic seizures, extensor phase and death), brain anti-oxidant enzyme levels and mitochondrial complex enzymes activities were estimated. Results: Single i.p. PTZ (80 mg/kg) challenge demonstrated severe convulsions, oxidative damage (raised lipid peroxidation [LPO], nitrite concentration as well as depleted reduced glutathione, superoxide dismutase and catalase levels), and depletion of mitochondrial enzyme Complex (I, II, IV) activities. Hesp (200 mg/kg), DZP (0.5 mg/kg) and Gbp (20 mg/kg) pretreatments attenuated PTZ induced behavioral, biochemical and mitochondrial alterations. However, administration of Hesp (100 mg/kg) in combination with DZP (0.2 mg/kg) or Gbp (10 mg/kg) potentiated their neuroprotective effect, which was significant as compared to their effects in PTZ treated animals. Conclusion: Hesp possesses potent anticonvulsant activity which might be mediated through modulation of gamma-amino butyric acid/benzodiazepine receptor action. PMID:24987179

  20. Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B. platifrons, and B. septemdierum.

    Science.gov (United States)

    Tame, Akihiro; Yoshida, Takao; Ohishi, Kazue; Maruyama, Tadashi

    2015-07-01

    Deep-sea mytilid mussels harbor symbiotic bacteria in their gill epithelial cells that are horizontally or environmentally transmitted to the next generation of hosts. To understand the immune defense system in deep-sea symbiotic mussels, we examined the hemocyte populations of the symbiotic Bathymodiolus mussel species Bathymodiolus japonicus, Bathymodiolus platifrons, and Bathymodiolus septemdierum, and characterized three types of hemocytes: agranulocytes (AGs), basophilic granulocytes (BGs), and eosinophilic granulocytes (EGs). Of these, the EG cells were the largest (diameter, 8.4-10.0 μm) and had eosinophilic cytoplasm with numerous eosinophilic granules (diameter, 0.8-1.2 μm). Meanwhile, the BGs were of medium size (diameter, 6.7-8.0 μm) and contained small basophilic granules (diameter, 0.3-0.4 μm) in basophilic cytoplasm, and the AGs, the smallest of the hemocytes (diameter, 4.8-6.0 μm), had basophilic cytoplasm lacking granules. A lectin binding assay revealed that concanavalin A bound to all three hemocyte types, while wheat germ agglutinin bound exclusively to EGs and BGs. The total hemocyte population densities within the hemolymph of all three Bathymodiolus mussel species were similar (8.4-13.3 × 10(5) cells/mL), and the percentages of circulating AGs, BGs, and EGs in the hemolymph of these organisms were 44.7-48.5%, 14.3-17.6%, and 34.3-41.0%, respectively. To analyze the functional differences between these hemocytes, the phagocytic activity and post-phagocytic phagosome-lysosome fusion events were analyzed in each cell type using a fluorescent Alexa Fluor(®) 488-conjugated Escherichia coli bioparticle and a LysoTracker(®) lysosomal marker, respectively. While the AGs exhibited no phagocytic activity, both types of granulocytes were phagocytic. Of the three hemocyte types, the EGs exhibited the highest level of phagocytic activity as well as rapid phagosome-lysosome fusion, which occurred within 2 h of incubation. Meanwhile, the BGs showed

  1. Suppression of annexin A2 by prostaglandin E₂ impairs phagocytic ability of peritoneal macrophages in women with endometriosis.

    Science.gov (United States)

    Wu, Meng-Hsing; Chuang, Pei-Chin; Lin, Yiu-Juian; Tsai, Shaw-Jenq

    2013-04-01

    Is annexin A2 involved in the reduced phagocytic ability of macrophages in endometriosis? Data from women with endometriosis and a murine model of the disease show that expression of annexin A2 in peritoneal macrophages is inhibited by prostaglandin E2 (PGE2) and this impairs the phagocytic ability of macrophages. Endometriosis is a chronic inflammatory disease that recruits many immune cells, especially macrophages, to the peritoneal cavity. The phagocytic ability of peritoneal macrophages isolated from women with endometriosis is reduced. A laboratory study. Thirty-five patients (20 with and 15 without endometriosis) of reproductive age with normal menstrual cycles were recruited. Peritoneal macrophages isolated from women with or without endometriosis were cultured and treated with vehicle, PGE2 and different EP receptor agonists, and the expression of annexin A2 was quantified by RT-PCR and western blotting. Annexin A2 was knocked down (by small interfering RNA) in normal macrophages or overexpressed (by treatment with recombinant protein) in endometriotic macrophages and their phagocytic ability was measured by flow cytometry. Peritoneal macrophages were isolated from a mouse model of endometriosis and treated with PGE2 or cyclo-oxygenase (COX) inhibitors, and annexin A2 mRNA was quantified. Levels of annexin A2 were markedly reduced in peritoneal macrophages from women with endometriosis versus controls (mRNA: P endometriosis versus control) via the EP2/EP4 receptor-dependent signaling pathway. Treatment with PGE2 or knockdown of annexin A2 inhibited the phagocytic ability of macrophages (P peritoneal macrophages were markedly reduced in mice treated with PGE2 (P peritoneal macrophages (P peritoneal cells from patients with endometriosis or that their endometriotic fluid contains increased amounts of PGE2 when compared with control subjects. Inhibiting PGE2 signaling, in order to restore or enhance the phagocytic capability of macrophages, may represent a new

  2. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney.

    Science.gov (United States)

    Cueto, Juan A; Rodriguez, Cristian; Vega, Israel A; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes

  3. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae: Phagocytic Hemocytes in the Circulation and the Kidney.

    Directory of Open Access Journals (Sweden)

    Juan A Cueto

    Full Text Available Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy and transmission electron microscopy (TEM. Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules. Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets' occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently and may mean that

  4. Cortactin is involved in the entry of Coxiella burnetii into non-phagocytic cells.

    Directory of Open Access Journals (Sweden)

    Eliana M Rosales

    Full Text Available BACKGROUND: Cortactin is a key regulator of the actin cytoskeleton and is involved in pathogen-host cell interactions. Numerous pathogens exploit the phagocytic process and actin cytoskeleton to infect host cells. Coxiella burnetii, the etiologic agent of Q fever, is internalized by host cells through a molecular mechanism that is poorly understood. METHODOLOGY/PRINCIPAL FINDING: Here we analyzed the role of different cortactin motifs in the internalization of C. burnetii by non-phagocytic cells. C. burnetii internalization into HeLa cells was significantly reduced when the cells expressed GFP-cortactin W525K, which carries a mutation in the SH3 domain that renders the protein unable to bind targets such as N-WASP. However, internalization was unaffected when the cells expressed the W22A mutant, which has a mutation in the N-terminal acidic region that destroys the protein's ability to bind and activate Arp2/3. We also determined whether the phosphorylation status of cortactin is important for internalization. Expression of GFP-cortactin 3F, which lacks phosphorylatable tyrosines, significantly increased internalization of C. burnetii, while expression of GFP-cortactin 3D, a phosphotyrosine mimic, did not affect it. In contrast, expression of GFP-cortactin 2A, which lacks phosphorylatable serines, inhibited C. burnetii internalization, while expression of GFP-cortactin SD, a phosphoserine mimic, did not affect it. Interestingly, inhibitors of Src kinase and the MEK-ERK kinase pathway blocked internalization. In fact, both kinases reached maximal activity at 15 min of C. burnetii infection, after which activity decreased to basal levels. Despite the decrease in kinase activity, cortactin phosphorylation at Tyr421 reached a peak at 1 h of infection. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the SH3 domain of cortactin is implicated in C. burnetii entry into HeLa cells. Furthermore, cortactin phosphorylation at serine and dephosphorylation

  5. Effects of lethal and non-lethal malaria on the mononuclear phagocyte system

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    1983-03-01

    Full Text Available The effects ofone non-lethal species ofmalarialparasite, Plasmodium yoelii, and one lethal species, P. berghei, on the mononuclear phagocyte system (MPS of BALB/c mice were studied. P. yoelii caused a greater and more sustained expansion and activation of the MPS, and the two major populations of spleen phagocytic cells-red pulp and marginal zone macrophages - exhibited a greater increase in numbers in this infection. During the course of P. berghei mataria, the spleen was progressively occupied by haematopoietic tissue and, at the terminal stage of infection, an extensive depletion of lymphocytes and macrophages was apparent. The possibility was suggested that the outcome of mataria may be inftuenced by the particular way the parasite interacts with the MPS.Estudou-se o efeito da infecção causada por espécie letal (Plasmodium berghei e não- letal (P. yoelii de plasmódio sobre o sistema de fagócitos mononucleares de camundongo BALB/c. O P. yoelii causou maior e mais prolongada expansão e ativação do sistema de macrófagos. As duas mais importantes populações de fagócitos esplênicos - macrófagos de polpa vermelha e da zona marginal - exibiam maior aumento do número de células nesta infecção. Durante a evolução da malária por P. berghei, o baço foi progressivamente ocupado por tecido hematopoiético e, na fase terminal da infecção, observou-se significativa depleção dos linfócitos e macrófagos esplênicos. Os dados apresentados indicam que a evolução da malária depende do tipo de interação entre o plasmódio e o sistema de fagócitos mononucleares.

  6. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    and macrophage inflammatory protein-1alpha/CCL3. We analyzed expression of CCR1 and CCR5, the monocyte receptors for these chemokines, on circulating and cerebrospinal fluid CD14+ cells, and in MS brain lesions. Approximately 70% of cerebrospinal fluid monocytes were CCR1+/CCR5+, regardless of the presence...... of CNS pathology, compared to less than 20% of circulating monocytes. In active MS lesions CCR1+/CCR5+ monocytes were found in perivascular cell cuffs and at the demyelinating edges of evolving lesions. Mononuclear phagocytes in early demyelinating stages comprised CCR1+/CCR5+ hematogenous monocytes...... and CCR1-/CCR5- resident microglial cells. In later stages, phagocytic macrophages were uniformly CCR1-/CCR5+. Cultured in vitro, adherent monocytes/macrophages up-regulated CCR5 and down-regulated CCR1 expression, compared to freshly-isolated monocytes. Taken together, these findings suggest...

  7. Redundant Catalases Detoxify Phagocyte Reactive Oxygen and Facilitate Histoplasma capsulatum Pathogenesis

    Science.gov (United States)

    Holbrook, Eric D.; Smolnycki, Katherine A.; Youseff, Brian H.

    2013-01-01

    Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system. PMID:23589579

  8. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes.

    Directory of Open Access Journals (Sweden)

    Guillaume Tabouret

    2010-10-01

    Full Text Available The species-specific phenolic glycolipid 1 (PGL-1 is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3 for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.

  9. Heterophil Phagocytic Activity Stimulated by L61 and L55 Supplementation in Broilers with Infection

    Directory of Open Access Journals (Sweden)

    Pairat Sornplang

    2015-11-01

    Full Text Available Newborn chicks are susceptible to Salmonella enterica serovar Enteritidis (SE. The objective of this study was to evaluate the effect of Lactobacillus probiotic isolated from chicken feces on heterophil phagocytosis in broiler chicks. A total of 150 newborn broiler chicks were divided into 5 groups (30 chicks per group as follows: group 1 (normal control, given feed and water only, group 2 (positive control given feed, water and SE infection, group 3 (L61 treated given feed, water, SE infection followed by Lactobacillus salivarius L61 treatment, group 4 (L55 treated given feed, water, SE infection followed by L. salivarius L55 treatment, and group 5 given feed, water, SE infection followed by L. salivarius L61 + L55 combination treatment. After SE infection, L. salivarius treatment lasted for 7 days. The results showed that L. salivarius L61 and L. salivarius L55 treatment, either alone or combination of both, increased the survival rate after SE infection, and upregulated heterophil phagocytosis and phagocytic index (PI. Conversely, chick groups treated with Lactobacillus showed lower SE recovery rate from cecal tonsils than that of the positive control group. The PI values of the chicken group with SE infection, followed by the combination of L. salivarius L61 and L. salivarius L55 were the highest as compared to either positive control or normal control group. Two Lactobacillus strains supplementation group showed significantly (p<0.05 higher PI value at 48 h than 24 h after treatment.

  10. Dynamic acquisition of HTLV-1 tax protein by mononuclear phagocytes: Role in neurologic disease.

    Science.gov (United States)

    Matsuura, Eiji; Enose-Akahata, Yoshimi; Yao, Karen; Oh, Unsong; Tanaka, Yuetsu; Takashima, Hiroshi; Jacobson, Steven

    2017-03-15

    Pathology of HTLV-1 associated myelopathy/Tropical spastic paraparesis (HAM/TSP) is believed to be the result of "bystander damage" involving effector CD8 (+) T lymphocytes (CTLs) killing of virus infected cells. But the specific cellular events leading up to tissue injury are still unclear. Here, we developed the Microscopy Imaging of Cytotoxic T lymphocyte assay with Fluorescence emission (MI-CaFé), an optimized visualization analysis to explore the interactions between CTLs and virus infected or viral antigen presenting target cells. Various cell-to-cell formations can be observed and our results demonstrate elevated frequencies of CTL-target cell conjugates in HAM/TSP patient PBMCs compared to control PBMCs. Furthermore, HTLV-1 Tax protein expression can be localized at the cell-cell junctions and also tracked moving from an infected cell to a CD14 (+) mononuclear phagocyte (MP). Activation of CD14 (+) MPs in HAM/TSP patient PBMCs and antigenic presentation of HTLV-1 Tax by MPs can be inferred by their spontaneous cytotoxicity after 18h of in vitro culture. Given that CD4 (+) T lymphocytes are the primary reservoirs of HTLV-1 and MPs are scavenger cells responsible for pathogen clearance, spontaneous cytotoxicity against MPs in HAM/TSP PBMCs suggests a mechanism of chronic inflammation, secondary to low level of persistent virus infection within the central nervous system. Published by Elsevier B.V.

  11. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.

    Science.gov (United States)

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka

    2016-02-01

    Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Alzheimer's associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes.

    Directory of Open Access Journals (Sweden)

    Mitchell R White

    Full Text Available Accumulation of β-Amyloid (βA is a key pathogenetic factor in Alzheimer's disease; however, the normal function of βA is unknown. Recent studies have shown that βA can inhibit growth of bacteria and fungi. In this paper we show that βA also inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV in vitro. The 42 amino acid fragment of βA (βA42 had greater activity than the 40 amino acid fragment. Direct incubation of the virus with βA42 was needed to achieve optimal inhibition. Using quantitative PCR assays βA42 was shown to reduce viral uptake by epithelial cells after 45 minutes and to reduce supernatant virus at 24 hours post infection. βA42 caused aggregation of IAV particles as detected by light transmission assays and electron and confocal microscopy. βA42 did not stimulate neutrophil H2O2 production or extracellular trap formation on its own, but it increased both responses stimulated by IAV. In addition, βA42 increased uptake of IAV by neutrophils. βA42 reduced viral protein synthesis in monocytes and reduced IAV-induced interleukin-6 production by these cells. Hence, we demonstrate for the first time that βA has antiviral activity and modulates viral interactions with phagocytes.

  13. Effect of ambient temperature on phenotype and functions of professional phagocytes of athymic nude mice.

    Science.gov (United States)

    Vetvicka, V; Holub, M; Houstek, J

    1993-02-01

    Cytofluorometric analysis of surface marker expression was performed on myeloid cells isolated from bone marrow, spleen and lymph nodes of nude mice and nu/+ and +/+ mice (haired controls) exposed for various time periods to ambient temperature of 22 degrees C or 28 degrees C. A rise in the proportion of cells bearing macrophage markers (MAC-1, MAC-3 and F4/80) in the spleen and of FcR+ cells in all tissues tested was found in 22 degrees C-exposed nudes with high nonshivering thermogenesis. Numbers of MAC-1+ macrophages and actively phagocytic cells increased also in peritoneal exudates. There was a conspicuous predominance of large macrophages in the exudates and the specific markers decreased in density on their surface. Ia expression declined in all tissues tested with the length of exposure to cold. In the granulocytic series (BP-2+ cells), there was a decrease in the bone marrow and lymph nodes and an increase in the spleen and circulation, which suggested an enhanced mobilization and increased production at extramedullary sites in cold-exposed nude mice. The changes in haired mice were negligible.

  14. Phagocytic Index of Peritoneal Macrophages after Propolis Suplementation in Mice (Mus musculus

    Directory of Open Access Journals (Sweden)

    Siti Eva Mustafiah

    2011-12-01

    Design and Method: This research is an experiment with post test study design randomized control group design. This study used mice that were divided into four groups randomly. The first group / Group-I were for negative control (standard feed and aquadest; The second group/Group-II were fed standard-feed, aquadest, and propolis at a dose of 1.25 mg/kgBM; the third group/group-III were fed standard-feed, water, and propolis at a dose of 2.5 mg/KgBM; The fourth group/Group-IV were fed standard feed, water, and propolis at a dose of 5 mg/KgBM. Treatment where conducted for 3 days. Result: The average macrophage phagocytic index, were at the highest level of it (7.82 1.63 while the lowest one were the first group 3.43 0.13. The Kruskall Wallis result stated that there is index difference among various groups with p 0.002 (p < 0.05. Conclusion: Propolis effected on mice peritoneal macrophage phagocytosis index (Sains Medika, 3(2:121-128.

  15. Down-regulation of homing receptors: a mechanism for impaired recruitment of human phagocytes in sepsis.

    Science.gov (United States)

    Hasslen, S R; Nelson, R D; Kishimoto, T K; Warren, W E; Ahrenholz, D H; Solem, L D

    1991-05-01

    Receptors known as DREG adhesion molecules on human neutrophils and monocytes provide for homing of these phagocytic leukocytes to sites of inflammation. They mediate the initial adhesive interaction of the leukocytes to vascular endothelial cells and are then shed from the cell surface in response to chemotactic factors and inflammatory mediators. Systemic accumulation of these agents following major injury or sepsis may therefore promote shedding of DREG receptors from circulating leukocytes and impair their recruitment to sites of inflammation. To test this hypothesis, we have analyzed the expression of DREG receptors on neutrophils and monocytes from 25 patients admitted to the Surgical Intensive Care Unit. Receptor expression was measured by flow cytometry of cells stained with murine monoclonal DREG-56 anti-DREG antibody. For 14 nonseptic patients, mean monocyte positivity for DREG was reduced from 64% to 40%. For 11 septic patients, mean neutrophil and monocyte positivity for DREG was reduced from 94% to 82% and 64% to 34%, respectively. These results suggest that monocytes are more affected than neutrophils in vivo by conditions expected to stimulate shedding of DREG and that sepsis promotes shedding of these adherence receptors. Accumulation of DREG-negative monocytes in association with sepsis may be sufficient to impair their recruitment to inflammatory sites and limit their contribution to host defense against infection and tissue repair.

  16. Alteration of cellular immune responses in the seastar Asterias rubens following dietary exposure to cadmium

    International Nuclear Information System (INIS)

    Coteur, G.; Gillan, D.; Pernet, Ph.; Dubois, Ph.

    2005-01-01

    Several parameters of cellular immunity in seastars fed Cd-contaminated mussels were analyzed. The accumulation of cadmium in the seastars did not alter the concentration of amoebocytes in the coelomic fluid. On the contrary, the immune cells showed a reduced phagocytic activity and an increased production of reactive oxygen species. These effects may lead to an inability of the seastars to cope with bacterial infections and to oxidative damages to self tissue that could threaten the survival of the animals

  17. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products.

    OpenAIRE

    Schmidt, A M; Yan, S D; Brett, J; Mora, R; Nowygrod, R; Stern, D

    1993-01-01

    Nonenzymatic glycation of proteins occurs at an accelerated rate in diabetes and can lead to the formation of advanced glycation end products of proteins (AGEs), which bind to mononuclear phagocytes (MPs) and induce chemotaxis. We have isolated two cell surface-associated binding proteins that mediate the interaction of AGEs with bovine endothelial cells. One of these proteins is a new member of the immunoglobulin superfamily of receptors (termed receptor for AGEs or RAGE); and the second is ...

  18. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Rasmussen, Izabela Zorawska; Sawada, Makoto

    2008-01-01

    proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory...... on NADPH oxidase activation. Collectively, our findings define a VAV1-Rac1-PAK1 signaling axis in mononuclear phagocytes regulating superoxide production in a stimulus-dependent manner....

  19. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Liliana Maria Sanmarco

    2018-01-01

    Full Text Available Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and

  20. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Dal-Pont, Gustavo; Sangaletti-Pereira, Heron; Gava, Fernanda F; Peterle, Bruna R; Carvalho, André F; Varela, Roger B; Dal-Pizzol, Felipe; Quevedo, João

    2017-06-01

    The goal of the present study was to investigate the effects of lithium administration on behavior, oxidative stress parameters and cytokine levels in the periphery and brain of mice subjected to an animal model of mania induced by paradoxical sleep deprivation (PSD). Male C57 mice were treated with saline or lithium for 7 days. The sleep deprivation protocol started on the 5th day during for the last 36 hours of the treatment period. Immediately after the sleep deprivation protocol, animals locomotor activity was evaluated and serum and brain samples was extracted to evaluation of corticosterone and adrenocorticotropic hormone circulating levels, oxidative stress parameters and citokynes levels. The results showed that PSD induced hyperactivity in mice, which is considered a mania-like behavior. PSD increased lipid peroxidation and oxidative damage to DNA, as well as causing alterations to antioxidant enzymes in the frontal cortex, hippocampus and serum of mice. In addition, PSD increased the levels of cytokines in the brains of mice. Treatment with lithium prevented the mania-like behavior, oxidative damage and cytokine alterations induced by PSD. Improving our understanding of oxidative damage in biomolecules, antioxidant mechanisms and the inflammatory system - alterations presented in the animal models of mania - is important in helping us to improve our knowledge concerning the pathophysiology of BD, and the mechanisms of action employed by mood stabilizers. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Radia Belkhelfa-Slimani

    2017-04-01

    Conclusions: The leishmanicidal effect of caffeic acid and quercetin on promastigotes and amastigotes, as well as reactivation of infected phagocytes apoptosis, suggested a potential therapeutic role against cutaneous leishmaniasis.

  2. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium.

    Science.gov (United States)

    Laurent, Virgine; Sengupta, Anamika; Sánchez-Bretaño, Aída; Hicks, David; Tosini, Gianluca

    2017-12-01

    Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT 1 ) or type 2 (MT 2 ) in a melatonin-proficient background and have shown that removal of MT 1 and MT 2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT 1 and MT 2 knock-out mice. Our data indicate that in MT 1 and MT 2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT 1 and MT 2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Liliana M. R. Silva

    2016-01-01

    Full Text Available Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN, monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.

  4. Contrasting Inflammation Resolution during Atherosclerosis and post Myocardial Infarction at the Level of Monocyte/Macrophage Phagocytic Clearance

    Directory of Open Access Journals (Sweden)

    Edward eThorp

    2012-03-01

    Full Text Available In cardiovascular disorders including advanced atherosclerosis and myocardial infarction (MI, increased cell death and tissue destabilization is associated with recruitment of inflammatory monocyte subsets that give rise to differentiated macrophages. These phagocytic cells clear necrotic and apoptotic bodies and promote inflammation resolution and tissue remodeling. The capacity of macrophages for phagocytosis of apoptotic cells (efferocytosis, clearance of necrotic cell debris, and repair of damaged tissue are challenged and modulated by local cell stressors that include increased protease activity, oxidative stress, and hypoxia. The effectiveness, or lack thereof, of phagocyte-mediated clearance, in turn is linked to active inflammation resolution signaling pathways, susceptibility to atherothrombosis and potentially, adverse post-MI cardiac remodeling leading to heart failure. Previous reports indicate that in advanced atherosclerosis, defective efferocytosis is associated with atherosclerotic plaque destabilization. Post MI, the role of phagocytes and clearance in the heart is less appreciated. Herein we contrast the roles of efferocytosis in atherosclerosis and post MI and focus on how targeted modulation of clearance and accompanying resolution and reparative signaling may be a strategy to prevent heart failure post MI.

  5. Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    OpenAIRE

    Dementhon, Karine; El-Kirat-Chatel, Sofiane; Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to...

  6. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes.

    Science.gov (United States)

    Dementhon, Karine; El-Kirat-Chatel, Sofiane; Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.

  7. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes.

    Directory of Open Access Journals (Sweden)

    Karine Dementhon

    Full Text Available We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae, or by the avoidance of phagocytosis (C. lusitaniae. We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.

  8. Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes.

    Directory of Open Access Journals (Sweden)

    Catalina March

    Full Text Available Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS and outer membrane proteins (OMPs to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae

  9. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways.

    Directory of Open Access Journals (Sweden)

    Saskia Scholz

    2017-06-01

    Full Text Available Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs, including monocytes and dendritic cells (DCs, orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS. Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients' bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients.

  10. Evidence that leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism

    International Nuclear Information System (INIS)

    Wilson, M.E.; Pearson, R.D.

    1986-01-01

    The pathogenic protozoan Leishmania donovani must gain entrance into mononuclear phagocytes to successfully parasitize man. The parasite's extracellular promastigote stage is ingested by human peripheral blood monocytes or monocyte-derived macrophages in the absence of serum, in a manner characteristic of receptor-mediated endocytosis. Remarkable similarities have been found between the macrophage receptor(s) for promastigotes and a previously characterized eucaryotic receptor system, the mannose/fucose receptor (MFR), that mediates the binding of zymosan particles and mannose- or fucose-terminal glycoconjugates to macrophages. Ingestion of promastigotes by monocyte-derived macrophages was inhibited by several MFR ligands; that is mannan, mannose-BSA and fucose-BSA. In contrast, promastigote ingestion by monocytes was unaffected by MFR ligands. Furthermore, attachment of promastigotes to macrophages, assessed by using cytochalasin D to prevent phagocytosis, was reduced 49.8% by mannan. Reorientation of the MFR to the ventral surface of the cell was achieved by plating macrophages onto mannan-coated coverslips, reducing MFR activity on the exposed cell surface by 94% as assessed by binding of 125 I-mannose-BSA. Under these conditions, ingestion of promastigotes was inhibited by 71.4%. Internalization of the MFR by exposure of macrophages to zymosan before infection with promastigotes resulted in a 62.3% decrease in parasite ingestion. Additionally, NH 4 Cl decreased macrophage ingestion of promastigotes by 38.2%. Subinhibitory concentration of NH 4 Cl (10 mM) and of mannan (0.25 mg/ml) together inhibited parsite ingestion by 76.4%

  11. Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica.

    Science.gov (United States)

    Drechsler-Hake, Doreen; Alamir, Hanin; Hahn, Julia; Günter, Manina; Wagner, Samuel; Schütz, Monika; Bohn, Erwin; Schenke-Layland, Katja; Pisano, Fabio; Dersch, Petra; Autenrieth, Ingo B; Autenrieth, Stella E

    2016-09-01

    Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive. Oral infection of lymphotoxin-β-receptor deficient mice lacking PPs and MLNs with Ye revealed similar bacterial load in the spleen 1h post infection as wild-type mice, demonstrating a PP-independent dissemination route for Ye. Immunohistological analysis of the small intestine revealed Ye in close contact with mononuclear phagocytes (MPs), specifically CX3CR1(+) monocyte-derived cells (MCs) as well as CD103(+) dendritic cells (DCs). This finding was confirmed by flow cytometry and imaging flow cytometry analysis of lamina propria (LP) leukocytes showing CD103(+) DCs and MCs with intracellular Ye. Uptake of Ye by LP CD103(+) DCs and MCs was dependent on the pathogenicity factor invasin, whereas the adhesin YadA was dispensable as demonstrated by Ye deletion mutants. Furthermore, Ye were found exclusively associated with CD103(+) DCs in the MLNs from wild-type mice, but not from CCR7(-/-) mice, demonstrating a CCR7 dependent transport of Ye by CD103(+) DCs from LP to the MLNs. In contrast, dissemination of Ye to the spleen was dependent on MCs as significantly less Ye could be recovered from the spleen of CX3CR1(GFP/GFP) mice compared to wild-type mice. Altogether, MCs and CD103(+) DCs contribute to immediate invasion and dissemination of Ye. This together with data from other bacteria suggests MPs as general pathogenic entry site in the intestine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Perinatal exposure to low-dose of bisphenol A causes anxiety-like alteration in adrenal axis regulation and behaviors of rat offspring: a potential role for metabotropic glutamate 2/3 receptors.

    Science.gov (United States)

    Zhou, Rong; Chen, Fang; Feng, Xuejiao; Zhou, Libin; Li, Yingchun; Chen, Ling

    2015-05-01

    The present study focuses on detecting anxiety-like behavior and associated neurochemical alterations in adolescent rats exposed perinatally to bisphenol A (BPA), an estrogen-mimicking endocrine disrupter and investigating the possible involvement of metabotropic glutamate 2/3 receptors (mGlu2/3 receptors) in BPA-induced anxiogenic effects. When female breeders were administered orally with BPA (40 μg/kg/d) during pregnancy and lactation, their pups (here named 'BPA-exposed offspring') developed an anxiety-like phenotype, characterized by the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, impaired glucocorticoid receptor (GR)-mediated negative feedback regulation of the HPA axis, altered hippocampal synaptic plasticity and increased anxiety-like behaviors. BPA-exposed offspring also showed a reduced expression of mGlu2/3 receptors in the hippocampus. BPA-exposed offspring further subjected to systemic administration of mGlu2/3 receptor agonist (LY379268, 0.5 mg/kg, i.p.) or antagonist (LY341495, 1.5 mg/kg, i.p.) twice per day for 6 days. The results indicated that chronic LY379268 treatment corrected the anxiety-like behaviors and associated neurochemical and endocrinological alterations in BPA-exposed offspring. Our data demonstrate for the first time that the perinatal BPA exposure induces an anxiety-like phenotype in behaviors and -related neuroendocrinology, and suggest that the changes in mGlu2/3 receptor might lie at the core of the pathological reprogramming triggered by early-life adversity. mGlu2/3 receptor may serve as a novel biomarker and potential therapeutic target for anxiety disorders associated with adverse early-life agents including perinatal BPA exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Exposure to the androgenic brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane alters reproductive and aggressive behaviors in birds.

    Science.gov (United States)

    Marteinson, Sarah C; Letcher, Robert J; Fernie, Kimberly J

    2015-10-01

    Detected in environmental samples, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (DBE-DBCH) is a bioaccumulative isomer of a current-use brominated flame retardant. All 4 structural isomers are androgen agonists; however, little toxicological information exists for this compound. The objective of the present study was to determine if β-DBE-DBCH, the isomer found most prominently in animal tissue, affects androgen-dependent behavior of breeding American kestrels (Falco sparverius). The authors hypothesized that if β-DBE-DBCH acts as an androgen agonist in kestrels, androgen-dependent behaviors (i.e., copulation, courtship, aggression) would increase and behaviors inhibited by androgens (i.e., parental care behaviors) would decrease. Sixteen captive experimental kestrel pairs were exposed to 0.239 ng β-DBE-DBCH/g kestrel/d by diet from 4 wk prior to pairing until their nestlings hatched (mean 82 d) and compared with vehicle only-exposed control pairs (n = 15). Androgen-dependent behaviors were significantly increased in β-DBE-DBCH-exposed birds, consistent with the authors' hypothesis. These behavioral changes included copulation and other sexual behaviors in males and females and aggression in males, suggesting that β-DBE-DBCH may have acted like an androgen agonist in these birds. Parental behaviors were not reduced in exposed birds as predicted, although dietary exposure had ceased before chicks hatched. Further assessment of β-DBE-DBCH is recommended given these behavioral changes and the previously reported reproductive changes in the same birds. © 2015 SETAC.

  14. Neonatal lesions of orbital frontal areas 11/13 in monkeys alter goal-directed behavior but spare fear conditioning and safety signal learning.

    Directory of Open Access Journals (Sweden)

    Andy M Kazama

    2014-03-01

    Full Text Available Recent studies in monkeys have demonstrated that damage to the lateral subfields of orbital frontal cortex (OFC areas 11/13 yields profound changes in flexible modulation of goal-directed behaviors and a lack in fear regulation. Yet, little consideration has been placed on its role in emotional and social development throughout life. The current study investigated the effects of neonatal lesions of the OFC on the flexible modulation of goal-directed behaviors and fear responses in monkeys. Infant monkeys received neonatal lesions of OFC areas 11/13 or sham-lesions during the first post-natal week. Modulation of goal-directed behaviors was measured with a devaluation task at 3-4 years and 6-7 years. Modulation of fear reactivity by safety signals was assessed with the AX+/BX- potentiated-startle paradigm at 6-7 years. Similar to adult-onset OFC lesions, selective neonatal lesions of OFC areas 11/13 yielded a failure to modulate behavioral responses guided by changes in reward value, but spared the ability to modulate fear responses in the presence of safety signals. These results suggest that these areas play a critical role in the development of behavioral adaptation during goal-directed behaviors, but not, or less so, in the development of the ability to process emotionally salient stimuli and to modulate emotional reactivity using environmental contexts, which could be supported by other OFC subfields, such as the most ventromedial subfields (i.e. areas 14/25. Given similar impaired decision-making abilities and spared modulation of fear followed both neonatal lesions of either OFC areas 11 and 13 or amygdala (Kazama et al., 2012; Kazama & Bachevalier, 2013, the present results suggest that interactions between these two neural structures play a critical role in the development of behavioral adaptation; an ability essential for the self-regulation of emotion and behavior that assures the maintenance of successful social relationships.

  15. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    Science.gov (United States)

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Jessica Keen

    2007-05-01

    Full Text Available BACKGROUND: Primigravid (PG women are at risk for pregnancy-associated malaria (PAM. Multigravid (MG women acquire protection against PAM; however, HIV infection impairs this protective response. Protection against PAM is associated with the production of IgG specific for variant surface antigens (VSA-PAM expressed by chondroitin sulfate A (CSA-adhering parasitized erythrocytes (PEs. We hypothesized that VSA-PAM-specific IgG confers protection by promoting opsonic phagocytosis of PAM isolates and that HIV infection impairs this response. METHODS AND FINDINGS: We assessed the ability of VSA-PAM-specific IgG to promote opsonic phagocytosis of CSA-adhering PEs and the impact of HIV infection on this process. Opsonic phagocytosis assays were performed using the CSA-adherent parasite line CS2 and human and murine macrophages. CS2 PEs were opsonized with plasma or purified IgG subclasses from HIV-negative or HIV-infected PG and MG Kenyan women or sympatric men. Levels of IgG subclasses specific for VSA-PAM were compared in HIV-negative and HIV-infected women by flow cytometry. Plasma from HIV-negative MG women, but not PG women or men, promoted the opsonic phagocytosis of CSA-binding PEs (p < 0.001. This function depended on VSA-PAM-specific plasma IgG1 and IgG3. HIV-infected MG women had significantly lower plasma opsonizing activity (median phagocytic index 46 [interquartile range (IQR 18-195] versus 251 [IQR 93-397], p = 0.006 and levels of VSA-PAM-specific IgG1 (mean fluorescence intensity [MFI] 13 [IQR 11-20] versus 30 [IQR 23-41], p < 0.001 and IgG3 (MFI 17 [IQR 14-23] versus 28 [IQR 23-37], p < 0.001 than their HIV-negative MG counterparts. CONCLUSIONS: Opsonic phagocytosis may represent a novel correlate of protection against PAM. HIV infection may increase the susceptibility of multigravid women to PAM by impairing this clearance mechanism.

  17. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-06-01

    Full Text Available Abstract Background Interferon (IFN-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs. This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in

  18. RpoS contributes to phagocyte oxidase-mediated stress resistance during urinary tract infection by Escherichia coli CFT073.

    Science.gov (United States)

    Hryckowian, Andrew J; Welch, Rodney A

    2013-02-12

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σ(S)), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study of rpoS in UPEC strain CFT073 began after we discovered an rpoS-frameshift mutation in one of our laboratory stocks of "wild-type" CFT073. We demonstrate that an rpoS-deletion mutation in CFT073 leads to a colonization defect during UTI of CBA/J mice at 48 hours postinfection (hpi). There is no difference between the growth rates of CFT073 and CFT073 rpoS in urine. This indicates that rpoS is needed for replication and survival in the host rather than being needed to address limitations imposed by urine nutrients. Consistent with previous observations in E. coli K-12, CFT073 rpoS is more sensitive to oxidative stress than the wild type. We demonstrate that peroxide levels are elevated in voided urine from CFT073-infected mice compared to urine from mock-infected mice, which supports the notion that oxidative stress is generated by the host in response to UPEC. In mice that lack phagocyte oxidase, the enzyme complex expressed by phagocytes that produces superoxide, the competitive defect of CFT073 rpoS in bladder colonization is lost. These results demonstrate that σ(S) is important for UPEC survival under conditions of phagocyte oxidase-generated stress during UTI. Though σ(S) affects the pathogenesis of other bacterial species, this is the first work that directly implicates σ(S) as important for UPEC pathogenesis. UPEC must cope with a variety of stressful conditions in the urinary tract during infection. RpoS (σ(S)), the general stress response sigma factor, is known to direct the expression of many genes under a variety of stressful conditions in laboratory-adapted E. coli K-12. Here, we show that

  19. Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus.

    Science.gov (United States)

    Dombret, Carlos; Nguyen, Tuan; Schakman, Olivier; Michaud, Jacques L; Hardin-Pouzet, Hélène; Bertrand, Mathieu J M; De Backer, Olivier

    2012-11-01

    MAGED1, NECDIN and MAGEL2 are members of the MAGE gene family. The latter two of these genes have been involved in Prader-Willi syndrome (PWS), which includes hyperphagia, repetitive and compulsive behaviors, and cognitive impairment. Here, we show that Maged1-deficient mice develop progressive obesity associated with hyperphagia and reduced motor activity. Loss of Maged1 also results in a complex behavioral syndrome that includes reduced social interactions and memory, deficient sexual behavior, as well as increased anxiety and self-grooming. Oxytocin (OT), which is produced in the hypothalamus, can act as a neurotransmitter that reduces anxiety, promotes social behaviors and regulates food intake. Growing evidences indicate that OT is involved in autism. We found that Maged1 mutants showed a severe reduction in the levels of mature OT, but not of its precursors, in the hypothalamus. Moreover, the administration of OT rescued the deficit in social memory of these mice. We conclude that Maged1 is required for OT processing or stability. A decrease in mature OT levels in Maged1 mutants affects social interactions and possibly other behavioral processes. Our observations suggest that, in human, MAGED1 could play a role in autism or cause a neurodevelopmental condition that is reminiscent of the PWS.

  20. An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner

    International Nuclear Information System (INIS)

    Matsushima, Ayami; Ryan, Kerrianne; Shimohigashi, Yasuyuki; Meinertzhagen, Ian A.

    2013-01-01

    Bisphenol A (BPA) is widely used industrially to produce polycarbonate plastics and epoxy resins. Numerous studies document the harmful effects caused by low-dose BPA exposure especially on nervous systems and behavior in experimental animals such as mice and rats. Here, we exposed embryos of a model chordate, Ciona intestinalis, to seawater containing BPA to evaluate adverse effects on embryonic development and on the swimming behavior of subsequent larvae. Ciona is ideal because its larva develops rapidly and has few cells. The rate of larval hatching decreased in a dose-dependent manner with exposures to BPA above 3 μM; swimming behavior was also affected in larvae emerging from embryos exposed to 1 μM BPA. Adverse effects were most severe on fertilized eggs exposed to BPA within 7 h post-fertilization. Ciona shares twelve nuclear receptors with mammals, and BPA is proposed to disturb the physiological functions of one or more of these. - Highlights: ► Embryos of Ciona intestinalis were exposed to BPA to evaluate its developmental effects. ► The rate of larval hatching decreased in a dose-dependent manner. ► Swimming behavior was affected in larvae that emerge from embryos exposed to 1 μM BPA. ► Our findings will support a new strategy to analyze the developmental effects induced by BPA. - Exposure of fertilized Ciona embryos to BPA decreased their hatch rate in a dose-dependent manner and led to abnormal larval swimming behavior.

  1. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  2. HIV-1 Proteins Influence Novelty-Seeking Behavior and Alter Region-Specific Transcriptional Responses to Chronic Nicotine Treatment in HIV-1Tg Rats.

    Science.gov (United States)

    Yang, Zhongli; Nesil, Tanseli; Wingo, Taylor; Chang, Sulie L; Li, Ming D

    2017-09-01

    Clinical studies suggest that HIV-1-infected patients are more likely to use or abuse addictive drugs than is the general population. We hypothesized that HIV-1 proteins impact novelty-seeking behavior and enhance the transcriptional response to nicotine in genes implicated in both novelty-seeking behavior and drug addiction. We assessed the effects of HIV-1 proteins on novelty-seeking behavior by comparing baseline activity differences of HIV-1Tg and F344 control rats in the open-field test. One day after behavioral testing, all rats began daily subcutaneous injections of either nicotine (0.4 mg/kg, base) or saline (the same for each rat) for 27 days. At the end of treatment, the prefrontal cortex, nucleus accumbens, and ventral tegmental area were collected for RNA expression analysis of genes in the receptor families for dopamine, GABA, glutamate, and serotonin. Significant strain difference was detected in the distance moved in the center, such that HIV-1Tg rats traveled greater distance in the center of the arena than did F344 rats. Quantitative RT-PCR analysis showed that mRNA from Drd3 and Grm2 in the prefrontal cortex and Drd5 and Gabra6 in the ventral tegmental area was significantly upregulated, whereas that of Drd5 in the nucleus accumbens was downregulated in HIV-1Tg rats compared with F344 rats. Further, more addiction-related genes were significantly modulated by nicotine in each brain region in the HIV-1Tg rats than in the control animals. HIV-1 proteins may affect novelty-seeking behavior and modulate the expression of genes related to drug addiction and novelty-seeking behavior. HIV-1 viral proteins and chronic nicotine treatment impact the expression of genes involved in novelty-seeking behavior and addiction in three brain regions of the HIV-1 transgenic rat. These findings implicate that HIV-1 proteins may be involved in novelty-seeking behavior and in modulating the expression of genes related to drug addiction and novelty seeking. © The

  3. Positive or negative allosteric modulation of metabotropic glutamate receptor 5 (mGluR5 does not alter expression of behavioral sensitization to methamphetamine [v1; ref status: indexed, http://f1000r.es/o0

    Directory of Open Access Journals (Sweden)

    Peter R Kufahl

    2013-03-01

    Full Text Available We investigated the role of metabotropic glutamate receptor type 5 (mGluR5 in methamphetamine-induced behavioral sensitization. The mGluR5 positive allosteric modulator (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl benzamide (CDPPB and negative allosteric modulator fenobam were tested in separate experiments. Sprague-Dawley rats were repeatedly injected with 1 mg/kg methamphetamine or saline, and then given a locomotor challenge test using a dose of 0.5 mg/kg methamphetamine. Prior to the challenge test session, rats were injected with CDPPB, fenobam, or a vehicle.  Doses from previous studies showed reduced drug-conditioned behavior; however in this study neither CDPPB nor fenobam pretreatment resulted in an altered expression of behavioral sensitization, indicating a lack of mGluR5 involvement in sensitized methamphetamine-induced locomotion. Additionally, the high dose (30 mg/kg of fenobam resulted in decreased methamphetamine-induced locomotion in rats regardless of drug exposure history, which suggests evidence of nonspecific behavioral inhibition.

  4. ROLE OF MONOCYTE PHAGOCYTIC SYSTEM IN FORMATION OF ANTIVIRAL RESISTANCE IN MICE AFTER PRELIMINARY INJECTION OF CRYOPRESERVED CORD BLOOD

    Directory of Open Access Journals (Sweden)

    Kozhina OYu

    2013-03-01

    Full Text Available Now the task of preventive maintenance and search of biologically active substances, capable to make active the nonspecific immune response, remains an actual during flu epidemic. It has been previously established, that cryopreserved leucoconcentrate of human cord blood (cLHCB can act as modulator of activity of immunity. In the given work there was estimated influence of preventive injection of cLHCB and its components on functional activity of monocyte phagocytic system cells (MPSC in mice in the conditions of the induced influenzal infection. Preliminary introduction of cLHCB and its components 6 months prior to infection by flu virus makes 2 times increase of functional activity of macrophages, preventing inhibition of a nonspecific link of immunity. Thus, cLHCB inhibit of secondary immune deficiency development. The found increase in phagocytic activity of peritoneal cavity cells and 3 times increasesing of CD11b-marker expression after preventive injection of cLHCB testifies to rise of adherence and protective potential of MPSC that is one of possible mechanisms of formation of resistance to a flu virus. It is shown, that intranasal cLHCB injection before development of viral infection it can be o recommended as the method of preventive maintenance of flu.

  5. The Use of Selected Biomarkers, Phagocytic and Cholinesterase Activity to Detect the Effects of Dimethoate on Marine Mussel (Mytilus edulis

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2008-03-01

    Full Text Available Effects of organophosphorous pesticide, dimethoate on blue mussels, Mytilus edulis using selected biomarkers have been studied. Mussels were exposed to serial dilutions of dimethoate, 7.88, 15.75, 31.35, and 63.00 µg/l including positive and negative controls for 14 days. The suppression effects of dimethoate on phagocytic activity significantly occurred at two lowest concentrations of dimethoate (7.88 and 15.75 µg/l, but stimulation effects significantly emerged at the following highest concentrations (31.35 and 63.00 µg/l. The declining tendency of the cholinesterase (ChE activity (23% lower than the control appeared when mussels exposed to 7.88 and 15.75 µg/l dimethoate. Moreover, the significant inhibition of the ChE activity occurred at 31.35 µg/l dimethoate exposure. This study suggested that the phagocytic and the ChE activity are useful biomarkers for assessing the affects of organophosporous pesticide, dimethoate on neuro-immune system of blue mussels, M. edulis.

  6. Phagocytic response to fully controlled plural stimulation of antigens on macrophage using on-chip microcultivation system

    Directory of Open Access Journals (Sweden)

    Wakamoto Yuichi

    2006-08-01

    Full Text Available Abstract To understand the control mechanism of innate immune response in macrophages, a series of phagocytic responses to plural stimulation of antigens on identical cells was observed. Two zymosan particles, which were used as antigens, were put on different surfaces of a macrophage using optical tweezers in an on-chip single-cell cultivation system, which maintains isolated conditions of each macrophage during their cultivation. When the two zymosan particles were attached to the macrophage simultaneously, the macrophage responded and phagocytosed both of the antigens simultaneously. In contrast, when the second antigen was attached to the surface after the first phagocytosis had started, the macrophage did not respond to the second stimulation during the first phagocytosis; the second phagocytosis started only after the first process had finished. These results indicate that (i phagocytosis in a macrophage is not an independent process when there are plural stimulations; (ii the response of the macrophage to the second stimulation is related to the time" delay from the first stimulation. Stimulations that occur at short time intervals resulted in simultaneous phagocytosis, while a second stimulation that is delayed long enough might be neglected until the completion of the first phagocytic process.

  7. The Staphylococcal Toxins γ-Hemolysin AB and CB Differentially Target Phagocytes by Employing Specific Chemokine Receptors

    Science.gov (United States)

    Spaan, András N.; Vrieling, Manouk; Wallet, Pierre; Badiou, Cédric; Reyes-Robles, Tamara; Ohneck, Elizabeth A.; Benito, Yvonne; de Haas, Carla J.C.; Day, Christopher J.; Jennings, Michael P.; Lina, Gérard; Vandenesch, François; van Kessel, Kok P.M.; Torres, Victor J.; van Strijp, Jos A.G.; Henry, Thomas

    2014-01-01

    Evasion of the host phagocyte response by Staphylococcus aureus is crucial to successful infection with the pathogen. γ-Hemolysin AB and CB (HlgAB, HlgCB) are bicomponent pore-forming toxins present in almost all human S. aureus isolates. Cellular tropism and contribution of the toxins to S. aureus pathophysiology are poorly understood. Here, we identify the chemokine receptors CXCR1, CXCR2 and CCR2 as targets for HlgAB, and the complement receptors C5aR and C5L2 as targets for HlgCB. The receptor expression patterns allow the toxins to efficiently and differentially target phagocytic cells. Murine neutrophils are resistant to HlgAB and HlgCB. CCR2 is the sole murine receptor orthologue compatible with γ-Hemolysin. In a murine peritonitis model, HlgAB contributes to S. aureus bacteremia in a CCR2-dependent manner. HlgAB-mediated targeting of CCR2+ cells highlights the involvement of inflammatory macrophages during S. aureus infection. Functional quantification identifies HlgAB and HlgCB as major secreted staphylococcal leukocidins. PMID:25384670

  8. Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells.

    Directory of Open Access Journals (Sweden)

    Tania S Quiroz

    Full Text Available The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis, a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated "regions of difference" (ROD. In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.

  9. Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells.

    Science.gov (United States)

    Quiroz, Tania S; Nieto, Pamela A; Tobar, Hugo E; Salazar-Echegarai, Francisco J; Lizana, Rodrigo J; Quezada, Carolina P; Santiviago, Carlos A; Araya, Daniela V; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2011-01-01

    The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated "regions of difference" (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.

  10. NADPH phagocyte oxidase knockout mice control Trypanosoma cruzi proliferation, but develop circulatory collapse and succumb to infection.

    Directory of Open Access Journals (Sweden)

    Helton C Santiago

    Full Text Available (•NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox (-/- or phox KO were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (•NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.