WorldWideScience

Sample records for altering mrna splicing

  1. Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos

    International Nuclear Information System (INIS)

    This work represents the first guide for using steric-block antisense oligos as tools for effective and targeted modification of RNA splicing. Comparison of several steric-block oligo types shows the properties of Morpholinos provide significant advantages over other potential splice-blocking oligos. The procedures and complications of designing effective splice-blocking Morpholino oligos are described. The design process requires complete pre-mRNA sequence for defining suitable targets, which usually generate specific predictable messengers. To validate the targeting procedure, the level and nature of transcript alteration is characterized by RT-PCR analysis of splice modification in a β-globin splice model system. An oligo-walking study reveals that while U1 and U2 small nuclear RiboNucleoProtein (snRNP) binding sites are the most effective targets for blocking splicing, inclusion of these sites is not required to achieve effective splice modifications. The most effective targeting strategy employs simultaneously blocking snRNP binding sites and splice-junctions. The work presented here continues to be the basis for most of the successful Morpholino oligos designed for the worldwide research community to block RNA splicing

  2. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia

    OpenAIRE

    Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.

    2011-01-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was...

  3. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis

    Science.gov (United States)

    Nevarez, Lisette; Pogue, Robert; Krakow, Deborah; Cohn, Daniel H.

    2016-01-01

    The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. PMID:27622494

  4. Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family.

    OpenAIRE

    Lenk, U; Demuth, S.; Kräft, U; Hanke, R; Speer, A

    1993-01-01

    Carrier determination is important for genetic counselling in DMD/BMD families. The detection of altered PCR amplified dystrophin mRNA fragments owing to deletions, insertions, or point mutations has increased the possibilities of carrier determination. However, problems may occur because of alternative splicing events. Here we present a family with a DMD patient characterised by a deletion of exons 45 to 54. At the mRNA level we detected a corresponding altered fragment which served for carr...

  5. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    Science.gov (United States)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  6. Alternative mRNA Splicing: Control by Combination

    OpenAIRE

    Mabon, Stephen A; Tom Misteli

    2005-01-01

    Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing factors to transcripts with distinct splicing fates is available. Here we have used quantitative single-cell imaging to test this key predict...

  7. mRNA 5′-leader trans-splicing in the chordates

    OpenAIRE

    Vandenberghe, Amanda E.; Meedel, Thomas H.; Hastings, Kenneth E.M.

    2001-01-01

    We report the discovery of mRNA 5′-leader trans-splicing (SL trans-splicing) in the chordates. In the ascidian protochordate Ciona intestinalis, the mRNAs of at least seven genes undergo trans-splicing of a 16-nucleotide 5′-leader apparently derived from a 46-nucleotide RNA that shares features with previously characterized splice donor SL RNAs. SL trans-splicing was known previously to occur in several protist and metazoan phyla, however, this is the first report of SL trans-splicing within ...

  8. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Waage, Johannes Eichler; Tian, Geng;

    2012-01-01

    a bioinformatic pipeline that maps RNA-seq data to a combinatorial exon database, predicts NMD-susceptibility for mRNA isoforms and calculates the distribution of major splice isoform classes. We present a catalog of NMD-regulated alternative splicing events, showing that isoforms of 30% of all expressed genes......ABSTRACT: BACKGROUND: Nonsense-mediated mRNA decay (NMD) affects the outcome of alternative splicing by degrading mRNA isoforms with premature termination codons. Splicing regulators constitute important NMD targets; however, the extent to which loss of NMD causes extensive deregulation...... of alternative splicing has not previously been assayed in a global, unbiased manner. Here, we combine mouse genetics and RNA-seq to provide the first in vivo analysis of the global impact of NMD on splicing patterns in two primary mouse tissues ablated for the NMD factor UPF2. RESULTS: We developed...

  9. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing.

    Science.gov (United States)

    Trochet, Delphine; Prudhon, Bernard; Jollet, Arnaud; Lorain, Stéphanie; Bitoun, Marc

    2016-01-01

    Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3'-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5'-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development. PMID:27623444

  10. Comparison of mRNA Splicing Assay Protocols across Multiple Laboratories

    DEFF Research Database (Denmark)

    Whiley, Phillip J; de la Hoya, Miguel; Thomassen, Mads;

    2014-01-01

    and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501......Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data...... in turn relies on appropriate assay design, interpretation, and reporting.METHODS: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities...

  11. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities.

    Science.gov (United States)

    Zhang, Jian; Lieu, Yen K; Ali, Abdullah M; Penson, Alex; Reggio, Kathryn S; Rabadan, Raul; Raza, Azra; Mukherjee, Siddhartha; Manley, James L

    2015-08-25

    Serine/arginine-rich splicing factor 2 (SRSF2) is an RNA-binding protein that plays important roles in splicing of mRNA precursors. SRSF2 mutations are frequently found in patients with myelodysplastic syndromes and certain leukemias, but how these mutations affect SRSF2 function has only begun to be examined. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease to introduce the P95H mutation to SRSF2 in K562 leukemia cells, generating an isogenic model so that splicing alterations can be attributed solely to mutant SRSF2. We found that SRSF2 (P95H) misregulates 548 splicing events (RNA gel shift assays showed that a mutant SRSF2 derivative bound more tightly than its wild-type counterpart to RNA sites containing UCCAG but bound less tightly to UGGAG sites. Thus in most cases the pattern of exon inclusion or exclusion correlated with stronger or weaker RNA binding, respectively. We further show that the P95H mutation does not affect other functions of SRSF2, i.e., protein-protein interactions with key splicing factors. Our results thus demonstrate that the P95H mutation positively or negatively alters the binding affinity of SRSF2 for cognate RNA sites in target transcripts, leading to misregulation of exon inclusion. Our findings shed light on the mechanism of the disease-associated SRSF2 mutation in splicing regulation and also reveal a group of misspliced mRNA isoforms for potential therapeutic targeting.

  12. Quantitative imaging of single mRNA splice variants in living cells

    Science.gov (United States)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  13. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Directory of Open Access Journals (Sweden)

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  14. Profiling alternatively spliced mRNA isoforms for prostate cancer classification

    Directory of Open Access Journals (Sweden)

    Fan Jian-Bing

    2006-04-01

    Full Text Available Abstract Background Prostate cancer is one of the leading causes of cancer illness and death among men in the United States and world wide. There is an urgent need to discover good biomarkers for early clinical diagnosis and treatment. Previously, we developed an exon-junction microarray-based assay and profiled 1532 mRNA splice isoforms from 364 potential prostate cancer related genes in 38 prostate tissues. Here, we investigate the advantage of using splice isoforms, which couple transcriptional and splicing regulation, for cancer classification. Results As many as 464 splice isoforms from more than 200 genes are differentially regulated in tumors at a false discovery rate (FDR of 0.05. Remarkably, about 30% of genes have isoforms that are called significant but do not exhibit differential expression at the overall mRNA level. A support vector machine (SVM classifier trained on 128 signature isoforms can correctly predict 92% of the cases, which outperforms the classifier using overall mRNA abundance by about 5%. It is also observed that the classification performance can be improved using multivariate variable selection methods, which take correlation among variables into account. Conclusion These results demonstrate that profiling of splice isoforms is able to provide unique and important information which cannot be detected by conventional microarrays.

  15. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara;

    2012-01-01

    Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre...... and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD......)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in transcript...

  16. Alternative splicing of cyclooxygenase-1 mRNA in the human iris

    NARCIS (Netherlands)

    Dröge, M.J; van Sorge, A.A; van Haeringen, N.J; Quax, Wim; Zaagsma, Hans; Droge, MJ

    2003-01-01

    dIn homogenates of the human iris, the nonsteroidal antiinflammatory drug (NSAID) S(+)flurbiprofen has been reported to inhibit cyclooxygenase-1 (COX-1) 70-fold more potently than in human whole blood. We hypothesized that this difference may be due to alternative splicing of COX-1 mRNA in the human

  17. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion.

    Directory of Open Access Journals (Sweden)

    Yesenia Ríos

    Full Text Available Loss of retinoblastoma (Rb tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39 mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130, and cdkn1a (p21 expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis.

  18. m(6)A: Signaling for mRNA splicing.

    Science.gov (United States)

    Adhikari, Samir; Xiao, Wen; Zhao, Yong-Liang; Yang, Yun-Gui

    2016-09-01

    Among myriads of distinct chemical modifications in RNAs, dynamic N6-methyladenosine (m(6)A) is one of the most prevalent modifications in eukaryotic mRNAs and non-coding RNAs. Similar to the critical role of chemical modifications in regulation of DNA and protein activities, RNA m(6)A modification is also observed to be involved in the regulation of diverse functions of RNAs including meiosis, fertility, development, cell reprogramming and circadian period. The RNA m(6)A modification is recognized by YTH domain containing family proteins comprising of YTHDC1-2 and YTHDF1-3. Here we focus on the nuclear m(6)A reader YTHDC1 and its regulatory role in alternative splicing and other RNA metabolic processes. PMID:27351695

  19. mRNA trans-splicing in gene therapy for genetic diseases.

    Science.gov (United States)

    Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre

    2016-07-01

    Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. PMID:27018401

  20. mRNA trans‐splicing in gene therapy for genetic diseases

    Science.gov (United States)

    Berger, Adeline; Maire, Séverine; Gaillard, Marie‐Claude; Sahel, José‐Alain; Hantraye, Philippe

    2016-01-01

    Spliceosome‐mediated RNA trans‐splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post‐transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre‐mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans‐splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans‐splicing, review the different strategies that are under evaluation to lead to efficient trans‐splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487–498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. PMID:27018401

  1. Alternative mRNA Splicing from the Glial Fibrillary Acidic Protein (GFAP) Gene Generates Isoforms with Distinct Subcellular mRNA Localization Patterns in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Daugaard, Tina Fuglsang; Holm, Ida E;

    2013-01-01

    The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfapa is the most predominant isoform. The Gfapd isoform is expressed in proliferating......RNA localization patterns were dependent on the different 39-exon sequences included in Gfapd and Gfapa mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have potential...

  2. Alternative promoter usage and mRNA splicing pathways for parathyroid hormone-related protein in normal tissues and tumours.

    OpenAIRE

    Southby, J.; O'Keeffe, L. M.; Martin, T.J.; Gillespie, M T

    1995-01-01

    The parathyroid hormone-related protein (PTHrP) gene consists of nine exons and allows the production of multiple PTHrP mRNA species via the use of three promoters and 5' and 3' alternative splicing; as a result of 3' alternative splicing one of three protein isoforms may be produced. This organisation has potential for tissue-specific splicing patterns. We examined PTHrP mRNA expression and splicing patterns in a series of tumours and normal tissues, using the sensitive reverse transcription...

  3. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-08-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. PMID:27264950

  4. Cholesteryl Ester Transfer Protein (CETP polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk.

    Directory of Open Access Journals (Sweden)

    Audrey C Papp

    Full Text Available Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP gene have been associated with HDL levels, risk for coronary artery disease (CAD, and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5, allele frequency 33%. In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9, has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10 and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8 (in high linkage disequilibrium with allele frequencies 6-7%. rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28 and rs5883 p = 8.6 × 10(-10, adjusted for rs247616. In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE, rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30, p = 0.005, n = 866. These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex

  5. Cholesteryl Ester Transfer Protein (CETP) polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk.

    Science.gov (United States)

    Papp, Audrey C; Pinsonneault, Julia K; Wang, Danxin; Newman, Leslie C; Gong, Yan; Johnson, Julie A; Pepine, Carl J; Kumari, Meena; Hingorani, Aroon D; Talmud, Philippa J; Shah, Sonia; Humphries, Steve E; Sadee, Wolfgang

    2012-01-01

    Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex

  6. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    DEFF Research Database (Denmark)

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L;

    2015-01-01

    for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients' fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. RESULTS......: All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20...... alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved...

  7. Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone.

    OpenAIRE

    Aniello, F; Couchie, D; Bridoux, A M; Gripois, D.; Nunez, J.

    1991-01-01

    The effect of thyroid hormone on the expression of tau transcripts was studied during postnatal brain development. The level of tau mRNA was only slightly changed postnatally in the cerebral hemispheres of hypothyroid rats, whereas the level of tau mRNA in the cerebellum was maintained at a higher level than in the euthyroid controls. As shown by in situ hybridization studies, such an alteration in tau mRNA expression can be ascribed to an effect of thyroid hormone on the rate of migration of...

  8. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    Science.gov (United States)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  9. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole;

    2012-01-01

    is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based......Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I...

  10. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  11. Identification of alternatively spliced TIMP-1 mRNA in cancer cell lines and colon cancer tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Sieuwerts, A.M.; Bartels, Annette;

    2007-01-01

    TIMP-1 is a promising new candidate as a prognostic marker in colorectal and breast cancer. We now describe the discovery of two alternatively spliced variants of TIMP-1 mRNA. The two variants lacking exon 2 (del-2) and 5 (del-5), respectively, were identified in human cancer cell lines by RT......-PCR. The del-2 variant was, furthermore, detected in extracts from 12 colorectal cancer tissue samples. By western blotting additional bands of lower molecular mass than full-length TIMP-1 were identified in tumor tissue, but not in plasma samples obtained from cancer patients. The two splice variants of TIMP...

  12. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia

    OpenAIRE

    Yoshida, Mayumi; Kataoka, Naoyuki; Miyauchi, Kenjyo; Ohe, Kenji; Iida, Kei; Yoshida, Suguru; Nojima, Takayuki; Okuno, Yukiko; Onogi, Hiroshi; Usui, Tomomi; Takeuchi, Akihide; Hosoya, Takamitsu; Suzuki, Tsutomu; Hagiwara, Masatoshi

    2015-01-01

    Familial dysautonomia (FD) is caused by missplicing of the IκB kinase complex-associated protein (IKAP) gene, which results in the skipping of exon 20, especially in neurons. FD would be treatable if exon 20 inclusion were increased correctly to reestablish correct splicing. Here, we have established a dual-color splicing reporter that recapitulates FD-type splicing. By using this reporter, we have identified a small chemical compound, named rectifier of aberrant splicing (RECTAS), that recti...

  13. Two Human ACAT2 mRNA Variants Produced by Alternative Splicing and Coding for Novel Isoenzymes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Min YAO; Bo-Liang LI; Can-Hua WANG; Bao-Liang SONG; Xin-Ying YANG; Zhen-Zhen WANG; Wei QI; Zhi-Xin LIN; Catherine C. Y. CHANG; Ta-Yuan CHANG

    2005-01-01

    Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms,named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA).Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RTPCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions.

  14. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing

    DEFF Research Database (Denmark)

    Pang, Chi; Tay, Aidan; Aya, Carlos;

    2014-01-01

    contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates...... the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene...... validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus...

  15. Nonsense mutations and altered splice-site selection

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)

    1997-03-01

    The invited editorial by Maquat, regarding defects in RNA splicing and the consequence of shortened translational reading frames, provided a balanced and comprehensive review of the topic. We believe, however, that our work describing the nonsense codon-mediated skipping of fibrillin-1 exon 51 was interpreted in a manner that is not fully supported by our data. 6 refs.

  16. A critical analysis of Atoh7 (Math5 mRNA splicing in the developing mouse retina.

    Directory of Open Access Journals (Sweden)

    Lev Prasov

    Full Text Available The Math5 (Atoh7 gene is transiently expressed during retinogenesis by progenitors exiting mitosis, and is essential for ganglion cell (RGC development. Math5 contains a single exon, and its 1.7 kb mRNA encodes a 149-aa polypeptide. Mouse Math5 mutants have essentially no RGCs or optic nerves. Given the importance of this gene in retinal development, we thoroughly investigated the possibility of Math5 mRNA splicing by Northern blot, 3'RACE, RNase protection assays, and RT-PCR, using RNAs extracted from embryonic eyes and adult cerebellum, or transcribed in vitro from cDNA clones. Because Math5 mRNA contains an elevated G+C content, we used graded concentrations of betaine, an isostabilizing agent that disrupts secondary structure. Although approximately 10% of cerebellar Math5 RNAs are spliced, truncating the polypeptide, our results show few, if any, spliced Math5 transcripts exist in the developing retina (<1%. Rare deleted cDNAs do arise via RT-mediated RNA template switching in vitro, and are selectively amplified during PCR. These data differ starkly from a recent study (Kanadia and Cepko 2010, which concluded that the vast majority of Math5 and other bHLH transcripts are spliced to generate noncoding RNAs. Our findings clarify the architecture of the Math5 gene and its mechanism of action. These results have implications for all members of the bHLH gene family, for any gene that is alternatively spliced, and for the interpretation of all RT-PCR experiments.

  17. Mammary gland selective excision of c-jun identifies its role in mRNA splicing

    OpenAIRE

    Katiyar, Sanjay; Jiao, Xuanmao; Addya, Sankar; Ertel, Adam; Rose, Vanessa; Casimiro, Mathew C.; Zhou, Jie; Lisanti, Michael P; Nasim, Talat; Fortina, Paolo; Pestell, Richard G.

    2011-01-01

    The c-jun gene regulates cellular proliferation and apoptosis via direct regulation of cellular gene expression. Alternative splicing of pre-mRNA increases the diversity of protein functions and alternate splicing events occur in tumors. Here, by targeting the excision of the endogenous c-jun gene within the mouse mammary epithelium, we have identified its selective role as an inhibitor of RNA splicing. Microarray-based assessment of gene expression, on laser capture micro-dissected c-jun−/− ...

  18. Fractionation and characterization of a yeast mRNA splicing extract.

    OpenAIRE

    S. C. Cheng; Abelson, J

    1986-01-01

    We have fractionated a yeast whole cell extract that can accurately splice synthetic actin and CYH2 pre-mRNAs. Three fractions, designated I, II, and III, have been separated by use of ammonium sulfate fractionation and chromatography on heparin agarose. Each fraction alone has no splicing activity. Fractions I and II allow the first step of the splicing reaction to proceed, giving rise to the splicing intermediates, free exon 1, and intron-exon 2. Addition of fraction III completes the react...

  19. A novel splicing mutation alters DSPP transcription and leads to dentinogenesis imperfecta type II.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Dentinogenesis imperfecta (DGI type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP gene were revealed to be the causation of DGI type II (DGI-II. In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases.

  20. A novel splicing mutation alters DSPP transcription and leads to dentinogenesis imperfecta type II.

    Science.gov (United States)

    Zhang, Jun; Wang, Jiucun; Ma, Yanyun; Du, Wenqi; Zhao, Siyang; Zhang, Zuowei; Zhang, Xiaojiao; Liu, Yue; Xiao, Huasheng; Wang, Hongyan; Jin, Li; Liu, Jie

    2011-01-01

    Dentinogenesis imperfecta (DGI) type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP) gene were revealed to be the causation of DGI type II (DGI-II). In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C) lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases.

  1. Post-transcriptional repair of a split heat shock protein 90 gene by mRNA trans-splicing.

    Science.gov (United States)

    Nageshan, Rishi Kumar; Roy, Nainita; Hehl, Adrian B; Tatu, Utpal

    2011-03-01

    Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 (glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the "intron" regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing. PMID:21209094

  2. Post-transcriptional Repair of a Split Heat Shock Protein 90 Gene by mRNA trans-Splicing*♦

    Science.gov (United States)

    Nageshan, Rishi Kumar; Roy, Nainita; Hehl, Adrian B.; Tatu, Utpal

    2011-01-01

    Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 (glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the “intron” regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing. PMID:21209094

  3. Inclusion of the Central Exon of Parvovirus B19 Precursor mRNA Is Determined by Multiple Splicing Enhancers in both the Exon and the Downstream Intron ▿

    OpenAIRE

    Guan, Wuxiang; Cheng, Fang; Huang, Qinfeng; Kleiboeker, Steve; Qiu, Jianming

    2010-01-01

    Alternative splicing of the precursor mRNA (pre-mRNA) of human parvovirus B19 (B19V) plays a key role in posttranscriptional regulation of B19V gene expression. We report that the central exon of the B19V pre-mRNA is defined by three GAA motif-containing exonic splicing enhancers and a G/GU-rich intronic splicing enhancer that lies adjacent to the second donor site. Moreover, targeting of morpholino antisense oligonucleotides to the two splicing enhancers surrounding the second donor site led...

  4. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  5. Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA

    International Nuclear Information System (INIS)

    The authors describe here a third region of variability in human fibronectin (FN) due to alternative RNA splicing. Two other positions of alternative splicing have been reported previously (ED and IIICS). The third region involves a 273-nucleotide exon encoding exactly one 91-amino acid repeat of type III homology, located between the DNA- and the cell-binding domains of FN, which is either included in or excluded from FN mRNA. The two mRNA variants arising by an exon-skipping mechanism are present in cells known to synthesize the cellular form of FN. However, liver cells, which are the source of plasma FN, produce only messengers without the extra type III sequence. Therefore, the region described here resembles, both structurally and functionally, the previously described ED (for extra domain) region, located toward the C terminus of the molecule between the cell- and heparin- (hep 2) binding domains. The authors conclude that both the extra type III repeat (names EDII) and ED represent sequences restricted to cellular FN. Combination of all the possible patterns of splicing in the three regions described to date may generate up to 20 distinct FN polypeptides from a single gene

  6. Vibrational force alters mRNA expression in osteoblasts

    Science.gov (United States)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  7. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  8. DETERMINATION OF LEVEL EXPRESSION OF mRNA SPLICING VARIANTS FOR DR3 IN BLOOD CELLS IN INFECTIOUS MONONUCLEOSIS

    Directory of Open Access Journals (Sweden)

    V. D. Cvetkova

    2016-01-01

    Full Text Available The DR3 «death receptor» plays an important role in the initiation of apoptosis, proliferation, or inflammation. This receptor is shown to be involved in various diseases, including infectious conditions. Different variants of mRNA DR3 are formed as a result of alternative splicing. These variant transcripts encode membrane and soluble forms of the receptor which have different functions. Features of their expression and contribution of individual DR3 variants to the immune pathogenesis of infectious mononucleosis (IM are poorely understood.The purpose of this work was to develop, validate and test the techniques of DR3 gene expression assays, as well as to evaluate the DR3 mRNA splice variants by means of real-time RT-PCR and RT-PCR in the IM patients.The original version of real-time RT-PCR allowed to determine relative amounts of DR3 mRNA, DR3 membrane variants (LARD1a + LARD8, and ratios of mRNAs encoding membrane and soluble forms of the receptor. The technique proved to be specific and sensitive (a semi-quantitative detection limit = 34-35 cycles when tested in healthy volunteers and patients with acute infectious mononucleosis (AIM. Lower expression levels were shown for two alternative membrane variants of DR3 mRNA (LARD1b and DR3beta thus regarding these isoforms as minor fractions. The relative levels of total DR3 mRNA expression were decreased in patients with AIM, as compared to healthy volunteers, whereas mRNA expression of membrane receptor variants did not differ between IM and controls.To determine a qualitative contribution of either LARD1a and LARD8 variants into the expression of membrane forms of DR3, a two-step «nested» version of RT-PCR has been developed. It was shown that, in majority of control and IM samples, both main LARD1a, and alternative LARD8 membrane forms are contributing to mRNA expression of membrane DR3 variants.The presented methods for evaluation of expression and occurrence of DR3 mRNA variants allow

  9. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  10. Genome-wide survey of allele-specific splicing in humans

    OpenAIRE

    Nembaware, Victoria; Lupindo, Bukiwe; Schouest, Katherine; Spillane, Charles; Scheffler, Konrad; Seoighe, Cathal

    2008-01-01

    Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation...

  11. Genome-wide survey of allele-specific splicing in humans

    OpenAIRE

    Scheffler Konrad; Spillane Charles; Schouest Katherine; Lupindo Bukiwe; Nembaware Victoria; Seoighe Cathal

    2008-01-01

    Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a...

  12. Individuals With Normal GLA Gene Sequence May Present Abnormally Spliced Alpha-Galactosidase mRNA Transcripts

    Directory of Open Access Journals (Sweden)

    Ferreira

    2015-12-01

    Full Text Available Background Deficient lysosomal α-galactosidase activity leads to intracellular accumulation of globotriaosylceramide (Gb3, which is the pathologic hallmark of Fabry disease (FD. There are over 750 pathogenic variants identified in the α-galactosidase gene (GLA. In rare patients, the cause of α-galactosidase deficiency is the overexpression of a GLA transcript with a cryptic exon in intron 4, which is physiologically present at trace levels. Objectives We aim to report abnormally spliced alpha-galactosidase mRNA transcripts found with a cDNA-based GLA genotyping protocol performed in 482 patients. Patients and Methods Genomic DNA and total RNA specimens were obtained from peripheral blood leukocytes of patients with premature stroke prospectively enrolled in the PORTYSTROKE study, or of patients with possible clinical manifestations of FD who have been referred for molecular diagnostic workup. Results Approximately 20% of the patients expressed alternatively spliced transcripts of GLA mRNA involving exon 3. We additionally report that such non-canonical transcripts are physiologically expressed at trace levels in healthy individuals, and that their expression in leukocytes markedly increased in blood samples kept at room-temperature for 48 hours before RNA extraction. Conclusions Production of alternatively spliced GLA transcripts might be involved in the regulation of GLA gene expression, and its deregulated overexpression, particularly if restricted to specific cells or tissues, might be the cause of organ-limited Gb3 pathology. Elucidation of the molecular mechanisms underlying the production of the non-canonical GLA transcripts warrants further investigation, as it may contribute important new data to the understanding of the molecular pathology of FD and Gb3-related disorders.

  13. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

    Science.gov (United States)

    Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C

    2004-10-01

    Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.

  14. Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing.

    Science.gov (United States)

    Brandimarti, P; Costa-Júnior, J M; Ferreira, S M; Protzek, A O; Santos, G J; Carneiro, E M; Boschero, A C; Rezende, L F

    2013-11-01

    Insulin clearance plays a major role in glucose homeostasis and insulin sensitivity in physiological and/or pathological conditions, such as obesity-induced type 2 diabetes as well as diet-induced obesity. The aim of the present work was to evaluate cafeteria diet-induced obesity-induced changes in insulin clearance and to explain the mechanisms underlying these possible changes. Female Swiss mice were fed either a standard chow diet (CTL) or a cafeteria diet (CAF) for 8 weeks, after which we performed glucose tolerance tests, insulin tolerance tests, insulin dynamics, and insulin clearance tests. We then isolated pancreatic islets for ex vivo glucose-stimulated insulin secretion as well as liver, gastrocnemius, visceral adipose tissue, and hypothalamus for subsequent protein analysis by western blot and determination of mRNA levels by real-time RT-PCR. The cafeteria diet induced insulin resistance, glucose intolerance, and increased insulin secretion and total insulin content. More importantly, mice that were fed a cafeteria diet demonstrated reduced insulin clearance and decay rate as well as reduced insulin-degrading enzyme (IDE) protein and mRNA levels in liver and skeletal muscle compared with the control animals. Furthermore, the cafeteria diet reduced IDE expression and alternative splicing in the liver and skeletal muscle of mice. In conclusion, a cafeteria diet impairs glucose homeostasis by reducing insulin sensitivity, but it also reduces insulin clearance by reducing IDE expression and alternative splicing in mouse liver; however, whether this mechanism contributes to the glucose intolerance or helps to ameliorate it remains unclear.

  15. FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis

    DEFF Research Database (Denmark)

    Ryder, L Rebekka; Bartels, Else Marie; Woetmann, Anders;

    2012-01-01

    Our aim was to elucidate the relative amount of the different splice forms of FoxP3 mRNA in CD4+ T cells in peripheral blood (PB) compared to synovial fluid (SF) in RA and PsA patients. FoxP3 mRNA was measured using a quantitative real-time PCR method. CD4+ T cells were isolated from 17 paired sa...

  16. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance.

    Science.gov (United States)

    Wojtuszkiewicz, Anna; Raz, Shachar; Stark, Michal; Assaraf, Yehuda G; Jansen, Gerrit; Peters, Godefridus J; Sonneveld, Edwin; Kaspers, Gertjan J L; Cloos, Jacqueline

    2016-04-01

    Methotrexate (MTX), a folate antagonist which blocks de novo nucleotide biosynthesis and DNA replication, is an anchor drug in acute lymphoblastic leukemia (ALL) treatment. However, drug resistance is a primary hindrance to curative chemotherapy in leukemia and its molecular mechanisms remain poorly understood. We have recently shown that impaired folylpolyglutamate synthetase (FPGS) splicing possibly contributes to the loss of FPGS activity in MTX-resistant leukemia cell line models and adult leukemia patients. However, no information is available on the possible splicing alterations in FPGS in pediatric ALL. Here, using a comprehensive PCR-based screen we discovered and characterized a spectrum of FPGS splicing alterations including exon skipping and intron retention, all of which proved to frequently emerge in both pediatric and adult leukemia patient specimens. Furthermore, an FPGS activity assay revealed that these splicing alterations resulted in loss of FPGS function. Strikingly, pulse-exposure of leukemia cells to antifolates and other chemotherapeutics markedly enhanced the prevalence of several FPGS splicing alterations in antifolate-resistant cells, but not in their parental antifolate-sensitive counterparts. These novel findings suggest that an assortment of deleterious FPGS splicing alterations may constitute a mechanism of antifolate resistance in childhood ALL. Our findings have important implications for the rational overcoming of drug resistance in individual leukemia patients.

  17. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Poly(A)+ RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  18. Herpes Simplex Virus 1 Infection Alters the mRNA Translation Processing in L-02 Cells

    Institute of Scientific and Technical Information of China (English)

    Min HONG; Yan-chun CHE; Gui-zhen TANG; Wei CUN; Xue-mei ZHANG; Long-ding LIU; Qi-han LI

    2008-01-01

    HSV-1 infection-mediated regulation of mRNA translation in host cells is a systematic and complicated process. Investigation of the details of this mechanism will facilitate understanding of biological variations in the viral replication process and host cells. In this study, a comparative proteomics technology platform was applied by two-dimension electrophoresis of HSV-1 infected normal human L-02 cell and control cell lysates. The observed protein spots were analyzed qualitatively and quantitatively by the PDQuest software package. A number of the different observed protein spots closely associated with cellular protein synthesis were identified by matrix-assisted laser-desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The expression levels of the RPLP1 protein, which is required for mRNA translation, and KHSRP protein, which is involved in rapid decay of mRNA, were up-regulated, whereas the expression level of RNP H2, which is involved in positive regulation on the mRNA splicing process, was down-regulated. All of these results suggest that HSV-1 infection can influence cellular protein synthesis via modulation of cellular regulatory proteins involved in RNA splicing, translation and decay, resulting in optimisation of viral protein synthesis when cellular protein synthesis is shut off. Although there is need for further investigations regarding the detailed mechanisms of cellular protein control, our studies provide new insight into the targeting of varied virus signaling pathways involved in host cellular protein synthesis.

  19. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome.

    Science.gov (United States)

    Shi, Jianhua; Zhang, Tianyi; Zhou, Chunlei; Chohan, Muhammad Omar; Gu, Xiaosong; Wegiel, Jerzy; Zhou, Jianhua; Hwang, Yu-Wen; Iqbal, Khalid; Grundke-Iqbal, Inge; Gong, Cheng-Xin; Liu, Fei

    2008-10-17

    Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.

  20. Expression of Cyclooxygenase-2 mRNA and Identification of Its Splice Variant in Human Myometrium Obtained from Women in Labor

    Institute of Scientific and Technical Information of China (English)

    HUANG Yinping; WAN Jingyuan; YE Duyun; WU Ping; HUANG Yanjun; ZHANG Li; ZHOU Xiaoyan; HUANG Yunfeng; YUAN Ping; ZHANG Daijuan

    2005-01-01

    In order to investigate the expression of cyclooxygenase-2 (COX-2) in human lower segments of myometrium obtained from women in labor and those not in labor and identify the splicing variant of COX-2, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of COX-2. The primers were designed and synthesized according to the sequence of rat COX-2 splice variant which was discovered firstly by us. Then the splicing variant of COX-2 in human myometrium from woman in labor was identified, cloned into vector and sequenced. The results showed that the expression of COX-2 mRNA was lower in human myometrium obtained from women who were not in labor than that in labor women and a new band of COX-2 was obtained in myometrium from labor woman. The fragment included an unspliced intron, which pitched between exons 7 and 8. It was suggested that COX-2 gene was not only expressed highly in human myometrium from woman in labor, but also produced splicing variant by alternative splicing.

  1. The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Splicing of the Mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis.

    Science.gov (United States)

    Haïli, Nawel; Planchard, Noelya; Arnal, Nadège; Quadrado, Martine; Vrielynck, Nathalie; Dahan, Jennifer; des Francs-Small, Catherine Colas; Mireau, Hakim

    2016-01-01

    Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria. PMID:26537562

  2. Conservation of IRE1-Regulated bZIP74 mRNA Unconventional Splicing in Rice (Oryza sativa L.) Involved in ER Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Sun-Jie Lu; Zheng-Ting Yang; Ling Sun; Le Sun; Ze-Ting Song; Jian-Xiang Liu

    2012-01-01

    Protein folding in the endoplasmic reticulum (ER) is a fundamental process in plant cells that is vulnerable to many environmental stresses.When unfolded or misfolded proteins accumulate in the ER,the well-conserved unfolded protein response (UPR) is initiated to mitigate the ER stress by enhancing the protein folding capability and/or accelerating the ER-associated protein degradation.Here,we report the conservation of the activation mechanism of OsbZIP74 (also known as OsbZIP50),an important ER stress regulator in monocot plant rice (Oryza sativa L.).Under normal conditions,OsbZIP74 mRNA encodes a basic leucine-zipper transcription factor with a putative transmembrane domain.When treating with ER stress-inducing agents such as tunicamycin and DTT,the conserved double stem-loop structures of OsbZIP74 mRNA are spliced out.Thereafter,the resulting new OsbZIP74 mRNA produces the nucleus-localized form of OsbZIP74 protein,eliminating the hydrophobic region.The activated form of OsbZIP74 has transcriptional activation activity in both yeast cells and Arabidopsis leaf protoplasts.The induction of OsbZIP74 splicing is much suppressed in the OsIRE1 knockdown rice plants,indicating the involvement of OsIRE1 in OsbZIP74 splicing.We also demonstrate that the unconventional splicing of OsbZIP74 mRNA is associated with heat stress and salicylic acid,which is an important plant hormone in systemic acquired resistance against pathogen or parasite.

  3. Demonstration of a dynamic, transcription-dependent organization of pre- mRNA splicing factors in polytene nuclei

    OpenAIRE

    1996-01-01

    We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a ...

  4. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  5. Sequence, 'subtle' alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors

    International Nuclear Information System (INIS)

    CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG- isoform, the first described mRNA for CYYR1 locus) or the presence (CAG+ isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG- or CAG+ isoform expression compared to control tissues. CYYR1 CAG- isoform was significantly more expressed than CAG+ isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. A new 'subtle' splicing isoform (CAG+) of CYYR1 mRNA, the sequence and the

  6. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Kuiper, G.G.J.M.; Faber, P.W.; van Rooij, H.C.J.; Degenhart, H.J.; Trapman, J.; Brinkmann, A.O. (Erasmus Univ., Rotterdam (Netherlands)); Schweikert, H.U. (Univ. of Bonn (Germany)); Zegers, N.D. (Medical Biological Laboratory-Organization for Applied Scientific Research, Rijswijk (Netherlands)); Hodgins, M.B. (Glasgow Univ. (United Kingdom))

    1990-10-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G {r arrow} T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein {approx}5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.

  7. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    International Nuclear Information System (INIS)

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G → T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein ∼5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo

  8. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.

    Science.gov (United States)

    Treutlein, Barbara; Gokce, Ozgun; Quake, Stephen R; Südhof, Thomas C

    2014-04-01

    Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1β, Nrxn2β, Nrxn3α, and Nrxn3β mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.

  9. Splicing Programs and Cancer

    OpenAIRE

    Sophie Germann; Lise Gratadou; Martin Dutertre; Didier Auboeuf

    2012-01-01

    Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of splicing at a large-scale level. Genome-wide analyses of alternative splicing...

  10. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism.

    Directory of Open Access Journals (Sweden)

    Christina R Muratore

    Full Text Available The folate and vitamin B12-dependent enzyme methionine synthase (MS is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.

  11. Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3' splice site in vivo.

    Directory of Open Access Journals (Sweden)

    Long Ma

    2009-11-01

    Full Text Available The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500 rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1 and SF1/BBP (SFA-1. The uaf-1(n4588 mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3' splice site generated by the unc-93(e1500 missense mutation. The sfa-1(n4562 mutation did not cause the utilization of this cryptic 3' splice site. We isolated four uaf-1(n4588 intragenic suppressors that restored the viability of uaf-1 mutants at 25 degrees C. These suppressors differentially affected the recognition of the cryptic 3' splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3' splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3' splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500 Unc phenotype by uaf-1(n4588 and sfa-1(n4562 was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3' splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans.

  12. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events.

    Directory of Open Access Journals (Sweden)

    Angela N Brooks

    Full Text Available Although recurrent somatic mutations in the splicing factor U2AF1 (also known as U2AF35 have been identified in multiple cancer types, the effects of these mutations on the cancer transcriptome have yet to be fully elucidated. Here, we identified splicing alterations associated with U2AF1 mutations across distinct cancers using DNA and RNA sequencing data from The Cancer Genome Atlas (TCGA. Using RNA-Seq data from 182 lung adenocarcinomas and 167 acute myeloid leukemias (AML, in which U2AF1 is somatically mutated in 3-4% of cases, we identified 131 and 369 splicing alterations, respectively, that were significantly associated with U2AF1 mutation. Of these, 30 splicing alterations were statistically significant in both lung adenocarcinoma and AML, including three genes in the Cancer Gene Census, CTNNB1, CHCHD7, and PICALM. Cell line experiments expressing U2AF1 S34F in HeLa cells and in 293T cells provide further support that these altered splicing events are caused by U2AF1 mutation. Consistent with the function of U2AF1 in 3' splice site recognition, we found that S34F/Y mutations cause preferences for CAG over UAG 3' splice site sequences. This report demonstrates consistent effects of U2AF1 mutation on splicing in distinct cancer cell types.

  13. Mutations in Tau Gene Exon 10 Associated with FTDP-17 Alter the Activity of an Exonic Splicing Enhancer to Interact with Tra2β*

    OpenAIRE

    Jiang, Zhihong; Tang, Hao; Havlioglu, Necat; Zhang, Xiaochun; Stamm, Stefan; Yan, Riqiang; Jane Y Wu

    2003-01-01

    Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. Th...

  14. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  15. U2AF1 Mutations Alter Sequence Specificity of pre-mRNA Binding and Splicing

    OpenAIRE

    Okeyo-Owuor, Theresa; White, Brian S.; Chatrikhi, Rakesh; Mohan, Dipika R.; Kim, Sanghyun; Griffith, Malachi; Ding, Li; Ketkar-Kulkarni, Shamika; Hundal, Jasreet; Laird, Kholiswa M.; Kielkopf, Clara L.; Timothy J Ley; Walter, Matthew J.; Graubert, Timothy A.

    2014-01-01

    We previously identified missense mutations in the U2AF1 splicing factor affecting codons S34 (S34F and S34Y) or Q157 (Q157R and Q157P) in 11% of patients with de novo myelodysplastic syndromes (MDS). Although the role of U2AF1 as an accessory factor in the U2 snRNP is well established, it is not yet clear how mutations affect splicing or contribute to MDS pathophysiology. We analyzed splice junctions in RNA-seq data generated from transfected CD34+ hematopoietic cells and found significant d...

  16. Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-07-01

    Full Text Available Ryanodine receptors (RyRs play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR, an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action.

  17. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA.

    Science.gov (United States)

    Snijders, Ambrosius P; Hautbergue, Guillaume M; Bloom, Alex; Williamson, James C; Minshull, Thomas C; Phillips, Helen L; Mihaylov, Simeon R; Gjerde, Douglas T; Hornby, David P; Wilson, Stuart A; Hurd, Paul J; Dickman, Mark J

    2015-03-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.

  18. Effect of splice-site polymorphisms of the TMPRSS4, NPHP4 and ORCTL4 genes on their mRNA expression

    Indian Academy of Sciences (India)

    Hidetaka Yamada; Kazuya Shinmura; Toshihiro Tsuneyoshi; Haruhiko Sugimura

    2005-08-01

    Genetic polymorphisms associated with structural changes of their gene product are important in terms of their potential relation with diseases. Therefore, in this study, splice-site variants of the transmembrane serine protease gene TMPRSS4, nephronophthisis gene NPHP4, and organic-cation transporter gene ORCTL4, were selected from the dbSNP single nucleotide polymorphism database as candidates to identify genetic polymorphisms associated with a structural change in their mRNA transcripts. The allele frequencies of the TMPRSS4 c.4-7A>G, NPHP4 c.2818-2A>T, and ORCTL4 c.517-2A>C polymorphisms in a Japanese population were determined to be 0.42, 0.10, and 0.27, respectively, by PCR-SSCP analysis. Next, the effect of these polymorphisms on the mode of pre-mRNA splicing was investigated by RT-PCR analysis followed by sequencing analysis. The TMPRSS4, NPHP4, and ORCTL4 polymorphisms were associated with the production of the r.4-6_4-1ins transcript, the r.2818_2823del and r.2818_2859del transcripts, and the r.517-94_517-1ins; r.517-2a>c and r.517_620del transcripts, respectively. Since the proteins encoded by all these transcripts are associated with relatively significant structural changes in the form amino acid insertion/deletion and premature termination, their functional ability may be greatly reduced. Our demonstration of structural changes in mRNA transcripts as a result of splice-site polymorphisms implies that they may be of biological significance in certain pathological conditions.

  19. Altered subcellular localization of the NeuN/Rbfox3 RNA splicing factor in HIV-associated neurocognitive disorders (HAND).

    Science.gov (United States)

    Lucas, Calixto-Hope; Calvez, Mathilde; Babu, Roshni; Brown, Amanda

    2014-01-13

    The anti-NeuN antibody has been widely used for over 15 years to unambiguously identify post-mitotic neurons in the central nervous system of a wide variety of vertebrates including mice, rats and humans. In contrast to its widely reported nuclear localization, we found significantly higher NeuN reactivity in the cytoplasm of neurons in brain sections from HIV-infected individuals with cognitive impairment compared to controls. The protein target of anti-NeuN antisera was recently identified as the neuron-specific RNA splicing factor, Rbfox3, but its significance in diseases affecting the brain has not been previously reported. RNA splicing occurs in the nucleus hence, the altered localization of RbFox3 to the cytoplasm may lead to the downregulation of neuronal gene expression.

  20. Three new alternative splicing variants of human cytochrome P450 2D6 mRNA in human extratumoral liver tissue

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ying-Nian Yu

    2004-01-01

    AIM: To identify the new alternative splicing variants of human CYP2D6 in human extratumoral liver tissue with RT-PCR and sequencing.METHODS: Full length of human CYP2D6 cDNAs was amplificated by reverse transcription-polymerase chain reaction (RT-PCR) from a human extratumoral liver tissue and cloned into pGEM-T vector. The cDNA was sequenced.Exons from 1 to 4 of human CYP2D6 cDNAs were also amplificated by RT-PCR from extratumoral liver tissues of17 human hepatocellular carcinomas. Some RT-PCR products were sequenced. Exons 1 to 4 of CYP2D6 gene were amplified by PCR from extratumoral liver tissue DNA.Two PCR products from extratumoral liver tissues expressing skipped mRNA were partially sequenced.RESULTS: One of the CYP2D6cDNAs had 470 nucleotides from 79 to 548 (3' portion of exons 1 to 5' portion of exon 4),and was skipped. Exons 1 to 4 of CYP2D6 cDNA were assayed with RT-PCR in 17 extratumoral liver tissues. Both wild type and skipped mRNAs were expressed in 4 samples,only wild type mRNA was expressed in 5 samples, and only skipped mRNA was expressed in 8 samples. Two more variants were identified by sequencing the RT-PCR products of exons 1 to 4 of CYP2D6cDNA. The second variant skipped 411 nucleotides from 175 to 585. This variant was identified in 4 different liver tissues by sequencing the RT-PCR products. We sequenced partially 2 of the PCR products amplified of CYP2D6 exon 1 to exon 4 from extratumoral liver tissue genomic DNA that only expressed skipped mRNA by RT-PCR. No point mutations around exon 1, intron 1, and exon 4, and no deletion in CYP2D6gene were detected. The third variant was the skipped exon 3, and 153 bp was lost.CONCLUSION: Three new alternative splicing variants of CYP2D6 mRNA have been identified. They may not be caused by gene mutation and may lose CYP2D6 activity and act as a down-regulator of CYP2D6.

  1. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  2. Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast

    DEFF Research Database (Denmark)

    Hviid, T V; Møller, C; Sørensen, S;

    1998-01-01

    Genes may be silenced at the transcriptional level by 'genomic imprinting' in such a way that only one of the parental alleles is expressed. Imprinting may be tissue-specific and in some cases it seems also to be time-dependent during development. The phenomenon has been studied in pre- and post......-implantation developmental processes. Animal studies of genomic imprinting of major histocompatibility complex (MHC) antigens in the placenta have shown discordant results. To address this issue in the human placenta, we examined the expression of the non-classical human leukocyte antigen (HLA) class I gene, HLA-G. Genomic...... investigated the different alternatively spliced forms of HLA-G mRNA in first trimester trophoblast and found the full-length transcript to be the far most abundant....

  3. Characterization of aberrant splicing of von Willebrand factor in von Willebrand disease: an underrecognized mechanism.

    Science.gov (United States)

    Hawke, Lindsey; Bowman, Mackenzie L; Poon, Man-Chiu; Scully, Mary-Frances; Rivard, Georges-Etienne; James, Paula D

    2016-07-28

    Approximately 10% of von Willebrand factor (VWF) gene mutations are thought to alter messenger RNA (mRNA) splicing through disruption of consensus splice sites. This mechanism is likely underrecognized and affected by mutations outside consensus splice sites. During VWF synthesis, splicing abnormalities lead to qualitative defects or quantitative deficiencies in VWF. This study investigated the pathologic mechanism acting in 3 von Willebrand disease (VWD) families with putative splicing mutations using patient-derived blood outgrowth endothelial cells (BOECs) and a heterologous human embryonic kidney (HEK 293(T)) cell model. The exonic mutation c.3538G>A causes 3 in-frame splicing variants (23del, 26del, and 23/26del) which cannot bind platelets, blood coagulation factor VIII, or collagen, causing VWD through dominant-negative intracellular retention of coexpressed wild-type (WT) VWF, and increased trafficking to lysosomes. Individuals heterozygous for the c.5842+1G>C mutation produce exon 33 skipping, exons 33-34 skipping, and WT VWF transcripts. Pathogenic intracellular retention of VWF lacking exons 33-34 causes their VWD. The branch site mutation c.6599-20A>T causes type 1 VWD through mRNA degradation of exon 38 skipping transcripts. Splicing ratios of aberrant transcripts and coexpressed WT were altered in the BOECs with exposure to shear stress. This study provides evidence of mutations outside consensus splice sites disrupting splicing and introduces the concept that VWF splicing is affected by shear stress on endothelial cells. PMID:27317792

  4. Human retina-specific amine oxidase: genomic structure of the gene (AOC2), alternatively spliced variant, and mRNA expression in retina.

    Science.gov (United States)

    Imamura, Y; Noda, S; Mashima, Y; Kudoh, J; Oguchi, Y; Shimizu, N

    1998-07-15

    Previously, we reported the isolation of cDNA for human retina-specific amine oxidase (RAO) and the expression of RAO exclusively in retina. Bacterial artificial chromosome clones containing the human RAO gene (AOC2) were mapped to human chromosome 17q21 (Imamura et al., 1997, Genomics 40: 277-283). Here, we report the complete genomic structure of the RAO gene, including 5' flanking sequence, and mRNA expression in retina. The human RAO gene spans 6 kb and is composed of four exons corresponding to the amino acid sequence 1-530, 530-598, 598-641, and 642-729 separated by three introns of 3000, 310, and 351 bp. Screening of a human retina cDNA library revealed the existence of an alternatively spliced cDNA variant with an additional 81 bp at the end of exon 2. The sizes of exons and the locations of exon/intron boundaries in the human RAO gene showed remarkable similarity to those of the human kidney diamine oxidase gene (AOC1). In situ hybridization revealed that mRNA coding for RAO is expressed preferentially in the ganglion cell layer of the mouse retina. We designed four sets of PCR primers to amplify four exons, which will be valuable for analyzing mutations in patients with ocular diseases affecting the retinal ganglion cell layer.

  5. Abnormal mRNA splicing but normal auditory brainstem response (ABR) in mice with the prestin (SLC26A5) IVS2-2A>G mutation.

    Science.gov (United States)

    Zhang, Jian; Liu, Ziyi; Chang, Aoshuang; Fang, Jie; Men, Yuqin; Tian, Yong; Ouyang, Xiaomei; Yan, Denise; Zhang, Aizhen; Sun, Xiaoyang; Tang, Jie; Liu, Xuezhong; Zuo, Jian; Gao, Jiangang

    2016-08-01

    Prestin is critical to OHC somatic motility and hearing sensitivity in mammals. Several mutations of the human SLC26A5 gene have been associated with deafness. However, whether the IVS2-2A>G mutation in the human SLC26A5 gene causes deafness remains controversial. In this study, we created a mouse model in which the IVS2-2A>G mutation was introduced into the mouse Slc26a5 gene by gene targeting. The homozygous Slc26a5 mutant mice were viable and fertile and displayed normal hearing sensitivity by ABR threshold analysis. Whole-mount immunostaining using prestin antibody demonstrated that prestin was correctly targeted to the lateral wall of OHCs, and no obvious hair cell loss occurred in mutant mice. No significant difference in the amount of prestin protein was observed between mutants and controls using western blot analysis. In OHCs isolated from mutants, the NLC was also normal. However, we observed a splicing abnormality in the Slc26a5 mRNA of the mutant mice. Eleven nucleotides were missing from the 5' end of exon 3 in Slc26a5 mRNA, but the normal ATG start codon in exon 3 was still detected. Thus, the IVS2-2A>G mutation in the Slc26a5 gene is insufficient to cause hearing loss in mice. PMID:27232762

  6. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Lindblad, Maiken Marie; Jakobsen, Jannik E.;

    2015-01-01

    analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw). We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs......) isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs) from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased...... expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early...

  7. Complex Alternative Splicing

    OpenAIRE

    Park, Jung Woo; Graveley, Brenton R.

    2007-01-01

    Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands, and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 is...

  8. Verification of predicted alternatively spliced Wnt genes reveals two new splice variants (CTNNB1 and LRP5 and altered Axin-1 expression during tumour progression

    Directory of Open Access Journals (Sweden)

    Reich Jens G

    2006-06-01

    Full Text Available Abstract Background Splicing processes might play a major role in carcinogenesis and tumour progression. The Wnt pathway is of crucial relevance for cancer progression. Therefore we focussed on the Wnt/β-catenin signalling pathway in order to validate the expression of sequences predicted as alternatively spliced by bioinformatic methods. Splice variants of its key molecules were selected, which may be critical components for the understanding of colorectal tumour progression and may have the potential to act as biological markers. For some of the Wnt pathway genes the existence of splice variants was either proposed (e.g. β-Catenin and CTNNB1 or described only in non-colon tissues (e.g. GSK3β or hitherto not published (e.g. LRP5. Results Both splice variants – normal and alternative form – of all selected Wnt pathway components were found to be expressed in cell lines as well as in samples derived from tumour, normal and healthy tissues. All splice positions corresponded totally with the bioinformatical prediction as shown by sequencing. Two hitherto not described alternative splice forms (CTNNB1 and LRP5 were detected. Although the underlying EST data used for the bioinformatic analysis suggested a tumour-specific expression neither a qualitative nor a significant quantitative difference between the expression in tumour and healthy tissues was detected. Axin-1 expression was reduced in later stages and in samples from carcinomas forming distant metastases. Conclusion We were first to describe that splice forms of crucial genes of the Wnt-pathway are expressed in human colorectal tissue. Newly described splicefoms were found for β-Catenin, LRP5, GSK3β, Axin-1 and CtBP1. However, the predicted cancer specificity suggested by the origin of the underlying ESTs was neither qualitatively nor significant quantitatively confirmed. That let us to conclude that EST sequence data can give adequate hints for the existence of alternative splicing

  9. Trans-Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency

    OpenAIRE

    XU, ZHUPING; Yue, Yongping; Lai, Yi; Ye, Chaoyang; Qiu, Jianming; Pintel, David J.; Duan, Dongsheng

    2004-01-01

    Therapeutic application of recombinant adeno-associated virus (AAV) has been limited by its small carrying capacity. To overcome this limitation trans-splicing vectors were developed recently. However, the transduction efficiency of trans-splicing vectors is considerably lower than that of a single intact vector in skeletal muscle. To improve trans-splicing vectors for skeletal muscle gene therapy, we examined whether coinfection efficiency is a rate-limiting factor in the mdx mouse, a model ...

  10. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    Science.gov (United States)

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  11. mRNA for N-Bak, a neuron-specific BH3-only splice isoform of Bak, escapes nonsense-mediated decay and is translationally repressed in the neurons.

    Science.gov (United States)

    Jakobson, M; Lintulahti, A; Arumäe, U

    2012-02-02

    mRNA for neuronal Bak (N-Bak), a splice variant of pro-apoptotic Bcl-2 family member Bak is expressed in the neurons. Surprisingly the endogeneous N-Bak protein cannot be demonstrated in the neurons, although the antibodies recognize N-Bak protein from in vitro translation or transiently transfected cells. As N-Bak mRNA contains premature termination codon (PTC) at 89 nucleotides upstream from the last exon-exon junction, it could be degraded by nonsense-mediated decay (NMD) during the pioneer round of translation thus explaining the absence of the protein. We show here that the endogeneous neuronal N-Bak mRNA is not the NMD substrate, as it is not accumulating by cycloheximide treatment, it has a long lifetime, and even prevention of PTC by interfering with the alternative splicing did not lead to translation of the Bak mRNA. N-Bak protein is also not revealed by proteasome inhibitors. Our data suggest strong translational arrest of N-Bak mRNA in the neurons. We show that this arrest is partially mediated by 5'-untranslated region of Bak mRNA and it is not released during mitochondrial apoptosis.

  12. Analysis and interpretation of RNA splicing alterations in genes involved in genetic disorders.

    Science.gov (United States)

    Vreeswijk, Maaike P G; van der Klift, Heleen M

    2012-01-01

    Germ line mutations in genes involved in hereditary cancer syndromes, such as BRCA1 and BRCA2 in breast cancer and MSH2, MSH6, MLH1, and PSM2 in hereditary nonpolyposis colorectal cancer (HNPCC, more recently indicated as Lynch syndrome), confer a high risk to develop cancer. Mutation analysis in these genes has resulted in the identification of a large number of sequence variants, of which mutations causing frame shifts and nonsense codons are considered undoubtedly to be pathogenic. Many variants, however, cannot be classified as either disease-causing mutations or neutral variants and are therefore called unclassified variants (UVs). A subset of these variants may have an effect on RNA splicing. Appropriate RNA analysis will enable the characterization of the exact molecular nature of this effect and hence, is essential to determine the clinical relevance of the genomic variant. This chapter describes the design and implementation of RNA analysis as an indispensible tool in today's clinical diagnostic setting.

  13. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  14. A specific pattern of splicing for the horse αS1-Casein mRNA and partial genomic characterization of the relevant locus

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2002-07-01

    Full Text Available Abstract Mares' milk has a composition very different from that of cows' milk. It is much more similar to human milk, in particular in its casein fraction. This study reports on the sequence of a 994 bp amplified fragment corresponding to a horse αS1-Casein (αS1-Cn cDNA and its comparison with its caprine, pig, rabbit and human counterparts. The alignment of these sequences revealed a specific pattern of splicing for this horse primary transcript. As in humans, exons 3', 6' and 13' are present whereas exons 5, 13 and 14 are absent in this equine mRNA sequence. BAC clones, screened from a horse BAC library, containing the αS1-Cn gene allowed the mapping of its locus by FISH on equine chromosome 3q22.2-q22.3 which is in agreement with the Zoo-FISH results. Genomic analysis of the αS1-Cn gene showed that the region from the second exon to the last exon is scattered within a nucleotide stretch nearly 15-kb in length which is quite similar in size to its ruminant and rabbit counterparts. The region between αS1- and β-Cn genes, suspected to contain cis-acting elements involved in the expression of all clustered casein genes, is similar in size (ca. 15-kb to the caprine and mouse intergenic region.

  15. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  16. Expression of a novel pyridoxal kinase mRNA splice variant, PKH-T, in human testis

    Institute of Scientific and Technical Information of China (English)

    XingFang; Zuo-MinZhou; LiLu; Lan-LanYin; Jian-MinLi; YinZhen; HuiWang; Jia-HaoSha

    2004-01-01

    Aim: To identify the genes specifically expressed in human adult and fetal testes and spermatozoa.Methods: A human testis cDNA microarray was established. Then mRNAs of human adult and fetal testis and spermatozoa were purified and probes were prepared by a reverse transcription reaction with mRNA as the template.The microarray was hybridized with probes of adult and fetal testes and spermatozoa. The nucleic acid sequences of differentially expressed genes were determined and homologies were searched in the databases of GenBank. Results:A novel human testis-specific gene, PKH-T, was identified by hybridizing adult and fetal testis and spermatozoa probes with a human testis cDNA microarray. The cDNA of PKH-T was 1069 bp in length. The cDNA sequence of this clone was deposited in the Genbank (AY303972) and PKH-T was also determined as Interim GenSymbol (Unigene,HS.38041). PKH-T contained most PKH conserved motif. The 239 amino acid sequences deduced from the 719 bp open reading frame (ORF) had a homology with the gene PKH (U89606). PKH-T was specifically and strongly expressed in the testis. Comparison of the differential expressions of PKH and PKH-T in testes of different develop-mental stages indicated that PKH-T was expressed in the adult testis and spermatozoa, while PKH, in the adult, fetal and aged testes. PKH-T had no expression in the testis of Sertoli cell only and partially spermatogenic arrest patients.Conclusion: PKH-T is a gene highly expressed in adult human testis and spermatozoa. It may play an important role in spermatogenesis and could be related to male infertility.

  17. Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams☆

    Science.gov (United States)

    Jarrett, T.M.; McMurray, M.S.; Walker, C.H.; Johns, J.M.

    2011-01-01

    Gestational cocaine treatment in rat dams results in decreased oxytocin (OT) levels, up-regulated oxytocin receptor (OTR) binding density and decreased receptor affinity in the whole amygdala, all concomitant with a significant increase in maternal aggression on postpartum day six. Rat dams with no gestational drug treatment that received an infusion of an OT antagonist directly into the central nucleus of the amygdala (CeA) exhibited similarly high levels of maternal aggression towards intruders. Additionally, studies indicate that decreased OT release from the hypothalamic division of the paraventricular nucleus (PVN) is coincident with heightened maternal aggression in rats. Thus, it appears that cocaine-induced alterations in OT system dynamics (levels, receptors, production, and/or release) may mediate heightened maternal aggression following cocaine treatment, but the exact mechanisms through which cocaine impacts the OT system have not yet been determined. Based on previous studies, we hypothesized that two likely mechanisms of cocaine’s action would be, increased OTR binding specifically in the CeA, and decreased OT mRNA production in the PVN. Autoradiography and in situ hybridization assays were performed on targeted nuclei in brain regions of rat dams on postpartum day six, following gestational treatment twice daily with cocaine (15 mg/kg) or normal saline (1 ml/kg). We now report cocaine-induced reductions in OTR binding density in the ventromedial hypothalamus (VMH) and bed nucleus of the stria terminalis (BNST), but not the CeA. There was no significant change in OT mRNA production in the PVN following cocaine treatment. PMID:16677710

  18. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Directory of Open Access Journals (Sweden)

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  19. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis.

    Science.gov (United States)

    Donaldson, Michael E; Saville, Barry J

    2013-07-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense-antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis.

  20. Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats.

    Science.gov (United States)

    Henricks, Angela M; Berger, Anthony L; Lugo, Janelle M; Baxter-Potter, Lydia N; Bieniasz, Kennedy V; Craft, Rebecca M; McLaughlin, Ryan J

    2016-10-29

    Chronic intermittent alcohol (CIA) exposure produces altered motivational states characterized by anxiety and escalated alcohol consumption during withdrawal. The endocannabinoid (ECB) system contributes to these symptoms, and sex differences in alcohol dependence, as well as bidirectional interactions between ECBs and gonadal hormones have been documented. Thus, we evaluated sex differences in alcohol consumption, anxiety-like behavior, and ECB mRNA expression in the nucleus accumbens (NAc) of alcohol-dependent rats during acute withdrawal. Male rats exposed to six weeks of CIA showed escalated alcohol consumption during acute withdrawal and reductions in NAc N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), DAG lipase alpha (DAGLα), and monoacylglycerol lipase (MAGL) mRNA. Intact alcohol-dependent female rats also escalated their consumption, but notably, this effect was also present in non-dependent females. No differences in NAc ECB mRNA were observed between CIA- and air-exposed females during acute withdrawal. However, when these data were analyzed according to estrous stage, significant differences in NAPEPLD and MAGL mRNA expression emerged in the NAc of air-exposed control rats, which were absent in alcohol-dependent females. We subsequently measured alcohol consumption and NAc ECB mRNA in ovariectomized (OVX) females with or without estradiol (E2) replacement during withdrawal. Neither E2 nor CIA altered alcohol consumption in OVX females. However, E2 reduced both DAGLα and MAGL mRNA, suggesting that E2 may influence the biosynthesis and degradation of 2-arachidonoylglycerol (2-AG) in the NAc. Collectively, these studies indicate sexual dimorphism in alcohol consumption in non-dependent rats and suggest that E2-mediated alterations in NAc ECB mRNA expression during withdrawal may be a mechanism by which sex differences in alcohol dependence emerge. PMID:27578612

  1. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Berger, Adeline; Lorain, Stéphanie; Joséphine, Charlène; Desrosiers, Melissa; Peccate, Cécile; Voit, Thomas; Garcia, Luis; Sahel, José-Alain; Bemelmans, Alexis-Pierre

    2015-05-01

    The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission.

  2. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  3. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA

    OpenAIRE

    Snijders, Ambrosius P; Hautbergue, Guillaume M.; Bloom, Alex; Williamson, James C.; Minshull, Thomas C.; Phillips, Helen L.; Mihaylov, Simeon R.; Gjerde, Douglas T.; Hornby, David P; Stuart A Wilson; Hurd, Paul J.; Dickman, Mark J.

    2015-01-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, includi...

  4. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart.

    Science.gov (United States)

    Charlemagne, D; Orlowski, J; Oliviero, P; Rannou, F; Sainte Beuve, C; Swynghedauw, B; Lane, L K

    1994-01-14

    To determine if an altered expression of the Na,K-ATPase alpha isoform genes is responsible for an observed increase in cardiac glycoside sensitivity in compensatory hypertrophy, we performed Northern and slot blot analyses of RNA and specific immunological detection of Na,K-ATPase isoforms in rat hearts from normal and pressure overload-treated animals induced by abdominal aortic constriction. During the early phase of hypertrophy, the only alteration is a decrease in the alpha 2 mRNA isoform. In the compensated hypertrophied heart, the levels of the predominant alpha 1 isoform (mRNA and protein) and the beta 1 subunit mRNA are unchanged. In contrast, the alpha 2 isoform (mRNA and protein) is decreased by 35% and up to 61-64% in mild ( 55%) hypertrophy, respectively. The alpha 3 isoform (mRNA and protein), which is extremely low in adult heart, is increased up to 2-fold during hypertrophy but accounts for only approximately equal to 5% of the total alpha isoform mRNA. These findings demonstrate that, in cardiac hypertrophy, the three alpha isoforms of the Na,K-ATPase are independently regulated and that regulation occurs at a pretranslational level. The pattern of expression in hypertrophied adult heart is similar to that of the neonatal heart where the inverse regulation between the alpha 2 and alpha 3 ouabain high affinity isoforms has been reported. This suggests that distinct regulatory mechanisms controlling Na,K-ATPase isoform expression may, at least in part, be involved in the sensitivity to cardiac glycosides. PMID:8288620

  5. Splicing mosaic of the myophosphorylase gene due to a silent mutation in McArdle disease.

    Science.gov (United States)

    Fernandez-Cadenas, I; Andreu, A L; Gamez, J; Gonzalo, R; Martín, M A; Rubio, J C; Arenas, J

    2003-11-25

    The authors report the molecular findings in a patient with McArdle disease who harbored a silent polymorphism (K608K) in the myophosphorylase gene. cDNA studies demonstrated that this polymorphism leads to a severe mosaic alteration in mRNA splicing, including exon skipping, activation of cryptic splice-sites, and exon-intron reorganizations. These findings suggest that, in patients with McArdle disease in whom no pathogenic mutation has been found, any a priori silent polymorphism should be re-evaluated as a putative splicing mutation.

  6. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    OpenAIRE

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. The authors identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is ...

  7. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    Science.gov (United States)

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  8. A BRCA2 mutation incorrectly mapped in the original BRCA2 reference sequence, is a common West Danish founder mutation disrupting mRNA splicing

    DEFF Research Database (Denmark)

    Thomassen, Mads; Pedersen, Inge Søkilde; Vogel, Ida;

    2011-01-01

    Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose carriers to breast and ovarian cancer. The authors have identified a mutation in BRCA2, 7845+1G>A (c.7617+1G>A), not previously regarded as deleterious because of incorrect mapping of the splice junction in the originally...... published genomic reference sequence. This reference sequence is generally used in many laboratories and it maps the mutation 16 base pairs inside intron 15. However, according to the recent reference sequences the mutation is located in the consensus donor splice sequence. By reverse transcriptase analysis...

  9. Identification of a novel splice variant of human PD-L1 Mrna encoding an isoform-lacking Igv-like domain

    Institute of Scientific and Technical Information of China (English)

    Xian-hui HE; Li-hui XU; Yi LIU

    2005-01-01

    Aim: To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). Methods: The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. Results: A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon 2 encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intmcellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. Conclusion: PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  10. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  11. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Common silver barb, Puntius gonionotus exposed to the nominal concentration of 0.06 mg/L Cd for 60 d, were assessed for histopathological alterations (gills, liver and kidney), metal accumulation, and metallothionein (MT) mRNA expression. Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae, vacuolization in hepatocytes, and prominent tubular and glomerular damage in the kidney. In addition, kidney accumulated the highest content of cadmium, more than gills and liver. Expression of MT mRNA was increased in both liver and kidney of treated fish. Hepatic MT levels remained high after fish were removed to Cd-free water. In contrast, MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water. The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.

  12. Cadmium chloride alters mRNA levels of angiogenesis related genes in primary human endometrial endothelial cells grown in vitro.

    Science.gov (United States)

    Helmestam, Malin; Stavreus-Evers, Anneli; Olovsson, Matts

    2010-11-01

    Cadmium, is known to cause adverse reproductive effects, and classified as an endocrine disrupting chemical (EDC). Human endometrial endothelial cells (HEEC) have a key role in the regulation of endometrial angiogenesis. These cells are known to express estrogen receptors, a feature that makes them potential targets for EDCs such as cadmium. We have designed a co-culture system, in which HEEC were grown in the same cell culture medium as endometrial stromal cells but in separate, communicating chambers. With quantitative PCR, we investigated changes in mRNA expression of genes associated with angiogenesis, sex steroids and endothelial cell specific functions. We found that cadmium altered the mRNA expression of the two important angiogenic molecules VEGF-A and PLGF. Cadmium might thus affect endometrial angiogenesis and as a consequence cause endometrial dysfunction with an increased risk for fertility problems. PMID:20580663

  13. Cloning of the altered mRNA stability (ams) gene of Escherichia coli K-12.

    OpenAIRE

    Claverie-Martin, F; Diaz-Torres, M R; Yancey, S D; Kushner, S R

    1989-01-01

    A temperature-sensitive mutation in the ams gene of Escherichia coli causes an increase in the chemical half-life of pulse-labeled RNA at the nonpermissive temperature. Using lambda clones containing DNA fragments from the 23- to 24-min region on the E. coli chromosome, we have isolated a 5.8-kilobase DNA fragment which, when present in a low-copy-number plasmid, complements the conditional lethality and increased mRNA stability associated with the ams-1 mutation. The approximate initiation s...

  14. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  15. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins. PMID:27008640

  16. Splicosomal and serine and arginine-rich splicing factors as targets for TGF-β

    Directory of Open Access Journals (Sweden)

    Hallgren Oskar

    2012-04-01

    Full Text Available Abstract Background Transforming growth factor-β1 (TGF-β1 is a potent regulator of cell growth and differentiation. TGF-β1 has been shown to be a key player in tissue remodeling processes in a number of disease states by inducing expression of extracellular matrix proteins. In this study a quantitative proteomic analysis was undertaken to investigate if TGF-β1 contributes to tissue remodeling by mediating mRNA splicing and production of alternative isoforms of proteins. Methodology/Principal findings The expression of proteins involved in mRNA splicing from TGF-β1-stimulated lung fibroblasts was compared to non-stimulated cells by employing isotope coded affinity tag (ICATTM reagent labeling and tandem mass spectrometry. A total of 1733 proteins were identified and quantified with a relative standard deviation of 11% +/− 8 from enriched nuclear fractions. Seventy-six of these proteins were associated with mRNA splicing, including 22 proteins involved in splice site selection. In addition, TGF-β1 was observed to alter the relative expression of splicing proteins that may be important for alternative splicing of fibronectin. Specifically, TGF-β1 significantly induced expression of SRp20, and reduced the expression of SRp30C, which has been suggested to be a prerequisite for generation of alternatively spliced fibronectin. The induction of SRp20 was further confirmed by western blot and immunofluorescence. Conclusions The results show that TGF-β1 induces the expression of proteins involved in mRNA splicing and RNA processing in human lung fibroblasts. This may have an impact on the production of alternative isoforms of matrix proteins and can therefore be an important factor in tissue remodeling and disease progression.

  17. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    Science.gov (United States)

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  18. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Directory of Open Access Journals (Sweden)

    Zavolan Mihaela

    2010-10-01

    Full Text Available Abstract Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs. Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.

  19. Targeting RNA splicing for disease therapy.

    Science.gov (United States)

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  20. Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA.

    OpenAIRE

    Montandon, P E; Stutz, E

    1983-01-01

    We characterize a 1.95 kb transcription product of the Euglena gracilis chloroplast DNA fragment Eco-N + Q by S1 nuclease analysis and DNA sequencing and show that it is the product of three splicing events. Exon 1 (0.45 kb), exon 2 (0.74 kb) and 175 nucleotides of exon 3 (0.53 kb) code for the chloroplast elongation factor protein (EF-Tu). The remaining part of exon 3 and exon 4 (0.23 kb) have unidentified open reading frames. The chloroplast EF-Tu protein has 408 aminoacids and is to 70% ho...

  1. Aberrant splicing of androgen receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity.

    OpenAIRE

    Ris-Stalpers, C.; Kuiper, G G; Faber, P.W.; SCHWEIKERT, H. U.; van Rooij, H C; Zegers, N.D.; Hodgins, M B; Degenhart, H J; Trapman, J; Brinkmann, A.O.

    1990-01-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symptoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. We report a G----T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46,XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely a...

  2. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    OpenAIRE

    Liana F Lareau; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and N...

  3. Hollywood: a comparative relational database of alternative splicing

    OpenAIRE

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B.

    2005-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information ...

  4. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    Science.gov (United States)

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  5. Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus

    Directory of Open Access Journals (Sweden)

    Michael D. Barnhart

    2013-11-01

    Full Text Available The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3′ UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3′ UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.

  6. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  7. Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Monique A. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Johnson and Johnson Pharmaceutical Research and Development, Department of Pharmacogenomics, 1000 Route 202 South, P.O. Box 300, Raritan, NJ (United States); Moffat, Ivy D.; Boutros, Paul C.; Okey, Allan B. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Tuomisto, Jouni T.; Tuomisto, Jouko [National Public Health Institute, Department of Environmental Health, Centre for Environmental Health Risk Analysis, Kuopio (Finland); Pohjanvirta, Raimo [University of Helsinki, Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Helsinki (Finland)

    2008-11-15

    Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent mRNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown. To identify specific genes that may be involved in dioxin lethality we compared changes in liver mRNA levels following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in three strains/lines of dioxin-sensitive rats with changes in three dioxin-resistant rat strains/lines. The three dioxin-resistant strains/lines all harbor a large deletion in the transactivation domain of the aryl hydrocarbon receptor (AHR). Despite this deletion, many genes exhibited a ''Type-I'' response - that is, their responses were similar in dioxin-sensitive and dioxin-resistant rats. Several genes that previously were well established as being dioxin-responsive or under AHR regulation emerged as Type-I responses (e.g. CYP1A1, CYP1A2, CYP1B1 and Gsta3). In contrast, a relatively small number of genes exhibited a Type-II response - defined as a difference in responsiveness between dioxin-sensitive and dioxin-resistant rat strains. Type-II genes include: malic enzyme 1, ubiquitin C, cathepsin L, S-adenosylhomocysteine hydrolase and ferritin light chain 1. In silico searches revealed that AH response elements are conserved in the 5'-flanking regions of several genes that respond to TCDD in both the Type-I and Type-II categories. The vast majority of changes in mRNA levels in response to 100 {mu}g/kg TCDD were strain-specific; over 75% of the dioxin-responsive clones were affected in only one of the six strains/lines. Selected genes were assessed by quantitative RT-PCR in dose-response and time-course experiments and responses of some genes were

  8. Sex-specific alterations in mRNA level of key lipid metabolism enzymes in skeletal muscle of overweight and obese subjects following endurance exercise

    OpenAIRE

    Smith, Ira J.; Huffman, Kim M.; Durheim, Michael T.; Duscha, Brian D.; Kraus, William E.

    2008-01-01

    Endurance exercise (EE) leads to beneficial alterations in skeletal muscle lipid metabolism in overweight and obese individuals; however, the mechanisms of these improvements are poorly understood. The primary goal of the current investigation was to test the hypothesis that long-term EE training (6 mo) leads to alterations in the mRNA abundance of key lipid metabolism enzymes in skeletal muscle of overweight and obese middle-aged women and men. A secondary aim of this study was to investigat...

  9. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  10. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    Science.gov (United States)

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively

  11. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, R.; Thomas, J.; Spieth, J.; Blumenthal, T. (Indiana University, Bloomington (United States))

    1991-04-01

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of a vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.

  12. Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development.

    Directory of Open Access Journals (Sweden)

    Megan L Landsverk

    Full Text Available BACKGROUND: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9 levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA. Despite its important function in human health, the in vivo role of SEPT9 is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.

  13. mRNA expression patterns for GH, PRL, SL, IGF-I and IGF-II during altered feeding status in rabbitfish, Siganus guttatus.

    Science.gov (United States)

    Ayson, Felix G; de Jesus-Ayson, Evelyn Grace T; Takemura, Akihiro

    2007-01-15

    Feeding time is a major synchronizer of many physiological rhythms in many organisms. Alteration in the nutritional status, specifically fasting, also affects the secretion rhythms of growth hormone (GH) and insulin-like growth factor-I (IGF-I). In this study, we investigated whether the expression patterns for the mRNAs of GH, prolactin (PRL) and somatolactin (SL) in the pituitary gland, and insulin-like growth factor I and II (IGF-I and IGF-II) in the liver of juvenile rabbitfish (Siganus guttatus) follow a rhythm according to feeding time and whether these hormone rhythms changes with starvation. Hormone mRNA levels were determined by real time PCR. The daily expression pattern for the mRNAs of GH, PRL and SL was not altered whether food was given in the morning (10:00 h) or in the afternoon (15:00 h). The daily GH mRNA expression pattern, however, was affected when food was not available for 3 days. In contrast, the daily expression pattern for IGF-I mRNA reaches its peak at roughly 5-6h after feeding. This pattern, however, was not observed with IGF-II mRNA. During 15-day starvation, GH mRNA levels in starved fish were significantly higher than the control fish starting on the 9th day of starvation until day 15. The levels returned to normal after re-feeding. In contrast to GH, PRL mRNA levels in starved fish were significantly lower than the control group starting on the 6th day of starvation until 3 days after re-feeding. SL mRNA levels were not significantly different between the control and starved group at anytime during the experiment. Both IGF-I and IGF-II mRNA levels in starved group were significantly higher than the control fish on the 3rd and 6th day of starvation. mRNA levels of both IGF-I and II in the starved fish decreased starting on the 9th day of starvation. While IGF-I mRNA levels in the starved group continued to decrease as starvation progressed, IGF-II mRNA levels were not significantly different from the control during the rest of the

  14. Intronic Alus influence alternative splicing.

    Directory of Open Access Journals (Sweden)

    Galit Lev-Maor

    Full Text Available Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.

  15. Estrogen-dependent activation of the avian very low density apolipoprotein II and vitellogenin genes. Transient alterations in mRNA polyadenylation and stability early during induction.

    Science.gov (United States)

    Cochrane, A W; Deeley, R G

    1988-10-01

    Administration of estrogen to egg-laying vertebrates activates unscheduled, hepatic expression of major, egg-yolk protein genes in immature animals and mature males. Two avian yolk protein genes, encoding very low density apolipoprotein II (apoVLDLII) and vitellogenin II, are dormant prior to stimulation with estrogen, but within three days their cognate mRNAs accumulate to become two of the most abundant species in the liver. Accumulation of these mRNAs has been attributed to both induction of transcription and selective, estrogen-dependent mRNA stabilization. We have detected alterations in the size of apoVLDLII mRNA that occur during the first 24 hours that are attributable to a shift in the extent of polyadenylation as steady-state is approached. In vitro transcription assays indicate that primary activation of both genes takes place relatively slowly and that maximal rates of mRNA accumulation occur when the apoVLDLII and vitellogenin II genes are expressed at only 30% and 10% of their fully induced levels, respectively. Transcription data combined with the structural alteration of apoVLDLII mRNA suggest that stability of the two mRNAs may change as steady-state is approached. We have assessed the compatibility of this suggestion with earlier estimates of the kinetics of accumulation of both mRNAs by developing a generally useful algorithm that predicts approach to steady-state kinetics under conditions where both the rate of synthesis and mRNA stability change throughout the accumulation phase of the response. The results predict that the stability of both mRNAs decreases by at least two- to threefold during the approach to steady-state and that, although an additional destabilization of apoVLDLII mRNA may occur following withdrawal of estrogen, the steady-state stability of vitellogenin mRNA is not significantly decreased upon removal of hormone. PMID:3210227

  16. A novel CDX2 isoform regulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Matthew E Witek

    Full Text Available Gene expression is a dynamic and coordinated process coupling transcription with pre-mRNA processing. This regulation enables tissue-specific transcription factors to induce expression of specific transcripts that are subsequently amplified by alternative splicing allowing for increased proteome complexity and functional diversity. The intestine-specific transcription factor CDX2 regulates development and maintenance of the intestinal epithelium by inducing expression of genes characteristic of the mature enterocyte phenotype. Here, sequence analysis of CDX2 mRNA from colonic mucosa-derived tissues revealed an alternatively spliced transcript (CDX2/AS that encodes a protein with a truncated homeodomain and a novel carboxy-terminal domain enriched in serine and arginine residues (RS domain. CDX2 and CDX2/AS exhibited distinct nuclear expression patterns with minimal areas of co-localization. CDX2/AS did not activate the CDX2-dependent promoter of guanylyl cyclase C nor inhibit transcriptional activity of CDX2. Unlike CDX2, CDX2/AS co-localized with the putative splicing factors ASF/SF2 and SC35. CDX2/AS altered splicing patterns of CD44v5 and Tra2-β1 minigenes in Lovo colon cancer cells independent of CDX2 expression. These data demonstrate unique dual functions of the CDX2 gene enabling it to regulate gene expression through both transcription (CDX2 and pre-mRNA processing (CDX2/AS.

  17. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    Science.gov (United States)

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  18. The RNA Splicing Response to DNA Damage.

    Science.gov (United States)

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  19. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  20. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes

    Science.gov (United States)

    Théry, Jean Christophe; Krieger, Sophie; Gaildrat, Pascaline; Révillion, Françoise; Buisine, Marie-Pierre; Killian, Audrey; Duponchel, Christiane; Rousselin, Antoine; Vaur, Dominique; Peyrat, Jean-Philippe; Berthet, Pascaline; Frébourg, Thierry; Martins, Alexandra; Hardouin, Agnès; Tosi, Mario

    2011-01-01

    A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays. A total of 10 VUSs were predicted by two or more programs to induce a significant reduction of splice site strength or activation of cryptic splice sites or generation of new splice sites. Minigene-based splicing assays confirmed four of these predictions. Five additional VUSs, all at internal exon positions, were not predicted to induce alterations of splice sites, but revealed variable levels of exon skipping, most likely induced by the modification of exonic splicing regulatory elements. We provide new data in favor of the pathogenic nature of the variants BRCA1 c.212+3A>G and BRCA1 c.5194−12G>A, which induced aberrant out-of-frame mRNA forms. Moreover, the novel variant BRCA2 c.7977−7C>G induced in frame inclusion of 6 nt from the 3′ end of intron 17. The novel variants BRCA2 c.520C>T and BRCA2 c.7992T>A induced incomplete skipping of exons 7 and 18, respectively. This work highlights the contribution of splicing minigene assays to the assessment of pathogenicity, not only when patient RNA is not available, but also as a tool to improve the accuracy of bioinformatics predictions. PMID:21673748

  1. Gaucher disease: A G[sup +1][yields]A[sup +1] IVS2 splice donor site mutation causing exon 2 skipping in the acid [beta]-glucosidase mRNA

    Energy Technology Data Exchange (ETDEWEB)

    He, Guo-Shun (Mount Siani School of Medicine, New York, NY (United States)); Grabowski, G.A. (Children' s Hospital Medical Center, Cincinnati, OH (United States))

    1992-10-01

    Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid [beta]-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-years-old, enzyme-deficient, 1226G (Asn[sup 370][yields]Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 ([Delta] EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 ([Delta] EX2-3), or a completely normal sequence. About 50% of the cDNAs were the [Delta] EX2, the [Delta] EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5[prime] and 3[prime] intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G[sup +1][yields]A[sup +1] transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed [open quotes]IVS2 G[sup +1],[close quotes] is the first in the Ashkenazi Jewish population. The occurrence of this [open quotes]pseudogene[close quotes]-type mutation in the structural gene indicates the role of acid [beta]-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease. 33 refs., 8 figs., 1 tab.

  2. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    DEFF Research Database (Denmark)

    Bendová, Z; Sumová, A; Mikkelsen, Jens D.

    2009-01-01

    ontogenesis, expression of two of the NMDAR1 subunit splice variants, as well as the NMDAR3A and 3B subunits, exhibits developmental loss around the time of eye opening. Moreover, we demonstrate the spatial and developmental characteristics of the expression of the truncated splice form of NMDAR1 subunit NR1...

  3. Signs of Selection in Synonymous Sites of the Mitochondrial Cytochrome b Gene of Baikal Oilfish (Comephoridae by mRNA Secondary Structure Alterations

    Directory of Open Access Journals (Sweden)

    Veronika I. Teterina

    2015-01-01

    Full Text Available Studies over the past decade have shown a significant role of synonymous mutations in posttranscriptional regulation of gene expression, which is particularly associated with messenger RNA (mRNA secondary structure alterations. Most studies focused on prokaryote genomes and the nuclear genomes of eukaryotes while little is known about the regulation of mitochondrial DNA (mtDNA gene expression. This paper reveals signs of selection in synonymous sites of the mitochondrial cytochrome b gene (Cytb of Baikal oilfish or golomyankas (Comephoridae directed towards altering the secondary structure of the mRNA and probably altering the character of mtDNA gene expression. Our findings are based on comparisons of intraspecific genetic variation patterns of small golomyanka (Comephorus dybowski and two genetic groups of big golomyanka (Comephorus dybowskii. Two approaches were used: (i analysis of the distribution of synonymous mutations between weak-AT (W and strong-GC (S nucleotides within species and groups in accordance with mutation directions from central to peripheral haplotypes and (ii approaches based on the predicted mRNA secondary structure.

  4. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Liotta, L A; Jaye, M;

    1986-01-01

    isolated after screening a human endothelial lambda gt11 cDNA library with a monoclonal antibody directed against a domain of the laminin receptor involved in ligand binding. Definitive identification of the cDNA clones was based on comparison of cDNA sequence with the amino acid sequence of a cyanogen...... bromide-generated octapeptide of purified placental laminin receptor. The laminin receptor mRNA is approximately 1700 bases long. The level of laminin receptor mRNA in a variety of human carcinoma-derived cell lines correlated with the number of laminin receptors on the cell surfaces of those cells...

  5. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks.

    Science.gov (United States)

    Ito, Kentaro; Bahry, Mohammad A; Hui, Yang; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2015-09-01

    Heat stress causes an increase in body temperature and reduced food intake in chickens. Several neuropeptides and amino acids play a vital role in the regulation of food intake. However, the responses of neuropeptides and amino acids to heat-stress-induced food-intake regulation are poorly understood. In the current study, the hypothalamic mRNA expression of some neuropeptides related to food intake and the content of free amino acids in the brain and plasma was examined in 14-day-old chicks exposed to a high ambient temperature (HT; 40±1 °C for 2 or 5 h) or to a control thermoneutral temperature (CT; 30±1 °C). HT significantly increased rectal temperature and plasma corticosterone level and suppressed food intake. HT also increased the expression of neuropeptide Y (NPY) and agouti-signaling protein (ASIP) precursor mRNA, while no change was observed in pro-opiomelanocortin, cholecystokinin, ghrelin, or corticotropin-releasing hormone precursor mRNA. It was further found that the diencephalic content of free amino acids - namely, tryptophan, leucine, isoleucine, valine and serine - was significantly higher in HT chicks with some alterations in their plasma amino acids in comparison with CT chicks. The induction of NPY and ASIP expression and the alteration of some free amino acids during HT suggest that these changes can be the results or causes the suppression of food intake.

  6. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion.

    Science.gov (United States)

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  7. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila

    OpenAIRE

    Khodor, Yevgenia L.; Rodriguez, Joseph; Abruzzi, Katharine C.; Tang, Chih-Hang Anthony; Marr, Michael T.; Rosbash, Michael

    2011-01-01

    Cotranscriptional splicing, in which mRNA is spliced as it is being transcribed, is thought to be necessary for proper gene regulation of many genes in eukaryotic cells. While studies have shown that splicing takes place cotranscriptionally in yeast, in higher eukaryotes, where genes contain multiple introns with widespread alternative splicing, the question of whether cotranscriptional splicing is a general phenomenon remains. Khodor et al. investigated what fractions of genes are cotranscri...

  8. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  9. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    International Nuclear Information System (INIS)

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  10. Lethrinas nebulosus fish as a biomarker for petroleum hydrocarbons pollution in Red Sea : Alterations in antioxidants mRNA expression

    OpenAIRE

    Afifi, Mohamed; Ali, Haytham A.; Saber, Taghred M.; El-Murr, Abd elhakeem

    2016-01-01

    Total Petroleum Hydrocarbons (TPHs) are environmental contaminants that are released into the marine water via oil spills and industrial activities. The mRNA expression profile of some antioxidant genes in livers, gills, skin and muscles of Lethrinas nebulosus was used as biomarker of TPHs pollution in six areas at Jeddah and Yanbu coasts in Kingdom of Saudi Arabia (KSA). TPHs were determined in Red Sea water and sediments collected from the studied areas. Ten fish of similar sizes were colle...

  11. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing

    Science.gov (United States)

    Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G.; Mammi, Pablo; Yanovsky, Marcelo J.; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V.

    2016-01-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  12. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing.

    Science.gov (United States)

    De Maio, Federico A; Risso, Guillermo; Iglesias, Nestor G; Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G; Mammi, Pablo; Mancini, Estefania; Yanovsky, Marcelo J; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V

    2016-08-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  13. Expression of cyclooxygenase-2 mRNA alternative splice variant in human cervical carcinoma tissues%人宫颈癌组织环加氧酶2mRNA剪接异构体的表达

    Institute of Scientific and Technical Information of China (English)

    龚霞; 万敬员; 叶笃筠; 吴萍; 张力; 周歧新

    2005-01-01

    BACKGROUND:Cervical cancer is one of the most frequent malignancies in women worldwide, and its occurrence and development is closely related to cyclooxygenase-2 (COX-2).OBJECTIVE: To examine the expression of COX-2 alternative splicing variants in human cervical carcinoma tissue and understand its possible implications.DESIGN: Non-randomized controlled experiment.SETTING: Key Laboratory of Biochemistry and Molecular Pharmacology,Department of Obstetrics and Gynecology, First Affiliated Hospital,Chongqing Medical University.PARTICIPANTS: Carcinoma tissue and normal tissue were obtained from 13 cervical carcinoma patients admitted during March 2002 to April 2002in the Department of Obstetrics and Gynecology, First Affiliated Hospital,Chongqing Medical University.METHODS: A pair of specific primers were designed for reverse transcription-polymerase chain reaction (RT-PCR) to obtain the mRNA of COX-2 in human cervical carcinoma tissues. The resultant band on electrophoresis was cloned, sequenced and analyzed.MAIN OUTCOME MEASURES: ① Agarose gel electrophoresis result of the PCR product of carcinoma and normal tissues; ② Sequencing result of the electrophoresis band from carcinoma and normal tissues.RESULTS: No COX-2 band (252 bp) was found in electrophoresis for normal tissues, while 2 bands appeared for cervical carcinoma tissues, including a new electrophoresis band of 534bp besides the COX-2 band. Cloning and sequencing revealed that this new band contained not only exons 7and 8 of COX-2 gene but also a reserved intron of 282 bp intron between exons 7 and 8. Analysis of the predicted amino acid sequence indicated that an in-frame stop codon occurred in the 48-50 bp of the intron retained in the mRNA.CONCLUSION: The presence of COX-2 alternative splicing mRNA variant (Genbank accession number:BU493602)is confirmed in human cervical carcinoma tissue, which codes for a protein possibly smaller than COX-2.%背景:宫颈癌是女性最常见的恶性肿瘤之一,

  14. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  15. Altered mRNA expression of hepatic lipogenic enzyme and PPARalpha in rats fed dietary levan from Zymomonas mobilis.

    Science.gov (United States)

    Kang, Soon Ah; Hong, Kyunghee; Jang, Ki-Hyo; Kim, Yun-Young; Choue, Ryowon; Lim, Yoongho

    2006-06-01

    Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression. PMID:16214330

  16. Phosphorylation-Mediated Regulation of Alternative Splicing in Cancer

    OpenAIRE

    Chiara Naro; Claudio Sette

    2013-01-01

    Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large...

  17. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    Science.gov (United States)

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-01

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  18. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets.

    Directory of Open Access Journals (Sweden)

    Sergio Barberan-Soler

    2008-02-01

    Full Text Available Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18% of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors

  19. Alternative Spliced Transcripts as Cancer Markers

    Directory of Open Access Journals (Sweden)

    Otavia L. Caballero

    2001-01-01

    Full Text Available Eukaryotic mRNAs are transcribed as precursors containing their intronic sequences. These are subsequently excised and the exons are spliced together to form mature mRNAs. This process can lead to transcript diversification through the phenomenon of alternative splicing. Alternative splicing can take the form of one or more skipped exons, variable position of intron splicing or intron retention. The effect of alternative splicing in expanding protein repertoire might partially underlie the apparent discrepancy between gene number and the complexity of higher eukaryotes. It is likely that more than 50% form. Many cancer-associated genes, such as CD44 and WT1 are alternatively spliced. Variation of the splicing process occurs during tumor progression and may play a major role in tumorigenesis. Furthermore, alternatively spliced transcripts may be extremely useful as cancer markers, since it appears likely that there may be striking contrasts in usage of alternatively spliced transcript variants between normal and tumor tissue than in alterations in the general levels of gene expression.

  20. BRCA1 Exon 11, a CERES (Composite Regulatory Element of Splicing Element Involved in Splice Regulation

    Directory of Open Access Journals (Sweden)

    Claudia Tammaro

    2014-07-01

    Full Text Available Unclassified variants (UV of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a “silent” change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES.

  1. Pre-mRNA splicing in disease and therapeutics

    OpenAIRE

    Singh, Ravi K.; Cooper, Thomas A.

    2012-01-01

    In metazoans, alternative splicing of genes is essential for regulating gene expression and contributing to functional complexity. Computational predictions, comparative genomics, and transcriptome profiling of normal and diseased tissues indicate an unexpectedly high fraction of diseases are caused by mutations that alter splicing. Mutations in cis elements cause mis-splicing of genes that alter gene function and contribute to disease pathology. Mutations of core spliceosomal factors are ass...

  2. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.;

    2008-01-01

    Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano...... growth factor (MGF) were studied in response to 1 h of eccentric cycling exercise in young and old individuals. Subjects (nine young, aged 20-27 years and eight elderly, aged 67-75 years) completed an eccentric exercise protocol that consisted of 60 min of reverse pedal cycling. Workloads were chosen....... No difference was observed between the baseline levels of the two splice variants between the two subject groups. Eccentric cycling exercise resulted in a significant increase in the mean MGF mRNA in both young and old subjects but did not alter IGF-IEa mRNA levels in either age group. As reported previously...

  3. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum.

    Directory of Open Access Journals (Sweden)

    Joann Mudge

    Full Text Available Schizophrenia (SCZ is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.

  4. Characterization of a splicing mutation in group A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    The molecular basis of group A xeroderma pigmentosum (WP) was investigated by comparison of the nucleotide sequences of multiple clones of the XP group A complementing gene (XPAC) from a patient with group A XP with that of a normal gene. The clones showed a G → C substitution at the 3' splice acceptor site of intron 3, which altered the obligatory AG acceptor dinucleotide to AC. Nucleotide sequencing of cDNAs amplified by the polymerase chain reaction revealed that this single base substitution abolishes the canonical 3' splice site, thus creating two abnormally spliced mRNA forms. The larger form is identical with normal mRNA except for a dinucleotide deletion at the 5' end of exon 4. This deletion results in a frameshift with premature translation termination in exon 4. The smaller form has a deletion of the entire exon 3 and the dinucleotide at the 5' end of exon 4. The result of a transfection study provided additional evidence that this single base substitution is the disease-causing mutation. This single base substitution creates a new cleavage site for the restriction nuclease AlwNI. Analysis of AlwNI restriction fragment length polymorphism showed a high frequency of this mutation in Japanese patients with group A XP: 16 of 21 unrelated Japanese patients were homozygous and 4 were heterozygous for this mutation. However, 11 Caucasians and 2 Blacks with group A XP did not have this mutant allele. The polymorphic AlwNI restriction fragments are concluded to be useful for diagnosis of group A XP in Japanese subjects, including prenatal cases and carriers

  5. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  6. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  7. When proteome meets genome: the alpha helix and the beta strand of proteins are eschewed by mRNA splice junctions and may define the minimal indivisible modules of protein architecture

    Indian Academy of Sciences (India)

    Sailen Barik

    2004-09-01

    The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the -helices and -strands of proteins than within the more flexible linker regions (‘turns’ and ‘loops’) connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the -helix and the -strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.

  8. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    OpenAIRE

    Zhang, Fan; Drabier, Renee

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from pro...

  9. Pre-mRNA splicing during transcription in the mammalian system

    OpenAIRE

    Pandya-Jones, Amy

    2011-01-01

    Splicing of RNA polymerase II (polII) transcripts is a crucial step in gene expression and a key generator of mRNA diversity. Splicing and transcription have been generally been studied in isolation, although in vivo pre-mRNA splicing occurs in concert with transcription. The two processes appear to be functionally connected because a number of variables that regulate transcription have been identified as also influencing splicing. However, the mechanisms that couple the two processes are lar...

  10. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  11. 日本血吸虫反式剪接前导RNA的鉴定%Identification and Characterization of an mRNA Trans-splicing Leader in Schistosoma Japonicum

    Institute of Scientific and Technical Information of China (English)

    李锐; 贺亮; 郝力力

    2012-01-01

    RNA trans-splicing occurs in a wide range of eukaryotes, from protozoa to chordates. To investigate the SL RNA-mediated trans-splicing in the zoonotic trematode Schistosoma japonicum, a spliced-leader (SL) RNA was cloned in adults using race. The 36-nucleotide SL in S. Japonicum was derived from a 90-nucleotide nonpolyadenylylated RNA transcript encoded by 55 copies of SL genes dispersed in the genome confirmed by blot and real time PCR. Differential transcription patterns of the SL gene in the parasite developmental stages were observed using real time PCR. Predominant expression of SL RNA was found in the two developmental stages, egg and cercariae. Expression of SL RNA transcripts in female was the least. No significant expression difference between male and schistosomulum (3 d and 14 d) was observed. In summary, trans-splicing of spliced leader might acted as an important mechanism of post-transcriptional gene regulation in S. Japonicum.%RNA反式剪接现象广泛存在于真核生物中,包括单细胞原虫以及低等脊索动物.为鉴定日本血吸虫中是否存在SL RNA介导的反式剪接,运用Race方法从成虫中克隆出了1个90 nt的SL RNA基因,36 nt的RNA前导序列正是来源于此90 nt的无PolyA结构的SL RNA,并通过Northern进一步证实了该基因的存在.同时采用荧光定量和Southern对其拷贝数、基因组上的分布方式以及虫体不同阶段的表达量进行了鉴定,发现SL RNA具有55个拷贝并在基因组上呈散在分布;在虫卵和尾蚴时期SL RNA基因的转录丰度最高,雌虫阶段最低,雄虫、3天童虫以及14天童虫阶段无明显差别.结果表明,SL RNA介导的反式剪接可能是日本血吸虫基因转录后重要的调控机制之一.

  12. Aberrant splicing and drug resistance in AML.

    Science.gov (United States)

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  13. Pax258 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain

    Directory of Open Access Journals (Sweden)

    Peter eFabian

    2015-07-01

    Full Text Available Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7 and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordate and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a mRNA isoform. As shown in our analysis, this splicing event is absent in basal chordates and is characteristic of Gnathostomata. Moreover, expression pattern of alternative spliced variants was compared between basal chordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.

  14. Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators.

    Science.gov (United States)

    Qiu, Jinsong; Zhou, Bing; Thol, Felicitas; Zhou, Yu; Chen, Liang; Shao, Changwei; DeBoever, Christopher; Hou, Jiayi; Li, Hairi; Chaturvedi, Anuhar; Ganser, Arnold; Bejar, Rafael; Zhang, Dong-Er; Fu, Xiang-Dong; Heuser, Michael

    2016-10-01

    Myelodysplastic syndromes (MDS) are heterogeneous myeloid disorders with prevalent mutations in several splicing factors, but the splicing programs linked to specific mutations or MDS in general remain to be systematically defined. We applied RASL-seq, a sensitive and cost-effective platform, to interrogate 5502 annotated splicing events in 169 samples from MDS patients or healthy individuals. We found that splicing signatures associated with normal hematopoietic lineages are largely related to cell signaling and differentiation programs, whereas MDS-linked signatures are primarily involved in cell cycle control and DNA damage responses. Despite the shared roles of affected splicing factors in the 3' splice site definition, mutations in U2AF1, SRSF2, and SF3B1 affect divergent splicing programs, and interestingly, the affected genes fall into converging cancer-related pathways. A risk score derived from 11 splicing events appears to be independently associated with an MDS prognosis and AML transformation, suggesting potential clinical relevance of altered splicing patterns in MDS. PMID:27492256

  15. Sex Specific Estrogen Receptor beta (ERβ) mRNA Expression in the Rat Hypothalamus and Amygdala is Altered by Neonatal Bisphenol A (BPA) Exposure

    Science.gov (United States)

    Cao, Jinyan; Joyner, Linwood; Mickens, Jillian A.; Leyrer, Stephanie M; Patisaul, Heather B

    2014-01-01

    Perinatal life is a critical window for sexually dimorphic brain organization, and profoundly influenced by steroid hormones. Exposure to endocrine disrupting compounds (EDCs) may disrupt this process, resulting in compromised reproductive physiology and behavior. To test the hypothesis that neonatal BPA exposure can alter sex specific postnatal ERβ expression in brain regions fundamental to sociosexual behavior we mapped ERβ mRNA levels in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), paraventricular nucleus (PVN), anterior portion of the medial amygdaloid nucleus (MeA), super optic nucleus (SON), suprachiasmic nucleus (SCN) and lateral habenula (LHb) across postnatal days (PNDs) 0 to 19. Next, rat pups of both sexes were subcutaneously injected over the first three days of life with 10 μg estradiol benzoate (EB), 50 μg/kg BPA (LBPA), or 50 mg/kg BPA (HBPA) and ERβ levels quantified in each region of interest (ROI) on PNDs 4 and 10. EB exposure decreased ERβ signal in most female ROIs, and in the male PVN. In the BNSTp, ERβ expression decreased in LBPA males and HBPA females on PND 10, thereby reversing the sex difference in expression. In the PVN, ERβ mRNA levels were elevated in LBPA females, also resulting in a reversal of sexually dimorphic expression. In the MeA, BPA decreased ERβ expression on PND 4. Collectively, these data demonstrate that region and sex specific ERβ expression is vulnerable to neonatal BPA exposure in regions of the developing rat brain critical to sociosexual behavior. PMID:24352099

  16. Binding of a candidate splice regulator to a calcitonin-specific splice enhancer regulates calcitonin/CGRP pre-mRNA splicing.

    Science.gov (United States)

    Coleman, Timothy P; Tran, Quincy; Roesser, James R

    2003-01-27

    The calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA is alternatively processed in a tissue-specific manner leading to the production of calcitonin mRNA in thyroid C cells and CGRP mRNA in neurons. A candidate calcitonin/CGRP splice regulator (CSR) isolated from rat brain was shown to inhibit calcitonin-specific splicing in vitro. CSR specifically binds to two regions in the calcitonin-specific exon 4 RNA previously demonstrated to function as a bipartate exonic splice enhancer (ESE). The two regions, A and B element, are necessary for inclusion of exon 4 into calcitonin mRNA. A novel RNA footprinting method based on the UV cross-linking assay was used to define the site of interaction between CSR and B element RNA. Base changes at the CSR binding site prevented CSR binding to B element RNA and CSR was unable to inhibit in vitro splicing of pre-mRNAs containing the mutated CSR binding site. When expressed in cells that normally produce predominantly CGRP mRNA, a calcitonin/CGRP gene containing the mutated CSR binding site expressed predominantly calcitonin mRNA. These observations demonstrate that CSR binding to the calcitonin-specific ESE regulates calcitonin/CGRP pre-mRNA splicing.

  17. Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer.

    Directory of Open Access Journals (Sweden)

    Guo-Lin Chen

    Full Text Available The repressor element silencing transcription factor (REST is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of

  18. Viral interactions with components of the splicing machinery.

    Science.gov (United States)

    Meyer, F

    2016-01-01

    Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses.

  19. RNA Splicing: Regulation and Dysregulation in the Heart.

    Science.gov (United States)

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-01

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.

  20. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    Science.gov (United States)

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  1. Designing oligo libraries taking alternative splicing into account

    Science.gov (United States)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  2. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity.

    Directory of Open Access Journals (Sweden)

    Cristina Girardi

    Full Text Available BACKGROUND: Ionizing radiation (IR can be extremely harmful for human cells since an improper DNA-damage response (DDR to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL incubated for 4 and 24 h in normal gravity (1 g and in modeled microgravity (MMG during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.

  3. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  4. Minor class splicing shapes the zebrafish transcriptome during development

    DEFF Research Database (Denmark)

    Markmiller, Sebastian; Cloonan, Nicole; Lardelli, Rea M;

    2014-01-01

    known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we......, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo......Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities...

  5. Where splicing joins chromatin

    OpenAIRE

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    There are numerous data suggesting that two key steps in gene expression—transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and...

  6. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  7. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...... suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has...... commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role...

  8. A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Glutamate transporter EAAC1 removes excitatory neurotransmitter in central nervous system, and alsoabsorbs glutamate in epithelia of intestine, kidney, liver and heart for normal cell growth. When a mousecDNA was screened using EAAC1 cDNA fragment as probe in our lab, a transcript (GenBank U75214)encoding an EAAC1 protein with 148 residues truncated at N-terminal was cloned and named as EAAC2.Sequence analysis shows that EAAC2 has it's own start code and unique 5'UTR that is different from that ofEAAC1. A mouse genomic library was screened and a positive clone including EAAC1 CDS was sequenced(GenBank AF 322393) and indicates that normal EAAC1 transcript (GenBank U73521) is transcribed from10 exons in terms of exon I, II, III, IV, V, VI, VII, VIII, IX, X, and EAAC2 transcript is consisted by exonsfrom IV to IX as same as that of EAAC1 and with its unique exonβ upstream to exon IV and exon δdownstream to IX. EAAC2 transcript has a cluster of transcriptional start sites not overlapping with thetranscriptional start sites of EAAC1. These results indicate that EAAC2 is transcribed from an independentpromoter but not an alternative splicing event.

  9. Alternative splicing of SMPD1 in human sepsis.

    Directory of Open Access Journals (Sweden)

    Marcel Kramer

    Full Text Available Acid sphingomyelinase (ASM or sphingomyelin phosphodiesterase, SMPD activity engages a critical role for regulation of immune response and development of organ failure in critically ill patients. Beside genetic variation in the human gene encoding ASM (SMPD1, alternative splicing of the mRNA is involved in regulation of enzymatic activity. Here we show that the patterns of alternatively spliced SMPD1 transcripts are significantly different in patients with systemic inflammatory response syndrome and severe sepsis/septic shock compared to control subjects allowing discrimination of respective disease entity. The different splicing patterns might contribute to the better understanding of the pathophysiology of human sepsis.

  10. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements.

    Directory of Open Access Journals (Sweden)

    Gene W Yeo

    2007-05-01

    Full Text Available Knowledge of the functional cis-regulatory elements that regulate constitutive and alternative pre-mRNA splicing is fundamental for biology and medicine. Here we undertook a genome-wide comparative genomics approach using available mammalian genomes to identify conserved intronic splicing regulatory elements (ISREs. Our approach yielded 314 ISREs, and insertions of ~70 ISREs between competing splice sites demonstrated that 84% of ISREs altered 5' and 94% altered 3' splice site choice in human cells. Consistent with our experiments, comparisons of ISREs to known splicing regulatory elements revealed that 40%-45% of ISREs might have dual roles as exonic splicing silencers. Supporting a role for ISREs in alternative splicing, we found that 30%-50% of ISREs were enriched near alternatively spliced (AS exons, and included almost all known binding sites of tissue-specific alternative splicing factors. Further, we observed that genes harboring ISRE-proximal exons have biases for tissue expression and molecular functions that are ISRE-specific. Finally, we discovered that for Nova1, neuronal PTB, hnRNP C, and FOX1, the most frequently occurring ISRE proximal to an alternative conserved exon in the splicing factor strongly resembled its own known RNA binding site, suggesting a novel application of ISRE density and the propensity for splicing factors to auto-regulate to associate RNA binding sites to splicing factors. Our results demonstrate that ISREs are crucial building blocks in understanding general and tissue-specific AS regulation and the biological pathways and functions regulated by these AS events.

  11. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Serena Bonomi; Stefania Gallo; Morena Catillo; Daniela Pignataro; Giuseppe Biamonti; Claudia Ghigna

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  12. Influenza virus mRNA trafficking through host nuclear speckles.

    Science.gov (United States)

    Mor, Amir; White, Alexander; Zhang, Ke; Thompson, Matthew; Esparza, Matthew; Muñoz-Moreno, Raquel; Koide, Kazunori; Lynch, Kristen W; García-Sastre, Adolfo; Fontoura, Beatriz M A

    2016-01-01

    Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression. PMID:27572970

  13. Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing

    OpenAIRE

    Rodriguez-Martin, Teresa; Anthony, Karen; Garcia-Blanco, Mariano A.; Mansfield, S. Gary; Anderton, Brian H.; Gallo, Jean-Marc

    2009-01-01

    Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-splicing (SMaRT) could be a method of choice to correct aberrant E10 splicing resulting from FTDP-17 mu...

  14. Introduction to cotranscriptional RNA splicing.

    Science.gov (United States)

    Merkhofer, Evan C; Hu, Peter; Johnson, Tracy L

    2014-01-01

    The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.

  15. Detecting chimeric 5′/3′UTRs with cross-chromosomal splicing by bioinformatics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhihua; ZHANG Yong; SHI Baochen; DENG Wei; ZHAO Yi; CHEN Runsheng

    2004-01-01

    The 5′/3′ UTRs of mRNA are crucial in translational regulation, and several serious diseases are believed to be associated with abnormal splicing of these parts of the mRNA sequence. In this work a novel method which uses sequence alignment database searching for detecting chimeric 5′3′ UTRs with cross-chromosomal splicing is reported. Eight highly credible instances of cross-chromosomal splicing have been found using this method, representing additional confirmation of the existence of cross-chromosomal splicing events provided by bioinformatics tools. Since no conserved motif has been found in any of the eight instances, and at the same time current prediction algorithms produce only trivial secondary structures at the "splicing sites", it is not possible to identify any specific signal leading to the splicing.

  16. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin;

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  17. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  18. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA.

    OpenAIRE

    Streuli, M; Saito, H

    1989-01-01

    Tissue-specific alternative splicing is an important mechanism for controlling gene expression. Exons 4, 5 and 6 of the human leukocyte common antigen (LCA) gene are included in B cell mRNA but excluded from thymocyte mRNA by differential splicing. In order to study this tissue-specific alternative splicing, we constructed mini-genes that contain only a few of the LCA exons and the SV40 promoter. Mouse B cells and thymocytes were transfected with these mini-gene constructs and the structures ...

  19. Assessing the impact of alternative splicing on the diversity and evolution of the proteome in plants

    NARCIS (Netherlands)

    Severing, E.I.

    2011-01-01

    Splicing is one of the key processing steps during the maturation of a gene’s primary transcript into the mRNA molecule used as a template for protein production. Splicing involves the removal of segments called introns and re-joining of the remaining segments called exons. It is by now well e

  20. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model...

  1. SpliceDisease database: linking RNA splicing and disease

    OpenAIRE

    WANG, Juan; Jie ZHANG; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2011-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associa...

  2. Splicing regulators: targets and drugs

    OpenAIRE

    Yeo, Gene Wei-Ming

    2005-01-01

    Silencing of splicing regulators by RNA interference, combined with splicing-specific microarrays, has revealed a complex network of distinct alternative splicing events in Drosophila, while a high-throughput screen of more than 6,000 compounds has identified drugs that interfere specifically and directly with one class of splicing regulators in human cells.

  3. Alteration of introns in a hyaluronan synthase 1 (HAS1 minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM: MM patients harbor similar changes.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1 have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.

  4. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    Science.gov (United States)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  5. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;

    2014-01-01

    Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation...... of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...... International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c...

  6. Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens

    OpenAIRE

    Wu, Hshin-Ping; Su, Yi-shin; Chen, Hsiu-Chen; Chen, Yu-Rong; Wu, Chia-Chen; Lin, Wen-Dar; Tu, Shih-Long

    2014-01-01

    Background Light is one of the most important factors regulating plant growth and development. Light-sensing photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although many levels of gene expression are modulated by photoreceptors, regulation at the mRNA splicing step remains unclear. Results We performed high-throughput mRNA sequencing to analyze light-responsive changes in alternative splicing in the moss Physcomitrella patens, and found that a large num...

  7. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  8. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  9. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  10. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    Science.gov (United States)

    Grether, A.; Scheuerlein, C.; Ballarino, A.; Bottura, L.

    2016-07-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (I c ) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and I c of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa, to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  11. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    CERN Document Server

    Grether, A; Ballarino, A.; Bottura, L.

    2016-01-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (Ic) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and Ic of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  12. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana

    Science.gov (United States)

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L.; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J. M.; Matzke, Marjori

    2016-01-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  13. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ghazal Peter

    2009-09-01

    Full Text Available Abstract Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry, thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition.

  14. Systems perspectives on mRNA processing

    Institute of Scientific and Technical Information of China (English)

    Adrienne E McKee; Pamela A Silver

    2007-01-01

    The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.

  15. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    Science.gov (United States)

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  16. Multiple splicing types of OsRIX4, an RAD21 homolog in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    DONG HaiTao; LI DeBao; GUO XiaoQin; PEI YanXi; DAI ChengEn; FANG YongQi; TU QiChao; ZHUANG JieYun; ZHAO Dong; ZHENG KangLe

    2007-01-01

    The present paper describes multiple splicing types of OsRIX4, an RAD21 homolog in rice. A type of alternative splicing (AS), distinctive from all five previously known splicing types, was identified in which interior sequences of a constitutive exon could be spliced. Translation of the transcript produced with this AS type was demonstrated at the protein level. Expression of multiple transcripts was organ specific. The expression abundance of transcripts, OsRIX4-4 and OsRIX4-5, was positively correlated with fertility in rice. The splicing type identified in the present study provided the means to further understand and define different mRNA splicing types in plants and suggested that post-transcription processing of mRNA and its regulation mechanism are complex.

  17. Splicing therapy for neuromuscular disease ☆

    OpenAIRE

    Andrew G. L. Douglas; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large numb...

  18. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    Science.gov (United States)

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy.

  19. Alternative splicing and muscular dystrophy

    OpenAIRE

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2010-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, musc...

  20. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A

    Science.gov (United States)

    Yi, Quan-Yong; Deng, Gang; Chen, Nan; Bai, Zhi-Sha; Yuan, Jian-Shu; Wu, Guo-Hai; Wang, Yu-Wen; Wu, Shan-Jun

    2016-01-01

    Previous studies have shown that metformin, an AMP-activated protein kinase activator widely prescribed for type 2 diabetes, is especially beneficial in cases of diabetic retinopathy (DR) with undetermined mechanisms. Here, we used a streptozotocin-induced diabetes model in mice to study the effects of metformin on the development of DR. We found that 10 weeks after STZ treatment, DR was induced in STZ-treated mice, regardless treatment of metformin. However, metformin alleviated the DR, seemingly through attenuating the retina neovascularization. The total vascular endothelial cell growth factor A (VEGF-A) in eyes was not altered by metformin, but the phosphorylation of the VEGF receptor 2 (VEGFR2) was decreased, which inhibited VEGF signaling. Further analysis showed that metformin may induce VEGF-A mRNA splicing to VEGF120 isoform to reduce its activation of the VEGFR2. These findings are critical for generating novel medicine for DR treatment.

  1. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  2. SpliceDisease database: linking RNA splicing and disease.

    Science.gov (United States)

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  3. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration

    Science.gov (United States)

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.

  4. Splicing variants of porcine synphilin-1

    Directory of Open Access Journals (Sweden)

    Knud Larsen

    2015-09-01

    Full Text Available Parkinson's disease (PD, idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa synphilin-1 cDNA (SNCAIP and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1 of 919 amino acids which shows a high similarity to human (90% and to mouse (84% synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation.

  5. Splicing of Friend Murine Leukemia Virus env-mRNA Enhances Its Ability to Form Polysomes.

    Science.gov (United States)

    Machinaga, Akihito; Ishihara, Syuhei; Shirai, Akiko; Takase-Yoden, Sayaka

    2016-01-01

    Friend murine leukemia virus (MLV) belongs to the gamma retroviruses of the Retroviridae family. The positive-sense RNA of its genome contains a 5' long terminal repeat (LTR), 5' leader sequence, gag, pol, env, and 3' LTR. Transcription from proviral DNA begins from the R region of the 5' LTR and ends at the polyadenylation signal located at the R region of the other end of the 3' LTR. There is a 5' splice site in the 5' leader sequence and a 3' splice site at the 3' end of the pol region. Both full-length unspliced mRNAs and a singly spliced mRNA (env-mRNA) are produced in MLV-infected cells. The MLV Env protein plays important roles both in viral adsorption to host cells and in neuropathogenic disease in MLV-infected mice and rats. Understanding the regulatory mechanisms controlling Env expression is important for determining the functions of the Env protein. We have previously shown that splicing increases env-mRNA stability and translation efficiency. Generally, mRNA polysome formation correlates with translation efficiency. Therefore, here we investigated the effects of env-mRNA splicing on polysome formation to identify mechanisms for Env up-regulation due to splicing. We performed polysome profile analyses using Env-expression plasmids producing spliced or unspliced env-mRNA and showed that the former formed polysomes more efficiently than the latter. Thus, splicing of env-mRNA facilitated polysome formation, suggesting that this contributes to up-regulation of Env expression. We replaced the env region of the expression plasmids with a luciferase (luc) gene, and found that in this case both unspliced and spliced luc-mRNA formed polysomes to a similar extent. Thus, we conclude that whether mRNA polysome formation is affected by splicing depends on the structure of gene in question. PMID:26909075

  6. A novel mutation in the β-spectrin gene causes the activation of a cryptic 5'-splice site and the creation of a de novo 3'-splice site.

    Science.gov (United States)

    Salas, Pilar Carrasco; Rosales, José Miguel Lezana; Milla, Carmen Palma; Montiel, Javier López; Siles, Juan López

    2015-01-01

    The analysis of genes involved in hereditary spherocytosis, by next-generation sequencing in two patients with clinical diagnosis of the disease, showed the presence of the c.1795+1G>A mutation in the SPTB gene. cDNA amplification then revealed the occurrence of a consequent aberrant mRNA isoform produced from the activation of a cryptic 5'-splice site and the creation of a newly 3'-splice site. The mechanisms by which these two splice sites are used as a result of the same mutation should be analyzed in depth in further studies.

  7. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  8. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  9. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations.

    Science.gov (United States)

    Diederichs, Sven; Bartsch, Lorenz; Berkmann, Julia C; Fröse, Karin; Heitmann, Jana; Hoppe, Caroline; Iggena, Deetje; Jazmati, Danny; Karschnia, Philipp; Linsenmeier, Miriam; Maulhardt, Thomas; Möhrmann, Lino; Morstein, Johannes; Paffenholz, Stella V; Röpenack, Paula; Rückert, Timo; Sandig, Ludger; Schell, Maximilian; Steinmann, Anna; Voss, Gjendine; Wasmuth, Jacqueline; Weinberger, Maria E; Wullenkord, Ramona

    2016-01-01

    Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor-specific mutations not only in protein-coding sequences but also in non-coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this "dark matter" of the genome. Malignancy-driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5'-UTR and 3'-UTR Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non-coding RNA, such as microRNA, lncRNA, and lincRNA A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR-21 as well as tumor suppressor genes such as TP53/p53, APC, BRCA1, or RB1 can be affected by these alterations. In summary, coding-independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non-coding or allegedly silent mutations in tumorigenesis. PMID:26992833

  10. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations.

    Science.gov (United States)

    Diederichs, Sven; Bartsch, Lorenz; Berkmann, Julia C; Fröse, Karin; Heitmann, Jana; Hoppe, Caroline; Iggena, Deetje; Jazmati, Danny; Karschnia, Philipp; Linsenmeier, Miriam; Maulhardt, Thomas; Möhrmann, Lino; Morstein, Johannes; Paffenholz, Stella V; Röpenack, Paula; Rückert, Timo; Sandig, Ludger; Schell, Maximilian; Steinmann, Anna; Voss, Gjendine; Wasmuth, Jacqueline; Weinberger, Maria E; Wullenkord, Ramona

    2016-01-01

    Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor-specific mutations not only in protein-coding sequences but also in non-coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this "dark matter" of the genome. Malignancy-driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5'-UTR and 3'-UTR Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non-coding RNA, such as microRNA, lncRNA, and lincRNA A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR-21 as well as tumor suppressor genes such as TP53/p53, APC, BRCA1, or RB1 can be affected by these alterations. In summary, coding-independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non-coding or allegedly silent mutations in tumorigenesis.

  11. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    Directory of Open Access Journals (Sweden)

    Christina R Tyler

    Full Text Available Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural

  12. Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders

    OpenAIRE

    Pettitt, Jonathan; Müller, Berndt; Stansfield, Ian; Connolly, Bernadette

    2008-01-01

    The trans-splicing of short spliced leader (SL) RNAs onto the 5′ ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct sp...

  13. Splicing Regulation: A Molecular Device to Enhance Cancer Cell Adaptation

    Directory of Open Access Journals (Sweden)

    Vittoria Pagliarini

    2015-01-01

    Full Text Available Alternative splicing (AS represents a major resource for eukaryotic cells to expand the coding potential of their genomes and to finely regulate gene expression in response to both intra- and extracellular cues. Cancer cells exploit the flexible nature of the mechanisms controlling AS in order to increase the functional diversity of their proteome. By altering the balance of splice isoforms encoded by human genes or by promoting the expression of aberrant oncogenic splice variants, cancer cells enhance their ability to adapt to the adverse growth conditions of the tumoral microenvironment. Herein, we will review the most relevant cancer-related splicing events and the underlying regulatory mechanisms allowing tumour cells to rapidly adapt to the harsh conditions they may face during the occurrence and development of cancer.

  14. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    Directory of Open Access Journals (Sweden)

    Claudia Leticia Moreno Ávila

    2016-01-01

    Full Text Available Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  15. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    Science.gov (United States)

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  16. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    Science.gov (United States)

    Moreno Ávila, Claudia Leticia

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  17. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  18. A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media.

    Science.gov (United States)

    McGillivary, Glen; Ray, William C; Bevins, Charles L; Munson, Robert S; Bakaletz, Lauren O

    2007-03-01

    Cationic antimicrobial peptides (AMPs), a component of the innate immune system, play a major role in defense of mucosal surfaces against a wide spectrum of microorganisms such as viral and bacterial co-pathogens of the polymicrobial disease otitis media (OM). To further understand the role of AMPs in OM, we cloned a cDNA encoding a cathelicidin homolog (cCRAMP) from upper respiratory tract (URT) mucosae of the chinchilla, the predominant host used to model experimental OM. Recombinant cCRAMP exhibited alpha-helical secondary structure and killed the three main bacterial pathogens of OM. In situ hybridization showed cCRAMP mRNA production in epithelium of the chinchilla Eustachian tube and RT-PCR was used to amplify cCRAMP mRNA from several other tissues of the chinchilla URT. Quantitative RT-PCR analysis of chinchilla middle ear epithelial cells (CMEEs) incubated with either viral (influenza A virus, adenovirus, or RSV) or bacterial (nontypeable H. influenzae, M. catarrhalis, or S. pneumoniae) pathogens associated with OM demonstrated distinct microbe-specific patterns of altered expression. Collectively, these data showed that viruses and bacteria modulate AMP messages in the URT, which likely contributes to the disease course of OM.

  19. Sequence requirements for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA.

    OpenAIRE

    Price, J V; Kieft, G L; Kent, J R; Sievers, E L; Cech, T R

    1985-01-01

    The sequence requirements for splicing of the Tetrahymena pre-rRNA have been examined by altering the rRNA gene to produce versions that contain insertions and deletions within the intervening sequence (IVS). The altered genes were transcribed and the RNA tested for self-splicing in vitro. A number of insertions (8-54 nucleotides) at three locations had no effect on self-splicing activity. Two of these insertions, located at a site 5 nucleotides preceding the 3'-end of the IVS, did not alter ...

  20. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben;

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1......Deltaex3 are generated by alternative splicing where exon 2 (extracellular IgV-like domain) and exon 3 (transmembrane domain) respectively are spliced out. PD-1Deltaex3 is therefore likely to encode a soluble form of PD-1. PD-1Deltaex2,3 lacks exon 2 and 3. These three variants have unaffected open...

  1. The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast.

    Directory of Open Access Journals (Sweden)

    Scott P Kallgren

    Full Text Available Heterochromatin preferentially assembles at repetitive DNA elements, playing roles in transcriptional silencing, recombination suppression, and chromosome segregation. The RNAi machinery is required for heterochromatin assembly in a diverse range of organisms. In fission yeast, RNA splicing factors are also required for pericentric heterochromatin assembly, and a prevailing model is that splicing factors provide a platform for siRNA generation independently of their splicing activity. Here, by screening the fission yeast deletion library, we discovered four novel splicing factors that are required for pericentric heterochromatin assembly. Sequencing total cellular RNAs from the strongest of these mutants, cwf14Δ, showed intron retention in mRNAs of several RNAi factors. Moreover, introducing cDNA versions of RNAi factors significantly restored pericentric heterochromatin in splicing mutants. We also found that mutations of splicing factors resulted in defective telomeric heterochromatin assembly and mis-splicing the mRNA of shelterin component Tpz1, and that replacement of tpz1+ with its cDNA partially rescued heterochromatin defects at telomeres in splicing mutants. Thus, proper splicing of RNAi and shelterin factors contributes to heterochromatin assembly at pericentric regions and telomeres.

  2. Characterization of a novel splicing variant in the RAPTOR gene

    International Nuclear Information System (INIS)

    The mammalian target of rapamycin (mTOR) plays an essential role in the regulation of cell growth, proliferation and apoptosis. Raptor, the regulatory associated protein of mTOR, is an important member in this signaling pathway. In the present report, we identified and characterized a novel splicing variant of this gene, RAPTORv2, in which exons 14-17, 474 bp in total, are omitted from the mRNA. This deletion does not change the open reading frame, but causes a nearly complete absence of HEAT repeats, which were shown to be involved in the binding of mTOR substrates. Real time PCR performed on 48 different human tissues demonstrated the ubiquitous presence of this splice variant. Quantification of mRNA levels in lymphoblastoid cell lines (LCL) from 56 unrelated HapMap individuals revealed that the expression of this splicing form is quite variable. One synonymous SNP, rs2289759 in exon 14, was predicted by ESEfinder to cause a significant gain/loss of SRp55 and/or SF2/ASF binding sites, and thus potentially influence splicing. This prediction was confirmed by linear regression analysis between the ratio of RAPTORv2 to total RAPTOR mRNA levels and the SNP genotype in the above 56 individuals (r = 0.281 and P = 0.036). Moreover, the functional evaluation indicated that this splicing isoform is expected to retain the ability to bind mTOR, but is unlikely to bind mTOR substrates, hence affecting signal transduction and further cell proliferation

  3. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Irina M Shapiro

    2011-08-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.

  4. The neurogenetics of alternative splicing

    OpenAIRE

    Vuong, CK; Black, DL; S. Zheng

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that r...

  5. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Sørensen, Karina D.; Brems-Eskildsen, Anne Sofie;

    2008-01-01

    Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages......, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2...... from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19...

  6. Identification and characterization of seven new exon 11-associated splice variants of the rat mu opioid receptor gene, OPRM1

    Directory of Open Access Journals (Sweden)

    Pasternak Gavril W

    2011-01-01

    Full Text Available Abstract Background The mouse mu opioid receptor (OPRM1 gene undergoes extensive alternative splicing at both the 3'- and 5'-ends of the gene. Previously, several C-terminal variants generated through 3' splicing have been identified in the rat OPRM1 gene. In both mice and humans 5' splicing generates a number of exon 11-containing variants. Studies in an exon 11 knockout mouse suggest the functional importance of these exon 11-associated variants in mediating the analgesic actions of a subset of mu opioids, including morphine-6β-glucuronide (M6G and heroin, but not others such as morphine and methadone. We now have examined 5' splicing in the rat. Results The current studies identified in the rat a homologous exon 11 and seven exon 11-associated variants, suggesting conservation of exon 11 and its associated variants among mouse, rat and human. RT-PCR revealed marked differences in the expression of these variants across several brain regions, implying region-specific mRNA processing of the exon 11-associated variants. Of the seven rat exon 11-associated variants, four encoded the identical protein as found in rMOR-1, two predicted 6 TM variants, and one, rMOR-1H2, generated a novel N-terminal variant in which a stretch of an additional 50 amino acids was present at the N-terminus of the previously established rMOR-1 sequence. When expressed in CHO cells, the presence of the additional 50 amino acids in rMOR-1H2 significantly altered agonist-induced G protein activation with little effect on opioid binding. Conclusion The identification of the rat exon 11 and its associated variants further demonstrated conservation of 5' splicing in OPRM1 genes among rodents and humans. The functional relevance of these exon 11 associated variants was suggested by the region-specific expression of their mRNAs and the influence of the N-terminal sequence on agonist-induced G protein coupling in the novel N-terminal variant, rMOR-1H2. The importance of the exon

  7. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  8. BRR2a Affects Flowering Time via FLC Splicing.

    Science.gov (United States)

    Mahrez, Walid; Shin, Juhyun; Muñoz-Viana, Rafael; Figueiredo, Duarte D; Trejo-Arellano, Minerva S; Exner, Vivien; Siretskiy, Alexey; Gruissem, Wilhelm; Köhler, Claudia; Hennig, Lars

    2016-04-01

    Several pathways control time to flowering in Arabidopsis thaliana through transcriptional and posttranscriptional gene regulation. In recent years, mRNA processing has gained interest as a critical regulator of flowering time control in plants. However, the molecular mechanisms linking RNA splicing to flowering time are not well understood. In a screen for Arabidopsis early flowering mutants we identified an allele of BRR2a. BRR2 proteins are components of the spliceosome and highly conserved in eukaryotes. Arabidopsis BRR2a is ubiquitously expressed in all analyzed tissues and involved in the processing of flowering time gene transcripts, most notably FLC. A missense mutation of threonine 895 in BRR2a caused defects in FLC splicing and greatly reduced FLC transcript levels. Reduced FLC expression increased transcription of FT and SOC1 leading to early flowering in both short and long days. Genome-wide experiments established that only a small set of introns was not correctly spliced in the brr2a mutant. Compared to control introns, retained introns were often shorter and GC-poor, had low H3K4me1 and CG methylation levels, and were often derived from genes with a high-H3K27me3-low-H3K36me3 signature. We propose that BRR2a is specifically needed for efficient splicing of a subset of introns characterized by a combination of factors including intron size, sequence and chromatin, and that FLC is most sensitive to splicing defects. PMID:27100965

  9. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    Science.gov (United States)

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  10. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    Science.gov (United States)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  11. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    Science.gov (United States)

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  12. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors

    OpenAIRE

    Lai, Yi; Yue, Yongping; LIU, MINGJU; Ghosh, Arkasubhra; Engelhardt, John F.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Although adeno-associated virus (AAV)-mediated gene therapy has been hindered by the small viral packaging capacity of the vector, trans-splicing AAV vectors are able to package twice the size of the vector genome. Unfortunately, the efficiency of current trans-splicing vectors is very low. Here we show that rational design of the gene splitting site has a profound influence on trans-splicing vector-mediated gene expression. Using mRNA accumulation as a guide, we generated a set of efficient ...

  13. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame proα2(I) chain

    International Nuclear Information System (INIS)

    Previous observations demonstrated that a lethal variant of osteogenesis imperfecta had two altered alleles for proα2(I) chains of type I procollagen. One mutation produced a nonfunctioning allele in that there was synthesis of mRNA but no detectable synthesis of proα2(I) chains from the allele. The mutation in the other allele caused synthesis of shortened proα2(I) chains that lacked most or all of the 18 amino acids encoded by exon 28. Subclones of the proα2(I) gene were prepared from the proband's DNA and the DNA sequence was determined for a 582-base-pair (bp) region that extended from the last 30 bp of intervening sequence 26 to the first 26 bp of intervening sequence 29. Data from six independent subclones demonstrated that all had the same sequence as a previously isolated normal clone for the proα2(I) gene except that four subclones had a single base mutation at the 3' end of intervening sequence 27. The mutation was a substitution of guanine for adenine that changed the universal consensus sequence for the 3' splicing site of RNA from -AG- to -GG-. S1 nuclease experiments demonstrated that about half the proα2(I) mRNA in the proband's fibroblasts was abnormally spliced and that the major species of abnormal proα2(I) mRNA was completely spliced from the last codon of exon 27 to the first codon of exon 29. The mutation is apparently unique among RNA splicing mutations of mammalian systems in producing a shortened polypeptide chain that is in-frame in terms of coding sequences, that is used in the subunit assembly of a protein, and that contributes to a lethal phenotype

  14. BRR2a Affects Flowering Time via FLC Splicing

    OpenAIRE

    Mahrez, Walid; Shin, Juhyun; Muñoz-Viana, Rafael; Figueiredo, Duarte D.; Trejo-Arellano, Minerva S.; Exner, Vivien; Siretskiy, Alexey; Gruissem, Wilhelm; Köhler, Claudia; Hennig, Lars

    2016-01-01

    Several pathways control time to flowering in Arabidopsis thaliana through transcriptional and posttranscriptional gene regulation. In recent years, mRNA processing has gained interest as a critical regulator of flowering time control in plants. However, the molecular mechanisms linking RNA splicing to flowering time are not well understood. In a screen for Arabidopsis early flowering mutants we identified an allele of BRR2a. BRR2 proteins are components of the spliceosome and highly conserve...

  15. Methods for Characterization of Alternative RNA Splicing.

    Science.gov (United States)

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  16. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  17. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2005-09-01

    Full Text Available Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors Spt4-5, both of which have recently been shown to play a role in the normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the roles of Spt4-5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models for assessing differential expression between wild-type and the mutants. To refine selection of differential expression genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential expression, in the context of a real, complex experimental design. Our results suggest that the Spt4-Spt5 complex may help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly or function.

  18. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers

    DEFF Research Database (Denmark)

    Cohen-Eliav, Michal; Golan-Gerstl, Regina; Siegfried, Zahava;

    2013-01-01

    An increasing body of evidence connects alterations in the process of alternative splicing with cancer development and progression. However, a direct role of splicing factors as drivers of cancer development is mostly unknown. We analyzed the gene copy number of several splicing factors in colon...... and lung tumors and found that the gene encoding for the splicing factor SRSF6 is amplified and overexpressed in these cancers. Moreover, overexpression of SRSF6 in immortal lung epithelial cells enhanced proliferation, protected them from chemotherapy-induced cell death and converted them...... to be tumorigenic in mice. In contrast, knockdown of SRSF6 in lung and colon cancer cell lines inhibited their tumorigenic abilities. SRSF6 up- or down regulation altered the splicing of several tumor suppressors and oncogenes to generate the oncogenic isoforms and reduce the tumor suppressive isoforms. Our data...

  19. Inverse splicing of a group II intron.

    OpenAIRE

    Jarrell, K A

    1993-01-01

    I describe the self-splicing of an RNA that consists of exon sequences flanked by group II intron sequences. I find that this RNA undergoes accurate splicing in vitro, yielding an excised exon circle. This splicing reaction involves the joining of the 5' splice site at the end of an exon to the 3' splice site at the beginning of the same exon; thus, I term it inverse splicing. Inverse splicing provides a potential mechanism for exon scrambling, for exon deletion in alternative splicing pathwa...

  20. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  1. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  2. HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing

    Directory of Open Access Journals (Sweden)

    Ahuvi Yearim

    2015-02-01

    Full Text Available The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1, which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation’s significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.

  3. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    Science.gov (United States)

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  4. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    International Nuclear Information System (INIS)

    Highlights: → Novel role for poliovirus 2A protease as splicing modulator. → Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. → Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2Apro modulating the alternative splicing of pre-mRNAs. Expression of 2Apro potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2Apro abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2Apro, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2Apro on splicing is to selectively block the second catalytic step.

  5. Splicing therapy for neuromuscular disease.

    Science.gov (United States)

    Douglas, Andrew G L; Wood, Matthew J A

    2013-09-01

    Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision. PMID:23631896

  6. Modified Ca(v1.4 expression in the Cacna1f(nob2 mouse due to alternative splicing of an ETn inserted in exon 2.

    Directory of Open Access Journals (Sweden)

    Clinton J Doering

    Full Text Available The Cacna1f(nob2 mouse is reported to be a naturally occurring null mutation for the Ca(v1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1f(nob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Ca(v1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Ca(v1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Ca(v1.4(wt or Ca(v1.4(nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1f(nob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response of Cacna1f(nob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1f(nob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Ca(v1.4 protein, albeit at reduced levels, and the functional Ca(v1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1f(nob2 mouse to detect and follow moving sine-wave gratings

  7. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, P.; Kavathas, P. (Yale Univ. School of Medicine, New Haven, CT (USA)); Ledbetter, J.A. (Oncogen, Seattle, WA (USA))

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  8. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    International Nuclear Information System (INIS)

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8+ T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation

  9. [Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells].

    Science.gov (United States)

    Zhdanov, D D; Vasina, D A; Orlova, V S; Gotovtseva, V Y; Bibikova, M V; Pokrovsky, V S; Pokrovskaya, M V; Aleksandrova, S S; Sokolov, N N

    2016-03-01

    Telomerase activity is known to be regulated by alternative splicing of its catalytic subunit hTERT (human Telomerase Reverse Transcriptase) mRNA. Induction of non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. Strong correlation was found between expression of EndoG and hTERT splice-variants in 12 colon cancer cell lines. Overexpression of EndoG in СаСо-2 cells downregulated the expression of active full-length hTERT variant and upregulated non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, dramatically shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. These data indicated the participation of EndoG in alternative splicing of mRNA of telomerase catalytic subunit, regulation of telomerase activity and cell fate. PMID:27420614

  10. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery

    OpenAIRE

    Kai WANG; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J.; Huang, Yan; Savich, Gleb L.; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A; Perou, Charles M; MacLeod, James N; Chiang, Derek Y.; Prins, Jan F.; Liu, Jinze

    2010-01-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (

  11. A combinatorial code for splicing silencing: UAGG and GGGG motifs.

    Directory of Open Access Journals (Sweden)

    Kyoungha Han

    2005-05-01

    Full Text Available Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19 of the glutamate NMDA R1 receptor (GRIN1 transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.

  12. Conserved RNA secondary structures promote alternative splicing

    OpenAIRE

    Shepard, PJ; Hertel, KJ

    2008-01-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site stren...

  13. Engineering splicing factors with designed specificities

    OpenAIRE

    Wang, Yang; Cheong, Cheom-Gil; Hall, Traci M Tanaka; Wang, Zefeng

    2009-01-01

    Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineer artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alte...

  14. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components.

    Science.gov (United States)

    Zhang, Zuo; Krainer, Adrian R

    2007-07-10

    Pre-mRNA splicing not only removes introns and joins exons to generate spliced mRNA but also results in remodeling of the spliced messenger ribonucleoprotein, influencing various downstream events. This remodeling includes the loading of an exon-exon junction complex (EJC). It is unclear how the spliceosome recruits the EJC onto the mRNA and whether EJC formation or EJC components are required for pre-mRNA splicing. Here we immunodepleted the EJC core component eIF4A3 from HeLa cell nuclear extract and found that eIF4A3 is dispensable for pre-mRNA splicing in vitro. However, eIF4A3 is required for the splicing-dependent loading of the Y14/Magoh heterodimer onto mRNA, and this activity of human eIF4A3 is also present in the Drosophila ortholog. Surprisingly, the loading of six other EJC components was not affected by eIF4A3 depletion, suggesting that their binding to mRNA involves different or redundant pathways. Finally, we found that the assembly of the EJC onto mRNA occurs at the late stages of the splicing reaction and requires the second-step splicing and mRNA-release factor HRH1/hPrp22. The EJC-dependent and -independent recruitment of RNA-binding proteins onto mRNA suggests a role for the EJC in messenger ribonucleoprotein remodeling involving interactions with other proteins already bound to the pre-mRNA, which has implications for nonsense-mediated mRNA decay and other mRNA transactions. PMID:17606899

  15. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  16. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  17. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    Directory of Open Access Journals (Sweden)

    Serena Bonomi

    2013-01-01

    Full Text Available Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments.

  18. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    Science.gov (United States)

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2016-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  19. Integrating many co-splicing networks to reconstruct splicing regulatory modules

    OpenAIRE

    Dai Chao; Li Wenyuan; Liu Juan; Zhou Xianghong

    2012-01-01

    Abstract Background Alternative splicing is a ubiquitous gene regulatory mechanism that dramatically increases the complexity of the proteome. However, the mechanism for regulating alternative splicing is poorly understood, and study of coordinated splicing regulation has been limited to individual cases. To study genome-wide splicing regulation, we integrate many human RNA-seq datasets to identify splicing module, which we define as a set of cassette exons co-regulated by the same splicing f...

  20. Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

    OpenAIRE

    Sergio Barberan-Soler; Zahler, Alan M.

    2008-01-01

    Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studi...

  1. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    Science.gov (United States)

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  2. Modification of Alternative Splicing of Bcl-x Pre-mRNA in Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhaohui; XING Shi'an; CHENG Ping; ZENG Fuqing; LU Gongcheng

    2006-01-01

    To modify the splicing pattern of Bcl-x and compare the effect of this approach with that of the antisense gene therapy in BIU-87 cell line of bladder cancer, by using 5'-Bcl-x AS to target downstream alternative 5'-Bcl-x splice site to shift splicing from Bcl-xL to Bcl-xS and 3'-Bcl-x AS antisense to the 3'-splice site of exon Ⅲ in Bcl-x pre- mRNA to down regulation of Bcl-xL expression,the inhibitory effects on cancer cells by modification of alternative splicing and antisense gene therapy were observed and compared by microscopy, MTT Assay, RT-PCR, FACS, Westhern bloting and clone formation. The growth of cells BIU-87 was inhibited in a dose- and time-dependent manner. Its inhibitory effect began 12 h after the exposure, reaching a maximum value after 72h. The number of cells decreased in S phase and the number increased in G1 phase. The ability to form foci was reduced and the antisense gene therapy was approximately half as efficient as modification of alternative splicing in inducing apoptosis. It is concluded that modification of splicing pattern of Bcl-x pre-mRNA in bladder cancer cell BIU-87 is better than antisense gene therapy in terms of tumor inhibition.

  3. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mount Stephen M

    2006-12-01

    Full Text Available Abstract Background Recently, genomic sequencing efforts were finished for Oryza sativa (cultivated rice and Arabidopsis thaliana (Arabidopsis. Additionally, these two plant species have extensive cDNA and expressed sequence tag (EST libraries. We employed the Program to Assemble Spliced Alignments (PASA to identify and analyze alternatively spliced isoforms in both species. Results A comprehensive analysis of alternative splicing was performed in rice that started with >1.1 million publicly available spliced ESTs and over 30,000 full length cDNAs in conjunction with the newly enhanced PASA software. A parallel analysis was performed with Arabidopsis to compare and ascertain potential differences between monocots and dicots. Alternative splicing is a widespread phenomenon (observed in greater than 30% of the loci with transcript support and we have described nine alternative splicing variations. While alternative splicing has the potential to create many RNA isoforms from a single locus, the majority of loci generate only two or three isoforms and transcript support indicates that these isoforms are generally not rare events. For the alternate donor (AD and acceptor (AA classes, the distance between the splice sites for the majority of events was found to be less than 50 basepairs (bp. In both species, the most frequent distance between AA is 3 bp, consistent with reports in mammalian systems. Conversely, the most frequent distance between AD is 4 bp in both plant species, as previously observed in mouse. Most alternative splicing variations are localized to the protein coding sequence and are predicted to significantly alter the coding sequence. Conclusion Alternative splicing is widespread in both rice and Arabidopsis and these species share many common features. Interestingly, alternative splicing may play a role beyond creating novel combinations of transcripts that expand the proteome. Many isoforms will presumably have negative

  4. Splicing-Sensitive DNA-Microarrays: Peculiarities and Applicationin Biomedical Research (Review

    Directory of Open Access Journals (Sweden)

    D.I. Knyazev

    2015-12-01

    Full Text Available Alternative splicing (АS provides a variety of protein and mature mRNA isoforms encoded by a single gene, and is the essential component of cell and tissue differentiation and functioning. DNA-microarrays are highly productive transcriptome research technique both at the level of total gene expression assessment and alternatively spliced mRNA isoforms exploration. The study of AS patterns requires thorough probe design to achieve appropriate accuracy of the analysis. There are two types of splicing-sensitive DNA-microarrays. The first type contain probes targeted to internal exonic sequences (exon bodies; the second type contain probes targeted to exon bodies and exon–exon and exon–intron junctions. So, the first section focused on probe sequence design, general features of splicing-sensitive DNA-microarrays and their main advantages and limitations. The results of AS research obtained using DNA-microarrays have been reviewed in special section. In particular, DNA-microarrays were used to reveal a number pre-mRNA processing and splicing mechanisms, to investigate AS patterns associated with cancer, cell and tissue differentiation. Splicing machinery regulation was demonstrated to be an essential step during carcinogenesis and differentiation. The examples of application of splicing-sensitive DNA-microarrays for diagnostic markers discovering and pathology mechanism elucidation were also reviewed. Investigations of AS role in pluripotency, stem cell commitment, immune and infected cells functioning during immune response are the promising future directions. Splicing-sensitive DNA-microarrays are relatively inexpensive but powerful research tool that give reason to suppose their introduction in clinical practice within the next few years.

  5. Quantification of co-transcriptional splicing from RNA-Seq data.

    Science.gov (United States)

    Herzel, Lydia; Neugebauer, Karla M

    2015-09-01

    During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.

  6. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ryder, L R; Woetmann, A; Ødum, N;

    2010-01-01

    OBJECTIVE: The aim of our study was to compare the presence of full-length and alternative splice forms of FoxP3 mRNA in CD4 cells from rheumatoid arthritis (RA) patients and healthy controls. METHODS: A quantitative real-time polymerase chain reaction (QRT-PCR) method was used to measure...

  7. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy.

    Science.gov (United States)

    DeHaven, Alexander C; Norden, Ian S; Hoskins, Aaron A

    2016-09-01

    The process of removing intronic sequences from a precursor to messenger RNA (pre-mRNA) to yield a mature mRNA transcript via splicing is an integral step in eukaryotic gene expression. Splicing is carried out by a cellular nanomachine called the spliceosome that is composed of RNA components and dozens of proteins. Despite decades of study, many fundamentals of spliceosome function have remained elusive. Recent developments in single-molecule fluorescence microscopy have afforded new tools to better probe the spliceosome and the complex, dynamic process of splicing by direct observation of single molecules. These cutting-edge technologies enable investigators to monitor the dynamics of specific splicing components, whole spliceosomes, and even cotranscriptional splicing within living cells. WIREs RNA 2016, 7:683-701. doi: 10.1002/wrna.1358 For further resources related to this article, please visit the WIREs website. PMID:27198613

  8. Identification of a novel function of CX-4945 as a splicing regulator.

    Directory of Open Access Journals (Sweden)

    Hyeongki Kim

    Full Text Available Alternative splicing is a nearly ubiquitous versatile process that controls gene expression and creates numerous protein isoforms with different functions from a single gene. The significance of alternative splicing has been confirmed by the increasing number of human diseases that are caused by misregulation of splicing events. Very few compounds, however, have been reported to act as inhibitors of alternative splicing, and their potential clinical use needs to be evaluated. Here, we report that CX-4945, a previously well-characterized inhibitor of casein kinase 2 (CK2 and a molecule currently in clinical trials (Phase II for cancer treatment, regulates splicing in mammalian cells in a CK2-independent manner. Transcriptome-wide analysis using exon array also showed a widespread alteration in alternative splicing of numerous genes. We found that CX-4945 potently inhibits the Cdc2-like kinases (Clks in vitro and in turn, leads to suppression of the phosphorylation of serine/arginine-rich (SR proteins in mammalian cells. Surprisingly, the overall efficacy of CX-4945 on Clks (IC50 = 3-90 nM was stronger than that of TG-003, the strongest inhibitor reported to date. Of the Clks, Clk2 was most strongly inhibited by CX-4945 in an ATP-competitive manner. Our research revealed an unexpected activity of the drug candidate CX-4945 as a potent splicing modulator and also suggested a potential application for therapy of diseases caused by abnormal splicing.

  9. A novel mutation in the β-spectrin gene causes the activation of a cryptic 5′-splice site and the creation of a de novo 3′-splice site

    Science.gov (United States)

    Salas, Pilar Carrasco; Rosales, José Miguel Lezana; Milla, Carmen Palma; Montiel, Javier López; Siles, Juan López

    2015-01-01

    The analysis of genes involved in hereditary spherocytosis, by next-generation sequencing in two patients with clinical diagnosis of the disease, showed the presence of the c.1795+1G>A mutation in the SPTB gene. cDNA amplification then revealed the occurrence of a consequent aberrant mRNA isoform produced from the activation of a cryptic 5′-splice site and the creation of a newly 3′-splice site. The mechanisms by which these two splice sites are used as a result of the same mutation should be analyzed in depth in further studies. PMID:27081538

  10. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    Science.gov (United States)

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Chiao, Cassandra; Li, Hongda; Zhao, Xinyu; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-06-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  11. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    Directory of Open Access Journals (Sweden)

    Ronghui Li

    2016-06-01

    Full Text Available Mutations in the human MECP2 gene cause Rett syndrome (RTT, a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies.

  12. Irf3 polymorphism alters induction of interferon beta in response to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Oleg Garifulin

    2007-09-01

    Full Text Available Genetic makeup of the host plays a significant role in the course and outcome of infection. Inbred strains of mice display a wide range of sensitivities to Listeria monocytogenes infection and thus serve as a good model for analysis of the effect of genetic polymorphism. The outcome of L. monocytogenes infection in mice is influenced by the ability of this bacterium to induce expression of interferon beta mRNA, encoded in mouse by the Ifnb1 (interferon beta 1, fibroblast gene. Mouse strains that lack components of the IFN beta signaling pathway are substantially more resistant to infection. We found that macrophages from the ByJ substrain of the common C57BL/6 inbred strain of mice are impaired in their ability to induce Ifnb1 expression in response to bacterial and viral infections. We mapped the locus that controls differential expression of Ifnb1 to a region on Chromosome 7 that includes interferon regulatory factor 3 (Irf3, which encodes a transcription factor responsible for early induction of Ifnb1 expression. In C57BL/6ByJ mice, Irf3 mRNA was inefficiently spliced, with a significant proportion of the transcripts retaining intron 5. Analysis of the Irf3 locus identified a single base-pair polymorphism and revealed that intron 5 of Irf3 is spliced by the atypical U12-type spliceosome. We found that the polymorphism disrupts a U12-type branchpoint and has a profound effect on the efficiency of splicing of Irf3. We demonstrate that a naturally occurring change in the splicing control element has a dramatic effect on the resistance to L. monocytogenes infection. Thus, the C57BL/6ByJ mouse strain serves as an example of how a mammalian host can counter bacterial virulence strategies by introducing subtle alteration of noncoding sequences.

  13. Methods for Characterization of Alternative RNA Splicing

    Science.gov (United States)

    Harvey, Samuel E.; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing “minigene” in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest. PMID:26721495

  14. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery.

    Science.gov (United States)

    Wang, Kai; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J; Huang, Yan; Savich, Gleb L; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A; Perou, Charles M; MacLeod, James N; Chiang, Derek Y; Prins, Jan F; Liu, Jinze

    2010-10-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥ 75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice. PMID:20802226

  15. The splicing fate of plant SPO11 genes

    Directory of Open Access Journals (Sweden)

    Thorben eSprink

    2014-05-01

    Full Text Available Towards the global understanding of plant meiosis, it seems to be essential to decipher why all as yet sequenced plants need or at least encode for two different meiotic SPO11 genes. This is in contrast to mammals and fungi, where only one SPO11 is present. Both SPO11 in plants are essential for the initiation of double strand breaks (DSBs during the meiotic prophase. In nearly all eukaryotic organisms DSB induction by SPO11 leads to meiotic DSB repair, thereby ensuring the formation of a necessary number of crossovers (CO as physical connections between the allelic chromosomes. We aim to investigate the specific functions and evolution of both SPO11 genes in land plants. Therefore, we identified and cloned the respective orthologous genes from Brassica rapa, Carica papaya, Oryza sativa and Physcomitrella patens. In parallel we determined the full length cDNA sequences of SPO11-1 and -2 from all of these plants by RT-PCR. During these experiments we observed that the analyzed plants exhibit a pattern of aberrant splicing products of both SPO11 mRNAs. Such an aberrant splicing has previously been described for Arabidopsis and therefore seems to be conserved throughout evolution. Most of the splicing forms of SPO11-1 and -2 seem to be non functional as they either showed intron retention or shortened exons accompanied by a frameshift leading to premature termination codons (PTCs in most cases. Nevertheless, we could detect one putative functional alternatively spliced mRNA for SPO11-1 and -2 each, indicating that splicing of SPO11 does not depend only on the gene sequence but also on the plant species and that it might play a regulatory role.

  16. Unique splicing pattern of the TCF7L2 gene in human pancreatic islets

    DEFF Research Database (Denmark)

    Osmark, P; Hansson, O; Jonsson, Anna Elisabet;

    2009-01-01

    Intronic variation in the TCF7L2 gene exhibits the strongest association to type 2 diabetes observed to date, but the mechanism whereby this genetic variation translates into altered biological function is largely unknown. A possible explanation is a genotype-dependent difference in the complex...... splicing pattern; however, this has not previously been characterised in pancreatic or insulin target tissues. Here, the detailed TCF7L2 splicing pattern in five human tissues is described and dependence on risk genotype explored....

  17. Delivering Antisense Morpholino Oligonucleotides to Target Telomerase Splice Variants in Human Embryonic Stem Cells.

    Science.gov (United States)

    Radan, Lida; Hughes, Chris S; Teichroeb, Jonathan H; Postovit, Lynne-Marie; Betts, Dean H

    2016-01-01

    Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) Δα and Δβ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.

  18. EASI—enrichment of alternatively spliced isoforms

    OpenAIRE

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  19. Mechano-Regulation of Alternative Splicing

    OpenAIRE

    Liu, Huan; Tang, Liling

    2013-01-01

    Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated...

  20. ASD: a bioinformatics resource on alternative splicing

    OpenAIRE

    Stamm, Stefan; Riethoven, Jean-Jack; Le Texier, Vincent; Gopalakrishnan, Chellappa; Kumanduri, Vasudev; Tang, Yesheng; Barbosa-Morais, Nuno L.; Thanaraj, Thangavel Alphonse

    2005-01-01

    Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. We present the continuation and upgrade of the ASD [T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, J. Muilu (2004) Nucleic Acids Res. 32, D64–D69] that consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database...

  1. Targeting RNA Splicing for Disease Therapy

    OpenAIRE

    Havens, Mallory A.; Duelli, Dominik M.; Hastings, Michelle L.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicin...

  2. Evolution of alternative splicing after gene duplication

    OpenAIRE

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-01-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of ...

  3. SEQassembly: A Practical Tools Program for Coding Sequences Splicing

    Science.gov (United States)

    Lee, Hongbin; Yang, Hang; Fu, Lei; Qin, Long; Li, Huili; He, Feng; Wang, Bo; Wu, Xiaoming

    CDS (Coding Sequences) is a portion of mRNA sequences, which are composed by a number of exon sequence segments. The construction of CDS sequence is important for profound genetic analysis such as genotyping. A program in MATLAB environment is presented, which can process batch of samples sequences into code segments under the guide of reference exon models, and splice these code segments of same sample source into CDS according to the exon order in queue file. This program is useful in transcriptional polymorphism detection and gene function study.

  4. SURVIV for survival analysis of mRNA isoform variation.

    Science.gov (United States)

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  5. Alterations of BDNF and trkB mRNA expression in the 6-hydroxydopamine-induced model of preclinical stages of Parkinson's disease: an influence of chronic pramipexole in rats.

    Directory of Open Access Journals (Sweden)

    Klemencja Berghauzen-Maciejewska

    Full Text Available Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson's disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day and imipramine (10 mg/kg ip once a day were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG] and amygdala (basolateral/lateral as well as the BDNF mRNA content in the habenula (medial/lateral. The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core and ventral tegmental area (VTA. Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.

  6. SAW: A Method to Identify Splicing Events from RNA-Seq Data Based on Splicing Fingerprints

    OpenAIRE

    Kang Ning; Damian Fermin

    2010-01-01

    Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, ...

  7. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ping-Ge [Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Zhi-Xin [Centre Laboratory, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China); Li, Jian-Hua [Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853 (China); Zhou, Zhe, E-mail: zhouzhe76@126.com [Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Qing-Hua, E-mail: 1056055170@qq.com [Department of Cardiology, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China)

    2015-08-07

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.

  8. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    International Nuclear Information System (INIS)

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival

  9. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency.

    Science.gov (United States)

    Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E

    2015-03-01

    Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C Thrombin generation experiments showed residual FV expression in the patient's plasma, which was quantified as 0.7 ± 0.3% by a sensitive prothrombinase-based assay. F5 gene sequencing identified a novel missense mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. PMID:25470420

  10. Skipping of exons by premature termination of transcription and alternative splicing within intron-5 of the sheep SCF gene: a novel splice variant.

    Directory of Open Access Journals (Sweden)

    Siva Arumugam Saravanaperumal

    Full Text Available Stem cell factor (SCF is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM, SCF is produced either as a membrane-bound (- or soluble (+ forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR. Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp cDNA encodes a precursor protein of 274 amino acids (aa, commonly known as 'soluble' isoform. In contrast, the shorter (835 and/or 725 bp cDNA was found to be a 'novel' mRNA splice variant. It contains an open reading frame (ORF corresponding to a truncated protein of 181 aa (vs 245 aa with an unique C-terminus lacking the primary proteolytic segment (28 aa right after the D(175G site which is necessary to produce 'soluble' form of SCF. This alternative splice (AS variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5-exon 6 (948 bp with a premature termination codon (PTC whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6-9/10. We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+ and/or absence (- of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals.

  11. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot

    Science.gov (United States)

    Suzuki, Hitoshi; Aoki, Yoshitsugu; Kameyama, Toshiki; Saito, Takashi; Masuda, Satoru; Tanihata, Jun; Nagata, Tetsuya; Mayeda, Akila; Takeda, Shin’ichi; Tsukahara, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45–55 of the DMD gene, might improve patients’ symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45–55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44–56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5′ splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing. PMID:27754374

  12. Comparison of the unlabeled and labeled pre-mRNA splicing assays in vitro

    Institute of Scientific and Technical Information of China (English)

    TIAN XU BU; JING XIN HONG; ZHI YAO; JIE YANG

    2006-01-01

    Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome that catalyzes the removal of non-coding intron sequences to ligate exons into mature mRNA prior to transport and translation. The purpose of our study is to explore whether the in vitro unlabeled pre-mRNA splicing assay could be performed as an alternative method of splicing reaction other than the radiolabeled one. Two different splicing methods in vitro, 32P labeled and unlabeled pre-mRNA as the substrates in the reaction, were investigated. The radiolabeled products were visualized by autoradiography while the unlabeled products were observed by Ethidium Bromide (EB)staining. As a result, although there are more unspecific bands in the EB staining assay than 32P labeled one, the RNA products of in vitro splicing could be observed clearly. This suggests that the unlabeled pre-mRNA splicing assay can be an optional substitution for the isotope-labeled assay.

  13. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  14. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    Directory of Open Access Journals (Sweden)

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  15. A study on the pathogenesis of the radiation pneumonitis. Alterations in pulmonary mRNA encoding adhesion molecules ICAM-1, VCAM-1, and P-selectin following thoracic irradiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino, Kayoko; Kodama, Akihisa; Kono, Michio [Kobe Univ. (Japan). School of Medicine

    1997-12-01

    To investigate the role of the adhesion molecules in the pathogenesis of the radiation pneumonitis, we quantified the mRNA expression of the adhesion molecules in the lung by Northern blot method following whole thorax irradiation to C57BL/6J mice. After irradiation of 12 Gy to the whole thorax, there were increase of mRNA for ICAM-1 by 42% at 4 hours (p<0.05), 76% at 24 hours (p<0.01) and 51% at 48 hours (p<0.05) compared with controls. And it returned to control level at 1 week. No significant change was observed thereafter until 8 weeks. The expression of VCAM-1 mRNA were also increased by 49% (p<0.01) at 12 hours and were still increased by 25% at 1 week. P-selectin mRNA as transiently increased by 59% at 12 hours. We examined the relationship between the ICAM-1 induction and the radiation dose, and found that ICAM-1 expression was increased by 3 Gy of irradiation and it was increased in radiation dose dependent manner up to 24 Gy. These early inductions of mRNA for ICAM-1, VCAM-1 and P-selectin in mice lungs following thoracic irradiation were transient but significant, and they were one of the most immediate change reported in vivo. It is suggested that these adhesion molecules are possibly related to the pathogenesis of the radiation pneumonitis. (author)

  16. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival

    OpenAIRE

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R.; Kirshenbaum, Lorrie A.

    2015-01-01

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1–6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcino...

  17. RNA splicing regulates the temporal order of TNF-induced gene expression.

    Science.gov (United States)

    Hao, Shengli; Baltimore, David

    2013-07-16

    When cells are induced to express inflammatory genes by treatment with TNF, the mRNAs for the induced genes appear in three distinct waves, defining gene groups I, II, and III, or early, intermediate, and late genes. To examine the basis for these different kinetic classes, we have developed a PCR-based procedure to distinguish pre-mRNAs from mRNAs. It shows that the three groups initiate transcription virtually simultaneously but that delays in splicing characterize groups II and III. We also examined the elongation times, concluding that pre-mRNA synthesis is coordinate but splicing differences directly regulate the timing of mRNA production.

  18. A Novel Splicing Variant of Mouse Interleukin (IL)-24 Antagonizes IL-24-induced Apoptosis*S⃞

    OpenAIRE

    Sahoo, Anupama; Jung, Yun Min; Kwon, Ho-Keun; Yi, Hwa-Jung; Lee, Suho; Chang, Sunghoe; Park, Zee-Yong; Hwang, Ki-Chul; Im, Sin-Hyeog

    2008-01-01

    Alternative splicing of mRNA enables functionally diverse protein isoforms to be expressed from a single gene, allowing transcriptome diversification. Interleukin (IL)-24/MDA-7 is a member of the IL-10 gene family, and FISP (IL-4-induced secreted protein), its murine homologue, is selectively expressed and secreted by T helper 2 lymphocytes. A novel splice variant of mouse IL-24/FISP, designated FISP-sp, lacks 29 nucleotides from the 5′-end of exon 4 of FISP. The level...

  19. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model

    OpenAIRE

    Lewis, Renate; Ravindran, Soumya; Wirthlin, Louisa; Traeger, Geoffrey; Fernandes, Russell J.; McAlinden, Audrey

    2012-01-01

    The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by d...

  20. COMMUNICATION: Alternative splicing and genomic stability

    Science.gov (United States)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  1. Evolutionary constraint helps unmask a splicing regulatory region in BRCA1 exon 11.

    Directory of Open Access Journals (Sweden)

    Michela Raponi

    Full Text Available BACKGROUND: Alternative splicing across exon 11 produces several BRCA1 isoforms. Their proportion varies during the cell cycle, between tissues and in cancer suggesting functional importance of BRCA1 splicing regulation around this exon. Although the regulatory elements driving exon 11 splicing have never been identified, a selective constraint against synonymous substitutions (silent nucleotide variations that do not alter the amino acid residue sequence in a critical region of BRCA1 exon 11 has been reported to be associated with the necessity to maintain regulatory sequences. METHODOLOGY/PRINCIPAL FINDINGS: Here we have designed a specific minigene to investigate the possibility that this bias in synonymous codon usage reflects the need to preserve the BRCA1 alternative splicing program. We report that in-frame deletions and translationally silent nucleotide substitutions in the critical region affect splicing regulation of BRCA1 exon 11. CONCLUSIONS/SIGNIFICANCE: Using a hybrid minigene approach, we have experimentally validated the hypothesis that the need to maintain correct alternative splicing is a selective pressure against translationally silent sequence variations in the critical region of BRCA1 exon 11. Identification of the trans-acting factors involved in regulating exon 11 alternative splicing will be important in understanding BRCA1-associated tumorigenesis.

  2. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  3. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  4. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    Science.gov (United States)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  5. Spliced leader RNA trans-splicing discovered in copepods

    Science.gov (United States)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  6. Splice junction mutation in some Ashkenazi Jews with Tay-Sachs disease: Evidence against a single defect within this ethnic group

    Energy Technology Data Exchange (ETDEWEB)

    Myerowitz, R. (National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD (USA))

    1988-06-01

    Tay-Sachs disease is an inherited disorder in which the {alpha} chain of the lysosomal enzyme {beta}-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same {alpha}-chain mutation. The author has isolated the {alpha}-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal {alpha}-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, the author developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one {alpha}-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population.

  7. Splice junction mutation in some Ashkenazi Jews with Tay-Sachs disease: Evidence against a single defect within this ethnic group

    International Nuclear Information System (INIS)

    Tay-Sachs disease is an inherited disorder in which the α chain of the lysosomal enzyme β-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same α-chain mutation. The author has isolated the α-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal α-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, the author developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one α-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population

  8. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor

    International Nuclear Information System (INIS)

    PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene

  9. Identification of an exonic splicing silencer in exon 6A of the human VEGF gene

    Directory of Open Access Journals (Sweden)

    Crystal Ronald G

    2009-11-01

    Full Text Available Abstract Background The different isoforms of vascular endothelial growth factor (VEGF play diverse roles in vascular growth, structure and function. Alternative splicing of the VEGF gene results in the expression of three abundant isoforms: VEGF121, VEGF165 and VEGF189. The mRNA for VEGF189 contains the alternatively spliced exon 6A whereas the mRNA for VEGF165 lacks this exon. The objective of this study was to identify the cis elements that control utilization of exon 6A. A reporter minigene was constructed (pGFP-E6A containing the coding sequence for GFP whose translation was dependent on faithful splicing for removal of the VEGF exon 6A. To identify cis-acting splicing elements, sequential deletions were made across exon 6A in the pGFP-E6A plasmid. Results A candidate cis-acting exonic splicing silencer (ESS comprising nucleotides 22-30 of exon 6A sequence was identified corresponding to the a silencer consensus sequence of AAGGGG. The function of this sequence as an ESS was confirmed in vivo both in the context of the reporter minigene as a plasmid and in the context of a longer minigene with VEGF exon 6A in its native context in an adenoviral gene transfer vector. Further mutagenesis studies resulted in the identification of the second G residue of the putative ESS as the most critical for function. Conclusion This work establishes the identity of cis sequences that regulate alternative VEGF splicing and dictate the relative expression levels of VEGF isoforms.

  10. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    Science.gov (United States)

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.

  11. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. PMID:27421105

  12. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  13. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns.

    OpenAIRE

    Hicks, Martin J; Chin-Rang Yang; Matthew V Kotlajich; Hertel, Klemens J.

    2006-01-01

    RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II ( Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the sp...

  14. Control of Alternative Splicing by Signal-dependent Degradation of Splicing-regulatory Proteins*S⃞

    OpenAIRE

    Katzenberger, Rebeccah J.; Marengo, Matthew S.; Wassarman, David A.

    2009-01-01

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation o...

  15. Competition between Pre-mRNAs for the splicing machinery drives global regulation of splicing

    OpenAIRE

    Munding, EM; Shiue, L; Katzman, S.; Donohue, J; Ares, M

    2013-01-01

    During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two ...

  16. Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair.

    Science.gov (United States)

    Hüttner, Clemens; Murauer, Eva M; Hainzl, Stefan; Kocher, Thomas; Neumayer, Anna; Reichelt, Julia; Bauer, Johann W; Koller, Ulrich

    2016-01-01

    RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3' and 5' RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders. PMID:27669223

  17. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Ryohei; Kiuchi, Hiroki [Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ihara, Masaki [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mori, Toshihiro; Kawakami, Masayuki [Lifescience Lab. R and D, Fujifilm Co., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577 (Japan); Ueda, Hiroshi, E-mail: hueda@chembio.t.u-tokyo.ac.jp [Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-07-03

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of V{sub H}-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to S{mu} as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since S{mu} sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  18. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2

    Directory of Open Access Journals (Sweden)

    Ioannis Grammatikakis

    2016-05-01

    Full Text Available During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2 mRNA generates a short TRF2 protein isoform (TRF2-S capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH as RBPs specifically capable of interacting with the spliced RNA segment (exon 7 of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.

  19. Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair

    Science.gov (United States)

    Hüttner, Clemens; Murauer, Eva M.; Hainzl, Stefan; Kocher, Thomas; Neumayer, Anna; Reichelt, Julia; Bauer, Johann W.; Koller, Ulrich

    2016-01-01

    RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3′ and 5′ RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders. PMID:27669223

  20. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    Science.gov (United States)

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  1. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    International Nuclear Information System (INIS)

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  2. CYP17A1 intron mutation causing cryptic splicing in 17α-hydroxylase deficiency.

    Directory of Open Access Journals (Sweden)

    Daw-Yang Hwang

    Full Text Available 17α-Hydroxylase/17, 20-lyase deficiency (17OHD is an autosomal recessive disease causing congenital adrenal hyperplasia and a rare cause of hypertension with hypokalemia. The CYP17A1 gene mutation leads to 17OHD and its clinical features. We described an 18 y/o female with clinical features of 17α-hydroxylase/17, 20-lyase deficiency and characterized the functional consequences of an intronic CYP17A1 mutation. The coding regions and flanking intronic bases of the CYP17A1 gene were amplified by PCR and sequenced. The patient is a compound heterozygote for the previously described p.R358X and IVS1 +2T>C mutations. A first intron splice donor site mutation was re-created in minigene and full-length expression vectors. Pre-mRNA splicing of the variant CYP17A1 intron was studied in transfected cells and in a transformed lymphoblastoid cell line. When the full-length CYP17A1 gene and minigene containing the intronic mutation was expressed in transfected cells, the majority (>90% of mRNA transcripts were incorrectly spliced. Only the p.R358X transcript was detected in the EBV-transformed lymphoblastoid cell line. The IVS1 +2T>C mutation abolished most 17α-hydroxylase/17, 20-lyase enzyme activity by aberrant mRNA splicing to an intronic pseudo-exon, causing a frame shift and early termination.

  3. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    OpenAIRE

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2014-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codo...

  4. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    Science.gov (United States)

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.

  5. Splicing aberrations caused by constitutional RB1 gene mutations in retinoblastoma

    Indian Academy of Sciences (India)

    Vidya Latha Parsam; Mohammed Javed Ali; Santosh G Honavar; Geeta K Vemuganti; Chitra Kannabiran

    2011-06-01

    Analysis of RB1 mRNA from blood leukocytes of patients with retinoblastoma identified the effects of mutations involving consensus splice site, exonic substitution and whole-exon deletions identified in genomic DNA of these patients. In addition, this study identified mutations in cases in which no mutations were detectable in the genomic DNA. One proband had mutation at the canonical splice site at +5 position of IVS22, and analysis of the transcripts in this family revealed skipping of exon 22 in three members of this family. In one proband, a missense substitution of c.652T > G (g.56897T > G; Leu218Val) in exon 7 led to splicing aberrations involving deletions of exons 7 and 8, suggesting the formation of a cryptic splice site. In two probands with no detectable changes in the genomic DNA upon screening of RB1 exons and flanking intronic sequences, transcripts were found to have deletions of exon 6 in one, and exons 21 and 22 in another family. In two probands, RNA analysis confirmed genomic deletions involving one or more exons. This study reveals novel effects of RB1 mutations on splicing and suggests the utility of RNA analysis as an adjunct to mutational screening of genomic DNA in retinoblastoma.

  6. Selective Constraint on Human Pre-mRNA Splicing by Protein Structural Properties

    Science.gov (United States)

    de Brevern, Alexandre G.; Chuang, Trees-Juen; Chen, Feng-Chi

    2012-01-01

    Alternative splicing (AS) is a major mechanism of increasing proteome diversity in complex organisms. Different AS transcript isoforms may be translated into peptide sequences of significantly different lengths and amino acid compositions. One important question, then, is how AS is constrained by protein structural requirements while peptide sequences may be significantly changed in AS events. Here, we address this issue by examining whether the intactness of three-dimensional protein structural units (compact units in protein structures, namely protein units [PUs]) tends to be preserved in AS events in human. We show that PUs tend to occur in constitutively spliced exons and to overlap constitutive exon boundaries. Furthermore, when PUs are located at the boundaries between two alternatively spliced exons (ASEs), these neighboring ASEs tend to co-occur in different transcript isoforms. In addition, such PU-spanned ASE pairs tend to have a higher frequency of being included in transcript isoforms. ASE regions that overlap with PUs also have lower nonsynonymous-to-synonymous substitution rate ratios than those that do not overlap with PUs, indicating stronger negative selection pressure in PU-overlapped ASE regions. Of note, we show that PUs have protein domain- and structural orderness-independent effects on messenger RNA (mRNA) splicing. Overall, our results suggest that fine-scale protein structural requirements have significant influences on the splicing patterns of human mRNAs. PMID:22936073

  7. Global impact of RNA splicing on transcriptome remodeling in the heart.

    Science.gov (United States)

    Gao, Chen; Wang, Yibin

    2012-08-01

    In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  8. Global impact of RNA splicing on transcriptome remodeling in the heart

    Institute of Scientific and Technical Information of China (English)

    Chen GAO; Yibin WANG

    2012-01-01

    In the eukaryotic transcriptome,both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity.These RNA species are generated by the utilization of different transcriptional initiation or termination sites,or more commonly,from different messenger RNA (mRNA) splicing events.Among the 30 000+ genes in human genome,it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing.The protein products generated from different RNA splicing variants can have different intracellular localization,activity,or tissue-distribution.Therefore,alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types.In this review,we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach,and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  9. A View of Pre-mRNA Splicing from RNase R Resistant RNAs

    Directory of Open Access Journals (Sweden)

    Hitoshi Suzuki

    2014-05-01

    Full Text Available During pre-mRNA splicing, exons in the primary transcript are precisely connected to generate an mRNA. Intron lariat RNAs are formed as by-products of this process. In addition, some exonic circular RNAs (circRNAs may also result from exon skipping as by-products. Lariat RNAs and circRNAs are both RNase R resistant RNAs. RNase R is a strong 3' to 5' exoribonuclease, which efficiently degrades linear RNAs, such as mRNAs and rRNAs; therefore, the circular parts of lariat RNAs and the circRNAs can be segregated from eukaryotic total RNAs by their RNase R resistance. Thus, RNase R resistant RNAs could provide unexplored splicing information not available from mRNAs. Analyses of these RNAs identified repeating splicing phenomena, such as re-splicing of mature mRNAs and nested splicing. Moreover, circRNA might function as microRNA sponges. There is an enormous variety of endogenous circRNAs, which are generally synthesized in cells and tissues.

  10. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    OpenAIRE

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H.; Giordano., Magda; Rodríguez, Verónica M.

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced h...

  11. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y;

    2015-01-01

    needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...... by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c...... to have no or an uncertain effect on the protein level, whereas one variant (c.5072C>T/p.Thr1691Ile) were shown to have a strong effect on the protein level as well. In conclusion, our study emphasizes that in silico splicing prediction and mini-gene splicing analysis are important for the classification...

  12. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation.

    Science.gov (United States)

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-09-16

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.

  13. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.

    Directory of Open Access Journals (Sweden)

    Nathalie Schmieg

    Full Text Available Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.

  14. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    Science.gov (United States)

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  15. Hyperresponsive febrile reactions to interleukin (IL) 1alpha and IL-1beta, and altered brain cytokine mRNA and serum cytokine levels, in IL-1beta-deficient mice.

    Science.gov (United States)

    Alheim, K; Chai, Z; Fantuzzi, G; Hasanvan, H; Malinowsky, D; Di Santo, E; Ghezzi, P; Dinarello, C A; Bartfai, T

    1997-03-18

    IL-1beta is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1alpha and IL-1beta, and compared these with response to LPS (i.p.) in wild-type and IL-1beta-deficient mice. The IL-1beta deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1beta, IL-1alpha, or LPS induced hyperresponsive fevers in the IL-1beta-deficient mice. We also observed phenotypic differences between wild-type and IL-1beta-deficient mice in hypothalamic basal mRNA levels for IL-1alpha and IL-6, but not for IL-1beta-converting enzyme or IL-1 receptor type I or type II. The IL-1alpha mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1beta-deficient mice as compared with wild-type mice. The IL-1beta-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type alpha levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1beta plays an important but not obligatory role in fever induction by LPS or IL-1alpha, as well as in the induction of serum tumor necrosis factor type alpha and corticosterone responses either by LPS or by IL-1alpha or IL-1beta.

  16. Heat Stress Upregulates the Expression of TLR4 and Its Alternative Splicing Variant in Bama Miniature Pigs

    Institute of Scientific and Technical Information of China (English)

    JU Xiang-hong; XU Han-jin; YONG Yan-hong; AN Li-long; XU Ying-mei; JIAO Pei-rong; LIAO Ming

    2014-01-01

    Alternative splicing is a cellular mechanism in eukaryotes that results in considerable diversity of gene products. It plays an important role in several diseases and cellular signal regulation. Heat stress is a major factor that induces immunosuppression in pigs. Little is known about the correlation between alternative splicing and heat stress in pigs. Therefore, this study aimed to clone, sequence and quantify the alternative splicing variant of toll-like receptor 4 (TLR4) in Bama miniature pigs (Sus scrofa domestica) following exposure to heat stress. The results showed that the second exon of TLR4 was spliced and 167 bp shorter in the alternative splicing variant, and the protein was putatively identiifed as a type of truncated membrane protein consisting of extramembrane, transmembrane and intramembrane regions lacking a signal peptide. Further, it was not a non-classical secretory protein. Five potential reference genes were screened for their potential as reliable standards to quantify the expression of TLR4 alternative spliced variants by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). The stability of these reference genes was ranked using the geNorm and NormFinder programs, and ribosomal protein L4 (RPL4) and TATA box-binding protein (TBP) were found to be the two genes showing the most stable expression in the in vitro cultured peripheral blood mononuclear cells (PBMCs) during heat shock. The mRNA level of the TLR4 gene (both classical and spliced) in stressed pigs increased signiifcantly (P<0.05). Further, the expression levels of the alternative spliced variant of TLR4 (TLR4-ASV) showed a 2-3 folds increase in heat-stressed PBMCs as compared to control pigs. The results of the present study suggested that heat shock might modulate the host immune response by regulating the expressions of TLR4 and its alternative splicing variant.

  17. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes

    OpenAIRE

    Schwartz, Schraga; Silva, João(CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049, Lisboa, Portugal); Burstein, David; Pupko, Tal; Eyras, Eduardo; Ast, Gil

    2008-01-01

    Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5′ splice site (5′ss), the branch site (BS), and the polypyrimdine tract/3′splice site (PPT-3′ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, inter...

  18. Targeting mRNA for Alzheimer’s and Related Dementias

    Directory of Open Access Journals (Sweden)

    Michael S. Wolfe

    2014-01-01

    Full Text Available Brain deposition of the amyloid beta-protein (Aβ and tau are characteristic features in Alzheimer’s disease (AD. Mutations in the Aβ precursor protein (APP and a protease involved in Aβ production from APP strongly argue for a pathogenic role of Aβ in AD, while mutations in tau are associated with related disorders collectively called frontotemporal lobar degeneration (FTLD. Despite intense effort, therapeutic strategies that target Aβ or tau have not yet yielded medications, suggesting that alternative approaches should be pursued. In recent years, our laboratory has studied the role of mRNA in AD and FTLD, specifically those encoding tau and the Aβ-producing protease BACE1. As many FTLD-causing tau mutations destabilize a hairpin structure that regulates RNA splicing, we have targeted this structure with small molecules, antisense oligonucleotides, and small molecule-antisense conjugates. We have also discovered that microRNA interaction with the 3′-untranslated region of tau regulates tau expression. Regarding BACE1, we found that alternative splicing leads to inactive splice isoforms and antisense oligonucleotides shift splicing toward these inactive isoforms to decrease Aβ production. In addition, a G-quadruplex structure in the BACE1 mRNA plays a role in splice regulation. The prospects for targeting tau and BACE1 mRNAs as therapeutic strategies will be discussed.

  19. Mutation of genes controlling mRNA metabolism and protein synthesis predisposes to neurodevelopmental disorders.

    Science.gov (United States)

    Sartor, Francesca; Anderson, Jihan; McCaig, Colin; Miedzybrodzka, Zosia; Müller, Berndt

    2015-12-01

    Brain development is a tightly controlled process that depends upon differentiation and function of neurons to allow for the formation of functional neural networks. Mutation of genes encoding structural proteins is well recognized as causal for neurodevelopmental disorders (NDDs). Recent studies have shown that aberrant gene expression can also lead to disorders of neural development. Here we summarize recent evidence implicating in the aetiology of NDDs mutation of factors acting at the level of mRNA splicing, mRNA nuclear export, translation and mRNA degradation. This highlights the importance of these fundamental processes for human health and affords new strategies and targets for therapeutic intervention.

  20. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  1. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    Science.gov (United States)

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  2. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    Science.gov (United States)

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  3. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    NARCIS (Netherlands)

    Maatz, H.; Jens, M.; Liss, M.; Schafer, S.; Heinig, M.; Kirchner, M.; Adami, E.; Rintisch, C.; Dauksaite, V.; Radke, M.H.; Selbach, M.; Barton, P.J.; Cook, S.A.; Rajewsky, N.; Gotthardt, M.; Landthaler, M.; Hubner, N.

    2014-01-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and

  4. Age-related nuclear translocation of P2X6 subunit modifies splicing activity interacting with splicing factor 3A1.

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Díaz-Hernández

    Full Text Available P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age.

  5. Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1

    Directory of Open Access Journals (Sweden)

    Zaphiropoulos Peter G

    2010-04-01

    Full Text Available Abstract Background Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs of mRNAs, the understanding of the significance and the regulation of these variations is rather limited. Results We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional effector of the Hedgehog (HH signaling pathway. In addition to identifying novel transcription start sites, we demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-skipped mRNA variants being most effective. Conclusions Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the mouse HH signaling cascade.

  6. The Characterizations of Different Splicing Systems

    Science.gov (United States)

    Karimi, Fariba; Sarmin, Nor Haniza; Heng, Fong Wan

    The concept of splicing system was first introduced by Head in 1987 to model the biological process of DNA recombination mathematically. This model was made on the basis of formal language theory which is a branch of applied discrete mathematics and theoretical computer science. In fact, splicing system treats DNA molecule and the recombinant behavior by restriction enzymes and ligases in the form of words and splicing rules respectively. The notion of splicing systems was taken into account from different points of view by many mathematicians. Several modified definitions have been introduced by many researchers. In this paper, some properties of different kinds of splicing systems are presented and their relationships are investigated. Furthermore, these results are illustrated by some examples.

  7. Spliced

    DEFF Research Database (Denmark)

    Addison, Courtney Page

    2016-01-01

    Human gene therapy (HGT) aims to cure disease by inserting or editing the DNA of patients with genetic conditions. Since foundational genetic techniques came into use in the 1970s, the field has developed to the point that now three therapies have market approval, and over 1800 clinical trials have...... been initiated. In this article I present a brief history of HGT, showing how the ethical and practical viability of the field was achieved by key scientific and regulatory actors. These parties carefully articulated gene therapy’s scope, limiting it to therapeutic interventions on somatic cells......, and cultivated alliances and divisions that bolstered the field’s legitimacy. At times these measures faltered, and then practitioners and sometimes patients would invoke an ethical imperative, posing gene therapy as the best solution to life and death problems. I suggest that we consider how boundary...

  8. Perturbation of myelin basic protein (Mbp) splice variant expression in developing rat cerebellum following perinatal exposure to methylmercury.

    Science.gov (United States)

    Padhi, Bhaja K; Pelletier, Guillaume

    2012-09-18

    Myelin sheaths surrounding axons are essential for saltatory conduction of nerve impulse in the central nervous system. A major protein constituent of myelin sheaths is produced by the myelin basic protein (Mbp) gene, whose expression in oligodendrocytes is conserved across vertebrates. In rat, five Mbp splice variants resulting from alternative splicing of exons 2, 5 and/or 6 are characterized. We developed a PCR-based strategy to quantify individual Mbp splice variants and characterized a sixth Mbp splice variant lacking only exon 5. This newly identified splice variant is predominantly expressed in developing rat brain and has orthologs in mouse and human. Many neurotoxic chemicals can perturb myelination and Mbp gene expression. Regulation of Mbp gene expression at the post-transcriptional level was assessed following perinatal exposure to neurotoxic methylmercury (2 mg/kg b.w./day). Similar reductions in total and individual Mbp splice variant mRNA levels suggest that methylmercury-induced perturbation in Mbp gene expression occurred as a consequence of decreased oligodendrocyte cell population in absence of a significant impact on its post-transcriptional regulation.

  9. Conservation and sex-specific splicing of the doublesex gene in the economically important pest species Lucilia cuprina

    Indian Academy of Sciences (India)

    Carolina Concha; Fang Li; Maxwell J. Scott

    2010-09-01

    Genetic control of sex determination in insects has been best characterized in Drosophila melanogaster, where the master gene Sxl codes for RNA that is sex specifically spliced to produce a functional protein only in females. SXL regulates the sex-specific splicing of transformer (tra) RNA which, in turn, regulates the splicing of dsx RNA to produce functional male and female proteins. In the Australian sheep blowfly (Lucilia cuprina), the tra gene (Lctra) is required for female development and Lctra transcripts are sex-specifically spliced such that only female Lctra mRNA codes for functional protein. In males, a factor encoded by the Y-linked male determining gene is thought to prevent the female-mode of splicing of Lctra RNA. To further our understanding of the sex determination regulatory hierarchy in L. cuprina, we have isolated the dsx gene (Lcdsx) from this species. We found that the Lcdsx transcripts are sex-specifically spliced in a similar manner as their counterparts in D. melanogaster, housefly and tephritids. The LcDSX proteins are well conserved and the male form of DSX contains a motif encoded by a male-specific exon that is within the female-specific intron. This intron/exon arrangement had previously been found only in the housefly dsx gene, suggesting this may be a unique feature of dsx genes of Calyptratae species.

  10. Functional repair of p53 mutation in colorectal cancer cells using trans-splicing

    OpenAIRE

    He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; CHANG Ying; Lin, Jusheng; Song, Yuhu

    2014-01-01

    Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were tra...

  11. SAW: a method to identify splicing events from RNA-Seq data based on splicing fingerprints.

    Directory of Open Access Journals (Sweden)

    Kang Ning

    Full Text Available Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, a novel method, SAW, was proposed for the identification of all splicing events based on short reads from RNA-Seq. It was observed that short reads not in known gene models are actually absent words from known gene sequences. An efficient method to filter and cluster these short reads by fingerprint fragments of splicing events without aligning short reads to genome sequences was developed. Additionally, the possible splicing sites were also determined without alignment against genome sequences. A consensus sequence was then generated for each short read cluster, which was then aligned to the genome sequences. Results demonstrated that this method could identify more than 90% of the known splicing events with a very low false discovery rate, as well as accurately identify, a number of novel splicing events between distant exons.

  12. Tissue-specific splicing mutation in acute intermittent porphyria

    International Nuclear Information System (INIS)

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G → A) in the canonical 5' splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families

  13. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions

    International Nuclear Information System (INIS)

    Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells. We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512) targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT). We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406) targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512) targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping) and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone. We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs

  14. A biophysical model for identifying splicing regulatory elements and their interactions.

    Directory of Open Access Journals (Sweden)

    Ji Wen

    Full Text Available Alternative splicing (AS of precursor mRNA (pre-mRNA is a crucial step in the expression of most eukaryotic genes. Splicing factors (SFs play an important role in AS regulation by binding to the cis-regulatory elements on the pre-mRNA. Although many splicing factors (SFs and their binding sites have been identified, their combinatorial regulatory effects remain to be elucidated. In this paper, we derive a biophysical model for AS regulation that integrates combinatorial signals of cis-acting splicing regulatory elements (SREs and their interactions. We also develop a systematic framework for model inference. Applying the biophysical model to a human RNA-Seq data set, we demonstrate that our model can explain 49.1%-66.5% variance of the data, which is comparable to the best result achieved by biophysical models for transcription. In total, we identified 119 SRE pairs between different regions of cassette exons that may regulate exon or intron definition in splicing, and 77 SRE pairs from the same region that may arise from a long motif or two different SREs bound by different SFs. Particularly, putative binding sites of polypyrimidine tract-binding protein (PTB, heterogeneous nuclear ribonucleoprotein (hnRNP F/H and E/K are identified as interacting SRE pairs, and have been shown to be consistent with the interaction models proposed in previous experimental results. These results show that our biophysical model and inference method provide a means of quantitative modeling of splicing regulation and is a useful tool for identifying SREs and their interactions. The software package for model inference is available under an open source license.

  15. Maternal dietary vitamin D carry-over alters offspring growth, skeletal mineralisation and tissue mRNA expressions of genes related to vitamin D, calcium and phosphorus homoeostasis in swine.

    Science.gov (United States)

    Amundson, Laura A; Hernandez, Laura L; Laporta, Jimena; Crenshaw, Thomas D

    2016-09-01

    Maternal dietary vitamin D carry-over effects were assessed in young pigs to characterise skeletal abnormalities in a diet-induced model of kyphosis. Bone abnormalities were previously induced and bone mineral density (BMD) reduced in offspring from sows fed diets with inadequate vitamin D3. In a nested design, pigs from sows (n 23) fed diets with 0 (-D), 8·125 (+D) or 43·750 (++D) µg D3/kg from breeding through lactation were weaned and, within litter, fed nursery diets arranged as a 2×2 factorial design with 0 (-D) or 7·0 (+D) µg D3/kg, each with 95 % (95P) or 120 % (120P) of P requirements. Selected pigs were euthanised before colostrum consumption at birth (0 weeks, n 23), weaning (3 weeks, n 22) and after a growth period (8 weeks, n 185) for BMD, bone mechanical tests and tissue mRNA analysis. Pigs produced by +D or ++D sows had increased gain at 3 weeks (Pdiets depended on maternal diets (Pdiet interaction (Phumans and animals about maternal dietary influence on offspring skeletal health. PMID:27480125

  16. ASDB: database of alternatively spliced genes

    OpenAIRE

    Dralyuk, I; Brudno, M.; Gelfand, M S; Zorn, M.; Dubchak, I.

    2000-01-01

    Version 2.1 of ASDB (Alternative Splicing Data Base) contains 1922 protein and 2486 DNA sequences. The protein entries from SWISS-PROT are joined into clusters corresponding to alternatively spliced variants of one gene. The DNA division consists of complete genes with alternative splicing mentioned or annotated in GenBank. The search engine allows one to search over SWISS-PROT and GenBank fields and then follow the links to all variants. The database can be assessed at the URL http://cbcg.ne...

  17. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    International Nuclear Information System (INIS)

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function

  18. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    Science.gov (United States)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  19. Analysis of differential splicing suggests different modes of short-term splicing regulation

    OpenAIRE

    Topa, Hande; Honkela, Antti

    2016-01-01

    Motivation: Alternative splicing is an important mechanism in which the regions of pre-mRNAs are differentially joined in order to form different transcript isoforms. Alternative splicing is involved in the regulation of normal physiological functions but also linked to the development of diseases such as cancer. We analyse differential expression and splicing using RNA-sequencing time series in three different settings: overall gene expression levels, absolute transcript expression levels an...

  20. HuR and TIA1/TIAL1 Are Involved in Regulation of Alternative Splicing of SIRT1 Pre-mRNA

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao

    2014-02-01

    Full Text Available SIRT1 is a pleiotropic protein that plays critical and multifunctional roles in metabolism, senescence, longevity, stress-responses, and cancer, and has become an important therapeutic target across a range of diseases. Recent research demonstrated that SIRT1 pre-mRNA undergoes alternative splicing to produce different isoforms, such as SIRT1 full-length and SIRT1-∆Exon8 variants. Previous studies revealed these SIRT1 mRNA splice variants convey different characteristics and functions to the protein, which may in turn explain the multifunctional roles of SIRT1. However, the mechanisms underlying the regulation of SIRT1 alternative splicing remain to be elucidated. Our objective is to search for new pathways that regulate of SIRT1 alternative splicing. Here we describe experiments showing that HuR and TIA1/TIAL1, two kinds of RNA-binding proteins, were involved in the regulation of alternative splicing of SIRT1 pre-mRNA under normal and stress circumstances: HuR increased SIRT1-∆Exon8 by promoting SIRT1 exon 8 exclusion, whereas TIA1/TIAL1 inhibition of the exon 8 exclusion led to a decrease in SIRT1-∆Exon8 mRNA levels. This study provides novel insight into how the alternative splicing of SIRT1 pre-mRNA is regulated, which has fundamental implications for understanding the critical and multifunctional roles of SIRT1.

  1. HIV-1 Vpr: A Novel Role in Regulating RNA Splicing

    OpenAIRE

    Zhang, Xianfeng; Aida, Yoko

    2009-01-01

    Pre-mRNA splicing is a critical step in gene expression for metazoans. Several viral proteins regulate the splicing of pre-mRNAs through complex interactions between the virus and the host cell RNA splicing machinery. Here, we focus on a novel function of HIV-1 Vpr, that selectively inhibit cellular and viral pre-mRNA splicing, via interactions with components of functional spliceosomal complexes. This review discusses our current knowledge of how RNA splicing regulation is accomplished by Vp...

  2. Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF65

    OpenAIRE

    Hastings, Michelle L.; Eric Allemand; Duelli, Dominik M.; Michael P Myers; Krainer, Adrian R.

    2007-01-01

    Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3' splice-site. PUF60 has homology to U2AF(65), a general splicing factor that facilitates 3' s...

  3. Different alternative splicing patterns are subject to opposite selection pressure for protein reading frame preservation

    Directory of Open Access Journals (Sweden)

    Chuang Trees-Juen

    2007-09-01

    Full Text Available Abstract Background Alternative splicing (AS has been regarded capable of altering selection pressure on protein subsequences. Particularly, the frequency of reading frame preservation (FRFP, as a measure of selection pressure, has been reported to be higher in alternatively spliced exons (ASEs than in constitutively spliced exons (CSEs. However, recently it has been reported that different ASE types – simple and complex ASEs – may be subject to opposite selection forces. Therefore, it is necessary to re-evaluate the evolutionary effects of such splicing patterns on frame preservation. Results Here we show that simple and complex ASEs, respectively, have higher and lower FRFPs than CSEs. Since complex ASEs may alter the ends of their flanking exons, the selection pressure on frame preservation is likely relaxed in this ASE type. Furthermore, conservation of the ASE/CSE splicing pattern increases the FRFPs of simple ASEs but decreases those of complex ASEs. Contrary to the well-recognized concept of strong selection pressure on conserved ASEs for protein reading frame preservation, our results show that conserved complex ASEs are relaxed from such pressure and the frame-disrupting effect caused by the insertion of complex ASEs can be offset by compensatory changes in their flanking exons. Conclusion In this study, we find that simple and complex ASEs undergo opposite selection pressure for protein reading frame preservation, with CSEs in-between. Simple ASEs have much higher FRFPs than complex ones. We further find that the FRFPs of complex ASEs coupled with flanking exons are close to those of simple ASEs, indicating that neighboring exons of an ASE may evolve in a coordinated way to avoid protein dysfunction. Therefore, we suggest that evolutionary analyses of AS should take into consideration the effects of different splicing patterns and the joint effects of multiple AS events.

  4. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing.

    Science.gov (United States)

    Munding, Elizabeth M; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-08-01

    During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing. PMID:23891561

  5. Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit similar enzymatic yet different aggregation properties.

    Directory of Open Access Journals (Sweden)

    Ginny Marie Harris

    Full Text Available Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and 3UIM isoforms, respectively. In light of emerging insights into ataxin-3 function, we examined the significance of this splice variation. We confirmed neural expression of several minor 5' variants and both of the known 3' ataxin-3 splice variants. Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3 display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity.

  6. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.

    Science.gov (United States)

    Reddy, Anireddy S N; Shad Ali, Gul

    2011-01-01

    Global analyses of splicing of precursor messenger RNAs (pre-mRNAs) have revealed that alternative splicing (AS) is highly pervasive in plants. Despite the widespread occurrence of AS in plants, the mechanisms that control splicing and the roles of splice variants generated from a gene are poorly understood. Studies on plant serine/arginine-rich (SR) proteins, a family of highly conserved proteins, suggest their role in both constitutive splicing and AS of pre-mRNAs. SR proteins have a characteristic domain structure consisting of one or two RNA recognition motifs at the N-terminus and a C-terminal RS domain rich in arginine/serine dipeptides. Plants have many more SR proteins compared to animals including several plant-specific subfamilies. Pre-mRNAs of plant SR proteins are extensively alternatively spliced to increase the transcript complexity by about six-fold. Some of this AS is controlled in a tissue- and development-specific manner. Furthermore, AS of SR pre-mRNAs is altered by various stresses, raising the possibility of rapid reprogramming of the whole transcriptome by external signals through regulation of the splicing of these master regulators of splicing. Most SR splice variants contain a premature termination codon and are degraded by up-frameshift 3 (UPF3)-mediated nonsense-mediated decay (NMD), suggesting a link between NMD and regulation of expression of the functional transcripts of SR proteins. Limited functional studies with plant SRs suggest key roles in growth and development and plant responses to the environment. Here, we discuss the current status of research on plant SRs and some promising approaches to address many unanswered questions about plant SRs.

  7. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA

    Institute of Scientific and Technical Information of China (English)

    Chang You LI; Jia You CHU; Jian Kun YU; Xiao Qin HUANG; Xiao Juan LIU; Li SHI; Yan Chun CHE; Jiu Yong XIE

    2004-01-01

    The splicing of many alternative exons in the precursor messenger RNA (pre-mRNA) is regulated by extracellular factors but the underlying molecular bases remain unclear. Here we report the differential regulation of Bcl-x pre-mRNA splicing by extracellular factors and their distinctrequirements for pre-mRNA elements. In K562 leukemia cells, treatment with interleukin-6 (IL-6) or granulocyte-macrophage colony stimulating factor (GM-CSF) reduced the proportion of the Bcl-xL variant mRNA while treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) had no effect. In U251 glioma cells, however, TPA efficientlyincreased the Bcl-xL level. These regulations were also seen for a transfected splicing reporter mini-gene. Further analyses of deletion mutants indicate that nucleotides 1-176 of the downstream intron are required for the IL-6 effect, whereas additional nucleotides 177-284 are essential for the GM-CSF effect. As for the TPA effect, only nucleotides 1-76 are required in the downstream intron. Thus, IL-6, GM-CSF and TPA differentially regulate Bcl-x splicing and require specific intronic pre-mRNA sequences for their respective effects.

  8. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  9. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    Directory of Open Access Journals (Sweden)

    Jill A. Dembowski

    2012-01-01

    Full Text Available Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5 splice site and negative regulation by several splicing factors, including SC35 (SRSF2 and ASF/SF2 (SRSF1, drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.

  10. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    SUDHANSHU YADAV; AMIT SONKAR; NAFEES AHAMAD; SHAKIL AHMED

    2016-06-01

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report the isolation of a mutant allele of rna14 in fission yeast,Schizosaccharomyces pombe that exhibits reduction in protein level of Chk1 at the nonpermissive temperature, primarily due to the defects in posttranscriptional processing. Reverse transcriptase-polymerase chain reaction analysis reveals defective splicing of the chk1¹+transcript at the nonpermissive temperature. Apart from chk1¹+, the splicing of some other genes were also found to be defective at the nonpermissive temperature suggesting that Rna14 might be involved in pre-mRNA splicing. Subsequently, genetic interaction of Rna14 with prp1 and physical interactions with Prp28 suggest that the Rna14 might be part of a larger protein complex responsible for the pre-mRNA maturation.

  11. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

    Directory of Open Access Journals (Sweden)

    Sophie A O Armitage

    Full Text Available The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1 gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.

  12. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  13. Group II Intron Self-Splicing.

    Science.gov (United States)

    Pyle, Anna Marie

    2016-07-01

    Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines. PMID:27391926

  14. Faster exon assembly by sparse spliced alignment

    CERN Document Server

    Tiskin, Alexander

    2007-01-01

    Assembling a gene from candidate exons is an important problem in computational biology. Among the most successful approaches to this problem is \\emph{spliced alignment}, proposed by Gelfand et al., which scores different candidate exon chains within a DNA sequence of length $m$ by comparing them to a known related gene sequence of length n, $m = \\Theta(n)$. Gelfand et al.\\ gave an algorithm for spliced alignment running in time O(n^3). Kent et al.\\ considered sparse spliced alignment, where the number of candidate exons is O(n), and proposed an algorithm for this problem running in time O(n^{2.5}). We improve on this result, by proposing an algorithm for sparse spliced alignment running in time O(n^{2.25}). Our approach is based on a new framework of \\emph{quasi-local string comparison}.

  15. [Point mutations of genes encoding proteins involvedin RNA splicing in patients with myelodysplastic syndromes].

    Science.gov (United States)

    Barańska, Marta; Czerwińska-Rybak, Joanna; Gil, Lidia; Komarnicki, Mieczysław

    2015-01-01

    The myelodysplastic syndromes (MDS) constitute heterogeneous group of clonal disorders, characterized by ineffective hematopoiesis, peripheral cytopenia and increased risk of acute myeloid leukemia development. Molecular mechanisms behind MDS have not been fully explained, however recent studies based on new technologies confirmed that epigenetic abnormalities and somatic mutation in the spliceasome machinery are crucial in pathogenesis of these diseases. Abnormal mRNA splicing (excision of intronic sequences from mRNA) has been found in over half of all MDS patients and resulted in accumulation of cytogenetical and molecular changes. The biological impact of splicing factor genes mutations has been evaluated only in a limited extend and current studies concentrate on analysis of MDS transcriptome. Molecular characteristic of classical and alternative splicing is presented in the paper, according to current knowledge. We review the most prominent findings from recent years concerning mutation in the spliceasome machinery with respect to MDS phenotype and disease prognosis. Perspectives in applying of novel diagnostic and therapeutic possibilities for myelodysplasia, based on spliceosome mutations identification are also presented.

  16. Tau exon 10 alternative splicing and tauopathies

    OpenAIRE

    Liu Fei; Gong Cheng-Xin

    2008-01-01

    Abstract Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximate...

  17. Alcoholism and Alternative Splicing of Candidate Genes

    OpenAIRE

    Toshikazu Sasabe; Shoichi Ishiura

    2010-01-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  18. Splice-mediated insertion of an Alu sequence inactivates ornithine δ-aminotransferase: A role for Alu elements in human mutation

    International Nuclear Information System (INIS)

    In studies of mutations causing deficiency of ornithine δ-aminotransferase the authors found an allele whose mature mRNA has a 142-nucleotide insertion at the junction of sequences from exons 3 and 4. The insert derives from an Alu element in ornithine δ-aminotransferase intron 3 oriented in the direction opposite to transcription (an antisense Alu). A guanine → cytosine transversion creates a donor splice site in this Alu, activating a cryptic acceptor splice site at its 5' end and causing splice-mediated insertion of an Alu fragment into the mature ornithine-δ-aminotransferase mRNA. The authors note that the complement of the Alu consensus sequence has at least two cryptic acceptor sites and several potential donor sequences and predict that similar mutations will be found in other genes

  19. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    OpenAIRE

    Manuel Irimia; Jakob Lewin Rukov; Scott William Roy

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identifie...

  20. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia.

    Directory of Open Access Journals (Sweden)

    Ferdos Alaa El Din

    Full Text Available Hereditary Hemorrhagic Telangiectasia syndrome (HHT or Rendu-Osler-Weber (ROW syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG and activin receptor-like kinase 1 (ACVRL1or ALK1 genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1, the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7 was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations.

  1. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    Science.gov (United States)

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation. PMID:26407519

  2. Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity.

    Science.gov (United States)

    Zhang, Zhibin; Liu, Yanan; Ding, Pingtao; Li, Yan; Kong, Qing; Zhang, Yuelin

    2014-12-01

    Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recognition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D contains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of SNC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3000hrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1. PMID:25267732

  3. A retroelement modifies pre-mRNA splicing: the murine Glrb(spa) allele is a splicing signal polymorphism amplified by long interspersed nuclear element insertion.

    Science.gov (United States)

    Becker, Kristina; Braune, Marlen; Benderska, Natalya; Buratti, Emanuele; Baralle, Francisco; Villmann, Carmen; Stamm, Stefan; Eulenburg, Volker; Becker, Cord-Michael

    2012-09-01

    The glycine receptor-deficient mutant mouse spastic carries a full-length long interspersed nuclear element (LINE1) retrotransposon in intron 6 of the glycine receptor β subunit gene, Glrb(spa). The mutation arose in the C57BL/6J strain and is associated with skipping of exon 6 or a combination of the exons 5 and 6, thus resulting in a translational frameshift within the coding regions of the GlyR β subunit. The effect of the Glrb(spa) LINE1 insertion on pre-mRNA splicing was studied using a minigene approach. Sequence comparison as well as motif prediction and mutational analysis revealed that in addition to the LINE1 insertion the inactivation of an exonic splicing enhancer (ESE) within exon 6 is required for skipping of exon 6. Reconstitution of the ESE by substitution of a single residue was sufficient to prevent exon skipping. In addition to the ESE, two regions within the 5' and 3' UTR of the LINE1 were shown to be critical determinants for exon skipping, indicating that LINE1 acts as efficient modifier of subtle endogenous splicing phenotypes. Thus, the spastic allele of the murine glycine receptor β subunit gene is a two-hit mutation, where the hypomorphic alteration in an ESE is amplified by the insertion of a LINE1 element in the adjacent intron. Conversely, the LINE1 effect on splicing may be modulated by individual polymorphisms, depending on the insertional environment within the host genome.

  4. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes.

    Science.gov (United States)

    Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2015-09-30

    Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  5. Alternative Splice in Alternative Lice.

    Science.gov (United States)

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  6. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Daniel Nilsson

    Full Text Available Trans-splicing of leader sequences onto the 5'ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5'splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT. The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5' splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.

  7. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis.

    Science.gov (United States)

    Cheng, Albert W; Shi, Jiahai; Wong, Piu; Luo, Katherine L; Trepman, Paula; Wang, Eric T; Choi, Heejo; Burge, Christopher B; Lodish, Harvey F

    2014-07-24

    The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.

  8. PGC1α -1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals.

    Science.gov (United States)

    Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S

    2014-01-01

    PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133. PMID:25614734

  9. PGC1α −1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals

    Directory of Open Access Journals (Sweden)

    Tara M. Henagan

    2014-01-01

    Full Text Available PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α. CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  −1 nucleosome (−1N position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the −1N position revealed that those individuals with a −1N phased further upstream from the transcriptional start site (UP expressed lower levels of NTPGC1α than those with the −1N more proximal to TSS (DN. UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the −1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and −1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.

  10. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection.

    Science.gov (United States)

    Hoffmann, Steve; Otto, Christian; Doose, Gero; Tanzer, Andrea; Langenberger, David; Christ, Sabina; Kunz, Manfred; Holdt, Lesca M; Teupser, Daniel; Hackermüller, Jörg; Stadler, Peter F

    2014-02-10

    Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).

  11. Differential splicing using whole-transcript microarrays

    Directory of Open Access Journals (Sweden)

    Robinson Mark D

    2009-05-01

    Full Text Available Abstract Background The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events. Results We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis. RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of differential splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms. Conclusion We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data. Software implementing our methods is freely available as an R package.

  12. Vitamin D and alternative splicing of RNA.

    Science.gov (United States)

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  13. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  14. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse.

    Directory of Open Access Journals (Sweden)

    Yoko Nakano

    Full Text Available Sensory hair cells are essential for hearing and balance. Their development from epithelial precursors has been extensively characterized with respect to transcriptional regulation, but not in terms of posttranscriptional influences. Here we report on the identification and functional characterization of an alternative-splicing regulator whose inactivation is responsible for defective hair-cell development, deafness, and impaired balance in the spontaneous mutant Bronx waltzer (bv mouse. We used positional cloning and transgenic rescue to locate the bv mutation to the splicing factor-encoding gene Ser/Arg repetitive matrix 4 (Srrm4. Transcriptome-wide analysis of pre-mRNA splicing in the sensory patches of embryonic inner ears revealed that specific alternative exons were skipped at abnormally high rates in the bv mice. Minigene experiments in a heterologous expression system confirmed that these skipped exons require Srrm4 for inclusion into the mature mRNA. Sequence analysis and mutagenesis experiments showed that the affected transcripts share a novel motif that is necessary for the Srrm4-dependent alternative splicing. Functional annotations and protein-protein interaction data indicated that the encoded proteins cluster in the secretion and neurotransmission pathways. In addition, the splicing of a few transcriptional regulators was found to be Srrm4 dependent, and several of the genes known to be targeted by these regulators were expressed at reduced levels in the bv mice. Although Srrm4 expression was detected in neural tissues as well as hair cells, analyses of the bv mouse cerebellum and neocortex failed to detect splicing defects. Our data suggest that Srrm4 function is critical in the hearing and balance organs, but not in all neural tissues. Srrm4 is the first alternative-splicing regulator to be associated with hearing, and the analysis of bv mice provides exon-level insights into hair-cell development.

  15. LEMONS – A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes

    Science.gov (United States)

    Bouskila, Amos; Chorev, Michal; Carmel, Liran; Mishmar, Dan

    2015-01-01

    RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average) of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome. PMID:26606265

  16. Alternative messenger RNA splicing of autophagic gene Beclin 1 in human B-cell acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Niu, Yu-Na; Liu, Qing-Qing; Zhang, Su-Ping; Yuan, Na; Cao, Yan; Cai, Jin-Yang; Lin, Wei-Wei; Xu, Fei; Wang, Zhi-Jian; Chen, Bo; Wang, Jian-Rong

    2014-01-01

    Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.

  17. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima;

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  18. [The role of RNA splicing in the pathogenesis of spinal muscular atrophy and development of its therapeutics].

    Science.gov (United States)

    Sahashi, Kentaro; Sobue, Gen

    2014-12-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Degeneration of alpha-motor neurons that results in progressive paralysis is a pathological hallmark of SMA. Recently, peripheral-tissue involvement has also been reported in SMA. Patients have low levels of functional SMN which is attributed to alternative splicing in SMN2, a gene closely-related to SMN1. This decrease in the expression of SMN, a ubiquitously expressed protein involved in promoting snRNP assembly required for splicing, is responsible for SMA. However, the mechanism through which decrease in SMN levels causes SMA remains unclear. Currently, no curative treatment is available for SMA, but SMN restoration is thought to be necessary and sufficient for cure. Antisense oligonucleotides (ASOs) can be designed to specifically alter splicing patterns of target pre-mRNAs. We identified an ASO that redirects SMN2 splicing and is currently in clinical trials for use as RNA-targeting therapeutics. Further, we have also reported a novel application of splicing-modulating ASOs--creation of animal phenocopy models of diseases by inducing mis-splicing. Exploring the relationship between the spatial and temporal effects of therapeutic and pathogenic ASOs yields relevant insights into the roles of SMN in SMA pathogenesis and into its normal physiological functions. This knowledge, in turn, contributes to the ongoing development of targeted therapeutics.

  19. Exon organization and novel alternative splicing of Ank3 in mouse heart.

    Directory of Open Access Journals (Sweden)

    Gokay Yamankurt

    Full Text Available Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%, while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.

  20. Dynein regulates epithelial polarity and the apical localization of stardust A mRNA.

    Science.gov (United States)

    Horne-Badovinac, Sally; Bilder, David

    2008-01-01

    Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized within the cell. Through a genetic screen for epithelial defects in the Drosophila follicle cells, we have found that the cytoplasmic Dynein motor is an essential regulator of apico-basal polarity. Our data suggest that Dynein acts through the cytoplasmic scaffolding protein Stardust (Sdt) to localize the transmembrane protein Crumbs, in part through the apical targeting of specific sdt mRNA isoforms. We have mapped the sdt mRNA localization signal to an alternatively spliced coding exon. Intriguingly, the presence or absence of this exon corresponds to a developmental switch in sdt mRNA localization in which apical transcripts are only found during early stages of epithelial development, while unlocalized transcripts predominate in mature epithelia. This work represents the first demonstration that Dynein is required for epithelial polarity and suggests that mRNA localization may have a functional role in the regulation of apico-basal organization. Moreover, we introduce a unique mechanism in which alternative splicing of a coding exon is used to control mRNA localization during development.

  1. Dynein regulates epithelial polarity and the apical localization of stardust A mRNA.

    Directory of Open Access Journals (Sweden)

    Sally Horne-Badovinac

    2008-01-01

    Full Text Available Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized within the cell. Through a genetic screen for epithelial defects in the Drosophila follicle cells, we have found that the cytoplasmic Dynein motor is an essential regulator of apico-basal polarity. Our data suggest that Dynein acts through the cytoplasmic scaffolding protein Stardust (Sdt to localize the transmembrane protein Crumbs, in part through the apical targeting of specific sdt mRNA isoforms. We have mapped the sdt mRNA localization signal to an alternatively spliced coding exon. Intriguingly, the presence or absence of this exon corresponds to a developmental switch in sdt mRNA localization in which apical transcripts are only found during early stages of epithelial development, while unlocalized transcripts predominate in mature epithelia. This work represents the first demonstration that Dynein is required for epithelial polarity and suggests that mRNA localization may have a functional role in the regulation of apico-basal organization. Moreover, we introduce a unique mechanism in which alternative splicing of a coding exon is used to control mRNA localization during development.

  2. Mapping interactions between mRNA export factors in living cells.

    Directory of Open Access Journals (Sweden)

    I-Fang Teng

    Full Text Available The TREX complex couples nuclear mRNA processing events with subsequent export to the cytoplasm. TREX also acts as a binding platform for the mRNA export receptor Nxf1. The sites of mRNA transcription and processing within the nucleus have been studied extensively. However, little is known about where TREX assembly takes place and where Nxf1 is recruited to TREX to form the export competent mRNP. Here we have used sensitized emission Förster resonance energy transfer (FRET and fluorescence lifetime imaging (FLIM-FRET, to produce a spatial map in living cells of the sites for the interaction of two TREX subunits, Alyref and Chtop, with Nxf1. Prominent assembly sites for export factors are found in the vicinity of nuclear speckles in regions known to be involved in transcription, splicing and exon junction complex formation highlighting the close coupling of mRNA export with mRNP biogenesis.

  3. Novel mutations in EVC cause aberrant splicing in Ellis-van Creveld syndrome.

    Science.gov (United States)

    Shi, Lisong; Luo, Chunyan; Ahmed, Mairaj K; Attaie, Ali B; Ye, Xiaoqian

    2016-04-01

    Ellis-van Creveld syndrome (EvC) is a rare autosomal recessive disorder characterized by disproportionate chondrodysplasia, postaxial polydactyly, nail dystrophy, dental abnormalities and in a proportion of patients, congenital cardiac malformations. Weyers acrofacial dysostosis (Weyers) is another dominantly inherited disorder allelic to EvC syndrome but with milder phenotypes. Both disorders can result from loss-of-function mutations in either EVC or EVC2 gene, and phenotypes associated with the two gene mutations are clinically indistinguishable. We present here a clinical and molecular analysis of a Chinese family manifested specific features of EvC syndrome. Sequencing of both EVC and EVC2 identified two novel heterozygous splice site mutations c.384+5G>C in intron 3 and c.1465-1G>A in intron 10 in EVC, which were inherited from mother and father, respectively. In vitro minigene expression assay, RT-PCR and sequencing analysis demonstrated that c.384+5G>C mutation abolished normal splice site and created a new cryptic acceptor site within exon 4, whereas c.1465-1G>A mutation affected consensus splice junction site and resulted in full exon 11 skipping. These two aberrant pre-mRNA splicing processes both produced in-frame abnormal transcripts that possibly led to abolishment of important functional domains. To our knowledge, this is the first report of EVC mutations that cause EvC syndrome in Chinese population. Our data revealed that EVC splice site mutations altered splicing pattern and helped elucidate the pathogenesis of EvC syndrome.

  4. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.

    Science.gov (United States)

    Wilton, Steve D; Fletcher, Susan

    2011-08-01

    Antisense oligomers initially showed promise as compounds to modify gene expression, primarily through RNaseH induced degradation of the target transcript. Expansion of the field has led to new chemistries capable of invoking different mechanisms, including suppression of protein synthesis by translational blockade and gene silencing using short interfering RNAs. It is now apparent that the majority of the eukaryotic genome is transcribed and non-protein coding RNAs have been implicated in the regulation of gene expression at many levels. This review considers potential therapeutic applications of antisense oligomers to modify gene expression, primarily by interfering with the process of exon recognition and intron removal during gene transcript splicing. While suppression of gene expression will be necessary to address some conditions, it is likely that antisense oligomer splice modification will have extensive clinical application. Pre-mRNA splicing is a tightly co-ordinated, multifactorial process that can be disrupted by antisense oligomers in a highly specific manner to suppress aberrant splicing, remove exons to by-pass nonsense or frame-shifting mutations or influence exon selection to alter spliceoform ratios. Manipulation of splicing patterns has been applied to a diverse range of conditions, including b-thalassemia, Duchenne muscular dystrophy, spinal muscular atrophy and certain cancers. Alternative exon usage has been identified as a major mechanism for generating diversity from a limited repertoire of genes in higher eukaryotes. Considering that the majority of all human primary gene transcripts are reportedly alternatively spliced, intervention at the level of pre-mRNA processing is likely to become increasingly significant in the fight against genetic and acquired disorders.

  5. A 3' splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism.

    Science.gov (United States)

    Ieiri, T; Cochaux, P; Targovnik, H M; Suzuki, M; Shimoda, S; Perret, J; Vassart, G

    1991-12-01

    A case of congenital goiter with defective thyroglobulin synthesis has been studied in molecular terms. The patient is the fifth of a kindred of six, three of which have a goiter. The parents are first cousins. Segregation of thyroglobulin alleles in the family was studied by Southern blotting with a probe revealing a diallelic restriction fragment length polymorphism (RFLP). The results demonstrated that the three affected siblings were homozygous for the RFLP. Northern blotting analysis of the goiter RNA with a thyroglobulin probe suggested that thyroglobulin mRNA size was slightly reduced. Polymerase chain reaction amplification of the 8.5-kb thyroglobulin mRNA as overlapping cDNA fragments demonstrated that a 200-bp segment was missing from the 5' region of the goiter mRNA. Subcloning and sequencing of the cDNA fragments, and of the patient genomic DNA amplified from this region, revealed that exon 4 is missing from the major thyroglobulin transcript in the goiter, and that this aberrant splicing is due to a C to G transversion at position minus 3 in the acceptor splice site of intron 3. The presence in exon 4 of a putative donor tyrosine residue (Tyrosine nr 130) involved in thyroid hormone formation provides a coherent explanation to the hypothyroid status of the patient. PMID:1752952

  6. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools.

    Directory of Open Access Journals (Sweden)

    Omar Soukarieh

    2016-01-01

    Full Text Available The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient's RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants, including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs. We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.

  7. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools

    Science.gov (United States)

    Soukarieh, Omar; Gaildrat, Pascaline; Hamieh, Mohamad; Drouet, Aurélie; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2016-01-01

    The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. PMID:26761715

  8. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    Science.gov (United States)

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  9. Capillary electrophoresis analysis of conventional splicing assays: IARC analytical and clinical classification of 31 BRCA2 genetic variants.

    Science.gov (United States)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida; Gutiérrez-Enríquez, Sara; Tosar, Alicia; Romero, Atocha; Garre, Pilar; Llort, Gemma; Thomassen, Mads; Díez, Orland; Pérez-Segura, Pedro; Díaz-Rubio, Eduardo; Velasco, Eladio A; Caldés, Trinidad; de la Hoya, Miguel

    2014-01-01

    Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c.7617+1G>A, and c.8954-5A>G), and 27 analytical Class-2 variants (not inducing splicing alterations). In addition, we demonstrate that rs9534262 (c.7806-14T>C) is a BRCA2 splicing quantitative trait locus.

  10. Regulation of mammalian pre-mRNA splicing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In eukaryotes,most protein-coding genes contain introns which are removed by precursor messenger RNA(pre-mRNA) splicing.Alternative splicing is a process by which multiple messenger RNAs(mRNAs) are generated from a single pre-mRNA,resulting in functionally distinct proteins.Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression.Mis-regulation of splicing causes a wide range of human diseases.This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing.It also discusses emerging directions in the field of alternative splicing.

  11. Regulation of mammalian pre-mRNA splicing

    Institute of Scientific and Technical Information of China (English)

    HUI JingYi

    2009-01-01

    In eukaryotes, most protein-coding genes contain introns which are removed by precursor messenger RNA (pre-mRNA) splicing. Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct proteins. Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression. Mis-regulation of splicing causes a wide range of human diseases. This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing. It also discusses emerging directions in the field of alternative splicing.

  12. A study of alternative splicing in the pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Cirera Salicio, Susanna; Gilchrist, Michael J.;

    2010-01-01

    BACKGROUND: Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible...... and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list...... of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced...

  13. Splicing variants of porcine synphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Madsen, Lone Bruhn; Farajzadeh, Leila;

    2015-01-01

    %) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel......RNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human (90...... splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation....

  14. LIMD1 is more frequently altered than RB1 in head and neck squamous cell carcinoma: clinical and prognostic implications

    Directory of Open Access Journals (Sweden)

    Roy Anup

    2010-03-01

    Full Text Available Abstract Introduction To understand the role of two interacting proteins LIMD1 and pRB in development of head and neck squamous cell carcinoma (HNSCC, alterations of these genes were analyzed in 25 dysplastic head and neck lesions, 58 primary HNSCC samples and two HNSCC cell lines. Methods Deletions of LIMD1 and RB1 were analyzed along with mutation and promoter methylation analysis of LIMD1. The genotyping of LIMD1 linked microsatellite marker, hmlimD1, was done to find out any risk allele. The mRNA expression of LIMD1 and RB1 were analyzed by Q-PCR. Immunohistochemical analysis of RB1 was performed. Alterations of these genes were correlated with different clinicopathological parameters. Results High frequency [94% (78/83] of LIMD1 alterations was observed in the samples studied. Compare to frequent deletion and methylation, mutation of LIMD1 was increased during tumor progression (P = 0.007. Six novel mutations in exon1 and one novel intron4/exon5 splice-junction mutation were detected in LIMD1 along with a susceptible hmlimD1 (CA20 allele. Some of these mutations [42% (14/33] produced non-functional proteins. RB1 deletion was infrequent (27%. Highly reduced mRNA expression of LIMD1 (25.1 ± 19.04 was seen than RB1 (3.8 ± 8.09, concordant to their molecular alterations. The pRB expression supported this data. Tumors with LIMD1 alterations in tobacco addicted patients without HPV infection showed poor prognosis. Co-alterations of these genes led the worse patients' outcome. Conclusions Our study suggests LIMD1 inactivation as primary event than inactivation of RB1 in HNSCC development.

  15. Regulation of alternative splice site selection by reversible protein phosphorylation

    OpenAIRE

    Novoyatleva, Tatyana

    2007-01-01

    Splicing is the process that removes introns and joins exons from pre-mesenger RNA (pre-mRNA). It is an essential step in pre-mRNA processing that form the mature RNA. Microarray data indicates that approximately 75% of human genes produce transcripts that are alternatively spliced. Alternative splicing is one of the major mechanisms that ultimately generate high number of protein isoforms from a limited number of genes. The proper catalysis and regulation of alternative splice site selection...

  16. Progress toward therapy with antisense-mediated splicing modulation

    OpenAIRE

    Du, Liutao; Gatti, Richard A.

    2009-01-01

    Antisense oligonucleotides (AO) or antisense RNA can complementarily bind to a target site in pre-mRNA and regulate gene splicing, either to restore gene function by reprogramming gene splicing or to inhibit gene expression by disrupting splicing. These two applications represent novel therapeutic strategies for several types of diseases such as genetic disorders, cancers and infectious diseases. In this review, the recent developments and applications of antisense-mediated splicing modulatio...

  17. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    OpenAIRE

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  18. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  19. RNA structure and the mechanisms of alternative splicing

    OpenAIRE

    McManus, C. Joel; Graveley, Brenton R.

    2011-01-01

    Alternative splicing is a widespread means of increasing protein diversity and regulating gene expression in eukaryotes. Much progress has been made in understanding the proteins involved in regulating alternative splicing, the sequences they bind to, and how these interactions lead to changes in splicing patterns. However, several recent studies have identified other players involved in regulating alternative splicing. A major theme emerging from these studies is that RNA secondary structure...

  20. Evolution of alternative splicing in primate brain transcriptomes

    OpenAIRE

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among t...

  1. Expression of a novel beta adaptin subunit mRNA splice variant in human testes

    Institute of Scientific and Technical Information of China (English)

    Xin-Dong Zhang; Lan-Lan Yin; Ying Zheng; Li Lu; Zuo-Min Zhou; Jia-Hao Sha

    2005-01-01

    Aim: To identify a novel isoform of adaptin 2 beta subunit (named Ap2β-NY) and to investigate its relationship with testicular development and spermatogenesis. Methods: Using a human testis cDNA microarray, a clone (Ap2β-NY),which was strongly expressed in adult testes but weakly expressed in embryo testes, was sequenced and analyzed.Using polymerase chain reaction (PCR), the tissue distribution and expression time pattern of Ap2β-NY were determined.Results: Ap2β-NY was identified and has been deposited in the GenBank (AY341427). The expression level of Ap2β-NY in the adult testis was about 3-fold higher than that in the embryo testis. PCR analysis using multi-tissue cDNA indicated that Ap2β-NY was highly expressed in the testis, spleen, thymus, prostate, ovary, blood leukocyte and brain, but not in the heart, placenta, lung, liver, skeletal muscle, kidney and pancreas. In addition, Ap2β-NY was variably expressed in the testes of patients with spermatogenesis-disturbance and spermatogenesis-arrest but not expressed in those of Sertoli-cell-only syndrome, which implied that, in the testis, Ap2β-NY was restrictively expressed in germ cells. Conclusion: Ap2β-NY is an isoform of Ap2β and may be involved in regulating the process of spermatogenesis and testis development.

  2. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    Science.gov (United States)

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  3. Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2

    OpenAIRE

    Doering, Clinton J.; Rehak, Renata; Bonfield, Stephan; Peloquin, Jean B.; Stell, William K.; Mema, Silvina C.; Sauvé, Yves; McRory, John E.

    2008-01-01

    The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the st...

  4. SR proteins Asf/SF2 and 9G8 interact to activate enhancer-dependent intron D splicing of bovine growth hormone pre-mRNA in vitro.

    Science.gov (United States)

    Li, X; Shambaugh, M E; Rottman, F M; Bokar, J A

    2000-01-01

    The alternative splicing of the last intron (intron D) of bovine growth hormone (bGH) pre-mRNA requires a down-stream exonic splicing enhancer (FP/ESE). The presence of at least one SR protein has been shown to be essential for FP/ESE function and splicing of intron D in in vitro splicing assays. However, in vitro reconstitution of splicing using individual purified SR proteins may not accurately reflect the true complexity of alternative splicing in an intact nucleus, where multiple SR proteins in varying amounts are likely to be available simultaneously. Here, a panel of recombinant baculovirus-expressed SR proteins was produced and tested for the ability to activate FP/ESE-dependent splicing. Individual recombinant SR proteins differed significantly in their activity in promoting intron D splicing. Among the recombinant SR proteins tested, SRp55 was the most active, SC35 showed very little activity, and ASF/SF2 and 9G8 individually had intermediate activity. At least one SR protein (ASF/SF2) bound to the FP/ESE with characteristics of a cooperative interaction. Most interestingly, low concentrations of ASF/SF2 and 9G8 acted synergistically to activate intron D splicing. This was due in part to synergistic binding to the FP/ESE. Splicing of bGH intron D is inherently complex, and is likely controlled by an interaction of the FP/ESE with several trans-acting protein factors acting both independently and cooperatively. This level of complexity may be required for precise control of alternative splicing by an exon sequence, which simultaneously is constrained to maintain translational integrity of the mature mRNA. PMID:11142383

  5. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...... expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general...

  6. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    by facilitating or hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This chapter...

  7. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    Science.gov (United States)

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  8. 46 CFR 111.60-19 - Cable splices.

    Science.gov (United States)

    2010-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  9. 30 CFR 75.603 - Temporary splice of trailing cable.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  10. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.

    Science.gov (United States)

    Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R

    2015-10-01

    Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1

  11. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    OpenAIRE

    Liu Hongfang; Ryan Michael C; Kahn Ari B; Zeeberg Barry R; Jamison D Curtis; Weinstein John N

    2007-01-01

    Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidenc...

  12. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events

    OpenAIRE

    Warzecha, Claude C.; Shen, Shihao; Xing, Yi; Carstens, Russ P.

    2009-01-01

    Cell-type and tissue-specific alternative splicing events are regulated by combinatorial control involving both abundant RNA binding proteins as well as those with more discrete expression and specialized functions. Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44 and CTNND1 transcripts. To catalogue a larger set of splicing events under th...

  13. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  14. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders.

    Science.gov (United States)

    Weitzer, Stefan; Hanada, Toshikatsu; Penninger, Josef M; Martinez, Javier

    2015-01-01

    Defects in RNA metabolic pathways are well-established causes for neurodegenerative disorders. Several mutations in genes involved in pre-messenger RNA (pre-mRNA) and tRNA metabolism, RNA stability and protein translation have been linked to motor neuron diseases. Our study on a mouse carrying a catalytically inactive version of the RNA kinase CLP1, a component of the tRNA splicing endonuclease complex, revealed a neurological disorder characterized by progressive loss of lower spinal motor neurons. Surprisingly, mutant mice accumulate a novel class of tRNA-derived fragments. In addition, patients with homozygous missense mutations in CLP1 (R140H) were recently identified who suffer from severe motor-sensory defects, cortical dysgenesis and microcephaly, and exhibit alterations in transfer RNA (tRNA) splicing. Here, we review functions of CLP1 in different RNA pathways and provide hypotheses on the role of the tRNA splicing machinery in the generation of tRNA fragments and the molecular links to neurodegenerative disorders. We further immerse the biology of tRNA splicing into topics of (t)RNA metabolism and oxidative stress, putting forward the idea that defects in tRNA processing leading to tRNA fragment accumulation might trigger the development of neurodegenerative diseases.

  15. Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice

    Science.gov (United States)

    Babaev, Vladimir R.; Porro, Fabiola; Linton, MacRae F.; Fazio, Sergio; Baralle, Francisco E.; Muro, Andrés F.

    2008-01-01

    Atherosclerotic lesions are characterized by a profound alteration in the architecture of the arterial intima, with a marked increase of fibronectin (FN) and the appearance of the alternatively spliced FN variant containing the Extra Domain A (EDA). To analyze the role of FN isoforms in atherosclerotic lesion formation we utilized mouse strains devoid of EDA-exon regulated splicing, which constitutively include (EDA+/+) or exclude (EDA−/−) the exon. Both mutant mice had a 40% reduction in atherosclerotic lesions after the atherogenic-diet treatment (Mean±SE, μm2; 22969±2185; 13660±1533; 14260±2501 for EDAwt/wt, EDA+/+ and EDA−/−, respectively; p≤0.01 ANOVA test) associated to a lower capacity of macrophages to uptake modified LDL and undergo foam-cell formation. Lesions in control mice were more numerous and bigger, with augmented and deeper macrophage infiltration, and increased FN expression in the sub-endothelial area. Previous experiments have shown that apoE−/−EDA−/− mice have a decreased number and size of atherosclerotic lesions and, on this basis, it has been proposed that the EDA domain has a pro-atherogenic role. Our data with the EDA+/+ mice rules out this hypothesis and suggest that regulated splicing of the EDA exon of the FN gene is involved in progression of atherosclerosis, highlighting the importance of alternative splicing in regulating cellular processes. PMID:17897651

  16. Serine Arginine-Rich Splicing Factor 1 (SRSF1) Contributes to the Transcriptional Activation of CD3ζ in Human T Cells.

    Science.gov (United States)

    Moulton, Vaishali R; Gillooly, Andrew R; Perl, Marcel A; Markopoulou, Anastasia; Tsokos, George C

    2015-01-01

    T lymphocytes from many patients with systemic lupus erythematosus (SLE) express decreased levels of the T cell receptor (TCR)-associated CD3 zeta (ζ) signaling chain, a feature directly linked to their abnormal phenotype and function. Reduced mRNA expression partly due to defective alternative splicing, contributes to the reduced expression of CD3ζ chain. We previously identified by oligonucleotide pulldown and mass spectrometry approaches, the serine arginine-rich splicing factor 1 (SRSF1) binding to the 3' untranslated region (UTR) of CD3ζ mRNA. We showed that SRSF1 regulates alternative splicing of the 3'UTR of CD3ζ to promote expression of the normal full length 3`UTR over an unstable splice variant in human T cells. In this study we show that SRSF1 regulates transcriptional activation of CD3ζ. Specifically, overexpression and silencing of SRSF1 respectively increases and decreases CD3ζ total mRNA and protein expression in Jurkat and primary T cells. Using promoter-luciferase assays, we show that SRSF1 enhances transcriptional activity of the CD3ζ promoter in a dose dependent manner. Chromatin immunoprecipitation assays show that SRSF1 is recruited to the CD3ζ promoter. These results indicate that SRSF1 contributes to transcriptional activation of CD3ζ. Thus our study identifies a novel mechanism whereby SRSF1 regulates CD3ζ expression in human T cells and may contribute to the T cell defect in SLE.

  17. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Highlights: ► We cloned the ptr5+ gene involved in nuclear mRNA export in fission yeast. ► The ptr5+ gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A)+ RNA transport] 1 to 11, which accumulate poly(A)+ RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A)+ RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5+ gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  18. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression.

    Science.gov (United States)

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon-exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT-PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  19. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    NARCIS (Netherlands)

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor G

  20. Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities.

    Directory of Open Access Journals (Sweden)

    Amandine Bemmo

    Full Text Available BACKGROUND: Breast cancer is the second most frequent type of cancer affecting women. We are increasingly aware that changes in mRNA splicing are associated with various characteristics of cancer. The most deadly aspect of cancer is metastasis, the process by which cancer spreads from the primary tumor to distant organs. However, little is known specifically about the involvement of alternative splicing in the formation of macroscopic metastases. Our study investigates transcript isoform changes that characterize tumors of different abilities to form growing metastases. METHODS AND FINDINGS: To identify alternative splicing events (ASEs that are associated with the fully metastatic phenotype in breast cancer, we used Affymetrix Exon Microarrays to profile mRNA isoform variations genome-wide in weakly metastatic (168FARN and 4T07 and highly metastatic (4T1 mammary carcinomas. Statistical analysis identified significant expression changes in 7606 out of 155,994 (4% exons and in 1725 out of 189,460 (1% intronic regions, which affect 2623 out of 16,654 (16% genes. These changes correspond to putative alternative isoforms-several of which are novel-that are differentially expressed between tumors of varying metastatic phenotypes. Gene pathway analysis showed that 1224 of genes expressing alternative isoforms were involved in cell growth, cell interactions, cell proliferation, cell migration and cell death and have been previously linked to cancers and genetic disorders. We chose ten predicted splice variants for RT-PCR validation, eight of which were successfully confirmed (MED24, MFI2, SRRT, CD44, CLK1 and HNRNPH1. These include three novel intron retentions in CD44, a gene in which isoform variations have been previously associated with the metastasis of several cancers. CONCLUSION: Our findings reveal that various genes are differently spliced and/or expressed in association with the metastatic phenotype of tumor cells. Identification of

  1. A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Hansen, Christina N; Vinther, Jeppe;

    2003-01-01

    RNA is not very abundant, but we have shown that an E7-luciferase fusion protein can be expressed in SiHa cells from a monocistronic HPV-16 transcript initiated at nt 542. The monocistronic mRNA expresses E7-luciferase more efficiently than the most abundant in vivo-like mRNA E6*IE7, initiated by P97 and spliced...

  2. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response

    OpenAIRE

    Marcel, V; Fernandes, K; Terrier, O; LANE, D. P.; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdo...

  3. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Armano, MT; Ferriani, VP; Florido, MP;

    2008-01-01

    ' fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the C1s cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of C1s mRNA transcripts...... in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3' splice site within intron 1 which increases the size of exon 2 by 87 nucleotides....

  4. The regulation of IGF-1 gene transcription and splicing during development and aging.

    Directory of Open Access Journals (Sweden)

    Anita eOberbauer

    2013-03-01

    Full Text Available It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and miRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF1 promoter usage and splicing machinery used to create the variants.

  5. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging.

    Science.gov (United States)

    Oberbauer, A M

    2013-01-01

    It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and microRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF-1 promoter usage and splicing machinery used to create the variants. PMID:23533068

  6. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer.

    Science.gov (United States)

    Markus, M Andrea; Yang, Yee Hwa J; Morris, Brian J

    2016-04-01

    This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4. PMID:26898347

  7. Loss of Endocan tumorigenic properties after alternative splicing of exon 2

    International Nuclear Information System (INIS)

    Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2. Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin. Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID) mice. Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer

  8. Single Mode Fiber Optic Connectors And Splices

    Science.gov (United States)

    Woods, John G.

    1984-08-01

    There is a trend toward increasing use of single mode transmission, particularly in telecommunications where high data bit rates are transmitted for long distances. Inter-connections of multimode fibers can be made in a number of ways, using ferrules, v-grooves, elastomeric splices, etc. However, the connection of single mode fibers, which have core diameters of 4 to 13 μm, requires more precise alignment than do the multimode fibers having core diameters of 50 μm or more. At TRW, we have adapted the four rod alignment guide concept for single mode fiber inter-connections. The principle of this OPTAGUIDE* alignment guide is presented. The single mode connectors and splices use the four rod scheme with an index matching material to eliminate or reduce the losses incurred through fiber end roughness or angularity. We are able to produce demountable connectors for 80/4.4 pm fibers having typical insertion losses of 1.0dB. The main factors in obtaining this result are the naturally precise fiber alignment provided by the alignment guide, and the ability of several manufacturers to maintain tight diametral and core offset tolerances. The single mode OPTALIGN* SM Connectors have been subjected to performance and environmental tests including repeated matings, temperature cycle and vibration. The results of these tests are described in this paper. A feature of the OPTALIGN* SM Connectors is the relative ease and speed of attachment to fiber optic cable in the field, without the use of epoxy or polishing procedures. The alignment guide concept has also been applied to permanent single mode splices. The splicing procedure is simple to perform in the field without expensive or delicate equipment. Construction and assembly procedures of the demountable connectors and permanent splices will be described with the aid of diagrams and photographs.

  9. Splicing is required for transactivation by the immediate early gene 1 of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus.

    Science.gov (United States)

    Pearson, M N; Rohrmann, G F

    1997-08-18

    A region of the Lymantria disper multinucleocapsid nuclear polyhedrosis virus (LdMNPV) genome containing the homolog of the baculovirus ie-1 gene was identified using a series of overlapping cosmids and individual plasmids in a transient transcriptional expression assay. Sequence analysis of the active region identified two ORFs, one of which is 32% identical to AcMNPV ORF141 (ie-0) and contains a putative splice donor site and the other of which is 29% identical to AcMNPV ie-1 and contains a highly conserved splice acceptor consensus sequences. Plasmids containing the LdMNPV ORF141 and ie-1 regions were able to stimulate expression of a GUS reporter gene, while plasmids containing the ie-1 region alone were inactive, suggesting that only the spliced, IE-0 form of the gene product is an active transactivator. Primer extension analysis confirmed the presence of spliced ie-0 mRNA transcripts starting at 6 hr and continuing throughout the time course of viral infection of the L dispar cell line Ld652Y. Using a plasmid containing the ie-0 spliced form of the gene as a transactivator, hr4, one of the eight homologous regions of LdMNPV, was shown to act as a transcriptional enhancer. In contrast, a reporter plasmid containing the AcMNPV hr5 enhancer did not show increased activity when cotransfected with LdMNPV ie-0, suggesting that these enhancer sequences are viral specific. In a transient replication assay system. LdMNPV ie-0 acted as an essential replication gene, but LdMNPV ie-1 was inactive. These results indicate that splicing is required to obtain an active gene product in LdMNPV in the Ld652Y cell line. PMID:9300047

  10. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis

    KAUST Repository

    Ding, Feng

    2014-06-04

    Background: Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.Results: To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.Conclusions: Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress. 2014 Ding et al.; licensee BioMed Central Ltd.

  11. Identification of a splice-site mutation in the human growth hormone-variant gene.

    OpenAIRE

    MacLeod, J.N.; Liebhaber, S A; MacGillivray, M H; Cooke, N E

    1991-01-01

    The human growth-hormone-variant (hGH-V) gene normally expresses two alternatively spliced forms of mRNA--hGH-V and hGH-V2--in the placenta. hGH-V2 mRNA differs from hGH-V rDNA by the retention of intron 4 and represents approximately 15% of transcripts at term. In a survey of hGH-V gene expression in 20 placentas of gestational age 8-40 wk, we detected a single placenta that contained, in addition to the two normal hGH-V mRNA species, a set of two slightly larger hGH-V mRNAs. Sequence analys...

  12. Deregulation of splicing factors and breast cancer development.

    Science.gov (United States)

    Silipo, Marco; Gautrey, Hannah; Tyson-Capper, Alison

    2015-10-01

    It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.

  13. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier.

    Directory of Open Access Journals (Sweden)

    Emma Bondy-Chorney

    2016-01-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1 was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.

  14. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability

    Directory of Open Access Journals (Sweden)

    Gorospe Myriam

    2005-05-01

    Full Text Available Abstract Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Results In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell and nuclear run-on (newly transcribed RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. Conclusion We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems.

  15. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    International Nuclear Information System (INIS)

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency

  16. A five' splice-region G → C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: A mechanism for β+-thalassemia

    International Nuclear Information System (INIS)

    The authors have characterized a Mediterranean β-thalassemia allele containing a sequence change at codon 30 that alters both β-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G → C transversion at position -1 of intron 1 reduces severely the utilization of the normal 5' splice site since the level of the Arg → Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position -1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated the role of this nucleotide in the constitution of an active 5' splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5

  17. Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Directory of Open Access Journals (Sweden)

    Kaito Hiroshi

    2009-11-01

    Full Text Available Abstract Background Autosomal dominant pseudohypoaldosteronism type 1 (PHA1 is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (MR, but it is a matter of debate whether MR mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations. Methods and Results We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products. Conclusion mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.

  18. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome.

    Science.gov (United States)

    Zuo, Yongchun; Zhang, Pengfei; Liu, Li; Li, Tao; Peng, Yong; Li, Guangpeng; Li, Qianzhong

    2014-09-01

    More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.

  19. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species. PMID:27450547

  20. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  1. Ancient nature of alternative splicing and functions of introns

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  2. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Wadelius, C.; Lagerkvist, A. (Univ. Hospital, Uppsala (Sweden) Uppsala Univ. (Sweden)); Molin, A.K.; Larsson, A. (Univ. Hospital, Uppsala (Sweden)); Von Doebeln, U. (Karolinska Institute, Stockholm (Sweden))

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  3. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    Science.gov (United States)

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M; Nakamura, H; Matsuo, M

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. PMID:8279470

  4. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  5. Regulation of human genome expression and RNA splicing by human papillomavirus 16 E2 protein.

    Science.gov (United States)

    Gauson, Elaine J; Windle, Brad; Donaldson, Mary M; Caffarel, Maria M; Dornan, Edward S; Coleman, Nicholas; Herzyk, Pawel; Henderson, Scott C; Wang, Xu; Morgan, Iain M

    2014-11-01

    Human papillomavirus 16 (HPV16) is causative in human cancer. The E2 protein regulates transcription from and replication of the viral genome; the role of E2 in regulating the host genome has been less well studied. We have expressed HPV16 E2 (E2) stably in U2OS cells; these cells tolerate E2 expression well and gene expression analysis identified 74 genes showing differential expression specific to E2. Analysis of published gene expression data sets during cervical cancer progression identified 20 of the genes as being altered in a similar direction as the E2 specific genes. In addition, E2 altered the splicing of many genes implicated in cancer and cell motility. The E2 expressing cells showed no alteration in cell growth but were altered in cell motility, consistent with the E2 induced altered splicing predicted to affect this cellular function. The results present a model system for investigating E2 regulation of the host genome.

  6. Regulation of human genome expression and RNA splicing by human papillomavirus 16 E2 protein.

    Science.gov (United States)

    Gauson, Elaine J; Windle, Brad; Donaldson, Mary M; Caffarel, Maria M; Dornan, Edward S; Coleman, Nicholas; Herzyk, Pawel; Henderson, Scott C; Wang, Xu; Morgan, Iain M

    2014-11-01

    Human papillomavirus 16 (HPV16) is causative in human cancer. The E2 protein regulates transcription from and replication of the viral genome; the role of E2 in regulating the host genome has been less well studied. We have expressed HPV16 E2 (E2) stably in U2OS cells; these cells tolerate E2 expression well and gene expression analysis identified 74 genes showing differential expression specific to E2. Analysis of published gene expression data sets during cervical cancer progression identified 20 of the genes as being altered in a similar direction as the E2 specific genes. In addition, E2 altered the splicing of many genes implicated in cancer and cell motility. The E2 expressing cells showed no alteration in cell growth but were altered in cell motility, consistent with the E2 induced altered splicing predicted to affect this cellular function. The results present a model system for investigating E2 regulation of the host genome. PMID:25129434

  7. A Crouzon syndrome synonymous mutation activates a 5{prime} splice site within the IIIC exon of the FGFR2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Gatto, F.D.; Breathnach, R. [INSERM, Nantes (France)

    1995-06-10

    Crouzon syndrome, an autosomal dominant condition causing premature fusion of cranial structures, appears to be caused by mutations in the FGFR2 gene. Several mutations have been identified in the IIIc or bek exon that alter the amino acid sequence of the receptor in a zone known to be involved in ligand binding. In addition, a synonymous G to A transition has been described in three familial Crouzon syndrome cases (mutation at the third position of the alanine 344 codon). It has been suggested that this mutation may activate a cryptic 5{prime} or 3{prime} splice site. The significance of this latter mutation in Crouzon syndrome will be established only when it is known whether it does in fact affect splicing. If it does, prediction of the structure of the mutated receptor requires us to know whether a cryptic 5{prime} or a cryptic 3{prime} splice site has been activated. Ideally, splicing of the pre-mRNA would be studied in the cell type in which the mutated receptor is supposed to exert its effect. However, in our case this information is not available. An alternative strategy is to study splicing in cultured cells using cloned genes. The validity of this approach has been established in other disease systems, for example, thalassemias. 9 refs., 1 fig.

  8. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    Science.gov (United States)

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  9. Deciphering the plant splicing code: Experimental and computational approaches for predicting alternative splicing and splicing regulatory elements

    Directory of Open Access Journals (Sweden)

    Anireddy S.N. Reddy

    2012-02-01

    Full Text Available Extensive alternative splicing (AS of precursor mRNAs (pre-mRNAs in multicellular eukaryotes increases the protein-coding capacity of a genome and allows novel ways to regulate gene expression. In fowering plants, up to 48% of intron-containing genes exhibit AS. However, the full extent of AS in plants is not yet known, as only a few high throughput RNA-Seq studies have been performed. As the cost of obtaining RNA-Seq reads continues to fall, it is anticipated that huge amounts of plant sequence data will accumulate and help in obtaining a more complete picture of AS in plants. Although it is not an onerous task to obtain hundreds of millions of reads using high throughput sequencing technologies, computational tools to accurately predict and visualize AS are still being developed and refined. This review will discuss the tools to predict and visualize transcriptome-wide AS in plants using short reads and highlight their limitations. Comparative studies of AS events between plants and animals have revealed that there are major differences in the most prevalent types of AS events, suggesting that plants and animals differ in the way they recognize exons and introns. Extensive studies have been performed in animals to identify cis-elements involved in regulating AS, especially in exon skipping. However, such studies are in their infancy in plants. Here, we review the current state of research on splicing regulatory elements (SREs and briefly discuss emerging experimental and computational tools to identify cis-elements involved in regulation of AS in plants. The availability of curated alternative splice forms in plants makes it possible to use computational tools to predict SREs involved in AS regulation, which can then be verified experimentally. Such studies will permit identification of plant-specific features involved in AS regulation and contribute to deciphering the splicing code in plants.

  10. Exon Array Analysis using re-defined probe sets results in reliable identification of alternatively spliced genes in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gröne Jörn

    2010-11-01

    Full Text Available Abstract Background Treatment of non-small cell lung cancer with novel targeted therapies is a major unmet clinical need. Alternative splicing is a mechanism which generates diverse protein products and is of functional relevance in cancer. Results In this study, a genome-wide analysis of the alteration of splicing patterns between lung cancer and normal lung tissue was performed. We generated an exon array data set derived from matched pairs of lung cancer and normal lung tissue including both the adenocarcinoma and the squamous cell carcinoma subtypes. An enhanced workflow was developed to reliably detect differential splicing in an exon array data set. In total, 330 genes were found to be differentially spliced in non-small cell lung cancer compared to normal lung tissue. Microarray findings were validated with independent laboratory methods for CLSTN1, FN1, KIAA1217, MYO18A, NCOR2, NUMB, SLK, SYNE2, TPM1, (in total, 10 events and ADD3, which was analysed in depth. We achieved a high validation rate of 69%. Evidence was found that the activity of FOX2, the splicing factor shown to cause cancer-specific splicing patterns in breast and ovarian cancer, is not altered at the transcript level in several cancer types including lung cancer. Conclusions This study demonstrates how alternatively spliced genes can reliably be identified in a cancer data set. Our findings underline that key processes of cancer progression in NSCLC are affected by alternative splicing, which can be exploited in the search for novel targeted therapies.

  11. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  12. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  13. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang

    2009-01-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  14. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. PMID:25220461

  15. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Directory of Open Access Journals (Sweden)

    Manuel Irimia

    Full Text Available Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans factors that bind to different sequence (cis elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.

  16. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Science.gov (United States)

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease. PMID:19495418

  17. A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Perron, K; Goldschmidt-Clermont, M; Rochaix, J D

    1999-11-15

    In Chlamydomonas reinhardtii, the psaA mRNA is assembled by a process involving two steps of trans-splicing that remove two group II introns and give rise to the mature mRNA. The products of at least 14 nuclear genes and one chloroplast gene (tscA) are necessary for this process. We have cloned Maa2, one of the nuclear genes involved in trans-splicing of the second intron. Maa2 encodes a protein with similarity to conserved domains of pseudouridine synthases, but mutagenesis of putative catalytic residues showed that this activity may not be required for trans-splicing of psaA RNA. Although it is not clear whether the pseudouridine synthase activity has been maintained in Maa2, it is possible that this enzyme was recruited during evolution as an RNA chaperone for folding or stabilizing the psaA intron. The Maa2 protein appears to be associated through ionic interactions with a low density membrane system in the chloroplast that also contains RNA-binding proteins involved in translation.

  18. Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Rotthues, Alexander; Kappler, Jeannette; Lichtfuss, Anna; Kloos, Dorothee U; Stahl, Dietmar J; Hehl, Reinhard

    2008-05-01

    Sixteen post-harvest upregulated genes from sugar beet comprising five novel sequences were isolated by subtractive cloning. Transcription profiles covering a period of up to 49 days after harvest under controlled storage conditions and in field clamps are reported. Post-harvest induced genes are involved in wound response, pathogen defense, dehydration stress, and detoxification of reactive oxygen species. An early induction of a cationic peroxidase indicates a response to post-harvest damage. Wound response reactions may also involve genes required for cell division such as a regulator of chromatin condensation and a precursor of the growth stimulating peptide phytohormone phytosulfokine-alpha. Surprisingly, also three putative non-protein coding genes were isolated. Two of these genes show intron specific and storage temperature dependent splicing of a precursor mRNA. The temperature dependent splicing of an intron containing sugar beet mRNA is also maintained in transgenic Arabidopsis thaliana. The storage induced genes are integrated into a model that proposes the response to several post-harvest stress conditions. Temperature regulated splicing may be a mechanism to sense seasonal temperature changes. PMID:18324413

  19. The influence of Argonaute proteins on alternative RNA splicing.

    Science.gov (United States)

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO.

  20. Intronic alternative splicing regulators identified by comparative genomics in nematodes.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kabat

    2006-07-01

    Full Text Available Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high-scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (TGCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis