WorldWideScience

Sample records for altering mrna stability

  1. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  2. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  3. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    Science.gov (United States)

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  4. Cup regulates oskar mRNA stability during oogenesis.

    Science.gov (United States)

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  5. Matrin 3 binds and stabilizes mRNA.

    Directory of Open Access Journals (Sweden)

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  6. Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle.

    Science.gov (United States)

    da Silva Neto Trajano, Larissa Alexsandra; Trajano, Eduardo Tavares Lima; da Silva Sergio, Luiz Philippe; Teixeira, Adilson Fonseca; Mencalha, Andre Luiz; Stumbo, Ana Carolina; de Souza da Fonseca, Adenilson

    2018-04-26

    Muscle injuries are the most prevalent type of injury in sports. A great number of athletes have relapsed in muscle injuries not being treated properly. Photobiomodulation therapy is an inexpensive and safe technique with many benefits in muscle injury treatment. However, little has been explored about the infrared laser effects on DNA and telomeres in muscle injuries. Thus, the aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes related to telomere and genomic stabilization in injured muscle. Wistar male rats were randomly divided into six groups: control, laser 25 mW, laser 75 mW, injury, injury laser 25 mW, and injury laser 75 mW. Photobiomodulation was performed with 904 nm, 3 J/cm 2 at 25 or 75 mW. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly on the tibialis anterior muscle. After euthanasia, skeletal muscle samples were withdrawn and total RNA extracted for evaluation of mRNA levels from genomic (ATM and p53) and chromosome stabilization (TRF1 and TRF2) genes by real-time quantitative polymerization chain reaction. Data show that photobiomodulation reduces the mRNA levels from ATM and p53, as well reduces mRNA levels from TRF1 and TRF2 at 25 and 75 mW in injured skeletal muscle. In conclusion, photobiomodulation alters mRNA relative levels from genes related to genomic and telomere stabilization in injured skeletal muscle.

  7. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    Science.gov (United States)

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (Pknowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  8. BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells.

    Science.gov (United States)

    An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin

    2017-12-04

    Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.

  9. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  11. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  12. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    International Nuclear Information System (INIS)

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  13. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  14. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease.

    Science.gov (United States)

    Molle, Céline; Zhang, Tong; Ysebrant de Lendonck, Laure; Gueydan, Cyril; Andrianne, Mathieu; Sherer, Félicie; Van Simaeys, Gaetan; Blackshear, Perry J; Leo, Oberdan; Goriely, Stanislas

    2013-08-26

    Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine-rich element (ARE)-binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow-derived dendritic cells (BMDCs) from TTP(-/-) mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3' untranslated region. TTP(-/-) mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23-IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation.

  15. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  16. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  17. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  18. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  19. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    Science.gov (United States)

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  20. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    Science.gov (United States)

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation

    DEFF Research Database (Denmark)

    Chen, C Y; Gherzi, R; Andersen, Jens S.

    2000-01-01

    Regulated mRNA turnover is a highly important process, but its mechanism is poorly understood. Using interleukin-2 (IL-2) mRNA as a model, we described a role for the JNK-signaling pathway in stabilization of IL-2 mRNA during T-cell activation, acting via a JNK response element (JRE) in the 5' un...

  2. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Mittler, Gerhard

    2008-01-01

    CaT skin and MCF-7 breast cancer cell lines were established. Quantitative PCR and an enzymatic assay were used to quantify the reporter mRNA and protein levels, respectively. Proteins binding to the CPEs were identified by RNA-immunoprecipitation (IP) and quantitative mass spectroscopy. RESULTS: The wild...... irradiation. Several proteins (including GAPDH, heterogeneous nuclear ribonucleoprotein (hnRNP) D and A/B) were identified from the MCF-7 cytoplasmic extracts that bound specifically to the CPEs. CONCLUSION: Two conserved CPEs in the p53 3'UTR regulate stability and translation of a reporter mRNA in non...

  3. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  4. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  6. Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Monique A. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Johnson and Johnson Pharmaceutical Research and Development, Department of Pharmacogenomics, 1000 Route 202 South, P.O. Box 300, Raritan, NJ (United States); Moffat, Ivy D.; Boutros, Paul C.; Okey, Allan B. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Tuomisto, Jouni T.; Tuomisto, Jouko [National Public Health Institute, Department of Environmental Health, Centre for Environmental Health Risk Analysis, Kuopio (Finland); Pohjanvirta, Raimo [University of Helsinki, Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Helsinki (Finland)

    2008-11-15

    Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent mRNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown. To identify specific genes that may be involved in dioxin lethality we compared changes in liver mRNA levels following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in three strains/lines of dioxin-sensitive rats with changes in three dioxin-resistant rat strains/lines. The three dioxin-resistant strains/lines all harbor a large deletion in the transactivation domain of the aryl hydrocarbon receptor (AHR). Despite this deletion, many genes exhibited a ''Type-I'' response - that is, their responses were similar in dioxin-sensitive and dioxin-resistant rats. Several genes that previously were well established as being dioxin-responsive or under AHR regulation emerged as Type-I responses (e.g. CYP1A1, CYP1A2, CYP1B1 and Gsta3). In contrast, a relatively small number of genes exhibited a Type-II response - defined as a difference in responsiveness between dioxin-sensitive and dioxin-resistant rat strains. Type-II genes include: malic enzyme 1, ubiquitin C, cathepsin L, S-adenosylhomocysteine hydrolase and ferritin light chain 1. In silico searches revealed that AH response elements are conserved in the 5'-flanking regions of several genes that respond to TCDD in both the Type-I and Type-II categories. The vast majority of changes in mRNA levels in response to 100 {mu}g/kg TCDD were strain-specific; over 75% of the dioxin-responsive clones were affected in only one of the six strains/lines. Selected genes were assessed by quantitative RT-PCR in dose-response and time-course experiments and responses of some genes were

  7. Minimal alteration in the ratio of circulatory fetal DNA to fetal corticotropin-releasing hormone mRNA level in preeclampsia.

    Science.gov (United States)

    Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe

    2006-01-01

    We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.

  8. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.

    Science.gov (United States)

    Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M

    2018-01-01

    In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.

  9. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    International Nuclear Information System (INIS)

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  10. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Science.gov (United States)

    Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H

    2014-01-01

    Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  11. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Noah H Hillman

    Full Text Available Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA LPS or Ureaplasma parvum (UP. Epidermal growth factor receptor (EGFR ligands participate in lung development, and angiotensin converting enzyme (ACE 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG, epiregulin (EREG, heparin binding epidermal growth factor (HB-EGF, and betacellulin (BTC mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  12. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export.

    Science.gov (United States)

    Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran; Bakkar, Nadine; Pirrotte, Patrick; Bowser, Robert

    2017-11-06

    Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

  13. Involvement of the 5'-leader sequence in coupling the stability of a human H3 histone mRNA with DNA replication

    International Nuclear Information System (INIS)

    Morris, T.; Marashi, F.; Weber, L.; Hickey, E.; Greenspan, D.; Bonner, J.; Stein, J.; Stein, G.

    1986-01-01

    Two lines of evidence derived from fusion gene constructs indicate that sequences residing in the 5'-nontranslated region of a cell cycle-dependent human H3 histone mRNA are involved in the selective destabilization that occurs when DNA synthesis is terminated. The experimental approach was to construct chimeric genes in which fragments of the mRNA coding regions of the H3 histone gene were fused with fragments of genes not expressed in a cell cycle-dependent manner. After transfection in HeLa S3 cells with the recombinant plasmids, levels of fusion mRNAs were determined by S1 nuclease analysis prior to and following DNA synthesis inhibition. When the first 20 nucleotides of an H3 histone mRNA leader were replaced with 89 nucleotides of the leader from a Drosophila heat-shock (hsp70) mRNA, the fusion transcript remained stable during inhibition of DNA synthesis, in contrast to the rapid destabilization of the endogenous histone mRNA in these cells. In a reciprocal experiment, a histone-globin fusion gene was constructed that produced a transcript with the initial 20 nucleotides of the H3 histone mRNA substituted for the human β-globin mRNA leader. In HeLa cells treated with inhibitors of DNA synthesis and/or protein synthesis, cellular levels of this histone-globin fusion mRNA appeared to be regulated in a manner similar to endogenous histone mRNA levels. These results suggest that the first 20 nucleotides of the leader are sufficient to couple histone mRNA stability with DNA replication

  14. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  15. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Science.gov (United States)

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  16. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  18. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  19. Increased polyamines alter chromatin and stabilize autoantigens in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Wesley H. Brooks

    2013-04-01

    Full Text Available Polyamines are small cations with unique combinations of charge and length that give them many putative interactions in cells. Polyamines are essential since they are involved in replication, transcription, translation, and stabilization of macro-molecular complexes. However, polyamine synthesis competes with cellular methylation for S-adenosylmethionine, the methyl donor. Also, polyamine degradation can generate reactive molecules like acrolein. Therefore, polyamine levels are tightly controlled. This control may be compromised in autoimmune diseases since elevated polyamine levels are seen in autoimmune diseases. Here a hypothesis is presented explaining how polyamines can stabilize autoantigens. In addition, the hypothesis explains how polyamines can inappropriately activate enzymes involved in NETosis, a process in which chromatin is modified and extruded from cells as extracellular traps that bind pathogens during an immune response. This polyamine-induced enzymatic activity can lead to an increase in NETosis resulting in release of autoantigenic material and tissue damage.

  20. Transition from shod to barefoot alters dynamic stability during running.

    Science.gov (United States)

    Ekizos, Antonis; Santuz, Alessandro; Arampatzis, Adamantios

    2017-07-01

    Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Alterations in mRNA profiles of trastuzumab‑resistant Her‑2‑positive breast cancer.

    Science.gov (United States)

    Zhao, Bin; Zhao, Yang; Sun, Yan; Niu, Haitao; Sheng, Long; Huang, Dongfang; Li, Li

    2018-05-07

    Breast cancer is one of the most common malignancies in women. Neoadjuvant trastuzumab therapy improves the prognosis of certain Her‑2‑positive breast cancer patients, however around two‑thirds of patients with Her‑2‑positive breast cancer do not benefit from Her‑2‑targeted therapy. To investigate the key mechanisms in trastuzumab resistance, potential biomarkers for neoadjuvant trastuzumab sensitivity were investigated using the gene expression omnibus (GEO) database for mRNA microarray data of Her‑2‑positive breast cancer patients who received neoadjuvant trastuzumab therapy. GEO profiles of 22 patients with a complete response and 48 patients with a partial response were identified in the GSE22358, GSE62327 and GSE66305 datasets. A total of 2,376, 1,000 and 1,152 differentially expressed genes in GSE22358, GSE62327 and GSE66305 datasets were demonstrated, respectively, utilizing GEO2R software. Furthermore, enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were analyzed using the Database for Annotation, Visualization and Integrated Discovery software. Subsequently, a protein‑protein interaction network was established using STRING software. The results demonstrated that low sex‑determining region Y‑box 11 and high Bcl‑2 expression may be employed as markers for neoadjuvant trastuzumab therapy for Her‑2‑positive breast cancer. More importantly, phosphoinositide 3‑kinase/Akt and angiogenesis pathways, which are known to be the key targets of trastuzumab, were activated at a lower level in the partial response patients, while the Wnt and estrogen receptor signaling pathways were activated in these patients. Therefore, combination therapy of trastuzumab and anti‑Wnt or hormone therapy may be a promising treatment modality and should be tested in further studies.

  2. Detrimental ELAVL-1/HuR-dependent GSK3β mRNA stabilization impairs resolution in acute respiratory distress syndrome.

    Directory of Open Access Journals (Sweden)

    Olivia Hoffman

    Full Text Available A hallmark of acute respiratory distress syndrome (ARDS is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK 3β during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3β could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3β messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3β, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like as a central component in a likely GSK3β signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3β mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3β at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3β. Together, our findings indicate a previously unknown interaction between GSK3β and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3β pathways as a novel ARDS treatment approach.

  3. Alterations of type IV collagen alpha chains in patients with chronic acquired glomerulopathies: mRNA levels, protein expression and urinary loss.

    Science.gov (United States)

    Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Martorana, Davide; Cravedi, Paolo; Maggiore, Umberto; Alinovi, Rossella; Bovino, Achiropita; Mattei, Silvia; Orlandini, Guido; Gatti, Rita; Savi, Mario; Sado, Yoshikazu; Neri, Tauro M; Allegri, Landino

    2007-01-01

    Type IV collagen is a major structural component of the normal kidney glomerulus. However, its role in chronic acquired glomerulopathies has been only partially elucidated. Urinary levels of col(IV)alpha1, col(IV)alpha3 and col(IV)alpha5 collagen chains were analyzed in 107 patients with chronic acquired glomerulopathies. In a subgroup of 33 patients, tissue mRNA levels, protein expression and urinary excretion were evaluated for all col(IV)alpha chains, from col(IV)alpha1 to col(IV)alpha5. The renal specimens were examined to get a semiquantitative score of the acute and chronic activity of the histological lesions. Urines obtained from 13 healthy subjects and 10 normal renal tissue samples were used as controls. Urinary levels of col(IV)alpha1, col(IV)alpha3, col(IV)alpha5 chains were significantly higher in patients than in controls [p < 0.01 for all], while only col(IV)alpha1 and col(IV)alpha3 urinary excretion correlated with the degree of chronic histological damage [col(IV)alpha1 R = 0.44, p < 0.001; col(IV)alpha3: R = 0.47, p < 0.001]. Compared with controls, patients showed a renal expression of mRNA for col(IV)alpha5 chain significantly higher [p = 0.001], while having a significantly lower protein expression of col(IV)alpha3, col(IV)alpha4 and col(IV)alpha5 chains [p < 0.01 for all]. Patients with chronic acquired glomerulopathies show important alterations in the col(IV)alpha chain network mimicking some molecular features of the X-linked Alport's syndrome. Further studies are needed to show whether urinary levels of the col(IV)alpha chains may be used as markers for monitoring renal injury. Copyright 2007 S. Karger AG, Basel.

  4. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

    International Nuclear Information System (INIS)

    Nguyen, Kim-Lien; Llano, Manuel; Akari, Hirofumi; Miyagi, Eri; Poeschla, Eric M.; Strebel, Klaus; Bour, Stephan

    2004-01-01

    Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM1-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins

  5. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    Science.gov (United States)

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  6. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site

    Directory of Open Access Journals (Sweden)

    Feng Cheng

    2017-01-01

    Full Text Available RNA-binding proteins (RBPs and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1, is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p=0.04. Patients with higher Dnd1 expression level had longer overall survival (p=0.0014 by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3′UTR, the stability of Bim-5′UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3′UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3′UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  7. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  8. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL.

    Science.gov (United States)

    Kremer, Kimberly N; Dinkel, Brittney A; Sterner, Rosalie M; Osborne, Douglas G; Jevremovic, Dragan; Hedin, Karen E

    2017-08-24

    As with many immunopathologically driven diseases, the malignant T cells of cutaneous T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secretion patterns that contribute to pathology and disease progression. Targeting this disordered release of cytokines is complicated by the changing cytokine milieu that drives the phenotypic changes of CTCLs. Here, we characterize a novel signaling pathway that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4 or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation of S339-CXCR4 in order to activate a PREX1-Rac1-signaling pathway that stabilizes interleukin-2 (IL-2) , IL-4 , and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10. Applying this knowledge to Sézary syndrome, we demonstrate that targeting various aspects of this signaling pathway blocks both TCR-dependent and TCR-independent cytokine secretion from a Sézary syndrome-derived cell line and patient isolates. Together, these results identify multiple aspects of a novel TCR-CXCR4-signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopathogenesis of Sézary syndrome and other immunopathological diseases. © 2017 by The American Society of Hematology.

  9. PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2.

    Directory of Open Access Journals (Sweden)

    Zhongshuai Xin

    Full Text Available Interferon-α (IFN-α is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b. However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.

  10. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    Science.gov (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  11. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Science.gov (United States)

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  12. Stability of medicines after repackaging into multicompartment compliance aids: eight criteria for detection of visual alteration.

    Science.gov (United States)

    Albert, Valerie; Lanz, Michael; Imanidis, Georgios; Hersberger, Kurt E; Arnet, Isabelle

    2017-01-01

    Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1-2 weeks, although little and controversial information exists on the stability of repackaged medicines. We aimed to validate the usefulness of a simple screening method capable of detecting visual stability problems with repackaged medicines. We selected eight criteria for solid formulations from The International Pharmacopoeia : (1) rough surface, (2) chipping, (3) cracking, (4) capping, (5) mottling, (6) discoloration, (7) swelling, and (8) crushing. A selection of 24 critical medicines was repackaged in three different MCA (Pharmis ® , SureMed™, and self-produced blister) and stored at room temperature for 4 weeks. Pharmis ® was additionally stored at accelerated conditions. Appearance was scored weekly. Six alterations (rough surface, cracking, mottling, discoloration, swelling, and crushing) were observed at accelerated conditions. No alteration was observed at room temperature, except for the chipping of tablets that had been stuck to cold seal glue. The eight criteria can detect alterations of the appearance of oral solid medicines repackaged in MCA. In the absence of specific guidelines, they can serve as a simple screening method in community pharmacies for identifying medicines unsuitable for repackaging.

  13. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  14. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  15. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  16. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  17. Carrying shopping bags does not alter static postural stability and gait parameters in healthy older females.

    Science.gov (United States)

    Bampouras, Theodoros M; Dewhurst, Susan

    2016-05-01

    Food shopping is an important aspect of maintaining independence and social interaction in older age. Carriage of shopping bags alters the body's weight distribution which, depending on load distribution, could potentially increase instability during standing and walking. The study examined the effect of carrying UK style shopping bags on static postural stability and gait in healthy older and young females. Nine older (71.0±6.0 years) and 10 young (26.7±5.2 years) females were assessed in five conditions carrying no bags, one 1.5kg bag in each hand, one 3kg bag in each hand, one 1.5kg bag in preferred hand, one 3kg bag in preferred hand. Antero-posterior and medio-lateral displacement, and 95% ellipse area from a 30s quiet standing were used for postural stability assessment. Stride length and its coefficient of variation, total double support time, step asymmetry and gait stability ratio were calculated from 1min treadmill walking at self-selected speed for gait assessment. Carrying shopping bags did not negatively affect postural stability or gait variables, in either group. Further, in older individuals, a decrease in sway velocity was found when holding bags during the postural stability assessment (pbags, irrespective of the load distribution, may have a stabilising effect during quiet standing. These results should help to alleviate concerns regarding safety of carrying shopping bags and help encourage shopping, both as a social and as a physical activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability

    DEFF Research Database (Denmark)

    Vytvytska, O; Jakobsen, J S; Balcunaite, G

    1998-01-01

    RNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has...

  19. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    Directory of Open Access Journals (Sweden)

    I. E. Paulauskas

    2011-01-01

    Full Text Available The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with the significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.

  20. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  1. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  2. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  3. 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation.

    Science.gov (United States)

    Marathias, V M; Sawicki, M J; Bolton, P H

    1999-07-15

    The ability to chemically synthesize biomolecules has opened up the opportunity to observe changes in structure and activity that occur upon single atom substitution. In favorable cases this can provide information about the roles of individual atoms. The substitution of 6-thioguanine (6SG) for guanine is a potentially very useful single atom substitution as 6SG has optical, photocrosslinking, metal ion binding and other properties of potential utility. In addition, 6-mercaptopurine is a clinically important pro-drug that is activated by conversion into 6SG by cells. The results presented here indicate that the presence of 6SG blocks the formation of quadruplex DNA. The presence of 6SG alters the structure and lowers the thermal stability of duplex DNA, but duplex DNA can be formed in the presence of 6SG. These results indicate that some of the cytotoxic activity of 6SG may be due to disruption of the quadruplex structures formed by telomere and other DNAs. This additional mode of action is consistent with the delayed onset of cytotoxicity.

  4. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  5. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  6. p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability.

    Science.gov (United States)

    Sen, Prosenjit; Chakraborty, Prabir Kumar; Raha, Sanghamitra

    2005-08-15

    V79 fibroblasts were repetitively stressed through multiple exposures to a low dose (30 microM) H2O2 in culture for 4 weeks. Catalase activity, protein levels and mRNA levels increased markedly (5-6-fold) during this time and these augmentations were inhibited by the simultaneous presence of SB203580, an inhibitor of p38 mitogen-activated protein kinase (p38MAPK). p38MAPK became dually phosphorylated and ATF-2, a p38MAPK substrate also became increasingly phosphorylated over the repetitive stress period. Short interfering RNA that induced effective silencing of p38MAPK, was used to silence p38MAPK in V79 fibroblasts. Silencing of p38MAPK drastically hindered the elevation in catalase (protein and mRNA) levels observed after a single low dose (50 microM) of H2O. The rise in catalase mRNA levels induced by low concentration (single and multiple dose) H2O2 treatment was established to be unconnected with transcriptional upregulation but was brought forth primarily by an enhancement in catalase mRNA stability through the action of p38MAPK. Therefore, our data strongly indicate that activation of p38MAPK is a key controlling step in the upregulation of catalase levels by low dose H2O2 treatment.

  7. Postural stability is altered by the stimulation of pain but not warm receptors in humans

    Directory of Open Access Journals (Sweden)

    Corbeil Philippe

    2003-10-01

    Full Text Available Abstract Background It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Methods Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively. For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. Results The stimulation of the warm receptors (40 degrees C did not induce any postural deterioration. With pain (45 degrees C, subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure. Conclusions A non

  8. Postural stability is altered by the stimulation of pain but not warm receptors in humans.

    Science.gov (United States)

    Blouin, Jean-Sébastien; Corbeil, Philippe; Teasdale, Normand

    2003-10-17

    It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C) were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively). For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. The stimulation of the warm receptors (40 degrees C) did not induce any postural deterioration. With pain (45 degrees C), subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure). A non-noxious stimulation (40 degrees C) of the small diameter afferents is not a

  9. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors.

    Science.gov (United States)

    Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng

    2015-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.

  10. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    Science.gov (United States)

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  11. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis.

    Science.gov (United States)

    Ebrahimzadeh Bideskan, Alireza; Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Hosseini, Mahmoud; Rajabzadeh, Aliakbar

    2017-07-05

    The usage of Titanium dioxide nanoparticles (TiO 2 -NPs) covers a vast area in different fields ranging from cosmetics and food to the production of drugs. Maternal exposure to TiO 2 -NPs during developmental period has been associated with hippocampal injury and with a decrease in learning and memory status of the offspring. However, little is known about its injury mechanism. This paper describes the in vivo neurotoxic effects of TiO 2 -NPs on rat offspring hippocampus during developmental period. Pregnant and lactating Wistar rats received intragastric TiO 2 -NPs (100mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21 and postnatal day (PD) 2 to (PD) 21 respectively. Animals in the control groups received an equal volume of distilled water via gavage. At the end of the treatment process, offspring were deeply anesthetized and sacrificed. Then brains of each group were collected and sections of the rat offspring's brains were stained using TUNEL staining (for detection of apoptotic cells) and immunostaining (for neurogenesis). Moreover, the right hippocampus (n=6 per each group) were removed from the right hemisphere for evaluating the expression of Bax and Bcl-2 level. Results of histopatological examination by TUNEL staining showed that maternal exposure to TiO 2 -NPs during pregnancy and lactation periods increased apoptotic cells significantly (P<0.01) in the offspring hippocampus. The immunolabeling of double cortin (DCX) protein as neurogenesis marker also showed that TiO 2 -NPs reduced neurogenesis in the hippocampus of the offspring (P<0.05). Moreover, in comparison with the control group, the mRNA levels of Bax and Bcl-2 in the TiO 2 -NPs group significantly increased and decreased, respectively (P<0.01). These findings provide strong evidence that maternal exposure to TiO 2 -NPs significantly impact hippocampal neurogenesis and apoptosis in the offspring. The potential impact of nanoparticle exposure for millions of pregnant mothers and

  12. Altered hepatic mRNA expression of immune response-associated DNA damage in mice liver induced by potassium bromate: Protective role of vanillin.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ben Amara, Ibtissem; Boudawara, Ons; Boudawara, Tahia; Ellouz Chaabouni, Samia; Mounir Zeghal, Khaled; Hakim, Ahmed

    2016-12-01

    Chronic exposure to potassium bromate (KBrO 3 ), a toxic halogen existing widely in the environment, environment through contaminated drinking water, has become a global problem of public health. The present study investigates the protective role of vanillin against KBrO 3 induced oxidative stress, distruption in inflammatory cytokines expression, DNA damage, and histopathological changes. Adult mice were exposed orally to KBrO 3 (2g/L of drinking water) for 2 weeks The co-administration of vanillin to the KBrO 3 -treated mice significantly prevented the plasma transaminases increase in. Furthermore, it inhibited hepatic lipid peroxidation (malondialdehyde), advanced oxidation protein product (AOPP) and protein carbonyl (PCO) formation and attenuated the KBrO 3 -mediated depletion of enzymatic and non enzymatic antioxidants catalase, superoxide dismutase, and glutathione peroxidase activities and glutathione level in the liver. In addition, vanillin markedly attenuated the expression levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and COX2 and prevented KBrO 3 -induced hepatic cell alteration and necrosis, as indicated by histopathological data. DNA damage, as assessed by the alkaline comet assay, was also found to be low in the co-treated group. Thus, these findings show that vanillin acts as potent chemopreventive agent against KBrO 3 -mediated liver oxidative stress and genotoxicity through its antioxidant properties. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1796-1807, 2016. © 2015 Wiley Periodicals, Inc.

  13. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review.

    Science.gov (United States)

    Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C

    2018-06-13

    To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles.

    Science.gov (United States)

    Cao, Yan; Wu, Ruiyong; Tai, Fadao; Zhang, Xia; Yu, Peng; An, Xiaolei; Qiao, Xufeng; Hao, Ping

    2014-01-01

    Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    OpenAIRE

    Cavanaugh, J; Guskiewicz, K; Giuliani, C; Marshall, S; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion.

  16. Stability of medicines after repackaging into multicompartment compliance aids: eight criteria for detection of visual alteration

    OpenAIRE

    Albert, Valerie; Lanz, Michael; Imanidis, Georgios; Hersberger, Kurt E.; Arnet, Isabelle

    2017-01-01

    Introduction Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1–2 weeks, although little and controversial information exists on the stability of repackaged medicines. Objective We aimed to validate the usefulness of a simple screening method capable of detecting visual stability pr...

  17. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    Science.gov (United States)

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem

  18. Up-regulated EMMPRIN/CD147 protein expression might play a role in colorectal carcinogenesis and its subsequent progression without an alteration of its glycosylation and mRNA level.

    Science.gov (United States)

    Zheng, Hua-chuan; Wang, Wei; Xu, Xiao-yan; Xia, Pu; Yu, Miao; Sugiyama, Toshiro; Takano, Yasuo

    2011-04-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of colorectal carcinomas (CRC). EMMPRIN expression was examined on tissue microarray containing colorectal carcinomas, adenoma and non-neoplastic mucosa (NNM) by immunohistochemistry and in situ hybridization (ISH). Colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) and tissues were studied for EMMPRIN expression by Western blot or RT-PCR, followed by sequencing. All carcinoma cell lines showed EMMPRIN expression at both mRNA and protein levels. Two synonymous mutations were found in carcinoma cell lines at codon109 (GCT → GCC: Ala) or 179 (GAT → GAC: Asp). Frozen CRC tissues displayed higher EMMPRIN expression than paired NNM (P EMMPRIN expression was immunohistochemically stronger in colorectal high-grade adenoma, adenocarcinoma and metastatic carcinoma than non-neoplastic superficial epithelium and low-grade adenoma (P 0.05). Immunohistochemically, EMMPRIN expression was positively correlated with tumor size, depth of invasion, vascular or lymphatic invasion, grade of infiltration (INF), ki-67 and VEGF expression of CRCs (P EMMPRIN expression in CRCs (P EMMPRIN protein expression might contribute to colorectal carcinogenesis without the alteration of its glycosylation and mRNA level. Aberrant EMMPRIN protein expression might promote growth or invasion of CRCs possibly through increased ki-67 expression and inducible angiogenesis via up-regulating VEGF expression.

  19. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    Science.gov (United States)

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  20. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype

    NARCIS (Netherlands)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic

  1. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small

  2. Oncogenic p95HER2 regulates Na+-HCO3- cotransporter NBCn1 mRNA stability in breast cancer cells via 3'UTR-dependent processes.

    Science.gov (United States)

    Gorbatenko, Andrej; Olesen, Christina W; Loebl, Nathalie; Sigurdsson, Haraldur H; Bianchi, Carolina; Pedraz-Cuesta, Elena; Christiansen, Jan; Pedersen, Stine Falsig

    2016-11-01

    The Na + -HCO 3 - cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms. p95HER2 expression in MCF-7 cells reduced the rate of NBCn1 mRNA degradation. The NBCn1 3'UTR down-regulated luciferase reporter expression in control cells, and this was reversed by p95HER2, suggesting that p95HER2 counteracts 3'UTR-mediated suppression of NBCn1 expression. Truncation analyses identified three NBCn1 3'UTR regions of regulatory importance. Mutation of putative miRNA-binding sites (miR-374a/b, miR-200b/c, miR-29a/b/c, miR-488) in these regions did not have significant impact on 3'UTR activity. The NBCn1 3'UTR interacted directly with the RNA-binding protein human antigen R (HuR), and HuR knockdown reduced NBCn1 expression. Conversely, ablation of a distal AU-rich element increased 3'UTR-driven reporter activity, suggesting complex regulatory roles of these sites. The cancer-associated SNP variant decreased reporter expression in T-47D breast cancer cells, yet not in MCF-7, MDA-MB-231 and SK-BR-3 cells, arguing against a general role in regulating NBCn1 expression. Finally, p95HER2 expression increased total and plasma membrane NBCn1 protein levels and decreased the rate of NBCn1 protein degradation. Collectively, this is the first work to demonstrate 3'UTR-mediated NBCn1 regulation, shows that p95HER2 regulates NBCn1 expression at multiple levels, and substantiates the central position of p95HER2-NBCn1 signaling in breast cancer. © 2016 The Author(s); published by Portland Press

  3. ALTERACIONES EN LA PRODUCCIÓN mRNA DE ENZIMAS INTESTINALES DE CERDOS DURANTE VARIOS PERÍODOS POSDESTETE ALTERAÇÕES NA PRODUÇÃO DE mRNA DE ENZIMAS INTESTINAIS DOS SUINOS DURANTE DIVERSOS PERÍODOS APOS O DESMAME ALTERATIONS IN THE PRODUCTION mRNA OF INTESTINAL ENZYMES IN PIGS DURING SEVERAL POSTWEANING PERIODS

    Directory of Open Access Journals (Sweden)

    CAROLINA MONTOYA R.

    2012-12-01

    enzimas ao nível do enterocito, causando a diminuição da absorção intestinal dos nutrientes, e provavelmente a apresentação do síndrome da diarreia apos o desmame.The aim of this study was to determine the gene expression of enzymes to enterocyte level of pigs during post-weaning periods.The experiment was conducted in San PabloProductionCenter of the Universidad Nacional de Colombia (Medellín with 16 weaned pigs at 21 days of age.The animals were fed for 10 days with a basal diet with milk and some of its derivatives, and that also fulfilled all the nutritionals minimums. Pigs were sequentially slaughtered on days one, five, seven, and 10 days after weaning.Complete extraction of small intestine was realized, which was divided into three sections (duodenum, jejunum and ileum. The gene expression of digestive enzymes by RT-PCR was evaluated.The statistical design used was completely at random. For intestinal enzymes significant decreases were showed, where on fifth day post-weaning presented the lowest values (P<0.01. Between one and 10 days post-weaning there were differences (P<0.01. The duodenum showed the highest values of gene expression (P<0.01. Early weaning alters molecular expression of enzymes to enterocyte level, causing the decrease of intestinal absorption of nutrients, and probably the presentation of post-weaning diarrhea syndrome.

  4. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  5. A study of the alterability of terminal residues stabilized by a mineral-binder-based solidification/stabilization process; Etude de l`alterabilite de residus ultimes stabilises par un procede de solidification, stabilisation a base de liants mineraux

    Energy Technology Data Exchange (ETDEWEB)

    Humez, N.; Prost, R. [Institut National de Recherches Agronomiques (INRA), 78 - Versailles (France). Unite de Science du Sol; Piketty, L.; Schnuriger, B.; Benchara, A.; Pichat, P. [Centre de Solidification, Stabilisation et Stockage, Sarp Industries, 78 - Limay (France)

    1997-12-31

    A new laboratory approach has been developed for the study of the long term behaviour of stabilized terminal residues, and is based on the experimental method for the study of rock alteration. The method consists in examining the migration of elements that are present in the solution contained in the pores, and studying the structural modifications which result from the dissolution of certain constituents, the transformation and the neo-formation of other ones in the material. The method allows for the evaluation, in a short time, of the alterability and perenniality of stabilized terminal wastes. Results show that the long term alterability of solidified/stabilized samples that have been processed using the ECOFIX method, is low

  6. Characterization of insulin-like-growth factor II (IGF II mRNA positive hepatic altered foci and IGF II expression in hepatocellular carcinoma during diethylnitrosamine-induced hepatocarcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Mukherjee Biswajit

    2005-08-01

    Full Text Available Abstract Background Insulin-like-growth factor II (IGF II has been implicated in the pathogenesis of neoplasm of different tissues, including liver of rats and men. This growth factor is believed to exert its effect during cellular proliferation. During the process of development of hepatocellular carcinoma (HCC, different hepatic altered foci appear. They are believed to be the putative precursors of HCC in rats and in men. Thus, to study the role of the gene in a defined model of hepatocarcinogenesis was the target to elucidate its role in various cancer phenotypes during the entire development stage of cancer, right from earlier preneoplastic lesions to HCC Methods Antisense in situ hybridization technique was used here to characterize the type(s of foci in which IGF II mRNA had expressed during the development of hepatocarcinogenesis-induced by diethylnitrosamine and promoted by phenobarbital in rats. Various focal lesions have been categorized depending on the stages and sizes along with IGF II expression patterns in them. Immunohistochemical detection for proliferating cell nuclear antigen (PCNA was made to detect the role of the gene in preneoplastic and neoplastic cellular proliferation. Results IGF II expression was located in the glycogen-storage acidophilic cell foci maximally followed by mixed cell lesions and the least in basophilic lesions. The expression of IGF II was found to be predominant in the HCC. The expression of gene was also located at the peripheral cells of spongiosis hepatis which are believed to be the precursor of ito cell carcinoma. It was noted that there is a direct correlation between IGF II expression and Immunohistochemical detection for PCNA. Conclusion It may be concluded that IGF II gene expression plays an important role during the development of neoplasia and the gene expresses in the sequence of events leading from glycogen-rich-acidophilic lesions to glycogen poor basophilic lesions to HCC with an

  7. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    Science.gov (United States)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  8. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  9. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    Science.gov (United States)

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  10. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  11. Shining a light on Jarosite: formation, alteration and stability studies using in situ experimental synchrotron and neutron techniques.

    Science.gov (United States)

    Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.

    2016-12-01

    Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of

  12. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill under stress of NaCl and/or ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Hesham F. Alharby

    2016-11-01

    Full Text Available Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1 and ZnO-NPs (0, 15 and 30 mg L−1. Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD and glutathione peroxidase (GPX genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa. Keywords: Tomato, Salt stress, Nanoparticles, Gene expression, Real-time PCR, Polymorphism

  14. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  15. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Salehzada, T; Lambert, K

    2012-01-01

    Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role...... is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic...... RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present...

  16. Levels of myosin heavy chain mRNA transcripts and content of protein isoforms in the slow soleus muscle of 7 month-old rats with altered thyroid status

    Czech Academy of Sciences Publication Activity Database

    Vadászová, Adriana; Hudecová, S.; Križanová, O.; Soukup, Tomáš

    2006-01-01

    Roč. 55, č. 2 (2006), s. 221-225 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GD305/03/H148; GA ČR(CZ) GA304/05/0327 Grant - others:VEGA(SK) 2/6078; SAV(SK) APVT-51-027404; NATO(XE) 979876; MYORES(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : myosin heavy chain * thyroid hormones status * mRNA transcripts Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  17. Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2017-12-01

    Full Text Available Genomic RNA of HIV-1 contains localized structures critical for viral replication. Its structural analysis has demonstrated a stem-loop structure, SLSA1, in a nearby region of HIV-1 genomic splicing acceptor 1 (SA1. We have previously shown that the expression level of vif mRNA is considerably altered by some natural single-nucleotide variations (nSNVs clustering in SLSA1 structure. In this study, besides eleven nSNVs previously identified by us, we totally found nine new nSNVs in the SLSA1-containing sequence from SA1, splicing donor 2, and through to the start codon of Vif that significantly affect the vif mRNA level, and designated the sequence SA1D2prox (142 nucleotides for HIV-1 NL4-3. We then examined by extensive variant and mutagenesis analyses how SA1D2prox sequence and SLSA1 secondary structure are related to vif mRNA level. While the secondary structure and stability of SLSA1 was largely changed by nSNVs and artificial mutations introduced to restore the original NL4-3 form from altered ones by nSNVs, no clear association of the two SLSA1 properties with vif mRNA level was observed. In contrast, when naturally occurring SA1D2prox sequences that contain multiple nSNVs were examined, we attained significant inverse correlation between the vif level and SLSA1 stability. These results may suggest that SA1D2prox sequence adapts over time, and also that the altered SA1D2prox sequence, SLSA1 stability, and vif level are mutually related. In total, we show here that the entire SA1D2prox sequence and SLSA1 stability critically contribute to the modulation of vif mRNA level.

  18. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    Science.gov (United States)

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Occupational health hazards of trichloroethylene among workers in relation to altered mRNA expression of cell cycle regulating genes (p53, p21, bax and bcl-2 and PPARA

    Directory of Open Access Journals (Sweden)

    Meenu Varshney

    2015-01-01

    Full Text Available Trichloroethylene (TCE is widely used as a metal degreaser in industrial processes. The present study reports on the effects of TCE exposure on workers employed in the lock industries. To ensure exposure of the workers to TCE, its toxic metabolites, trichloroacetic acid (TCA, dichloroacetic acid (DCA and trichloroethanol (TCEOH were detected in the plasma of the subjects through solid phase microextraction-gas chromatography-electron capture detection. TCA, DCA and TCEOH were detected in the range of 0.004–2.494 μg/mL, 0.01–3.612 μg/mL and 0.002–0.617 μg/mL, respectively. Quantitative reverse transcription polymerase chain reaction analysis revealed up-regulated expression of p53 (2.4-fold; p < 0.05, p21 (2-fold; p < 0.01, bax (2.9-fold; p < 0.01 mRNAs and down-regulated expression of bcl-2 (67%; p < 0.05 mRNAs, indicating DNA damaging potential of these metabolites. No effects were observed on the levels of p16 and c-myc mRNAs. Further, as TCA and DCA, the ligand of peroxisome proliferator activated receptor alpha (PPARA, are involved in the process of hepatocarcinogenesis in rodents, we examined expression of PPARA mRNA and let-7c miRNA in the workers. No statistically significant differences in expression of PPARA mRNA and let-7c miRNA in patients were observed as compared to values in controls. Dehydroepiandosterone sulfate (DHEAS is a reported endogenous ligand of PPARA so its competitive role was also studied. We observed decreased levels of DHEAS hormone in the subjects. Hence, its involvement in mediation of the observed changes in the levels of various mRNAs analyzed in this study appears unlikely.

  20. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  1. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  3. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    Science.gov (United States)

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Natural selection and algorithmic design of mRNA.

    Science.gov (United States)

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  5. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  6. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  7. Geochemical alteration vs mechanical weathering on stability of unstable slope : Case of the deep seated landslide of Séchilienne (Isère, France)

    Science.gov (United States)

    Bertrand, Catherine; Nevers, Pierre; Gaillardet, Jérôme; Dubois, Laurent

    2017-04-01

    The Séchilienne landslide is located on the right bank of the Romanche River, South East of Grenoble (Isère, France). The active zone of the gravitational instability involves several millions of cubic meters. The geology consists of fractured hard rocks (micaschists) with double permeability and strong spatial heterogeneities. The permeability of the basement areas is rather obtained by long term weathering, which can be associated with a mechanical action in high relief mountainous regions. Water plays two major roles, the first one being a hydrogeological process, which is a factor that worsens instability, and the second one being a geochemical factor that alters the massif, making it less cohesive. These two factors interact through time and modify permeability and therefore the flow of water within the rock. Hydrochemistry simultaneously provides information about water flows (location and amount of refill, types and flow patterns, storage, residence time), and also about the acquisition of the chemistry during its transit through the aquifer (water-rock interaction during the transit, quantification of the alteration). The issue is to improve the knowledge of the genesis of the chemical signal, and to define the contributions of the knowledge of this signal in terms of functioning, on the pressure transferring as well as on the mass transferring and its effects. Hydrogeochemistry, which is integrative of the entire "history" of the water in the different compartments, paired with geochemical modelling, which allow the discrimination of the chemical signal according to its path in the aquifer, turns out to be an appropriate method for the objective. These tools (hydrogeochemistry & geochemical modelling) are designed to understand the complex relationship between chemical weathering, hydromechanical changes and weakening / deformation of the unstable rock slope The deformation of the unstable slope is monitored by on-site extensometric gauges, inclinometers

  8. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  9. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant m...

  10. Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania.

    Science.gov (United States)

    Rezin, Gislaine T; Furlanetto, Camila B; Scaini, Giselli; Valvassori, Samira S; Gonçalves, Cinara L; Ferreira, Gabriela K; Jeremias, Isabela C; Resende, Wilson R; Cardoso, Mariane R; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-04-01

    Fenproporex (Fen) is converted in vivo into amphetamine, which is used to induce mania-like behaviors in animals. In the present study, we intend to present a new animal model of mania. In order to prove through face, construct, and predictive validities, we evaluated behavioral parameters (locomotor activity, stereotypy activity, and fecal boli amount) and brain energy metabolism (enzymes citrate synthase; malate dehydrogenase; succinate dehydrogenase; complexes I, II, II-III, and IV of the mitochondrial respiratory chain; and creatine kinase) in rats submitted to acute and chronic administration of fenproporex, treated with lithium (Li) and valproate (VPA). The administration of Fen increased locomotor activity and decreased the activity of Krebs cycle enzymes, mitochondrial respiratory chain complexes, and creatine kinase, in most brain structures evaluated. In addition, treatment with mood stabilizers prevented and reversed this effect. Our results are consistent with the literature that demonstrates behavioral changes and mitochondrial dysfunction caused by psychostimulants. These findings suggest that chronic administration of Fen may be a potential animal model of mania.

  11. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    International Nuclear Information System (INIS)

    Arcos, D.; Perez del Villar, L.; Bruno, J.; Domenech, C.

    2008-01-01

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and reducing at very

  13. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  15. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    Directory of Open Access Journals (Sweden)

    Jun Ling

    Full Text Available Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T, BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl phthalate (MEHP as a major metabolite of another important phthalate di (2-ethylhexyl phthalate (DEHP inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29 growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  16. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  17. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

    Science.gov (United States)

    Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G

    1998-01-01

    The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.

  18. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.

    Science.gov (United States)

    Lu, You-Wei; Li, Jin; Guo, Wei-Jian

    2010-11-08

    The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.

  19. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules

    DEFF Research Database (Denmark)

    Schlemmer, B O; Sorensen, B S; Overgaard, J

    2004-01-01

    of a subset of ligands from the EGF system is increased in bladder cancer. Furthermore, measurement of the mRNA concentration gives important information such as the expression of these ligands correlated to the survival of the patients. In addition to the alterations at the mRNA level, changes also can occur...... at the DNA level in the EGF system. Thus, it has been demonstrated that the number of genes coding for the human epidermal growth factor receptor 2 (HER2) is increased in a number of breast tumors. It is now possible to treat breast cancer patients with a humanized antibody reacting with HER2...... of mRNA or DNA in biological samples. In this study quantitative PCR was used to investigate the role of the EGF (epidermal growth factor) system in cancer both for measurements of mRNA concentrations and for measurements of the number of copies of specific genes. It is shown that the mRNA expression...

  20. Tipping the balance of RNA stability by 3' editing of the transcriptome.

    Science.gov (United States)

    Chung, Christina Z; Seidl, Lauren E; Mann, Mitchell R; Heinemann, Ilka U

    2017-11-01

    The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for

  1. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  2. Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations

    OpenAIRE

    Alami, Nael H.; Smith, Rebecca B.; Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S.W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan

    2014-01-01

    The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. ...

  3. mRNA Display Selection of a High-Affinity, Modification-Specific Phospho-IκBα-Binding Fibronectin

    Science.gov (United States)

    Olson, C. Anders; Liao, Hsiang-I; Sun, Ren; Roberts, Richard W.

    2009-01-01

    The complexity of the human proteome is greatly expanded by post-translational modifications. New tools capable of recognizing these modifications in a sequence-specific fashion provide a route to purify these modified proteins, to alter protein trafficking, and to visualize signal transduction in real time. Here, we have evolved novel, modification-specific ligands that target phosphorylated IκBα. To do this, we employed mRNA display-based in vitro selection using a 30-trillion-member protein library based on the fibronectin type III domain. The selection yielded one fibronectin molecule, 10C17C25, that binds a phospho-IκBα peptide with Kd = 18 nM and is over 1000-fold specific compared to the nonphosphorylated peptide. 10C17C25 specifically recognizes endogenous phosphorylated IκBα from mammalian cell extract and stabilizes phospho-IκBα in vivo. We also incorporated 10C17C25 into a FRET indicator that detects IκB kinase (IKK) activity in vitro, demonstrating the utility of selecting designed adaptors for kinase activity sensors. PMID:18590330

  4. mRNA display selection of a high-affinity, modification-specific phospho-IkappaBalpha-binding fibronectin.

    Science.gov (United States)

    Olson, C Anders; Liao, Hsiang-I; Sun, Ren; Roberts, Richard W

    2008-08-15

    The complexity of the human proteome is greatly expanded by post-translational modifications. New tools capable of recognizing these modifications in a sequence-specific fashion provide a route to purify these modified proteins, to alter protein trafficking, and to visualize signal transduction in real time. Here, we have evolved novel, modification-specific ligands that target phosphorylated IkappaBalpha. To do this, we employed mRNA display-based in vitro selection using a 30-trillion-member protein library based on the fibronectin type III domain. The selection yielded one fibronectin molecule, 10C17C25, that binds a phospho-IkappaBalpha peptide with K d = 18 nM and is over 1000-fold specific compared to the nonphosphorylated peptide. 10C17C25 specifically recognizes endogenous phosphorylated IkappaBalpha from mammalian cell extract and stabilizes phospho-IkappaBalpha in vivo. We also incorporated 10C17C25 into a FRET indicator that detects IkappaB kinase (IKK) activity in vitro, demonstrating the utility of selecting designed adaptors for kinase activity sensors.

  5. Involvement of hGLD-2 in cytoplasmic polyadenylation of human p53 mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Norrild, Bodil

    2011-01-01

    Cytoplasmic polyadenylation is a post-transcriptional mechanism regulating mRNA stability and translation. The human p53 3'-untranslated region (3'-UTR) contains two regions similar to cytoplasmic polyadenylation elements (CPEs) just upstream of the poly(A) hexanucleotide. Evaluation of the p53 CPE......-like elements was performed by luciferase reporter assays, qPCR, and poly(A) assays. Herein, we report the down regulation of a luciferase reporter fused to the p53 3'-UTR, when human CPE-binding protein 1 (hCPEB1) is overexpressed. This inhibition is partially rescued when hCPEB1fused to hGLD-2 [a human...... cytoplasmic poly(A) polymerase] is overexpressed instead. The stability of a luciferase mRNA containing the p53 3'-UTR downstream, is decreased when hCPEB1 is overexpressed as seen by qPCR. Expression of hGLD-2 restores the mRNA stability. This is due to elongation of the poly(A) tail as seen by a PCR...

  6. PAX5О± and PAX5ОІ mRNA expression in breast Cancer: Relation ...

    African Journals Online (AJOL)

    Manal Basyouni Ahmed

    mRNA expression of PAX5a and PAX5b in breast cancer and assessing their underlying pathological roles through ... the molecular alterations that contribute to disease initiation and ... ring growth and survival of cancer cells [3]. PAX5 is ..... and CA15-3 are prognostic parameters for different molecular subtypes of · breast ...

  7. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  8. METHOD FOR STABILIZING KLYSTRONS

    Science.gov (United States)

    Magnuson, D.W.; Smith, D.F.

    1959-04-14

    High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.

  9. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    Directory of Open Access Journals (Sweden)

    McCullagh Paul

    2010-06-01

    Full Text Available Abstract Background Genome wide association studies (GWAS have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. Methods We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. Results We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7, and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39 and malignant tissues (n = 21 was also evident (P = 0.002. We also identified that whilst HNF1B(C and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression, HNF1B(B and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively, indicating major shifts in isoform usage. Conclusions Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.

  10. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    International Nuclear Information System (INIS)

    Harries, Lorna W; Perry, John RB; McCullagh, Paul; Crundwell, Malcolm

    2010-01-01

    Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10 -7 ), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10 -7 and 4 × 10 -4 respectively), indicating major shifts in isoform usage. Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms

  11. Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, Panayoula C; Tsigos, Constantine; Anastasiou, Eleni; Yfanti, Eleni; Boutati, Eleni; Souvatzoglou, Emmanouil; Kyrou, Ioannis; Raptis, Sotirios A

    2008-01-01

    Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs) and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P = .05). Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6 were all significantly higher in DM2 compared to control women (P DM2 women (P = .051), and overall, they correlated significantly with BMI (r = 0.406, P = .010) and waist circumference (r = 0.516, P = .003), but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1beta, TNF-alpha, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  12. Peripheral Mononuclear Cell Resistin mRNA Expression Is Increased in Type 2 Diabetic Women

    Directory of Open Access Journals (Sweden)

    Panayoula C. Tsiotra

    2008-01-01

    Full Text Available Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P=.05. Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 were all significantly higher in DM2 compared to control women (P<.001. The corresponding plasma resistin levels were slightly, but not significantly, increased in DM2 women (P=.051, and overall, they correlated significantly with BMI (r=0.406, P=.010 and waist circumference (r=0.516, P=.003, but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1β, TNF-α, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  13. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia

    Science.gov (United States)

    Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.

    2011-01-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/day for 28 days. An increase in wild-type IKBKAP mRNA expression in leukocytes was noted after eight days in six of eight individuals; after 28 days the mean increase as compared to baseline was significant (p=0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients, but also that effect appears to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine if kinetin will prove therapeutic in FD patients. PMID:21775922

  14. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1983-02-01

    The colloquium was convened to compose a summary of the most recent data and the best scientific appraisal of present knowledge on the process of smectite conversion to illite. A brief account of a consensus view on the probable stability of smectite clays when employed as the buffer material in the Swedish nuclear fuel storage system. It is concluded that if the quantitiy of nuclear waste to be put in each bore hole is carefully limited, temperatures surrounding the cannister will not rise to an acceptable level and the clay buffer material can be relied upon to be effective throughout the life of the repository. (G.B.)

  15. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  16. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA.

    Science.gov (United States)

    Rehage, Nina; Davydova, Elena; Conrad, Christine; Behrens, Gesine; Maiser, Andreas; Stehklein, Jenny E; Brenner, Sven; Klein, Juliane; Jeridi, Aicha; Hoffmann, Anne; Lee, Eunhae; Dianzani, Umberto; Willemsen, Rob; Feederle, Regina; Reiche, Kristin; Hackermüller, Jörg; Leonhardt, Heinrich; Sharma, Sonia; Niessing, Dierk; Heissmeyer, Vigo

    2018-01-19

    The ubiquitously expressed RNA-binding proteins Roquin-1 and Roquin-2 are essential for appropriate immune cell function and postnatal survival of mice. Roquin proteins repress target mRNAs by recognizing secondary structures in their 3'-UTRs and by inducing mRNA decay. However, it is unknown if other cellular proteins contribute to target control. To identify cofactors of Roquin, we used RNA interference to screen ~1500 genes involved in RNA-binding or mRNA degradation, and identified NUFIP2 as a cofactor of Roquin-induced mRNA decay. NUFIP2 binds directly and with high affinity to Roquin, which stabilizes NUFIP2 in cells. Post-transcriptional repression of human ICOS by endogenous Roquin proteins requires two neighboring non-canonical stem-loops in the ICOS 3'-UTR. This unconventional cis-element as well as another tandem loop known to confer Roquin-mediated regulation of the Ox40 3'-UTR, are bound cooperatively by Roquin and NUFIP2. NUFIP2 therefore emerges as a cofactor that contributes to mRNA target recognition by Roquin.

  17. mRNA Cancer Vaccines-Messages that Prevail.

    Science.gov (United States)

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  18. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  19. ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder

    Directory of Open Access Journals (Sweden)

    Milanesi Elena

    2012-09-01

    Full Text Available Abstract Background In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD, has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. Methods We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. Results These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models Conclusions Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathopsysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases.

  20. IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development

    DEFF Research Database (Denmark)

    Jønson, Lars; Christiansen, Jan; Hansen, Thomas van Overeem

    2014-01-01

    by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient...... that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression....

  1. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA.

    OpenAIRE

    Esumi, H; Takahashi, Y; Sekiya, T; Sato, S; Nagase, S; Sugimura, T

    1982-01-01

    Analbuminemic rats, which lack serum albumin, were previously found to have no albumin mRNA in the cytoplasm of the liver. In the present study, the existence of nuclear albumin mRNA precursors in the liver of analbuminemic rats was examined by RNA X cDNA hybridization kinetics. Albumin mRNA precursors were present in the nuclei of analbuminemic rat liver at almost normal levels, despite the absence of albumin mRNA from the cytoplasm. Nuclear RNA of analbuminemic rat liver was subjected to el...

  2. Sperm mRNA transcripts are indicators of sub-chronic low dose testicular injury in the Fischer 344 rat.

    Directory of Open Access Journals (Sweden)

    Sara E Pacheco

    Full Text Available Current human reproductive risk assessment methods rely on semen and serum hormone analyses, which are not easily comparable to the histopathological endpoints and mating studies used in animal testing. Because of these limitations, there is a need to develop universal evaluations that reliably reflect male reproductive function. We hypothesized that toxicant-induced testicular injury can be detected in sperm using mRNA transcripts as indicators of insult. To test this, we exposed adult male Fischer 344 rats to low doses of model testicular toxicants and classically characterized the testicular injury while simultaneously evaluating sperm mRNA transcripts from the same animals. Overall, this study aimed to: 1 identify sperm transcripts altered after exposure to the model testicular toxicant, 2,5-hexanedione (HD using microarrays; 2 expand on the HD-induced transcript changes in a comprehensive time course experiment using qRT-PCR arrays; and 3 test these injury indicators after exposure to another model testicular toxicant, carbendazim (CBZ. Microarray analysis of HD-treated adult Fischer 344 rats identified 128 altered sperm mRNA transcripts when compared to control using linear models of microarray analysis (q<0.05. All transcript alterations disappeared after 3 months of post-exposure recovery. In the time course experiment, time-dependent alterations were observed for 12 candidate transcripts selected from the microarray data based upon fold change and biological relevance, and 8 of these transcripts remained significantly altered after the 3-month recovery period (p<0.05. In the last experiment, 8 candidate transcripts changed after exposure to CBZ (p<0.05. The two testicular toxicants produced distinct molecular signatures with only 4 overlapping transcripts between them, each occurring in opposite directions. Overall, these results suggest that sperm mRNA transcripts are indicators of low dose toxicant-induced testicular injury in the rat.

  3. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  4. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    BACKGROUND: Interferon (IFN)-beta therapy in multiple sclerosis (MS) has been suggested to promote a deviation from T lymphocyte production of pathogenic Th1 cytokines to less detrimental Th2 cytokines, but this is still controversial. We studied patterns of in vivo blood mononuclear cell (MNC...... of any Th1 or Th2 cytokines. The largest changes in cytokine mRNA levels occurred early (~9-12 h) after an IFN-beta injection. CONCLUSION: We found no evidence of a Th1- or Th2-mRNA-promoting effect of IFN-beta therapy. The therapeutic effect of IFN-beta is more likely attributable to the induction...

  5. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  6. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  7. Lariat capping as a tool to manipulate the 5' end of individual yeast mRNA species in vivo

    DEFF Research Database (Denmark)

    Krogh, Nicolai; Pietschmann, Max; Schmid, Manfred

    2017-01-01

    The 5' cap structure of eukaryotic mRNA is critical for its processing, transport, translation, and stability. The many functions of the cap and the fact that most, if not all, mRNA carries the same type of cap makes it difficult to analyze cap function in vivo at individual steps of gene...... in the budding yeast Saccharomyces cerevisiae presumably without cofactors and that lariat capping occurs cotranscriptionally. The lariat-capped reporter mRNA is efficiently exported to the cytoplasm where it is found to be oligoadenylated and evenly distributed. Both the oligoadenylated form and a lariat......-capped mRNA with a templated poly(A) tail translates poorly, underlining the critical importance of the m(7)G cap in translation. Finally, the lariat-capped RNA exhibits a threefold longer half-life compared to its m(7)G-capped counterpart, consistent with a key role for the m(7)G cap in mRNA turnover. Our...

  8. IMP3 RNP Safe Houses Prevent miRNA-Directed HMGA2 mRNA Decay in Cancer and Development

    Directory of Open Access Journals (Sweden)

    Lars Jønson

    2014-04-01

    Full Text Available The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression.

  9. Chromatoid Body Protein TDRD6 Supports Long 3' UTR Triggered Nonsense Mediated mRNA Decay.

    Directory of Open Access Journals (Sweden)

    Grigorios Fanourgakis

    2016-05-01

    Full Text Available Chromatoid bodies (CBs are spermiogenesis-specific organelles of largely unknown function. CBs harbor various RNA species, RNA-associated proteins and proteins of the tudor domain family like TDRD6, which is required for a proper CB architecture. Proteome analysis of purified CBs revealed components of the nonsense-mediated mRNA decay (NMD machinery including UPF1. TDRD6 is essential for UPF1 localization to CBs, for UPF1-UPF2 and UPF1-MVH interactions. Upon removal of TDRD6, the association of several mRNAs with UPF1 and UPF2 is disturbed, and the long 3' UTR-stimulated but not the downstream exon-exon junction triggered pathway of NMD is impaired. Reduced association of the long 3' UTR mRNAs with UPF1 and UPF2 correlates with increased stability and enhanced translational activity. Thus, we identified TDRD6 within CBs as required for mRNA degradation, specifically the extended 3' UTR-triggered NMD pathway, and provide evidence for the requirement of NMD in spermiogenesis. This function depends on TDRD6-promoted assembly of mRNA and decay enzymes in CBs.

  10. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  11. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.

    Science.gov (United States)

    Beverly, Michael; Hagen, Caitlin; Slack, Olga

    2018-02-01

    The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.

  12. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  13. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Science.gov (United States)

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  14. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  15. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    International Nuclear Information System (INIS)

    Gao Ying; Li Shuai; Xu Dan; Wang Junjun; Sun Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. (author)

  16. Structural alterations in heart valves during left ventricular pressure overload in the rat

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; Smits, J. F.; Daemen, M. J.

    1994-01-01

    Heart valves are an important denominator of the function of the heart but detailed studies of structural alterations of heart valves after hemodynamic changes are lacking. Structural alterations of heart valves, including DNA synthesis, collagen mRNA, and protein concentration were measured in

  17. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  18. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  19. Improving the expression of recombinant pullulanase by increasing mRNA stability in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-09-01

    Conclusion: The addition of the 5′ SD sequence at the 5′ UTR and a 3′ stem-loop structure at the 3′ UTR of the pulA gene is an effective approach to increase pulA gene expression and fermentation enzyme activity.

  20. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  1. Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis.

    Science.gov (United States)

    Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues

    2017-07-01

    Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.

  2. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  3. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  4. Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques.

    Directory of Open Access Journals (Sweden)

    Francesco Napolitano

    Full Text Available In rodent and human brains, the small GTP-binding protein Rhes is highly expressed in virtually all dopaminoceptive striatal GABAergic medium spiny neurons, as well as in large aspiny cholinergic interneurons, where it is thought to modulate dopamine-dependent signaling. Consistent with this knowledge, and considering that dopaminergic neurotransmission is altered in neurological and psychiatric disorders, here we sought to investigate whether Rhes mRNA expression is altered in brain regions of patients with Parkinson's disease (PD, Schizophrenia (SCZ, and Bipolar Disorder (BD, when compared to healthy controls (about 200 post-mortem samples. Moreover, we performed the same analysis in the putamen of non-human primate Macaca Mulatta, lesioned with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Overall, our data indicated comparable Rhes mRNA levels in the brain of patients with SCZ and BD, and their respective healthy controls. In sharp contrast, the putamen of patients suffering from PD showed a significant 35% reduction of this transcript, compared to healthy subjects. Interestingly, in line with observations obtained in humans, we found 27% decrease in Rhes mRNA levels in the putamen of MPTP-treated primates. Based on the established inhibitory influence of Rhes on dopamine-related responses, we hypothesize that its striatal downregulation in PD patients and animal models of PD might represent an adaptive event of the dopaminergic system to functionally counteract the reduced nigrostriatal innervation.

  5. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  6. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    Science.gov (United States)

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  7. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  8. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  9. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  10. Geophysical Methods for Monitoring Soil Stabilization Processes

    Science.gov (United States)

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  11. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta.

    Science.gov (United States)

    David-Schwartz, Rakefet; Runo, Steven; Townsley, Brad; Machuka, Jesse; Sinha, Neelima

    2008-01-01

    It has been shown that the parasitic plant dodder (Cuscuta pentagona) establishes a continuous vascular system through which water and nutrients are drawn. Along with solutes, viruses and proteins, mRNA transcripts are transported from the host to the parasite. The path of the transcripts and their stability in the parasite have yet to be revealed. To discover the route of mRNA transportation, the in situ reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to locally amplify host transcript within parasitic tissue. The stability of host mRNA molecules was also checked by monitoring specific transcripts along the growing dodder thread. Four mRNAs, alpha and beta subunits of PYROPHOSPHATE (PPi)-DEPENDENT PHOSPHOFRUCTOKINASE (LePFP), the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and GIBBERELLIC ACID INSENSITIVE (LeGAI), were found to move from host (tomato (Solanum lycopersicum)) to dodder. LePFP mRNA was localized to the dodder parenchyma cells and to the phloem. LePFP transcripts were found in the growing dodder stem up to 30 cm from the tomato-dodder connection. These results suggest that mRNA molecules are transferred from host to parasite via symplastic connections between parenchyma cells, move towards the phloem, and are stable for a long distance in the parasite. This may allow developmental coordination between the parasite and its host.

  12. The Escherichia coli antiterminator protein BglG stabilizes the 5 ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Antitermination; mRNA stability; RNA binding protein ... factor, Rho, and the pBR322 copy number protein, Rop, have been .... Transcription analysis using the oligo- ..... Retarded RNA turnover in Escherichia coli a means of main-.

  13. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    Science.gov (United States)

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  14. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  15. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    Science.gov (United States)

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  16. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Directory of Open Access Journals (Sweden)

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  17. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  18. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    Science.gov (United States)

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    Science.gov (United States)

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  20. Stabilizing Niger

    DEFF Research Database (Denmark)

    Hahonou, Eric Komlavi

    international intervention in Niger. Their main objective is to secure their own strategic, economic and political interests by strengthening the Nigerien authorities through direct intervention and capacity building activities. For western states reinforcing state security institutions and stabilizing elite...

  1. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  2. Detection of siRNA Mediated Target mRNA Cleavage Activities in Human Cells by a Novel Stem-Loop Array RT-PCR Analysis

    Science.gov (United States)

    2016-09-07

    sequences of the target mRNA, and a double stranded stem at the 5′ end that forms a stem -loop to function as a forceps to stabilize the secondary...E-mjournal homepage: www.elsevier.com/locate/bbrepDetection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem -loop...challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem -loop array reverse

  3. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression

    Directory of Open Access Journals (Sweden)

    Craig Ian W

    2006-02-01

    Full Text Available Abstract Background The COMT gene is located on chromosome 22q11, a region strongly implicated in the aetiology of several psychiatric disorders, in particular schizophrenia. Previous research has suggested that activity and expression of COMT is altered in schizophrenia, and is mediated by one or more polymorphisms within the gene, including the functional Val158Met polymorphism. Method In this study we examined the expression levels of COMT mRNA using quantitative RT-PCR in 60 post mortem cerebellum samples derived from individuals with schizophrenia, bipolar disorder, depression, and no history of psychopathology. Furthermore, we have examined the methylation status of two CpG sites in the promoter region of the gene. Results We found no evidence of altered COMT expression or methylation in any of the psychiatric diagnoses examined. We did, however, find evidence to suggest that genotype is related to COMT gene expression, replicating the findings of two previous studies. Specifically, val158met (rs165688; Val allele rs737865 (G allele and rs165599 (G allele all showed reduced expression (P COMT expression, with females exhibiting significantly greater levels of COMT mRNA. Conclusion The expression of COMT does not appear to be altered in the cerebellum of individuals suffering from schizophrenia, bipolar disorder or depression, but does appear to be influenced by single nucleotide polymorphisms within the gene.

  4. Differential conserted activity induced regulation of Nogo receptors (1-3, LOTUS and Nogo mRNA in mouse brain.

    Directory of Open Access Journals (Sweden)

    Tobias E Karlsson

    Full Text Available Nogo Receptor 1 (NgR1 mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.

  5. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)], E-mail: david.arcos@amphos21.com; Perez del Villar, L. [CIEMAT, Dpto.de Medio Ambiente, Avda, Complutense 22, 28040 Madrid (Spain); Bruno, J.; Domenech, C. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)

    2008-04-15

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and

  6. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  7. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims

    Directory of Open Access Journals (Sweden)

    A Sanchez-Bahillo

    2008-04-01

    Full Text Available A Sanchez-Bahillo1, V Bautista-Hernandez1, Carlos Barcia Gonzalez1, R Bañon2, A Luna2, EC Hirsch3, Maria-Trinidad Herrero11Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; 2Department of Legal Medicine, Department of Human Anatomy, School of Medicine, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; 3INSERM U679 Hôpital de la Salpêtrière, Boulevard de l’Hôpital, Paris, FranceAbstract: Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH mRNA in the noradrenergic neurons of the Locus Coeruleus (LC. These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of

  8. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    Science.gov (United States)

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  10. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    BACKGROUND: Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6......) and type VII collagen (alpha1) during colorectal cancer carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for alpha1(IV), alpha 4(IV), alpha 6(IV), and alpha1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals...

  11. Peptide inhibitors of botulinum neurotoxin by mRNA display

    International Nuclear Information System (INIS)

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  12. Regulation of mRNA translation influences hypoxia tolerance

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  13. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Science.gov (United States)

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  14. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Science.gov (United States)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  15. Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: implications in cause of death.

    Science.gov (United States)

    Chung, Ukhee; Seo, Joong-Seok; Kim, Yu-Hoon; Son, Gi Hoon; Hwang, Juck-Joon

    2012-11-01

    Quantitative RNA analyses of autopsy materials to diagnose the cause and mechanism of death are challenging tasks in the field of forensic molecular pathology. Alterations in mRNA profiles can be induced by cellular stress responses during supravital reactions as well as by lethal insults at the time of death. Here, we demonstrate that several gene transcripts encoding heat shock proteins (HSPs), a gene family primarily responsible for cellular stress responses, can be differentially expressed in the occipital region of postmortem human cerebral cortices with regard to the cause of death. HSPA2 mRNA levels were higher in subjects who died due to mechanical asphyxiation (ASP), compared with those who died by traumatic injury (TI). By contrast, HSPA7 and A13 gene transcripts were much higher in the TI group than in the ASP and sudden cardiac death (SCD) groups. More importantly, relative abundances between such HSP mRNA species exhibit a stronger correlation to, and thus provide more discriminative information on, the death process than does routine normalization to a housekeeping gene. Therefore, the present study proposes alterations in HSP mRNA composition in the occipital lobe as potential forensic biological markers, which may implicate the cause and process of death.

  16. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs

    Directory of Open Access Journals (Sweden)

    Valentina Iadevaia

    2015-09-01

    Full Text Available Post-transcriptional control of gene expression is mediated by RNA-binding proteins (RBPs and small non-coding RNAs (e.g., microRNAs that bind to distinct elements in their mRNA targets. Here, we review recent examples describing the synergistic and/or antagonistic effects mediated by RBPs and miRNAs to determine the localisation, stability and translation of mRNAs in mammalian cells. From these studies, it is becoming increasingly apparent that dynamic rearrangements of RNA-protein complexes could have profound implications in human cancer, in synaptic plasticity, and in cellular differentiation.

  17. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    Directory of Open Access Journals (Sweden)

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  18. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    International Nuclear Information System (INIS)

    Fu, Zidong Donna; Klaassen, Curtis D.

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs

  19. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.

  20. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  1. Macroeconomic stability

    DEFF Research Database (Denmark)

    Jespersen, Jesper

    2004-01-01

    It is demonstrated that full employment and sustainable development not necessarily are conflicting goals. On the other hand macroeconomic stability cannot be obtained without a deliberate labour sharing policy and a shift in the composition of private consumption away from traditional material...

  2. Stabilized superconductors

    International Nuclear Information System (INIS)

    Wong, J.

    1975-01-01

    The stable, high field, high current composite wire comprises multiple filaments in a depleted bronze matrix, each filament comprising a type II superconducting, beta-tungsten structure, intermetallic compound layer jacketing and metallurgically bonded to a stabilizing copper core, directly or via an intermediate layer of refractory metal

  3. Chronic Stress Reduces Nectin-1 mRNA Levels and Disrupts Dendritic Spine Plasticity in the Adult Mouse Perirhinal Cortex

    Directory of Open Access Journals (Sweden)

    Qian Gong

    2018-03-01

    Full Text Available In adulthood, chronic exposure to stressful experiences disrupts synaptic plasticity and cognitive function. Previous studies have shown that perirhinal cortex-dependent object recognition memory is impaired by chronic stress. However, the stress effects on molecular expression and structural plasticity in the perirhinal cortex remain unclear. In this study, we applied the chronic social defeat stress (CSDS paradigm and measured the mRNA levels of nectin-1, nectin-3 and neurexin-1, three synaptic cell adhesion molecules (CAMs implicated in the adverse stress effects, in the perirhinal cortex of wild-type (WT and conditional forebrain corticotropin-releasing hormone receptor 1 conditional knockout (CRHR1-CKO mice. Chronic stress reduced perirhinal nectin-1 mRNA levels in WT but not CRHR1-CKO mice. In conditional forebrain corticotropin-releasing hormone conditional overexpression (CRH-COE mice, perirhinal nectin-1 mRNA levels were also reduced, indicating that chronic stress modulates nectin-1 expression through the CRH-CRHR1 system. Moreover, chronic stress altered dendritic spine morphology in the main apical dendrites and reduced spine density in the oblique apical dendrites of perirhinal layer V pyramidal neurons. Our data suggest that chronic stress disrupts cell adhesion and dendritic spine plasticity in perirhinal neurons, which may contribute to stress-induced impairments of perirhinal cortex-dependent memory.

  4. A novel homozygous stop-codon mutation in human HFE responsible for nonsense-mediated mRNA decay.

    Science.gov (United States)

    Padula, Maria Carmela; Martelli, Giuseppe; Larocca, Marilena; Rossano, Rocco; Olivieri, Attilio

    2014-09-01

    HFE-hemochromatosis (HH) is an autosomal disease characterized by excessive iron absorption. Homozygotes for H63D variant, and still less H63D heterozygotes, generally do not express HH phenotype. The data collected in our previous study in the province of Matera (Basilicata, Italy) underlined that some H63D carriers showed altered iron metabolism, without additional factors. In this study, we selected a cohort of 10/22 H63D carriers with severe biochemical iron overload (BIO). Additional analysis was performed for studying HFE exons, exon-intron boundaries, and untranslated regions (UTRs) by performing DNA extraction, PCR amplification and sequencing. The results showed a novel substitution (NM_000410.3:c.847C>T) in a patient exon 4 (GenBankJQ478433); it introduces a premature stop-codon (PTC). RNA extraction and reverse-transcription were also performed. Quantitative real-time PCR was carried out for verifying if our aberrant mRNA is targeted for nonsense-mediated mRNA decay (NMD); we observed that patient HFE mRNA was expressed much less than calibrator, suggesting that the mutated HFE protein cannot play its role in iron metabolism regulation, resulting in proband BIO. Our finding is the first evidence of a variation responsible for a PTC in iron cycle genes. The genotype-phenotype correlation observed in our cases could be related to the additional mutation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  6. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  7. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species.

    Science.gov (United States)

    Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D

    2014-09-15

    mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    Science.gov (United States)

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  9. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  10. Common pathological mutations in PQBP1 induce nonsense-mediated mRNA decay and enhance exclusion of the mutant exon.

    Science.gov (United States)

    Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2010-01-01

    The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.

  11. Intergenic mRNA molecules resulting from trans-splicing.

    Science.gov (United States)

    Finta, Csaba; Zaphiropoulos, Peter G

    2002-02-22

    Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.

  12. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  13. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  14. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  15. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  16. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  17. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  18. Before Stabilization

    DEFF Research Database (Denmark)

    Plesner, Ursula; Horst, Maja

    2013-01-01

    of the communication about innovations in information and communication technology (ICT), and to contribute to an understanding of how different visions promise particular future configurations of workflows, communication processes, politics, economic models and social relations. Hereby, the paper adds...... to the literature on the relationship between ICTs and organizing, but with a distinct focus on innovation communication and distributed innovation processes taking place before ICTs are stabilized, issues which cannot be captured by studies of diffusion and adaptation of new ICTs within single organizations....

  19. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood.

    Science.gov (United States)

    Souza, K de Picoli; Nunes, M T

    2014-08-01

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  20. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    International Nuclear Information System (INIS)

    Picoli Souza, K. de; Nunes, M.T.

    2014-01-01

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood

  1. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Energy Technology Data Exchange (ETDEWEB)

    Picoli Souza, K. de [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-24

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  2. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Directory of Open Access Journals (Sweden)

    K. de Picoli Souza

    2014-08-01

    Full Text Available Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g and triiodothyronine (0.5-50 µg/100 g for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold. Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60% ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold, and decreased heart rate (5%, fast muscle myoglobin mRNA (30% and body weight (20% in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30% and body weight (14%. These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  3. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats.

    Science.gov (United States)

    Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L

    2018-01-01

    Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.

  4. Lower glutamic acid decarboxylase 65kD mRNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia

    Science.gov (United States)

    Glausier, JR; Kimoto, S; Fish, KN; Lewis, DA

    2014-01-01

    Background Altered GABA signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in schizophrenia and schizoaffective disorder. PFC levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67kD (GAD67) has been consistently reported to be lower in these disorders, but the status of the second GABA-synthesizing enzyme, GAD65, remains unclear. Methods GAD65 mRNA levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. GAD65 relative protein levels were quantified in a subset of subject pairs by confocal immunofluorescence microscopy. Results Mean GAD65 mRNA levels were 13.6% lower in schizoaffective disorder subjects, but did not differ in schizophrenia subjects, relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein measures within schizoaffective disorder subjects was not attributable to factors commonly comorbid with the diagnosis. Conclusions In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in subjects with schizoaffective disorder relative to subjects with schizophrenia, these findings may support an interpretation that GAD65 down-regulation provides a homeostatic response complementary to GAD67 down-regulation expression that serves to reduce inhibition in the face of lower PFC network activity. PMID:24993056

  5. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  6. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers.

    Science.gov (United States)

    Akram, Zertashia; Riaz, Sadaf; Kayani, Mahmood Akhtar; Jahan, Sarwat; Ahmad, Malik Waqar; Ullah, Muhammad Abaid; Wazir, Hizbullah; Mahjabeen, Ishrat

    2018-01-16

    Oxidative stress and DNA damage are considered as possible mechanisms involved in lead toxicity. To test this hypothesis, DNA damage and expression variations of aminolevulinic acid dehydratase (ALAD), superoxide dismutase 2 (SOD2), and 8-oxoguanine DNA glycosylase 2a (OGG1-2a) genes was studied in a cohort of 100 exposed workers and 100 controls with comet assay and real-time polymerse chain reaction (PCR). Results indicated that increased number of comets was observed in exposed workers versus controls (p gene.

  7. Bone health nutraceuticals alter microarray mRNA gene expression: A randomized, parallel, open-label clinical study.

    Science.gov (United States)

    Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W

    2016-01-15

    Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could be due to multiple feedback systems balancing activities of osteoblasts and osteoclasts. In summary, this ex-vivo microarray study indicated that the pomegranate, grape seed, quercetin and licorice combinations of plant extracts modulated gene expression for both osteoclastic and osteogenic processes. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  9. Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Dere, Edward; Spade, Daniel J.; Hall, Susan J.; Altemus, Aimee; Smith, James D.; Phillips, Jonathan A.; Moffit, Jeffrey S.; Blanchard, Kerry T.; Boekelheide, Kim

    2017-01-01

    The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4 weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4 mg/kg/day), BI665915 (0, 20, 70, 100 mg/kg/d), BI665636 (0, 20, 100 mg/kg/d) or BI163538 (0, 70, 150, 300 mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting. - Highlights: • Testing of pharmaceutical compounds identified altered sperm mRNA transcripts.

  10. Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds

    Energy Technology Data Exchange (ETDEWEB)

    Dere, Edward [Division of Urology, Rhode Island Hospital, Providence, RI (United States); Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States); Spade, Daniel J.; Hall, Susan J. [Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States); Altemus, Aimee; Smith, James D.; Phillips, Jonathan A.; Moffit, Jeffrey S.; Blanchard, Kerry T. [Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (United States); Boekelheide, Kim, E-mail: kim_boekelheide@brown.edu [Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States)

    2017-04-01

    The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4 weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4 mg/kg/day), BI665915 (0, 20, 70, 100 mg/kg/d), BI665636 (0, 20, 100 mg/kg/d) or BI163538 (0, 70, 150, 300 mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting. - Highlights: • Testing of pharmaceutical compounds identified altered sperm mRNA transcripts.

  11. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome

    Directory of Open Access Journals (Sweden)

    Imourana Alassane-Kpembi

    2018-05-01

    Full Text Available Type B trichothecene mycotoxin deoxynivalenol (DON is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE was observed after treatment by yeast only. By contrast, 3619 probes—corresponding to 2771 genes—were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes. Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  12. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome.

    Science.gov (United States)

    Alassane-Kpembi, Imourana; Pinton, Philippe; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu; Oswald, Isabelle P

    2018-05-15

    Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae , have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  13. Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death.

    Science.gov (United States)

    Son, Gi Hoon; Park, Seong Hwan; Kim, Yunmi; Kim, Ji Yeon; Kim, Jin Wook; Chung, Sooyoung; Kim, Yu-Hoon; Kim, Hyun; Hwang, Juck-Joon; Seo, Joong-Seok

    2014-03-01

    Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

  14. Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA

    Science.gov (United States)

    Loh, Yuin-Han; Yang, Jimmy Chen; De Los Angeles, Alejandro; Guo, Chunguang; Cherry, Anne; Rossi, Derrick J.; Park, In-Hyun; Daley, George Q.

    2012-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy, in vitro modeling of human disease, and drug screening. To date, most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively, transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This report describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector, which includes the coding sequences of human OCT4, SOX2, KLF4, and cMYC linked with picornaviral 2A plasmids. Moreover, after reprogramming has been achieved, this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells. PMID:22605648

  15. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  16. Role of protein and mRNA oxidation in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    hayat eel-maarouf-bouteau

    2013-04-01

    Full Text Available Reactive oxygen species (ROS are key players in the regulation of seed germination and dormancy. Although their regulated accumulation is a prerequisite for germination, the cellular basis of their action remains unknown, but very challenging to elucidate due to the lack of specificity of these compounds that can potentially react with all biomolecules. Among these, nucleic acids and proteins are very prone to oxidative damage. RNA is highly sensitive to oxidation because of its single-stranded structure and the absence of a repair system. Oxidation of mRNAs induces their decay through processing bodies or results in the synthesis of aberrant proteins through altered translation. Depending on the oxidized amino acid, ROS damage of proteins can be irreversible (i.e. carbonylation thus triggering the degradation of the oxidized proteins by the cytosolic 20S proteasome or can be reversed through the action of thioredoxins, peroxiredoxins or glutaredoxins (cysteine oxidation or by methionine sulfoxide reductase (methionine oxidation. Seed dormancy alleviation in the dry state, referred to as after-ripening, requires both selective mRNA oxidation and protein carbonylation. Similarly, seed imbibition of non-dormant seeds is associated with targeted oxidation of a subset of proteins. Altogether, these specific features testify that such oxidative modifications play important role in commitment of the cellular functioning toward germination completion.

  17. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Hsien-Sung Huang

    2007-08-01

    Full Text Available Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67 GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.

  18. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase.

    Science.gov (United States)

    Kiss, A; Jurkovicova, D; Jezova, D; Krizanova, O

    2001-06-01

    To study functional interactions between angiotensin II AT1 receptors and nitric oxide (NO) activity in different brain areas in rats exposed to immobilization stress. Central inhibition of nitric oxide synthase (NOS) was provided by intracerebroventricular (i.c.v.) administration of (N-omega-nitro-L-arginine-methylester) L-NAME and analysis of AT1 receptor mRNA was performed using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The immobilization in prone position lasted 2 hrs and the rats were sacrificed 24 hr later. The hypothalamus, hippocampus, thalamus, and cortex were isolated from fresh brains. In the cortex, gene expression of AT1 receptors was unaffected either by L-NAME treatment, or by a single exposure to immobilization stress for 2 hours followed by 24 hours of rest. In the hippocampus, the repeated treatment with L-NAME increased mRNA levels of AT1 receptors approximately 9-times compared to those in the control (untreated) group. Immobilization also increased AT1 receptor mRNA levels in the hippocampus which was similar to that induced by the L-NAME. The increase of AT1 receptor mRNA levels in the hippocampus of immobilized rats was not further altered when the animals were pretreated with L-NAME. In control rats, exposure to immobilization resulted in a significant rise in mRNA levels coding for AT1 receptors in the hypothalamus, but not in the thalamus. L-NAME treatment showed a tendency of increase in AT1 receptor mRNA levels in the hypothalamus. Moreover, when animals treated with L-NAME were subjected to immobilization, a further increase in AT1 receptor mRNA levels was observed in the hypothalamus in comparison with corresponding controls. The present data indicate that a single immobilization stress results in increased gene expression of AT1 receptors in the hypothalamus and hippocampus. The rise in AT1 mRNA levels in the same brain structures after repeated treatment with L-NAME allow to suggest an

  19. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  20. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  1. Striatal output markers do not alter in response to circling behaviour in 6-OHDA lesioned rats produced by acute or chronic administration of the monoamine uptake inhibitor BTS 74 398.

    Science.gov (United States)

    Lane, E L; Cheetham, S; Jenner, P

    2008-01-01

    The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.

  2. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    Science.gov (United States)

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  3. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  4. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  5. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    International Nuclear Information System (INIS)

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  6. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Science.gov (United States)

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  7. Differential expression of viral PAMP receptors mRNA in peripheral blood of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Riñón Marta

    2007-11-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMP receptors play a key role in the early host response to viruses. In this work, we determined mRNA levels of two members of the Toll-like Receptors family, (TLR3 and TLR7 and the helicase RIG-I, all of three recognizing viral RNA products, in peripheral blood of healthy donors and hepatitis C virus (HCV patients, to observe if their transcripts are altered in this disease. Methods IFN-α, TLR3, TLR7 and RIG-I levels in peripheral blood from healthy controls (n = 18 and chronic HCV patients (n = 18 were quantified by real-time polymerase chain reaction. Results Our results show that IFN-α, TLR3, TLR7 and RIG-I mRNA levels are significantly down-regulated in patients with chronic HCV infection when compared with healthy controls. We also found that the measured levels of TLR3 and TLR7, but not RIG-I, correlated significantly with those of IFN-α Conclusion Monitoring the expression of RNA-sensing receptors like TLR3, TLR7 and RIG-I during the different clinical stages of infection could bring a new source of data about the prognosis of disease.

  8. Differential Expression of Sox11 and Bdnf mRNA Isoforms in the Injured and Regenerating Nervous Systems

    Directory of Open Access Journals (Sweden)

    Felix L. Struebing

    2017-11-01

    Full Text Available In both the central nervous system (CNS and the peripheral nervous system (PNS, axonal injury induces changes in neuronal gene expression. In the PNS, a relatively well-characterized alteration in transcriptional activation is known to promote axonal regeneration. This transcriptional cascade includes the neurotrophin Bdnf and the transcription factor Sox11. Although both molecules act to facilitate successful axon regeneration in the PNS, this process does not occur in the CNS. The present study examines the differential expression of Sox11 and Bdnf mRNA isoforms in the PNS and CNS using three experimental paradigms at different time points: (i the acutely injured CNS (retina after optic nerve crush and PNS (dorsal root ganglion after sciatic nerve crush, (ii a CNS regeneration model (retina after optic nerve crush and induced regeneration; and (iii the retina during a chronic form of central neurodegeneration (the DBA/2J glaucoma model. We find an initial increase of Sox11 in both PNS and CNS after injury; however, the expression of Bdnf isoforms is higher in the PNS relative to the CNS. Sustained upregulation of Sox11 is seen in the injured retina following regeneration treatment, while the expression of two Bdnf mRNA isoforms is suppressed. Furthermore, two isoforms of Sox11 with different 3′UTR lengths are present in the retina, and the long isoform is specifically upregulated in later stages of glaucoma. These results provide insight into the molecular cascades active during axonal injury and regeneration in mammalian neurons.

  9. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion.

    Directory of Open Access Journals (Sweden)

    Yesenia Ríos

    2011-01-01

    Full Text Available Loss of retinoblastoma (Rb tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39 mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130, and cdkn1a (p21 expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis.

  10. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  11. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  13. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    DEFF Research Database (Denmark)

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    of the ERα mRNA level, but only significantly for prochloraz, dieldrin, and tolchlofos-methyl. Alone no pesticides affected the ERβ mRNA level significantly, but chlorpyrifos increased the mRNA level weakly. Co-exposure with E2 elicited a significant increased ERβ mRNA level by prochloraz, fenarimol...

  14. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  15. Cytoplasmic Control of Sense-Antisense mRNA Pairs

    Directory of Open Access Journals (Sweden)

    Flore Sinturel

    2015-09-01

    Full Text Available Transcriptome analyses have revealed that convergent gene transcription can produce many 3′-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3′-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3′-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3′-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5′-3′ cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression.

  16. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    Science.gov (United States)

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Regulation of mRNA translation during mitosis.

    Science.gov (United States)

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  18. IER5 gene's mRNA expression after irradiation

    International Nuclear Information System (INIS)

    Ding Kuke; Shen Jingjing; Xu Lili; Li Yanling; Zhou Ping; Ma Binrong; Zhao Zengqiang; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To explore the effect of irradiation on IER5 gene expression. Methods: Two kinds of cells (AHH-1 and HeLa) and the BALB/c-nu mice inoculated with tumor cells were exposed to 60 Co γ- rays and analyzed by real-time PCR. The above-mentioned irradiated objects were firstly divided into groups by different doses and post-radiation time, then mRNA were extracted and reverse-transcripted to DNA before real-time PCR test. Results: Under the same condition, AHH-1 was more sensitive to radiation than HeLa. The dose level corresponding to the expression peak of AHH-1 was less than that of HeLa. For AHH-1 cells, the response to 2 Gy irradiation was earlier than that to 10 Gy. But there was not remarkable difference for HeLa response between 2 and 10 Gy, and the top transcriptional levels for both cells nearly simultaneously appeared at 2 h after irradiation. In addition, the IER5 gene of human liver tumor was more sensitive than that of lung cancer and brain tumor. Conclusions: IER5 might be a candidate biomarker of radiation injury, and had the potential value in radiation-therapy for liver tumor. (authors)

  19. mRNA related to insulin family in human placenta

    International Nuclear Information System (INIS)

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  20. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  1. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  2. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  4. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    Science.gov (United States)

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-08-26

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.

  5. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

    Science.gov (United States)

    Geula, Shay; Moshitch-Moshkovitz, Sharon; Dominissini, Dan; Mansour, Abed AlFatah; Kol, Nitzan; Salmon-Divon, Mali; Hershkovitz, Vera; Peer, Eyal; Mor, Nofar; Manor, Yair S; Ben-Haim, Moshe Shay; Eyal, Eran; Yunger, Sharon; Pinto, Yishay; Jaitin, Diego Adhemar; Viukov, Sergey; Rais, Yoach; Krupalnik, Vladislav; Chomsky, Elad; Zerbib, Mirie; Maza, Itay; Rechavi, Yoav; Massarwa, Rada; Hanna, Suhair; Amit, Ido; Levanon, Erez Y; Amariglio, Ninette; Stern-Ginossar, Noam; Novershtern, Noa; Rechavi, Gideon; Hanna, Jacob H

    2015-02-27

    Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Copyright © 2015, American Association for the Advancement of Science.

  6. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals

  7. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    White, Samantha L; Sakhrani, Dionne; Danzmann, Roy G; Devlin, Robert H

    2013-10-02

    Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. The present molecular data are concordant with

  8. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    Science.gov (United States)

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2

  9. Immunization alters body odor.

    Science.gov (United States)

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  10. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    Science.gov (United States)

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  11. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    Science.gov (United States)

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups

  12. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  13. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    Science.gov (United States)

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  14. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    DEFF Research Database (Denmark)

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  15. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro; Isai, Shiori; Sakai, Akira; Mineta, Katsuhiko; Hirai, Masami Yokota; Suzuki, Yuya; Kanaya, Shigehiko; Yamaguchi, Junji; Naito, Satoshi; Chiba, Yukako

    2017-01-01

    stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were

  16. In situ localization of chalcone synthase mRNA in pea root nodule development.

    NARCIS (Netherlands)

    Yang, W.C.; Canter Cremers, H.C.J.; Hogendijk, P.; Katinakis, P.; Wijffelman, C.A.; Franssen, H.J.; Kammen, van A.; Bisseling, T.

    1992-01-01

    In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it

  17. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  18. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  19. Aqueous alteration of Japanese simulated waste glass P0798: Effects of alteration-phase formation on alteration rate and cesium retention

    International Nuclear Information System (INIS)

    Inagaki, Y.; Shinkai, A.; Idemistu, K.; Arima, T.; Yoshikawa, H.; Yui, M.

    2006-01-01

    Aqueous alteration tests were performed with a Japanese simulated waste glass P0798 in alkaline solutions as a function of pH or species/concentration of alkaline metals in the solution in order to evaluate the alteration conditions determining whether smectite (2:1 clay mineral) or analcime (zeolite) forms as the major alteration-phase. XRD analysis of the alteration-phases showed that smectite forms at any pH between 9.5 and 12, and analcime forms at pH above 11, though the formation also depends on species and concentrations of alkaline metals in the solution. These results cannot agree with the thermodynamically predicted phase stability, e.g., smectite is more stable than the thermodynamic prediction shows. On the basis of the results of alteration conditions, the alteration tests were performed under smectite forming conditions, where only smectite forms or no crystalline phases form, in order to evaluate the alteration rate and the mechanism of cesium release/retention. The results showed that the glass alteration proceeds slowly in proportion to square root of time under smectite forming conditions, which indicates that the alteration rate can be controlled by a diffusion process. It was suggested that the alteration rate under smectite forming conditions is independent of the pH, alkaline metal species/concentration in the solution and whether smectite actually forms or not. The results also indicated that most of cesium dissolved from the glass can be retained in the alteration-phases by reversible sorption onto smectite or irreversible incorporation into analcime, pollucite or solid solutions of them

  20. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  1. Simultaneous isolation of mRNA and native protein from minute samples of cells

    DEFF Research Database (Denmark)

    Petersen, Tonny Studsgaard; Andersen, Claus Yding

    2014-01-01

    Precious biological samples often lack a sufficient number of cells for multiple procedures, such as extraction of mRNA while maintaining protein in a non-denatured state suitable for subsequent characterization. Here we present a new method for the simultaneous purification of mRNA and native...... in their native state for traditional protein assays. We validated the procedure using neonatal rat ovaries and small numbers of human granulosa cells, demonstrating the extraction of mRNA suitable for gene expression analysis with simultaneous isolation of native proteins suitable for downstream characterization...... proteins from samples containing small numbers of cells. Our approach utilizes oligodeoxythymidylate [oligo(dT)25]-coated paramagnetic beads in an optimized reaction buffer to isolate mRNA comparable in quantity and quality to mRNA isolated with existing methods, while maintaining the proteins...

  2. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    Science.gov (United States)

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  3. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  4. Food Fortification Stability Study

    Science.gov (United States)

    Sirmons, T.; Cooper, M.; Douglas, G.

    2017-01-01

    NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five-year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermo-stabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exceptions were Grilled pork Chop and Chicken Noodle Soup whose individual components appeareddegrade rapidly over one year of storage. Finally, most vitamins appeared to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at

  5. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  6. The effects of 3% diquafosol sodium eye drop application on meibomian gland and ocular surface alterations in the Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice.

    Science.gov (United States)

    Ikeda, Keisuke; Simsek, Cem; Kojima, Takashi; Higa, Kazunari; Kawashima, Motoko; Dogru, Murat; Shimizu, Takahiko; Tsubota, Kazuo; Shimazaki, Jun

    2018-04-01

    The purpose of the study is to investigate the effect of 3% diquafosol sodium eye drops on meibomian gland and ocular surface alterations in the superoxide dismutase-1 (Sod1 -/- ) mice in comparison to the wild-type mouse. Three percent diquafosol sodium eye drop was instilled to 20 eyes of 10 50-week-old male Sod1 -/- mice and 22 eyes of 11 C57BL/6 strain 50-week-old wild-type (WT) male mice six times a day for 2 weeks. Aqueous tear secretion quantity was measured with phenol red-impregnated cotton threads without anesthesia. Tear film stability and corneal epithelial damage were assessed by fluorescein and lissamine green staining. We also performed oil red O (ORO) lipid staining to evaluate the lipid changes in the meibomian glands. Meibomian gland specimens underwent hematoxylin and eosin staining to examine histopathological changes and meibomian gland acinar unit density after sacrifice. Immunohistochemistry staining was performed using cytokeratin 4, cytokeratin 13, and transglutaminase-1 antibodies. Quantitative real-time polymerase chain reaction for cytokeratin 4, cytokeratin 13, and transglutaminase-1 mRNA expression was also performed. The aqueous tear quantity, the mean tear film breakup time, and the number of lipid droplets significantly improved in the Sod1 -/- mice with treatment. The mean meibomian acinar unit density did not change in the Sod1 -/- mice and WT mice after treatment. Application of 3% diquafosol sodium eye drop significantly decreased the corneal fluorescein and lissamine green staining scores in the Sod1 -/- mice after 2 weeks. We showed a notable increase in cytokeratin 4, cytokeratin 13 immunohistochemistry staining, and cytokeratin 4, cytokeratin 13 mRNA expressions with a marked decrease in immunohistochemistry staining and significant decline in mRNA expression of transglutaminase-1 after 3% diquafosol sodium treatment. Topical application of 3% diquafosol sodium eye drop improved the number of lipid droplets, tear stability

  7. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  8. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  9. Alterations in polyadenylation and its implications for endocrine disease

    Directory of Open Access Journals (Sweden)

    Anders eRehfeld

    2013-05-01

    Full Text Available IntroductionPolyadenylation is the process in which the pre-mRNA is cleaved at the poly(A site and a poly(A tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A sites can undergo alternative polyadenylation, producing distinct mRNA isoforms with different 3’ untranslated regions (3’ UTRs and in some cases different coding regions. Two thirds of all human genes undergo alternative polyadenylation. The efficiency of the polyadenylation process regulates gene expression and alternative polyadenylation plays an important part in post-transcriptional regulation, as the 3’ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for microRNAs and RNA-binding proteins.Implications of alterations in polyadenylation for endocrine diseaseAlterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome and many cancer diseases, including several types of endocrine tumor diseases.PerspectivesRecent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SummaryThis review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.

  10. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Strid, A.

    1993-01-01

    Alterations in the amounts of mRNA for different types of defence genes after exposure of peas to supplementary ultraviolet-B radiation are demonstrated. The expression of the genes which encode the chalcone synthase of the flavonoid biosynthetic pathway and glutathione reductase was induced, while a decrease was found for the chloroplastic radical-scavenging enzyme, superoxide dismutase. (author)

  11. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value

    OpenAIRE

    BOLDRINI, LAURA; GIORDANO, MIRELLA; ALÌ, GRETA; MELFI, FRANCA; ROMANO, GAETANO; LUCCHI, MARCO; FONTANINI, GABRIELLA

    2014-01-01

    The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigat...

  12. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  13. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  14. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  15. The hypoxic proteome is influenced by gene-specific changes in mRNA translation

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Seigneuric, Renaud; Magagnin, Michael G.; Beucken, Twan van den; Lambin, Philippe; Wouters, Bradly G.

    2005-01-01

    Background and purpose: Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. Materials and methods: DU145 prostate carcinoma cells were exposed to 4 h of hypoxia ( 2 ). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. Results: One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. Conclusions: Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia

  16. Complement mRNA in the mammalian brain: responses to Alzheimer's disease and experimental brain lesioning.

    Science.gov (United States)

    Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E

    1992-01-01

    This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.

  17. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  18. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  20. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  1. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.

    Science.gov (United States)

    Sugimori, Seiko; Kumata, Yuji; Kobayashi, Satoru

    2018-01-01

    Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development. © 2017 Japanese Society of Developmental Biologists.

  2. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  3. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  4. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    Directory of Open Access Journals (Sweden)

    Sayaka Aizawa

    Full Text Available The pars tuberalis (PT is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD, such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2 mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.

  5. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  6. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  7. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance.

    Science.gov (United States)

    Morimoto, Shimpei; Yahara, Koji

    2018-03-01

    Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes ( ADC17 and KIN1 ) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential

  8. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    Science.gov (United States)

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  9. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina

    2003-01-01

    between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain...... HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed...

  10. All-in-one detector of circulating mRNA based on a smartphone

    Science.gov (United States)

    Cmiel, Vratislav; Gumulec, Jaromir; Svoboda, Ondrej; Raudenska, Martina; Hudcova, Kristyna; Sekora, Jiri; Balogh, Jaroslav; Masarik, Michal; Provaznik, Ivo

    2016-03-01

    Metallothionein is significantly elevated in various tumors, notably in prostate cancer on both mRNA and protein level. We demonstrated a strong predictive potential of free circulating metallothionein 2A isoform mRNA for patients with this cancer. Circulating mRNA detection relies on expensive equipment and requires high level of expertise. In this work we developed compact "all-in-one" laboratory system which replace microvolume spectrophotometer, thermocycler and realtime PCR machines. We managed to design and construct a microprocessor controlled heating/cooling chamber that ensures required temperature gradient. The chamber includes implemented optical system to enable fluorescence excitation and fluorescence analysis using a smart-phone.

  11. Adipose tissue interleukin-18 mRNA and plasma interleukin-18: effect of obesity and exercise

    DEFF Research Database (Denmark)

    Leick, Lotte; Lindegaard, Birgitte; Stensvold, Dorthe

    2007-01-01

    resistance was tested. Furthermore, we speculated that acute exercise and exercise training would regulate AT IL-18 mRNA expression. RESEARCH METHODS AND PROCEDURES: Non-obese subjects with BMI women: n = 18; men; n = 11) and obese subjects with BMI >30 kg/m(2) (women: n = 6; men: n = 7...... of regular physical activity with improved insulin sensitivity.......OBJECTIVES: Obesity and a physically inactive lifestyle are associated with increased risk of developing insulin resistance. The hypothesis that obesity is associated with increased adipose tissue (AT) interleukin (IL)-18 mRNA expression and that AT IL-18 mRNA expression is related to insulin...

  12. Assessing mRNA nuclear export in mammalian cells by microinjection.

    Science.gov (United States)

    Lee, Eliza S; Palazzo, Alexander F

    2017-08-15

    The nuclear export of mRNAs is an important yet little understood part of eukaryotic gene expression. One of the easiest methods for monitoring mRNA export in mammalian tissue culture cells is through the microinjection of DNA plasmids into the nucleus and monitoring the distribution of the transcribed product over time. Here we describe how to setup a microscope equipped with a micromanipulator used in cell microinjections, and we explain how to perform a nuclear mRNA export assay and obtain the nuclear export rate for any given mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of clofibric acid alone and in combination with 17β-estradiol on mRNA abundance in primary hepatocytes isolated from rainbow trout.

    Science.gov (United States)

    Sovadinová, I; Liedtke, A; Schirmer, K

    2014-09-01

    Clofibric acid (CA) is the active substance of lipid lowering drugs. It is resistant to degradation, polar in nature, and has been found ubiquitously in the aquatic environment. Though CA is classified as a peroxisomal proliferator in rodents and is considered as a potential endocrine disruptor, little information exists on the effects of CA in aquatic organisms, such as fish. In the present study, we examined the mRNA levels of peroxisome proliferator- and estrogen-sensitive genes on the exposure of primary rainbow trout (Oncorhynchus mykiss) hepatocytes to CA alone and in combination with the natural female sex hormone, 17β-estradiol (E2). Our results demonstrate that rainbow trout hepatocytes are relatively refractory to the effects of CA on the PPAR signaling pathway and lipid metabolism. Moreover, CA did not show recognizable estrogenic activity, but after the induction of vitellogenesis by E2, CA significantly reduced vitellogenin (VTG) mRNA abundance. Apparently, the indirect repression of VTG transcription, independent of estrogen receptors, occurred. The mechanism is not yet clearly understood but may involve disruption of the stabilization of VTG mRNA known to be induced by E2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    Science.gov (United States)

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  15. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  16. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment.

    Science.gov (United States)

    Ahmed, Iltaf; Buchert, Rebecca; Zhou, Mi; Jiao, Xinfu; Mittal, Kirti; Sheikh, Taimoor I; Scheller, Ute; Vasli, Nasim; Rafiq, Muhammad Arshad; Brohi, M Qasim; Mikhailov, Anna; Ayaz, Muhammad; Bhatti, Attya; Sticht, Heinrich; Nasr, Tanveer; Carter, Melissa T; Uebe, Steffen; Reis, André; Ayub, Muhammad; John, Peter; Kiledjian, Megerditch; Vincent, John B; Jamra, Rami Abou

    2015-06-01

    There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  18. Efficacy of Omega Fatty Acid Supplementation on mRNA Expression Level of Tumor Necrosis Factor Alpha in Patients with Gastric Adenocarcinoma.

    Science.gov (United States)

    Hosseinzadeh, Asghar; Ardebili, Seyed Mojtaba Mohaddes

    2016-09-01

    Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, is involved in apoptosis, cell proliferation, cell survival, and inflammation. It plays a dual role in cancer development and progression. It has been revealed that polyunsaturated fatty acids (PUFAs) modulate the production and activity of TNF family cytokines. The objective of the present study was to evaluate the effect of PUFAs on messenger RNA expression levels of TNF-α in patients with gastric adenocarcinoma. Thirty-four chemotherapy-naive patients diagnosed with gastric adenocarcinoma were randomly divided into two groups. The first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFA supplements for 3 weeks, based on treatment strategies. The gastric biopsy samples were obtained from all participants before and after treatment, and TNF-α mRNA expression levels were evaluated by quantitative real-time PCR procedure. Our findings revealed that TNF-α mRNA expression is downregulated in group II, after receiving cisplatin and omega fatty acid supplement for 3 weeks. However, this difference is not statistically significant (p > 0.05). TNF-α mRNA expression did not show significant alteration in group I, after receiving cisplatin alone. Taken together, we concluded that omega fatty acids reduce TNF-α expression at the mRNA level in patients with gastric adenocarcinoma. These data suggest that TNF-α may act as a potential target for the therapy of human gastric adenocarcinoma.

  19. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein

    OpenAIRE

    Pinder, Benjamin D; Smibert, Craig A

    2012-01-01

    Argonaute 1 directly interacts with the RNA binding protein Smaug in Drosophila, is thereby recruited to the Smaug target nanos mRNA and is required for Smaug-mediated translational repression of the nanos mRNA.

  20. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  1. Embryonal carcinoma cell induction of miRNA and mRNA changes in co-cultured prostate stromal fibromuscular cells

    Science.gov (United States)

    VÊNCIO, ENEIDA F.; PASCAL, LAURA E.; PAGE, LAURA S.; DENYER, GARETH; WANG, AMY J.; RUOHOLA-BAKER, HANNELE; ZHANG, SHILE; WANG, KAI; GALAS, DAVID J.; LIU, ALVIN Y.

    2014-01-01

    The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type. PMID:20945389

  2. SERT and TPH-1 mRNA expression are reduced in irritable bowel syndrome patients regardless of visceral sensitivity state in large intestine.

    Science.gov (United States)

    Kerckhoffs, Angèle P M; ter Linde, José J M; Akkermans, Louis M A; Samsom, Melvin

    2012-05-01

    Colorectal visceral hypersensitivity has been demonstrated in a subset of irritable bowel syndrome (IBS) patients. Serine protease and serotonergic signaling modulate gastrointestinal visceral sensitivity. We evaluated whether altered mucosal serine protease and serotonergic pathway components are related to rectal visceral hypersensitivity in IBS patients. Colorectal mucosal biopsies of 23 IBS patients and 15 controls were collected. Gene transcripts of protease-activated receptor (PAR)-2, trypsinogen IV, tryptophan hydroxylase (TPH)-1, and serotonin reuptake transporter (SERT) were quantified using real-time polymerase chain reaction. Substance P and 5-HT contents were measured by ELISA. The number of enterochromaffin cells, mast cells, and intraepithelial lymphocytes was determined using immunohistochemistry. Rectal visceral sensitivity was determined in IBS patients using barostat programmed for phasic ascending distension. Rectal hypersensitivity (+) and (-) IBS patients showed lower TPH-1 and SERT mRNA levels in the rectum compared with controls (P ≤ 0.05). Rectal hypersensitivity (+) IBS patients (n = 12) showed lower TPH-1 mRNA level in the sigmoid compared with controls (P = 0.015). No significant differences were observed in PAR-2 and trypsinogen IV expression between controls and IBS patients. Rectal substance P content was increased in IBS patients compared with controls (P = 0.045). No significant differences were found in transcript levels, cell counts, and substance P and 5-HT contents between rectal hypersensitivity (+) and (-) IBS patients. In conclusion, regardless of visceral hypersensitivity state, several serotonergic signaling components are altered in IBS patients.

  3. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  4. FATHEAD MINNOW VITELLOGENIN: CDNA SEQUENCE AND MRNA AND PROTEIN EXPRESSION AFTER 17 BETA-ESTRADIOL TREATMENT

    Science.gov (United States)

    In the present study, a sensitive ribonuclease protection assay (RPA) for VTG mRNA was developed for the fathead minnow (Pimephales promelas), a species proposed for routine endocrine-disrupting chemical (EDC) screening.

  5. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  6. Differential expression of PARP1 mRNA in leucocytes of patients ...

    Indian Academy of Sciences (India)

    P. 2011 Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J. Genet. ... of Alzheimer disease at an earlier age than subjects with- ... family and personal informed consent. .... In effect, they report that.

  7. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  8. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  9. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  10. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    OpenAIRE

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-01-01

    An oligonucleotide representing a regulatory element of human thymidylate synthase mRNA has been crystallized as a dimer. The structure of the asymmetric dimer has been determined at 1.97 Å resolution.

  11. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation...... to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary...... or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events...

  12. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Science.gov (United States)

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  13. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.

    Science.gov (United States)

    Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2017-06-01

    The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.

  14. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars

    Directory of Open Access Journals (Sweden)

    Rita Ferreira

    2017-07-01

    Full Text Available Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum strains of the obligate intracellular bacterium Chlamydia trachomatis. By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i 60–70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in “Translation, ribosomal structure and biogenesis” for all strains; ii the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii the median of the half-life time (t1/2 values of transcripts were 15–17 min, indicating that the degree of transcripts’ stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v only at very few instances (essentially at gene functional category level was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.

  15. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars.

    Science.gov (United States)

    Ferreira, Rita; Borges, Vítor; Borrego, Maria José; Gomes, João Paulo

    2017-07-01

    Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis . By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i ) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii ) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii ) the median of the half-life time (t 1/2 ) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv ) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v ) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.

  16. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  17. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  18. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  19. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    International Nuclear Information System (INIS)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  20. Myeloperoxidase mRNA detection for lineage determination of leukemic blasts: retrospective analysis.

    Science.gov (United States)

    Crisan, D; Anstett, M J

    1995-07-01

    Myeloperoxidase (MPO) mRNA is an early myeloid marker; its detection in the morphologically and immunophenotypically primitive blasts of acute undifferentiated leukemia (AUL) establishes myeloid lineage and allows reclassification as acute myelogenous leukemia with minimal differentiation (AML-MO). We have previously reported a procedure for MPO mRNA detection by RT-PCR (reverse transcription-polymerase chain reaction) and an adaptation for use of routine hematology smears. This variant procedure allows retrospective analysis of mRNA and is used in the present study to evaluate the lineage of leukemic blasts in seven cases with morphology and cytochemistry consistent with AUL. All hematology smears used in this study were air-dried, unstained or Wright-stained and stored at room temperature for periods varying between 3 days and 2 years. MPO mRNA was detected in six cases, establishing the myeloid lineage of the blasts and the diagnosis of AML-MO. In the remaining case, the blasts were MPO mRNA negative, confirming the diagnosis of AUL. The RT-PCR procedure for retrospective mRNA analysis is useful in the clinical setting, due to its high specificity and sensitivity, speed (less than 24 h), safety (no radioactivity) and convenient use of routine hematology smears; it is particularly attractive in clinical situations when fresh or frozen specimens are no longer available at the time when the need for molecular diagnostics becomes apparent.

  1. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Steven J. Schnell

    2014-11-01

    Full Text Available The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE. Plenty of nuclear pore complexes (NPCs embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.

  2. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    Science.gov (United States)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  3. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  4. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  5. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  6. Altered Perspectives: Immersive Environments

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  7. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stability of Dolos Slopes

    DEFF Research Database (Denmark)

    Brorsen, Michael; Burcharth, Hans F.; Larsen, Torben

    The stability of dolos armour blocks against wave attack has been investigated in wave model studies.......The stability of dolos armour blocks against wave attack has been investigated in wave model studies....

  9. Stability of parallel flows

    CERN Document Server

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  10. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  11. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  12. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  13. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  14. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  15. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  16. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  17. Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis

    Directory of Open Access Journals (Sweden)

    Wang Linjie

    2011-10-01

    Full Text Available Abstract Background Growing evidence suggests that epicardial adipose tissue (EAT may play a key role in the pathogenesis and development of coronary artery disease (CAD by producing several inflammatory adipokines. Chemerin, a novel adipokine, has been reported to be involved in regulating immune responses and glucolipid metabolism. Given these properties, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis. In this study, we sought to determine the relationship of chemerin expression in EAT and the severity of coronary atherosclerosis in Han Chinese patients. Methods Serums and adipose tissue biopsies (epicardial and thoracic subcutaneous were obtained from CAD (n = 37 and NCAD (n = 16 patients undergoing elective cardiac surgery. Gensini score was used to assess the severity of CAD. Serum levels of chemerin, adiponectin and insulin were measured by ELISA. Chemerin protein expression in adipose tissue was detected by immunohistochemistry. The mRNA levels of chemerin, chemR23, adiponectin and TNF-alpha in adipose tissue were detected by RT-PCR. Results We found that EAT of CAD group showed significantly higher levels of chemerin and TNF-alpha mRNA, and significantly lower level of adiponectin mRNA than that of NCAD patients. In CAD group, significantly higher levels of chemerin mRNA and protein were observed in EAT than in paired subcutaneous adipose tissue (SAT, whereas such significant difference was not found in NCAD group. Chemerin mRNA expression in EAT was positively correlated with Gensini score (r = 0.365, P P P P P P P > 0.05. Conclusions The expressions of chemerin mRNA and protein are significantly higher in EAT from patients with CAD in Han Chinese patients. Furthermore, the severity of coronary atherosclerosis is positive correlated with the level of chemerin mRNA in EAT rather than its circulating level.

  18. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Science.gov (United States)

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  19. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    Science.gov (United States)

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Arc mRNA induction in striatal efferent neurons associated with response learning.

    Science.gov (United States)

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  1. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  2. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  3. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  4. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Directory of Open Access Journals (Sweden)

    Evren Eraslan

    2015-01-01

    Full Text Available Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON, acute noise exposure (ANE, and chronic noise exposure (CNE. The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR. The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  5. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  6. Association of Stability Parameters and Yield Stability of Sesame ...

    African Journals Online (AJOL)

    Association of Stability Parameters and Yield Stability of Sesame ( Sesamum ... Information on phenotypic stability is useful for the selection of crop varieties as well as for ... as an alternative to parametric stability measurements is important.

  7. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-01-01

    Highlights: ► We cloned the ptr5 + gene involved in nuclear mRNA export in fission yeast. ► The ptr5 + gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A) + RNA transport] 1 to 11, which accumulate poly(A) + RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A) + RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5 + gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  8. Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications.

    Directory of Open Access Journals (Sweden)

    Vanesa Garcia

    Full Text Available BACKGROUND: We studied anomalous extracellular mRNAs in plasma from patients with diffuse large B-cell lymphoma (DLBCL and their survival implications. mRNAs studied have been reported in the literature as markers of poor (BCL2, CCND2, MYC and favorable outcome (LMO2, BCL6, FN1 in tumors. These markers were also analyzed in lymphoma tissues to test possible associations with their presence in plasma. METHODOLOGY/PRINCIPAL FINDINGS: mRNA from 42 plasma samples and 12 tumors from patients with DLBCL was analyzed by real-time PCR. Samples post-treatment were studied. The immunohistochemistry of BCL2 and BCL6 was defined. Presence of circulating tumor cells was determined by analyzing the clonality of the immunoglobulin heavy-chain genes by PCR. In DLBCL, MYC mRNA was associated with short overall survival. mRNA targets with unfavorable outcome in tumors were associated with characteristics indicative of poor prognosis, with partial treatment response and with short progression-free survival in patients with complete response. In patients with low IPI score, unfavorable mRNA targets were related to shorter overall survival, partial response, high LDH levels and death. mRNA disappeared in post-treatment samples of patients with complete response, and persisted in those with partial response or death. No associations were found between circulating tumor cells and plasma mRNA. Absence of BCL6 protein in tumors was associated with presence of unfavorable plasma mRNA. CONCLUSIONS/SIGNIFICANCE: Through a non-invasive procedure, tumor-derived mRNAs can be obtained in plasma. mRNA detected in plasma did not proceed from circulating tumor cells. In our study, unfavorable targets in plasma were associated with poor prognosis in B-cell lymphomas, mainly MYC mRNA. Moreover, the unfavorable targets in plasma could help us to classify patients with poor outcome within the good prognosis group according to IPI.

  9. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance

    Directory of Open Access Journals (Sweden)

    Shimpei Morimoto

    2018-03-01

    Full Text Available Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes (ADC17 and KIN1 that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after

  10. The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2010-06-01

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha, activatory molecules (OX40, 4-1BB and elements of cytotoxicity (granzyme B, perforin 1 were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.

  11. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    Science.gov (United States)

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    oxidation was seen in the BSO-treated AF compartment after 6 h. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding E(h) within the intact viable conceptus. The altered E(h) were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations, suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    Science.gov (United States)

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  13. Single step production of Cas9 mRNA for zygote injection.

    Science.gov (United States)

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  14. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  15. Generation of human induced pluripotent stem cells using non-synthetic mRNA.

    Science.gov (United States)

    Rohani, L; Fabian, C; Holland, H; Naaldijk, Y; Dressel, R; Löffler-Wirth, H; Binder, H; Arnold, A; Stolzing, A

    2016-05-01

    Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ

    Directory of Open Access Journals (Sweden)

    Kaustuv Banerjee

    2013-08-01

    Full Text Available Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA, and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA.

  17. Selective translation of the measles virus nucleocapsid mRNA by La protein

    Directory of Open Access Journals (Sweden)

    Yoshihisa eInoue

    2011-08-01

    Full Text Available Measles, caused by measles virus (MeV infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as "shutoff" and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5 untranslated region (UTR of nucleocapsid (N mRNA. The La/SSB autoantigen (La was found to specifically bind to an N-5UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5UTR (N-fLuc, and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.

  18. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  19. Hepatic chemerin mRNA in morbidly obese patients with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kajor, Maciej; Kukla, Michał; Waluga, Marek; Liszka, Łukasz; Dyaczyński, Michał; Kowalski, Grzegorz; Żądło, Dominika; Berdowska, Agnieszka; Chapuła, Mateusz; Kostrząb-Zdebel, Anna; Bułdak, Rafał J; Sawczyn, Tomasz; Hartleb, Marek

    The aim of this study was to investigate hepatic chemerin mRNA, serum chemerin concentration, and immunohistochemical staining for chemerin and and chemokine receptor-like 1 (CMKLR1) in hepatic tissue in 56 morbidly obese women with nonalcoholic fatty liver disease (NAFLD) and to search for a relationship with metabolic and histopathological features. Chemerin mRNA was assessed by quantitative real-time PCR, chemerin, and CMKLR1 immunohistochemical expression with specific antibodies, while serum chemerin concentration was assessed with commercially available enzyme-linked immunosorbent assays. Serum chemerin concentration reached 874.1 ±234.6 ng/ml. There was no difference in serum chemerin levels between patients with BMI steatosis, and definite nonalcoholic steatohepatitis (NASH). Liver chemerin mRNA was observed in all included patients and was markedly, but insignificantly, higher in those with BMI ≥ 40 kg/m2, hepatocyte ballooning, greater extent of steatosis, and definite NASH. Hepatic chemerin mRNA might be a predictor of hepatic steatosis, hepatocyte ballooning, and NAFLD activity score (NAS) but seemed not to be a primary driver regulating liver necroinflammatory activity and fibrosis. The lack of association between serum chemerin and hepatic chemerin mRNA may suggest that adipose tissue but not the liver is the main source of chemerin in morbidly obese women.

  20. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  1. Applying the breaks on gene expression - mRNA deadenylation by Pop2p

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Jonstrup, Anette Thyssen; Van, Lan Bich

    When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems to be the ......When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems...... to be the shortening of the poly(A) tail (deadenylation), as this step is slower than the subsequent decapping and degradation of the mRNA body. The Mega-Dalton Ccr4-Not complex contains two exonucleases, Ccr4p and Pop2p, responsible for this process. It is not known at present why two conserved nucleases are needed...

  2. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    Science.gov (United States)

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  5. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    Science.gov (United States)

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  6. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  7. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  8. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  9. Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila

    Science.gov (United States)

    Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.

    2014-01-01

    Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175

  10. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  11. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Kö ster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-01-01

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  12. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  13. Relative workload determines exercise-induced increases in PGC-1alpha mRNA

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Lundby, Carsten; Leick, Lotte

    2010-01-01

    INTRODUCTION:: The hypothesis that brief intermittent exercise induced increases in human skeletal muscle metabolic mRNA is dependent on relative workload was investigated. METHODS:: Trained (n=10) and untrained (n=8) subjects performed exhaustive intermittent cycling exercise (4x4 min @ 85% of VO2...... peak, interspersed by 3 min). Trained subjects also performed the intermittent exercise at the same absolute workload as untrained, corresponding to 70% of VO2 peak (n=6). RESULTS:: Exercise at 85% of VO2 peak elevated (P... and untrained, respectively. PGC-1alpha mRNA expression was increased (Pelevated (3.1+/-0.7 mM) and PGC-1alpha mRNA content was less (P

  14. Overexpression of protease nexin-1 mRNA and protein in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Gao, Shan; Krogdahl, Annelise; Sørensen, Jens Ahm

    2007-01-01

    -1 has been almost totally neglected. We have now compared the level of PN-1 mRNA in 20 cases of oral squamous cell carcinomas and in matched samples of the corresponding normal oral tissues. We found that the average PN-1 mRNA level in tumours and normal tissues was significantly different, being...... increased up to 13 fold in tumour samples compared with the average level in normal tissues. The PN-1 mRNA level was significantly higher in tumours from patients with lymph node metastasis than in tumours from patients without. We could conclude that PN-1 is frequently overexpressed in oral squamous cell...... carcinomas and that its level may correlate with the occurrence of lymph node metastasis. We hypothesise that PN-1 may have a tumour biological function similar to that of PAI-1....

  15. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  16. Postage for the messenger: Designating routes for Nuclear mRNA Export

    Science.gov (United States)

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  17. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    stability by randomly generate mutants and lengthy screening processes to identify the best new mutants. However, with the increase in available genomic sequences of thermophilic or hyperthermophilic organisms a world of enzymes with intrinsic high stability are now available. As these organisms are adapted...... to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  18. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  20. Characterization of a major late herpes simplex virus type 1 mRNA.

    Science.gov (United States)

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  1. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Daily rhythms of plasma melatonin, but not plasma leptin or leptin mRNA, vary between lean, obese and type 2 diabetic men.

    Directory of Open Access Journals (Sweden)

    Simone Mäntele

    Full Text Available Melatonin and leptin exhibit daily rhythms that may contribute towards changes in metabolic physiology. It remains unclear, however, whether this rhythmicity is altered in obesity or type 2 diabetes (T2DM. We tested the hypothesis that 24-hour profiles of melatonin, leptin and leptin mRNA are altered by metabolic status in laboratory conditions. Men between 45-65 years old were recruited into lean, obese-non-diabetic or obese-T2DM groups. Volunteers followed strict sleep-wake and dietary regimes for 1 week before the laboratory study. They were then maintained in controlled light-dark conditions, semi-recumbent posture and fed hourly iso-energetic drinks during wake periods. Hourly blood samples were collected for hormone analysis. Subcutaneous adipose biopsies were collected 6-hourly for gene expression analysis. Although there was no effect of subject group on the timing of dim light melatonin onset (DLMO, nocturnal plasma melatonin concentration was significantly higher in obese-non-diabetic subjects compared to weight-matched T2DM subjects (p<0.01 and lean controls (p<0.05. Two T2DM subjects failed to produce any detectable melatonin, although did exhibit plasma cortisol rhythms comparable to others in the group. Consistent with the literature, there was a significant (p<0.001 effect of subject group on absolute plasma leptin concentration and, when expressed relative to an individual's 24-hour mean, plasma leptin showed significant (p<0.001 diurnal variation. However, there was no difference in amplitude or timing of leptin rhythms between experimental groups. There was also no significant effect of time on leptin mRNA expression. Despite an overall effect (p<0.05 of experimental group, post-hoc analysis revealed no significant pair-wise effects of group on leptin mRNA expression. Altered plasma melatonin rhythms in weight-matched T2DM and non-diabetic individuals supports a possible role of melatonin in T2DM aetiology. However, neither

  3. Are Stabilization Programs Expansionary?

    OpenAIRE

    Federico Echenique; Alvaro Forteza

    1997-01-01

    The empirical evidence presented in this paper casts serious doubts on the by now widely accepted "stylized facts" of the exchange rate based stabilization programs (ERBS) as they are stated in Kiguel and Liviatan (1992) and in Végh (1992). Even though the ERBS programs were associated with output booms, no evidence of booms provoked by the stabilization programs is found. Rather, exogenous capital inflows to Latin America seem to have caused both the output booms and the stabilization progra...

  4. Internet Addiction: Stability and Change

    Science.gov (United States)

    Huang, Chiungjung

    2010-01-01

    This longitudinal study examined five indices of stability and change in Internet addiction: structural stability, mean-level stability, differential stability, individual-level stability, and ipsative stability. The study sample was 351 undergraduate students from end of freshman year to end of junior year. Convergent findings revealed stability…

  5. An in vitro system from Plasmodium falciparum active in endogenous mRNA translation

    Directory of Open Access Journals (Sweden)

    Ferreras Ana

    2000-01-01

    Full Text Available An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%. The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.

  6. Interactions between mRNA export commitment, 3'-end quality control, and nuclear degradation

    DEFF Research Database (Denmark)

    Libri, Domenico; Dower, Ken; Boulay, Jocelyne

    2002-01-01

    Several aspects of eukaryotic mRNA processing are linked to transcription. In Saccharomyces cerevisiae, overexpression of the mRNA export factor Sub2p suppresses the growth defect of hpr1 null cells, yet the protein Hpr1p and the associated THO protein complex are implicated in transcriptional el...... results show that several classes of defective RNPs are subject to a quality control step that impedes release from transcription site foci and suggest that suboptimal messenger ribonucleoprotein assembly leads to RNA degradation by Rrp6p....

  7. Expression of galectin-9 mRNA in obese children with polymorphism of the lactase gene

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2018-02-01

    Full Text Available Background. The aim of the study is to investigate the association of expression of galectin-9 (Gal-9 mRNA and lactose malabsorption in obese children with polymorphism (SNP of the lactase gene (LCT and to study the efficacy of lactase deficiency therapy using exogenous lactase preparations. Materials and methods. Seventy obese children (BMI > 95th percentile and 16 children without obesity aged 6–18 years were examined. There was studied SNP LCT (material for investigation venous blood by real-time PCR, expression of Gal-9 mRNA (study material buccal epithelium by real-time PCR with reverse transcription, malabsorption of lactose by hydrogen breath test (HBT. Among obese children, 38 children with genotype C/C 13910 presented the first observation group, 32 children with phenotype identical genotypes C/T 13910 and T/T 13910, p > 0.05, presented the second group. Children from the first observation group also determined the level of expression of Gal-9 mRNA and lactose malabsorption after using exogenous lactase preparations. Results. The genotype C/C 13910 was determined in 38 (54.3 %, genotype C/T 13910 in 22 (31.4 % and genotype T/T in 10 (14.3 % patients. Malabsorption of lactose in children with genotype C/C 13910 averaged 32.7 ± 10.4 pmm, in children with genotypes C/T 13910 — 26.3 ± 4.9 pmm (p > 0.05 and with genotype T/T 13910 and was absent in children without obesity (p < 0.05. The average level of expression of Gal-9 mRNA in children with genotype C/C 13910 was 564.3 ± 32.8 RU DmRNA Gal-9/mRNA actin, in children with genotypes C/T and T/T 13910 — 61.04 ± 15.30 RU DmRNA Gal-9/mRNA actin, p < 0.01. It is of great importance that the children with genotype C/C 13910 and lactose malabsorption (n = 20 had the lowest average level of expression of Gal-9 mRNA (42.47 ± 13.30 RU DmRNA Gal-9/mRNA actin whereas the children with genotype C/C 13910 and without lactose malabsorption (n =18 had the largest level (1086

  8. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  9. mRNA profiling for the identification of blood-Results of a collaborative EDNAP exercise

    DEFF Research Database (Denmark)

    Haas, Cordula; Hanson, E; Bär, W

    2010-01-01

    of the laboratories had no prior experience with RNA. Despite some expected variation in sensitivity between laboratories, the method proved to be reproducible and sensitive using different analysis strategies. The results of this collaborative exercise support the potential use of mRNA profiling as an alternative......A collaborative exercise on mRNA profiling for the identification of blood was organized by the European DNA Profiling Group (EDNAP). Seven blood samples and one blood dilution series were analyzed by the participating laboratories for the reportedly blood-specific markers HBB, SPTB and PBGD, using...

  10. mRNA profiling for the identification of blood--Results of a collaborative EDNAP exercise

    DEFF Research Database (Denmark)

    Haas, C.; Hanson, E.; Bär, W.

    2011-01-01

    of the laboratories had no prior experience with RNA. Despite some expected variation in sensitivity between laboratories, the method proved to be reproducible and sensitive using different analysis strategies. The results of this collaborative exercise support the potential use of mRNA profiling as an alternative......A collaborative exercise on mRNA profiling for the identification of blood was organized by the European DNA Profiling Group (EDNAP). Seven blood samples and one blood dilution series were analyzed by the participating laboratories for the reportedly blood-specific markers HBB, SPTB and PBGD, using...

  11. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  12. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    Science.gov (United States)

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we

  13. Stability Testing of Herbal Drugs: Challenges, Regulatory Compliance and Perspectives.

    Science.gov (United States)

    Bansal, Gulshan; Suthar, Nancy; Kaur, Jasmeen; Jain, Astha

    2016-07-01

    Stability testing is an important component of herbal drugs and products (HDPs) development process. Drugs regulatory agencies across the globe have recommended guidelines for the conduct of stability studies on HDPs, which require that stability data should be included in the product registration dossier. From the scientific viewpoint, numerous chemical constituents in an herbal drug are liable to varied chemical reactions under the influence of different conditions during its shelf life. These reactions can lead to altered chemical composition of HDP and consequently altered therapeutic profile. Many reports on stability testing of HDPs have appeared in literature since the last 10 years. A review of these reports reveals that there is wide variability in temperature (-80 to 100 °C), humidity (0-100%) and duration (a few hours-36 months) for stability assessment of HDPs. Of these, only 1% studies are conducted in compliance with the regulatory guidelines for stability testing. The present review is aimed at compiling all stability testing reports, understanding key challenges in stability testing of HDPs and suggesting possible solutions for these. The key challenges are classified as chemical complexity and biochemical composition variability in raw material, selection of marker(s) and influences of enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Disease-associated mutations that alter the RNA structural ensemble.

    Directory of Open Access Journals (Sweden)

    Matthew Halvorsen

    2010-08-01

    Full Text Available Genome-wide association studies (GWAS often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs from the Human Gene Mutation Database (HGMD that map to the untranslated regions (UTRs of a gene. Rather than using minimum free energy approaches (e.g. mFold, we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, beta-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD, and Hypertension, we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5' UTRs of FTL and RB1 SNP-induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a "RiboSNitch," that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.

  15. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma.

    Science.gov (United States)

    Hamze, Z; Vercherat, C; Bernigaud-Lacheretz, A; Bazzi, W; Bonnavion, R; Lu, J; Calender, A; Pouponnot, C; Bertolino, P; Roche, C; Stein, R; Scoazec, J Y; Zhang, C X; Cordier-Bussat, M

    2013-12-01

    The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.

  16. Gesundheit und Pflege im Alter

    OpenAIRE

    Pfaff, Martin

    1989-01-01

    Gesundheit und Pflege im Alter : d. Gesundheitsreformgesetz (GRG) ; Möglichkeiten, Grenzen u. weitere Vorschläge / Martin Pfaff ; Klaus Deimer. - In: Expertengespräch "Pflege in der Familie". - Augsburg, 1989. - Getr. Zählung

  17. Early social deprivation impairs pair bonding and alters serum corticosterone and the NAcc dopamine system in mandarin voles.

    Science.gov (United States)

    Yu, Peng; An, Shucheng; Tai, Fadao; Wang, Jianli; Wu, Ruiyong; Wang, Bo

    2013-12-01

    Early life stress has a long-term negative impact on emotion, learning, memory and adult sexual behavior, and these deficits most likely impair pair bonding. Here, we investigated whether early social deprivation (ED) affects the formation of pair bonds in socially monogamous mandarin voles (Microtus mandarinus). In a partner preference test (PPT), ED-reared adult females and males did not show a preference for their partner, spent more time exploring the cage of an unfamiliar animal and directed high levels of aggression toward unfamiliar animals. In social interaction test, ED increased exploring behavior only in females, but increased movement around the partner and reduced inactivity in both males and females. Three days of cohabitation did not alter serum corticosterone levels in ED-reared males, but increased corticosterone levels in males that received bi-parental care (PC). Interestingly, serum corticosterone levels in ED- and PC-reared females declined after cohabitation. ED significantly increased basal serum corticosterone levels in males, but had no effect on females. ED significantly up-regulated the levels of dopamine and the mRNA expression of dopamine 1-type receptor (D1R) in the nucleus accumbens (NAcc) in females and males. ED suppressed dopamine 2-type receptor mRNA (D2R) expression in females, but increased this in males. After three days of cohabitation, levels of D1R mRNA and D2R mRNA expression changed in opposite directions in PC-reared voles, but in the same direction in ED-reared males, and only the expression of D2R mRNA increased in ED-reared females. Our results indicate that early social deprivation inhibits pair bonding at adulthood. This inhibition is possibly associated with sex-specific alterations in serum corticosterone, levels of dopamine and mRNA expression of two types of dopamine receptors in the NAcc. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268.

    Science.gov (United States)

    Kimoto, Sohei; Bazmi, H Holly; Lewis, David A

    2014-09-01

    Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.

  19. Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle.

    Science.gov (United States)

    Percival, Michael E; Martin, Brian J; Gillen, Jenna B; Skelly, Lauren E; MacInnis, Martin J; Green, Alex E; Tarnopolsky, Mark A; Gibala, Martin J

    2015-12-01

    We tested the hypothesis that ingestion of sodium bicarbonate (NaHCO3) prior to an acute session of high-intensity interval training (HIIT) would augment signaling cascades and gene expression linked to mitochondrial biogenesis in human skeletal muscle. On two occasions separated by ∼1 wk, nine men (mean ± SD: age 22 ± 2 yr, weight 78 ± 13 kg, V̇O(2 peak) 48 ± 8 ml·kg(-1)·min(-1)) performed 10 × 60-s cycling efforts at an intensity eliciting ∼90% of maximal heart rate (263 ± 40 W), interspersed with 60 s of recovery. In a double-blind, crossover manner, subjects ingested a total of 0.4 g/kg body weight NaHCO3 before exercise (BICARB) or an equimolar amount of a placebo, sodium chloride (PLAC). Venous blood bicarbonate and pH were elevated at all time points after ingestion (P 0.05). However, the increase in PGC-1α mRNA expression after 3 h of recovery was higher in BICARB vs. PLAC (approximately sevenfold vs. fivefold compared with rest, P < 0.05). We conclude that NaHCO3 before HIIT alters the mRNA expression of this key regulatory protein associated with mitochondrial biogenesis. The elevated PGC-1α mRNA response provides a putative mechanism to explain the enhanced mitochondrial adaptation observed after chronic HIIT supplemented with NaHCO3 in rats. Copyright © 2015 the American Physiological Society.

  20. 1,25 dihydroxyvitamin D3 (1,25) regulation of c-myc mRNA in HL-60 leukemia cells

    International Nuclear Information System (INIS)

    Simpson, R.U.; Bresnick, E.H.; Begley, D.A.

    1986-01-01

    Recently, 1,25 was shown to induce differentiation and decrease c-myc levels in HL-60 cells. The authors have confirmed these observations by RNA dot blot analysis. Cells treated with 50 nM 1,25 for 4, 24 and 48 hr showed c-myc mRNA levels of 26, 17 and 15% of control respectively. β-Actin mRNA levels were not altered. To ascertain whether 1, 25 regulated c-myc transcriptionally, an HL-60 nuclear RNA runoff assay was developed. Assay of total nuclei transcriptional activity revealed that 50% of RNA elongation was α-amanitin (0.8 μg/ml) sensitive and was linear with nuclei concentration (0.1-1 x 10 7 nuclei). 1,25 (50 nM) treated (45-96 hr) cells had decreased (approx.40%) total transcription rate relative to control. Decreased total RNA synthesis occurred concomitant with NBT reducing activity. 32 P-RNA runoff transcripts from HL-60 nuclei were hybridized to excess (5 μg DNA was excess) Pst I linearized c-myc and β-actin clones (in pBR322) immobilized on nitrocellulose filter. 32 P-RNA input from 2 x 10 6 to 2 x 10 7 cpm yielded linear hybridization signal. Analysis of blot dot intensity revealed no difference in transcription of c-myc in nuclei from 1,25 dosed or control cells. (myc/actin ratios: 1,25 (50 nM, 72 hr) =1.1 +/- 0.3 and control (72 hr) = 1.0, N=3 or 2 or 3 dots ea). These preliminary data suggest 1,25 does not affect c-myc transcription in HL-60 nuclei and may regulate c-myc mRNA post-transcriptionally

  1. Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus

    International Nuclear Information System (INIS)

    Mahoney, Megan M.; Padmanabhan, Vasantha

    2010-01-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5 mg/kg/day) from day 30 to 90 of gestation (term 147 d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F 2α , just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  2. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    International Nuclear Information System (INIS)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J.

    1994-01-01

    The irradiation of cells results in delayed progression through the G 2 phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G 2 -phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G 2 -phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G 2 -phase arrest. In HeLa cells, the G 2 -phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G 2 -phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G 2 -phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs

  3. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus.

    Science.gov (United States)

    Mahoney, Megan M; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5mg/kg/day) from day 30 to 90 of gestation (term 147d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F(2alpha), just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female. 2010 Elsevier Inc. All rights reserved.

  4. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.

    Directory of Open Access Journals (Sweden)

    Abdimajid Osman

    Full Text Available Platelet concentrates (PCs are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE RNA sequencing (RNA-Seq, we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05 compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC ≥ 2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.

  5. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    OpenAIRE

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we sh...

  6. Microwave stability at transition

    International Nuclear Information System (INIS)

    Holt, J.A.; Colestock, P.L.

    1995-05-01

    The question of microwave stability at transition is revisited using a Vlasov approach retaining higher order terms in the particle dynamics near the transition energy. A dispersion relation is derived which can be solved numerically for the complex frequency in terms of the longitudinal impedance and other beam parameters. Stability near transition is examined and compared with simulation results

  7. Beam stabilization at SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.

    1996-01-01

    The SPEAR storage ring began routine synchrotron radiation operation with a dedicated injector in 1990. Since then, a program to improve beam stability has steadily progressed. This paper, based on a seminar given at a workshop on storage ring optimization (1995 SRI conference) reviews the beam stability program for SPEAR. copyright 1996 American Institute of Physics

  8. Visual attention and stability

    NARCIS (Netherlands)

    Mathot, Sebastiaan; Theeuwes, Jan

    2011-01-01

    In the present review, we address the relationship between attention and visual stability. Even though with each eye, head and body movement the retinal image changes dramatically, we perceive the world as stable and are able to perform visually guided actions. However, visual stability is not as

  9. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  10. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  11. Stabilized radiographic scanning agent

    International Nuclear Information System (INIS)

    Fawzi, M.B.

    1979-01-01

    A stable composition useful in preparation of technetium-99m-based radiographic scanning agents has been developed. The composition contains a stabilizing amount of gentisate stabilizer selected from gentisic acid and its soluble pharmaceutically-acceptable salts and esthers. (E.G.)

  12. Problems support economic stability

    OpenAIRE

    Tkach, Ivan

    2012-01-01

    . The article is devoted to summarizing the approaches to the classification of the stability of the state's economy, identifying the main characteristics, and offers the author's vision for the classification of the stability of the economy of the state under various conditions of operation.

  13. Stability of multihypernuclear objects

    International Nuclear Information System (INIS)

    Ikram, M.; Rather, Asloob A.; Usmani, A.A.; Patra, S.K.

    2016-01-01

    In present work, we analyze the stability of multi-hypernuclear objects having higher content of strangeness. The aim of this work is to test the stability of such objects which might be produced in heavy-ion reactions. Studies of such type of systems might have great implication to nuclear-astrophysics

  14. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  15. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via ato...

  16. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    Science.gov (United States)

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Methylmethane-sulphonate and X-ray-induced mutations in the Chinese hamster hprt gene: mRNA phenotyping using polymerase chain reactions

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Fox, Margaret

    1990-01-01

    Alterations in the hprt gene of Chinese hamster cells were determined in 71 spontaneous, methylmethane sulphonate (MMS)-and X-ray induced mutants, using the Southern blot hybridization technique. To investigate the possibility of small deletions, MMS-induced mutants were studied with proves derived from exons 3 and 9 but no evidence of specific deletion of these two exons was found. The polymerase chain reaction (PCR) was used to phenotype hprt transcripts in 48 MMS, X-ray and spontaneous Chinese hamster mutants by amplifying the coding region of their cDNA. Among 22 MMS-induced mutants the message was present in 16 instances. An analysis of 20 X-ray-induced mutants showed the presence of hprt mRNA in 11 of them with five having low levels of transcription. Among six spontaneous mutants, four were negative for mRNA on standard Northern blots and in one the message was only detected after PCR amplification. Direct DNA sequencing of 10 mutants revealed the presence of base substitutions in five of them while a 7 bp deletion was found in another. No mutations were found in another four mutants, suggesting the presence of mutation outside the coding region. (author)

  18. Visfatin, TNF-alpha and IL-6 mRNA expression is increased in mononuclear cells from type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, P C; Tsigos, C; Yfanti, E; Anastasiou, E; Vikentiou, M; Psarra, K; Papasteriades, C; Raptis, S A

    2007-10-01

    Visfatin, is a new adipokine, highly expressed in the visceral fat of both mice and humans. To examine whether visfatin is expressed in human peripheral monocyte-enriched mononuclear cells and whether its expression is altered in type 2 diabetes (DM2), we compared 24 DM2 women [17 overweight (BMI >25) and 7 lean (BMIwomen (14 overweight and 12 lean), all premenopausal. Relative visfatin mRNA levels were significantly higher (approximately 3-fold) in DM2 compared to healthy control women (pDM2 compared to control women (p=0.001 and p=0.004, respectively), an increase observed in both lean and overweight DM2 women. By contrast, circulating visfatin, TNF-alpha, and IL-6 levels showed no difference between DM2 and control women, while adiponectin plasma levels were significantly decreased in the DM2 women (pDM2 and control women, while IL-6 plasma levels were significantly higher in both overweight subgroups compared to their lean counterparts. In conclusion, visfatin, TNF-alpha, and IL-6 mRNA expressions are increased in peripheral mononuclear-monocytic cells from women with type 2 diabetes, independent of their BMI, which may enhance the effects of their adipose-derived levels and may contribute to the increased insulin resistance and atherogenic risk of these patients.

  19. The effects of dietary Myrtle (Myrtus communis) on skin mucus immune parameters and mRNA levels of growth, antioxidant and immune related genes in zebrafish (Danio rerio).

    Science.gov (United States)

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Van Doan, Hien; Dadar, Maryam

    2017-07-01

    Myrtle (Myrtus communis L., Myrtaceae) is a significant plant which naturally distributed around the globe. Although numerous studies have demonstrated the benefits of myrtle in different species, studies using the oral route are rare in the literature. In the present study, we evaluated the effect of myrtle intake on the antioxidant, immune, appetite and growth related genes as well as mucosal immune responses in zebrafish (Danio rerio) model. Zebrafish were fed control or myrtle (5, 10 and 20 g kg -1 myrtle) supplemented diets for sixty days. The results showed that, oral administration of Myrtle significantly improved mucosal immune responses (the activity of lysozyme, total Ig and protease). Furthermore, fish fed 20 g kg -1 showed remarkably higher antioxidant (sod and cat) enzymes gene expression compared other treatment. There were significant difference between myrtle fed fish and control group regarding tnf-alpha and lyz expression. Also, evaluation of growth (gh and igf1) related genes revealed remarkable upregulation in 20 g kg -1 myrtle treatment compared other myrtle treatments and control group. Similar results was observed regarding the mRNA levels of appetite related genes (ghrl) in zebrafish fed 20 g kg -1 myrtle. The present results indicated that dietary administration of myrtle improved mucosal immune parameters and altered mRNA levels of selected genes. These results on zebrafish model also highlights the potential use of Myrtle supplements as additive in human diets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. HuB (elavl2 mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL.

    Directory of Open Access Journals (Sweden)

    Sophie E Wiszniak

    Full Text Available The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3'UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3'UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3'UTR. Our study suggests that DAZL specifically binds the HuB 3'UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein.

  1. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  2. Comparison of mRNA splicing assay protocols across multiple laboratories: recommendations for best practice in standardized clinical testing.

    Science.gov (United States)

    Whiley, Phillip J; de la Hoya, Miguel; Thomassen, Mads; Becker, Alexandra; Brandão, Rita; Pedersen, Inge Sokilde; Montagna, Marco; Menéndez, Mireia; Quiles, Francisco; Gutiérrez-Enríquez, Sara; De Leeneer, Kim; Tenés, Anna; Montalban, Gemma; Tserpelis, Demis; Yoshimatsu, Toshio; Tirapo, Carole; Raponi, Michela; Caldes, Trinidad; Blanco, Ana; Santamariña, Marta; Guidugli, Lucia; de Garibay, Gorka Ruiz; Wong, Ming; Tancredi, Mariella; Fachal, Laura; Ding, Yuan Chun; Kruse, Torben; Lattimore, Vanessa; Kwong, Ava; Chan, Tsun Leung; Colombo, Mara; De Vecchi, Giovanni; Caligo, Maria; Baralle, Diana; Lázaro, Conxi; Couch, Fergus; Radice, Paolo; Southey, Melissa C; Neuhausen, Susan; Houdayer, Claude; Fackenthal, Jim; Hansen, Thomas Van Overeem; Vega, Ana; Diez, Orland; Blok, Rien; Claes, Kathleen; Wappenschmidt, Barbara; Walker, Logan; Spurdle, Amanda B; Brown, Melissa A

    2014-02-01

    Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting. We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design. PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1G>T Δ5q and Δ3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp). We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.

  3. A RNA transcript (Heg) in mononuclear cells is negatively correlated with CD14 mRNA and TSH receptor autoantibodies

    DEFF Research Database (Denmark)

    Habekost, G.; Bratholm, P.; Christensen, Niels Juel

    2008-01-01

    of the poly A(-) transcript (designated Heg) in mononuclear cells was correlated with CD14 mRNA in normal subjects and with CD14 mRNA and TSH receptor autoantibodies in patients with acute and untreated Graves' disease. mRNA was expressed in amol/mu g DNA. The main study groups were: (i) normal subjects; (ii......) patients with early and untreated Graves' disease; and (iii) patients with Graves' disease studied after treatment. In 18 normal subjects and in 20 patients with treated Graves' disease CD14 mRNA was negatively correlated with Heg (P Graves' disease Heg and thyroid...

  4. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    Science.gov (United States)

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes

    OpenAIRE

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-01-01

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA c...

  6. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  7. The statistical stability phenomenon

    CERN Document Server

    Gorban, Igor I

    2017-01-01

    This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations – the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers...

  8. Transcription pattern of UL131A-128 mRNA in clinical strains of ...

    Indian Academy of Sciences (India)

    Human cytomegalovirus (HCMV) mRNA was obtained from human embryonic lung fibroblast cells infected by HCMV clinical strains from urine samples of infants at different kinetic periods. The cDNA of UL131A-128 mRNAs was amplified using reverse transcription-polymerase chain reaction (RT-PCR) and analysed by ...

  9. Effect of dietary betaine supplementation on mRNA level of ...

    African Journals Online (AJOL)

    Yomi

    2012-03-22

    Mar 22, 2012 ... of China. Accepted 3 January, 2012. Our aims are to determine the ... percentage of abdominal fat, ratio of liver to body weight, mRNA ... four diet groups with supplemented betaine of 0, 0.04, 0.06 and 0.08%, respectively.

  10. VDR mRNA overexpression is associated with worse prognostic factors in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    June Young Choi

    2017-03-01

    Full Text Available The purpose of this study was to assess the relationship between vitamin D receptor gene (VDR expression and prognostic factors in papillary thyroid cancer (PTC. mRNA sequencing and somatic mutation data from The Cancer Genome Atlas (TCGA were analyzed. VDR mRNA expression was compared to clinicopathologic variables by linear regression. Tree-based classification was applied to find cutoff and patients were split into low and high VDR group. Logistic regression, Kaplan–Meier analysis, differentially expressed gene (DEG test and pathway analysis were performed to assess the differences between two VDR groups. VDR mRNA expression was elevated in PTC than that in normal thyroid tissue. VDR expressions were high in classic and tall-cell variant PTC and lateral neck node metastasis was present. High VDR group was also associated with classic and tall cell subtype, AJCC stage IV and lower recurrence-free survival. DEG test reveals that 545 genes were upregulated in high VDR group. Thyroid cancer-related pathways were enriched in high VDR group in pathway analyses. VDR mRNA overexpression was correlated with worse prognostic factors such as subtypes of papillary thyroid carcinoma that are known to be worse prognosis, lateral neck node metastasis, advanced stage and recurrence-free survival.

  11. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  12. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes

    Directory of Open Access Journals (Sweden)

    Jones Sophie

    2012-08-01

    Full Text Available Abstract Background Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Methods Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA and reverse-transcriptase PCR (RT-PCR. Results Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (p  Conclusions This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible.

  13. Decreased alternative splicing of estrogen receptor-α mRNA in the Alzheimer's disease brain

    NARCIS (Netherlands)

    Ishunina, Tatjana A.; Swaab, Dick F.

    2012-01-01

    In this study we identified 62 estrogen receptor alpha (ERα) mRNA splice variants in different human brain areas of Alzheimer's disease (AD) and control cases and classified them into 12 groups. Forty-eight of these splice forms were identified for the first time. The distribution of alternatively

  14. Semi-quantitative analysis of endometrial receptivity marker mRNA ...

    African Journals Online (AJOL)

    Yomi

    2012-03-20

    Mar 20, 2012 ... endometrium of patients with uterine fibromas. Naser Shokrzadeh1 and ... 3Department of Anatomical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran. Accepted 1 March ... with lower pregnancy, implantation and delivery rates in ... humans, LIF mRNA and protein levels are low in the.

  15. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-05-01

    Full Text Available Angiopoietin-like protein 4 (ANGPTL4 is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT and Small Tailed Han (STH sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  16. Alternative splicing of cyclooxygenase-1 mRNA in the human iris

    NARCIS (Netherlands)

    Dröge, M.J; van Sorge, A.A; van Haeringen, N.J; Quax, Wim; Zaagsma, Hans; Droge, MJ

    2003-01-01

    dIn homogenates of the human iris, the nonsteroidal antiinflammatory drug (NSAID) S(+)flurbiprofen has been reported to inhibit cyclooxygenase-1 (COX-1) 70-fold more potently than in human whole blood. We hypothesized that this difference may be due to alternative splicing of COX-1 mRNA in the human

  17. Generation of human induced pluripotent stem cells using non-synthetic mRNA

    Directory of Open Access Journals (Sweden)

    L. Rohani

    2016-05-01

    Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach.

  18. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    Science.gov (United States)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  19. Regulation of elastin synthesis in developing sheep nuchal ligament by elastin mRNA levels

    International Nuclear Information System (INIS)

    Davidson, J.M.; Smith, K.; Shibahara, S.; Tolstoshev, P.; Crystal, R.G.

    1982-01-01

    Levels of elastin production in explant culture of fetal sheep nuchal ligament and corresponding levels of translatable elastin mRNA were determined in parallel studies during a period of rapid growth of the embryo. The identity of the explant culture and cell-free proucts was confirmed by peptide mapping, immunoprecipitation, and the characteristic lack of histidine and methionine. Elastin production was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmune precipitation. The translation products could be labeled with methionine only when NH 2 -terminally donated as f-Met-tRNA/sup Met//sub f/. Explant cultures showed a large rise in elastin production from 70 days after conception to 150 days after conception. Cell free translation of RNA demonstrated a parallel in elastin mRNA levels and in elastin mRNA per cell. It appears, therefore, that the marked emphasis the differentiating muchal ligament places on elastin production is modulated, at least in part, by the quantities of available elastin in mRNA

  20. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  1. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    Science.gov (United States)

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  2. Expression of IL-1β mRNA in mice after whole body X-irradiation

    International Nuclear Information System (INIS)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi

    1995-01-01

    IL-1β is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1β mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1β mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1β mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author)

  3. Differential distribution of calcineurin Aα isoenzyme mRNA's in rat brain

    NARCIS (Netherlands)

    Buttini, M.; Limonta, S.; Luyten, M.; Boddeke, H.

    1993-01-01

    Specific antisense oligonucleotide probes for the α isoforms of the catalytic subunit (A-subunit) of calcineurin were prepared and the distribution of Aα1 and Aα2 mRNA's has been studied in rat brain using in situ hybridization histochemistry. Clear regional differences have been observed for the

  4. Quantitation of the mRNA expression of the epidermal growth factor system

    DEFF Research Database (Denmark)

    Sørensen, B S; Tørring, N; Bor, M V

    2000-01-01

    ) and for the quantitation of mRNA for the receptors HER-1 and its preferred dimerization partner, HER-2. The method is based on the generation of specific RNA standards, which are amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) with the sample RNA and a set of calibrators. The resulting calibration...

  5. Mutagenic effect of the decay of 32P incorporated in mRNA

    International Nuclear Information System (INIS)

    Zakharov, I.A.; Korolev, V.G.; Gracheva, L.M.

    1978-01-01

    32 P decay in mRNA transcribed using the Escherichia coli lactose operone leads to an authentic increase of Lac - mutants frequency as compared to the check. The principle possibility of the realization of directed mutagenesis using molecules labeled with radioactive isotopes connected with certain RNA units is shown

  6. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake

    DEFF Research Database (Denmark)

    Jensen, B L; Kurtz, A

    1997-01-01

    RNA correlated directly with salt intake. We conclude that dietary salt intake influences renal cyclooxygenase mRNAs zone-specifically with opposite responses between cortex and medulla. Cortical COX II-mediated prostaglandin formation is probably important in low salt states whereas medullary COX I......Experiments were done to investigate the influence of dietary salt intake on renal cyclooxygenase (COX) I and II mRNA levels. To this end rats were fed either a low NaCl diet (LS; 0.02% NaCl wt/wt) or a high NaCl diet (HS diet; 4% NaCl wt/wt) for 5, 10 and 20 days. After 10 days Na excretion...... differed 760-fold, plasma renin activity and renin mRNA were increased eight- and threefold in LS compared to HS animals. Total renal COX I mRNA decreased 50% following the LS diet and did not change after the HS diet. Conversely, COX II mRNA declined after HS intake and transiently increased after salt...

  7. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Directory of Open Access Journals (Sweden)

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  8. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles

    DEFF Research Database (Denmark)

    Arensbak, B; Mikkelsen, Hanne Birte; Gustafsson, F

    2001-01-01

    arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern...

  9. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  10. Interleukin-6 modifies mRNA expression in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hassing, Helle Adser; Wojtaszewski, Jørgen; Jakobsen, Anne Hviid

    2011-01-01

    Aim: The aim of the present study was to test the hypothesis that interleukin-6 plays a role in exercise-induced PGC-1a and TNFa mRNA responses in skeletal muscle and to examine the potential IL-6 mediated AMPK regulation in these responses. Methods: Whole body IL-6 knockout and wildtype (WT) mal...

  11. Imaging translation dynamics of single mRNA molecules in live cells

    NARCIS (Netherlands)

    Ruijtenberg, Suzan; Hoek, Tim A.; Yan, Xiaowei; Tanenbaum, Marvin E.

    2018-01-01

    mRNA translation is a key step in decoding the genetic information stored in DNA. Regulation of translation efficiency contributes to gene expression control and is therefore important for cell fate and function. Here, we describe a recently developed microscopy-based method that allows for

  12. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  13. Influence of mRNA decay rates on the computational prediction of ...

    Indian Academy of Sciences (India)

    SEARCHU

    To understand the influences, we present a systematic method based on a gene dynamic ... data). The results indicate that mRNA decay rates do not significantly influence the .... For instance, k for a cubic B-spline equals 4 and the fitting.

  14. PAX5α and PAX5β mRNA expression in breast Cancer: Relation to ...

    African Journals Online (AJOL)

    Background: Many studies evaluated the role of paired box gene 5 (PAX5) in breast cancer. However, few investigated PAX5α and PAX5β isoforms individually. Objective: The aim of the present study is to evaluate mRNA expression of PAX5α and PAX5β in breast cancer and assessing their underlying pathological roles ...

  15. The potential lipolysis function of musclin and its mRNA expression ...

    African Journals Online (AJOL)

    Musclin is a newly discovered factor and its functions remain to be defined. This study investigated the tissue expression pattern of musclin gene and its potential effect on lipid metabolism. Musclin mRNA levels in adipose, muscle tissues and primary adipocytes were examined by quantitative PCR. The musclin gene ...

  16. The effects of valproic acid on the mRNA expression of Natriuretic ...

    African Journals Online (AJOL)

    Mona Hajikazemi

    2017-04-28

    Apr 28, 2017 ... Real Time RT-PCR was used to quantify differential mRNA expression of NPR-A and KCNQ1 genes. Two-way ANOVA and bonferroni post-tests were used to analyze data statistically. Results: We showed that VPA treatment inhibits the growth of SW-480 cells more efficiently compared to. HT-29. NPR-A ...

  17. Mutagenic effect of the decay of /sup 32/P incorporated in mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, I A; Korolev, V G; Gracheva, L M [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1978-10-01

    /sup 32/P decay in mRNA transcribed using the Escherichia coli lactose operone leads to an authentic increase of Lac/sup -/ mutants frequency as compared to the check. The principle possibility of the realization of directed mutagenesis using molecules labeled with radioactive isotopes connected with certain RNA units is shown.

  18. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes

    NARCIS (Netherlands)

    Jones, S.; Sutherland, C.J.; Hermsen, C.C.; Arens, T.; Teelen, K.A.E.M.; Hallett, R.; Corran, P.; van der Vegte-Bolmer, M.; Sauerwein, R.; Drakeley, C.; Bousema, J.T.

    2012-01-01

    ABSTRACT: BACKGROUND: Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be

  19. Induction of interleukin-1β mRNA after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M.; Sauter, A.; Boddeke, H.W.G.M.

    1994-01-01

    The expression of interleukin-1β (IL-1β) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery (MCAO).

  20. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani Kanth; Olesen, Jens Raabjerg

    2007-01-01

    by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' 5' exonuclease Rrp6p is required...

  1. Lipoprotein Lipase mRNA expression in different tissues of farm ...

    African Journals Online (AJOL)

    Lipoprotein lipase (LPL) controls triacylglycerol partitioning between adipose tissues and muscles, so it is important enzyme for fattening of animals .The present work was planned to clarify the use of polymerase chain reaction (PCR) for detection of LPL mRNA expression in different tissues representing internal organs of ...

  2. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    Science.gov (United States)

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  3. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  4. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize <