WorldWideScience

Sample records for altered sleep homeostasis

  1. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    Science.gov (United States)

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  2. Chronic social stress leads to altered sleep homeostasis in mice.

    Science.gov (United States)

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-06-01

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1-4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis

    DEFF Research Database (Denmark)

    Byberg, Stine; Hansen, Anne-Louise Smidt; Christensen, Dirk Lund

    2012-01-01

    Abstract Aims  Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible...... associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. Methods  The study comprised 771 participants from the Danish, population-based cross-sectional ‘Health2008’ study. Sleep duration and sleep quality were...... measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA1c, two measures of insulin sensitivity (the insulin sensitivity index0,120 and homeostasis model assessment of insulin sensitivity...

  4. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  5. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.

    2015-04-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  6. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  7. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    Science.gov (United States)

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  8. Aging induced ER stress alters sleep and sleep homeostasis

    OpenAIRE

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2013-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical ...

  9. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    Science.gov (United States)

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sleep apnea predicts distinct alterations in glucose homeostasis and biomarkers in obese adults with normal and impaired glucose metabolism

    Directory of Open Access Journals (Sweden)

    Hill Nathan R

    2010-12-01

    Full Text Available Abstract Background Notwithstanding previous studies supporting independent associations between obstructive sleep apnea (OSA and prevalence of diabetes, the underlying pathogenesis of impaired glucose regulation in OSA remains unclear. We explored mechanisms linking OSA with prediabetes/diabetes and associated biomarker profiles. We hypothesized that OSA is associated with distinct alterations in glucose homeostasis and biomarker profiles in subjects with normal (NGM and impaired glucose metabolism (IGM. Methods Forty-five severely obese adults (36 women without certain comorbidities/medications underwent anthropometric measurements, polysomnography, and blood tests. We measured fasting serum glucose, insulin, selected cytokines, and calculated homeostasis model assessment estimates of insulin sensitivity (HOMA-IS and pancreatic beta-cell function (HOMA-B. Results Both increases in apnea-hypopnea index (AHI and the presence of prediabetes/diabetes were associated with reductions in HOMA-IS in the entire cohort even after adjustment for sex, race, age, and BMI (P = 0.003. In subjects with NGM (n = 30, OSA severity was associated with significantly increased HOMA-B (a trend towards decreased HOMA-IS independent of sex and adiposity. OSA-related oxyhemoglobin desaturations correlated with TNF-α (r=-0.76; P = 0.001 in women with NGM and with IL-6 (rho=-0.55; P = 0.035 in women with IGM (n = 15 matched individually for age, adiposity, and AHI. Conclusions OSA is independently associated with altered glucose homeostasis and increased basal beta-cell function in severely obese adults with NGM. The findings suggest that moderate to severe OSA imposes an excessive functional demand on pancreatic beta-cells, which may lead to their exhaustion and impaired secretory capacity over time. The two distinct biomarker profiles linking sleep apnea with NGM and IGM via TNF-α and IL-6 have been discerned in our study to suggest that sleep apnea and particularly

  12. A role for clock genes in sleep homeostasis.

    Science.gov (United States)

    Franken, Paul

    2013-10-01

    The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica W Tsai

    2009-06-01

    other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.

  14. Sleep Homeostasis and Synaptic Plasticity

    Science.gov (United States)

    2017-06-01

    Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202...circuit (a homeostat) that operates in concert with the circadian circuitry or does sleep drive accumulate everywhere in the brain? To answer these...neurons is capable of generating sleep drive. RNAi-mediated knockdown of insomniac in R2 neurons abolished sleep homeostasis without affecting baseline

  15. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  16. The brain functional connectome is robustly altered by lack of sleep.

    Science.gov (United States)

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Science.gov (United States)

    Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L

    2017-01-01

    Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  18. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  19. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Directory of Open Access Journals (Sweden)

    Malav S Trivedi

    Full Text Available Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD in young adult humans can influence systemic (plasma-derived redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09 underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's < 0.01. Parallel to the well-recognized fact that sleep deprivation (maintaining wakefulness uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  20. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    Science.gov (United States)

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  1. Telemetric Study of Sleep Architecture and Sleep Homeostasis in the Day-Active Tree Shrew Tupaia belangeri

    NARCIS (Netherlands)

    Coolen, Alex; Hoffmann, Kerstin; Barf, R. Paulien; Fuchs, Eberhard; Meerlo, Peter

    2012-01-01

    Study Objectives: In this study the authors characterized sleep architecture and sleep homeostasis in the tree shrew, Tupaia belangeri, a small, omnivorous, day-active mammal that is closely related to primates. Design: Adult tree shrews were individually housed under a 12-hr light/12-hr dark cycle

  2. Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    2010-01-01

    Full Text Available Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.

  3. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    Directory of Open Access Journals (Sweden)

    Matthew S Thimgan

    2010-08-01

    Full Text Available Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm and Lipid storage droplet 2 (Lsd2, have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  4. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  5. Functional data analysis of sleeping energy expenditure

    Science.gov (United States)

    Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of ...

  6. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    Science.gov (United States)

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  7. Sleep and Metabolism: An Overview

    Directory of Open Access Journals (Sweden)

    Sunil Sharma

    2010-01-01

    Full Text Available Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways involving sympathetic overstimulation, hormonal imbalance, and subclinical inflammation. This paper reviews sleep and metabolism, and how sleep deprivation and sleep disorders may be altering human metabolism.

  8. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

    Science.gov (United States)

    Tononi, Giulio; Cirelli, Chiara

    2014-01-08

    Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Obstructive sleep apnea alters sleep stage transition dynamics.

    Directory of Open Access Journals (Sweden)

    Matt T Bianchi

    2010-06-01

    Full Text Available Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity.We analyzed hypnograms from Sleep Heart Health Study (SHHS participants using the following stage designations: wake after sleep onset (WASO, non-rapid eye movement (NREM sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA, medical co-morbidities, or sleepiness (n = 374 with mild (n = 496 or severe OSA (n = 338. WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution.OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.

  10. Sleep Deprivation Alters Choice Strategy Without Altering Uncertainty or Loss Aversion Preferences

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    2015-10-01

    Full Text Available Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  11. Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences.

    Science.gov (United States)

    Mullette-Gillman, O'Dhaniel A; Kurnianingsih, Yoanna A; Liu, Jean C J

    2015-01-01

    Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD) alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  12. Role of N-Arachidonoyl-Serotonin (AA-5-HT in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation

    Directory of Open Access Journals (Sweden)

    Eric Murillo-Rodríguez

    2017-05-01

    Full Text Available The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA and 2-arachidonoylglycerol (2-AG], receptors (CB1 and CB2, enzymes such as [fatty acid amide hydrolase (FAHH and monoacylglycerol lipase (MAGL], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1, N-arachidonoyl-serotonin (AA-5-HT in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p. injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W and increased slow wave sleep (SWS as well as rapid eye movement sleep (REMS. Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA, norepinephrine (NE, epinephrine (EP, serotonin (5-HT whereas the levels of adenosine (AD were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD or modafinil (MOD during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD. The

  13. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.

    Science.gov (United States)

    Holst, Sebastian C; Sousek, Alexandra; Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich; Tafti, Mehdi; Landolt, Hans-Peter

    2017-10-05

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep.

  14. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation

    Science.gov (United States)

    Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich

    2017-01-01

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep. PMID:28980941

  15. Sleep and Obesity

    Directory of Open Access Journals (Sweden)

    Chenzhao Ding

    2018-03-01

    Full Text Available Rising global prevalence and incidence of obesity lead to increased cardiovascular-renal complications and cancers. Epidemiological studies reported a worldwide trend towards suboptimal sleep duration and poor sleep quality in parallel with this obesity epidemic. From rodents and human models, it is highly plausible that abnormalities in sleep, both quantity and quality, impact negatively on energy metabolism. While excess dietary intake and physical inactivity are the known drivers of the obesity epidemic, promotion of healthy sleep habits has emerged as a new target to combat obesity. In this light, present review focuses on the existing literature examining the relationship between sleep physiology and energy homeostasis. Notably, sleep dysregulation perturbs the metabolic milieu via alterations in hormones such as leptin and ghrelin, eating behavior, neuroendocrine and autonomic nervous systems. In addition, shift work and trans-meridian air travel may exert a negative influence on the hypothalamic-pituitary-adrenal axis and trigger circadian misalignment, leading to impaired glucose tolerance and increased fat accumulation. Amassing evidence has also suggested that uncoupling of the circadian clock can increase the risk of adverse metabolic health. Given the importance of sleep in maintaining energy homeostasis and that it is potentially modifiable, promoting good sleep hygiene may create new avenues for obesity prevention and treatment.

  16. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna eMantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  17. Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin

    2017-11-27

    Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.

  18. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    Science.gov (United States)

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  19. Evaluation of depressive symptoms and sleep alterations in college students.

    Science.gov (United States)

    Moo-Estrella, Jesús; Pérez-Benítez, Hugo; Solís-Rodríguez, Francisco; Arankowsky-Sandoval, Gloria

    2005-01-01

    Increasing evidence suggests that sleep alterations could favor subsequent depression development. In order to identify the simultaneous occurrence of these parameters in young people, in this work we evaluated the prevalence of depressive symptoms, sleep habits, and possible sleep disturbances in college students. Beck Depression Inventory (BDI), Epworth Sleepiness Scale (ESS), and a Sleep Habits Questionnaire were applied to students registered at the Autonomous University of Yucatan, Merida (mean age 20.2 +/- 2.6 years). The final sample was composed of 340 (53%) women and 298 (47%) men. Reliability of the BDI and ESS was assessed by Cronbach's alpha method. Taking 10 as ESS cut-off point, it was found that 31.6% of the students had a high level of sleepiness. Students with depressive symptoms had a greater number of days with somnolence during class (p students without symptoms. In comparison to subjects without depressive symptoms, students with those symptoms rated their sleep quality as poor (p sleep after going to bed (p sleep alterations in a large proportion of the studied subjects, which were more severe in those who showed depressive symptoms. Educating students for appropriate sleep hygiene and encouraging them to seek professional advice to treat sleep disturbances may be useful to prevent depression.

  20. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    Science.gov (United States)

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  1. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle.

    Science.gov (United States)

    Shestopalov, Valery I; Panchin, Yuri; Tarasova, Olga S; Gaynullina, Dina; Kovalzon, Vladimir M

    2017-01-01

    During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1 -/- mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

  2. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle

    Directory of Open Access Journals (Sweden)

    Valery I. Shestopalov

    2017-07-01

    Full Text Available During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1 hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1−/− mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

  3. Sleep disturbances and glucose homeostasis

    NARCIS (Netherlands)

    Barf, R. Paulien; Scheurink, Anton J.W.

    2011-01-01

    Sleep disturbances, induced by either lifestyle, shift work or sleeping disorders, have become more prevalent in our 24/7 Western society. Sleep disturbances are associated with impaired health including metabolic diseases such as obesity and type 2 diabetes. The question remains whether there is a

  4. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  5. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    OpenAIRE

    Mongrain, Valerie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory s...

  6. Regulation of adolescent sleep: implications for behavior.

    Science.gov (United States)

    Carskadon, Mary A; Acebo, Christine; Jenni, Oskar G

    2004-06-01

    Adolescent development is accompanied by profound changes in the timing and amounts of sleep and wakefulness. Many aspects of these changes result from altered psychosocial and life-style circumstances that accompany adolescence. The maturation of biological processes regulating sleep/wake systems, however, may be strongly related to the sleep timing and amount during adolescence-either as "compelling" or "permissive" factors. The two-process model of sleep regulation posits a fundamental sleep-wake homeostatic process (process S) working in concert with the circadian biological timing system (process C) as the primary intrinsic regulatory factors. How do these systems change during adolescence? We present data from adolescent participants examining EEG markers of sleep homeostasis to evaluate whether process S shows maturational changes permissive of altered sleep patterns across puberty. Our data indicate that certain aspects of the homeostatic system are unchanged from late childhood to young adulthood, while other features change in a manner that is permissive of later bedtimes in older adolescents. We also show alterations of the circadian timing system indicating a possible circadian substrate for later adolescent sleep timing. The circadian parameters we have assessed include phase, period, melatonin secretory pattern, light sensitivity, and phase relationships, all of which show evidence of changes during pubertal development with potential to alter sleep patterns substantially. However the changes are mediated-whether through process S, process C, or by a combination-many adolescents have too little sleep at the wrong circadian phase. This pattern is associated with increased risks for excessive sleepiness, difficulty with mood regulation, impaired academic performance, learning difficulties, school tardiness and absenteeism, and accidents and injuries.

  7. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  8. cGMP-dependent protein kinase I, the circadian clock, sleep and learning

    OpenAIRE

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-01-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2 Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consoli...

  9. Sleep homeostasis, habits and habituation.

    Science.gov (United States)

    Vyazovskiy, Vladyslav V; Walton, Mark E; Peirson, Stuart N; Bannerman, David M

    2017-06-01

    The importance of sleep for behavioural performance during waking is long-established, but the underlying reasons and mechanisms remain elusive. Waking and sleep are associated with changes in the levels of GluA1 AMPAR subunit in synaptic membranes, while studies using genetically-modified mice have identified an important role for GluA1-dependent synaptic plasticity in a non-associative form of memory that underlies short-term habituation to recently experienced stimuli. Here we posit that sleep may play a role in dishabituation, which restores attentional capacity and maximises the readiness of the animal for learning and goal-directed behaviour during subsequent wakefulness. Furthermore we suggest that sleep disturbance may fundamentally change the nature of behaviour, making it more model-free and habitual as a result of reduced attentional capacity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Role of ATP in Sleep Regulation

    Directory of Open Access Journals (Sweden)

    Sachiko eChikahisa

    2011-12-01

    Full Text Available One of the functions of sleep is to maintain energy balance in the brain. There are a variety of hypotheses related to how metabolic pathways interact with sleep/wake regulation. A major finding that demonstrates an interaction between sleep and metabolic homeostasis is the involvement of adenosine in sleep homeostasis. An accumulation of adenosine is supplied from ATP, which can act as an energy currency in the cell. Extracellularly, ATP can act as an activity-dependent signaling molecule, especially in regard to communication between neurons and glia, including astrocytes. Furthermore, the intracellular AMP/ATP ratio controls the activity of AMP-activated protein kinase (AMPK, which is a potent energy regulator and is recently reported to play a role in the regulation of sleep homeostasis. Brain ATP may support multiple functions in the regulation of the sleep/wake cycle and sleep homeostasis.

  11. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity.

    Science.gov (United States)

    Gazea, Mary; Patchev, Alexandre V; Anderzhanova, Elmira; Leidmaa, Este; Pissioti, Anna; Flachskamm, Cornelia; Almeida, Osborne F X; Kimura, Mayumi

    2018-01-10

    Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep. SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY 3-36 can reverse this neurochemical imbalance and

  12. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  13. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss.

    Science.gov (United States)

    Halassa, Michael M; Florian, Cedrick; Fellin, Tommaso; Munoz, James R; Lee, So-Young; Abel, Ted; Haydon, Philip G; Frank, Marcos G

    2009-01-29

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep, and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wild-type mice mimicked the transgenic phenotype, we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors.

  14. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  15. Energy stores are not altered by long-term partial sleep deprivation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Susan T Harbison

    2009-07-01

    Full Text Available Recent human studies reveal a widespread association between short sleep and obesity. Two hypotheses, which are not mutually exclusive, might explain this association. First, genetic factors that reduce endogenous sleep times might also impact energy stores, an assertion that we confirmed in a previous study. Second, metabolism may be altered by chronic partial sleep deprivation. Here we address the second assertion by measuring the impact of long-term partial sleep deprivation on energy stores using Drosophila as a model. We subjected flies to long-term partial sleep deprivation via two different methods: a mechanical stimulus and a light stimulus. We then measured whole-body triglycerides and glycogen, two important sources of energy for the fly, and compared them to un-stimulated controls. We also measured changes in energy stores in response to a random circadian clock shift. Sex and line-dependent alterations in glycogen and/or triglyceride levels occurred in response to the circadian clock shift and in flies subjected to a single night of sleep deprivation using light. Thus, consistent with previous studies, our findings suggest that acute sleep loss and changes to the circadian clock can alter metabolism. Significant changes in energy stores were also observed when flies were subjected to chronic sleep loss via the mechanical stimulus, although not the light stimulus. Interestingly, mechanical stimulation resulted in the same change in energy stores even when it was not associated with sleep deprivation, suggesting that the changes are caused by stress rather than sleep loss. These findings emphasize the importance of taking stress into account when evaluating the relationship between sleep loss and metabolism.

  16. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    Science.gov (United States)

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  17. A new theoretical approach to the functional meaning of sleep and dreaming in humans based on the maintenance of 'predictive psychic homeostasis'.

    Science.gov (United States)

    Agnati, Luigi F; Barlow, Peter W; Baluška, František; Tonin, Paolo; Guescini, Michele; Leo, Giuseppina; Fuxe, Kjell

    2011-11-01

    Different theories have been put forward during the last decade to explain the functional meaning of sleep and dreaming in humans. In the present paper, a new theory is presented which, while taking advantage of these earlier theories, introduces the following new and original aspects:   • Circadian rhythms relevant to various organs of the body affect the reciprocal interactions which operate to maintain constancy of the internal milieu and thereby also affect the sleep/wakefulness cycle. Particular attention is given to the constancy of natraemia and osmolarity and to the permissive role that the evolution of renal function has had for the evolution of the central nervous system and its integrative actions. • The resetting of neuro-endocrine controls at the onset of wakefulness leads to the acquisition of new information and its integration within previously stored memories. This point is dealt with in relation to Moore-Ede's proposal for the existence of a 'predictive homeostasis'. • The concept of 'psychic homeostasis' is introduced and is considered as one of the most important states since it is aimed at the well-being, or eudemonia, of the human psyche. Sleep and dreaming in humans are discussed as important functions for the maintenance of a newly proposed composite state: that of 'predictive psychic homeostasis'. On the basis of these assumptions, and in accordance with the available neurobiological data, the present paper puts forward the novel hypothesis that sleep and dreaming play important functions in humans by compensating for psychic allostatic overloads. Hence, both consolatory dreams and disturbing nightmares can be part of the vis medicatrix naturae, the natural healing power, in this case, the state of eudemonia.

  18. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.

    Science.gov (United States)

    Pellegrino, R; Sunaga, D Y; Guindalini, C; Martins, R C S; Mazzotti, D R; Wei, Z; Daye, Z J; Andersen, M L; Tufik, S

    2012-11-01

    Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

  19. Shiftwork-Mediated Disruptions of Circadian Rhythms and Sleep Homeostasis Cause Serious Health Problems

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2018-01-01

    Full Text Available Shiftwork became common during the last few decades with the growing demands of human life. Despite the social inactivity and irregularity in habits, working in continuous irregular shifts causes serious health issues including sleep disorders, psychiatric disorders, cancer, and metabolic disorders. These health problems arise due to the disruption in circadian clock system, which is associated with alterations in genetic expressions. Alteration in clock controlling genes further affects genes linked with disorders including major depression disorder, bipolar disorder, phase delay and phase advance sleep syndromes, breast cancer, and colon cancer. A diverse research work is needed focusing on broad spectrum changes caused by jet lag in brain and neuronal system. This review is an attempt to motivate the researchers to conduct advanced studies in this area to identify the risk factors and mechanisms. Its goal is extended to make the shift workers aware about the risks associated with shiftwork.

  20. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    Science.gov (United States)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  1. Age-dependent alterations in Ca2+ homeostasis: Role of TRPV5 and TRPV6

    NARCIS (Netherlands)

    M. van Abel (Monique); S. Huybers (Sylvie); J.G. Hoenderop (Joost); A.W.C.M. Kemp (Annemiete); J.P.T.M. van Leeuwen (Hans); R.J.M. Bindels (René)

    2006-01-01

    textabstractAging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in

  2. Adaptive mechanisms of homeostasis disorders

    Directory of Open Access Journals (Sweden)

    Anna Maria Dobosiewicz

    2017-08-01

    Full Text Available The ability to preserve a permanent level of internal environment in a human organism, against internal and external factors, which could breach the consistency, can be define as homeostasis. Scientific proven influence on the homeostasis has the periodicity of biological processes, which is also called circadian rhythm. The effect of circadian rhythm is also to see in the functioning of autonomic nervous system and cardiovascular system. Sleep deprivation is an example of how the disorders in circadian rhythm could have the influence on the homeostasis.

  3. Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6.

    NARCIS (Netherlands)

    Abel, M. van; Huybers, S.; Hoenderop, J.G.J.; Kemp, J.W.C.M. van der; Leeuwen, J.P.P.M. van; Bindels, R.J.M.

    2006-01-01

    Aging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in renal Ca2+

  4. Homeostasis-altering molecular processes as mechanisms of inflammasome activation.

    Science.gov (United States)

    Liston, Adrian; Masters, Seth L

    2017-03-01

    The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

  5. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    Science.gov (United States)

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  6. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  7. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    Science.gov (United States)

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  8. Sleep and Metabolism: An Overview

    OpenAIRE

    Sharma, Sunil; Kavuru, Mani

    2010-01-01

    Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways i...

  9. How aging affects sleep-dependent memory consolidation?

    Directory of Open Access Journals (Sweden)

    Caroline eHarand

    2012-02-01

    Full Text Available Sleep plays multiple functions among which energy conservation or recuperative processes. Besides, growing evidence indicate that sleep plays also a major role in memory consolidation, a process by which recently acquired and labile memory traces are progressively strengthened into more permanent and/or enhanced forms. Indeed, memories are not stored as they were initially encoded but rather undergo a gradual reorganization process, which is favoured by the neurochemical environment and the electrophysiological activity observed during sleep. Two putative, probably not exclusive, models (hippocampo-neocortical dialogue and synaptic homeostasis hypothesis have been proposed to explain the beneficial effect of sleep on memory processes. It is worth noting that all data gathered until now emerged from studies conducted in young subjects. The investigation of the relationships between sleep and memory in older adults has sparked off little interest until recently. Though, aging is characterized by memory impairment, changes in sleep architecture, as well as brain and neurochemical alterations. All these elements suggest that sleep-dependent memory consolidation may be impaired or occurs differently in older adults.Here, we give an overview of the mechanisms governing sleep-dependent memory consolidation, and the crucial points of this complex process that may dysfunction and result in impaired memory consolidation in aging.

  10. Sleep, Memory & Brain Rhythms.

    Science.gov (United States)

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  11. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Jun-Xian Song

    2017-08-01

    Full Text Available Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice.Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%, or high-capsaicin (0.02% diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured.Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1

  12. Update of sleep alterations in depression

    Directory of Open Access Journals (Sweden)

    Andrés Barrera Medina

    2014-09-01

    Full Text Available Sleep disturbances in depression are up to 70%. Patients frequently have difficulty in falling asleep, frequent awakenings during the night and non-restorative sleep. Sleep abnormalities in depression are mainly characterized by increased rapid eye movement (REM sleep and reduced slow wave sleep. Among the mechanisms of sleep disturbances in depression are hyperactivation of the hypothalamic-pituitary-adrenal axis, CLOCK gene polymorphism and primary sleep disorders. The habenula is a structure regulating the activities of monoaminergic neurons in the brain. The hyperactivation of the habenula has also been implicated, together with sleep disturbances, in depression. The presence of depression in primary sleep disorders is common. Sleep disturbances treatment include pharmacotherapy or Cognitive Behavioral Therapy.

  13. Update of sleep alterations in depression

    Science.gov (United States)

    Medina, Andrés Barrera; Lechuga, DeboraYoaly Arana; Escandón, Oscar Sánchez; Moctezuma, Javier Velázquez

    2014-01-01

    Sleep disturbances in depression are up to 70%. Patients frequently have difficulty in falling asleep, frequent awakenings during the night and non-restorative sleep. Sleep abnormalities in depression are mainly characterized by increased rapid eye movement (REM) sleep and reduced slow wave sleep. Among the mechanisms of sleep disturbances in depression are hyperactivation of the hypothalamic-pituitary-adrenal axis, CLOCK gene polymorphism and primary sleep disorders. The habenula is a structure regulating the activities of monoaminergic neurons in the brain. The hyperactivation of the habenula has also been implicated, together with sleep disturbances, in depression. The presence of depression in primary sleep disorders is common. Sleep disturbances treatment include pharmacotherapy or Cognitive Behavioral Therapy. PMID:26483922

  14. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B.

    Science.gov (United States)

    Huang, Yansong; Zhang, Yuan; Lin, Zhexuan; Han, Ming; Cheng, Hongqiu

    2018-06-01

    Copper homeostasis can be altered by inflammation. This study aimed to investigate the alteration of serum copper homeostasis and to explore its clinical significance in patients with chronic hepatitis B (CHB).Thirty-two patients with CHB and 10 aged- and sex-matched healthy controls were recruited. Analyses included serum levels of total copper (TCu), copper ions (Cu), small molecule copper (SMC), ceruloplasmin (CP), Cu/Zn superoxide dismutase 1 (SOD1), urinary copper, and the activities of serum CP and SOD1.The serum TCu and urinary copper levels in patients with CHB were significantly higher than the controls (P = .04 and .003), while the serum Cu was lower than the controls (P = .0002). CP and SOD1 activities in the serum were significantly lower in patients with CHB compared to controls (P = .005) despite higher serum concentrations. In addition, serum alanine aminotransferase inversely correlated with serum CP activity (P = .0318, r = -0.4065).Serum copper homeostasis was altered in this cohort of patients with CHB. The results suggest increased oxidative stress and impaired antioxidant capability in patients with CHB, in addition to necroinflammation. These results may provide novel insights into the diagnosis and treatment of patients with CHB.

  15. The Bidirectional Relationship between Sleep and Immunity against Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ibarra-Coronado

    2015-01-01

    Full Text Available Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  16. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    Science.gov (United States)

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, pexercise (+44%, pexercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (pexercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Astrocytic Modulation of Sleep Homeostasis and Cognitive Consequences of Sleep Loss

    OpenAIRE

    Halassa, Michael M.; Florian, Cedrick; Fellin, Tommaso; Munoz, James R.; Lee, So-Young; Abel, Ted; Haydon, Philip G.; Frank, Marcos G.

    2009-01-01

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation o...

  19. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  20. Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

    NARCIS (Netherlands)

    Barf, R. Paulien; Meerlo, Peter; Scheurink, Anton J. W.

    2010-01-01

    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory

  1. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses.

    Science.gov (United States)

    Simor, Attila; Györffy, Balázs András; Gulyássy, Péter; Völgyi, Katalin; Tóth, Vilmos; Todorov, Mihail Ivilinov; Kis, Viktor; Borhegyi, Zsolt; Szabó, Zoltán; Janáky, Tamás; Drahos, László; Juhász, Gábor; Kékesi, Katalin Adrienna

    2017-03-01

    Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions.

    Science.gov (United States)

    Aho, Vilma; Vainikka, Maija; Puttonen, Henri A J; Ikonen, Heidi M K; Salminen, Tiia; Panula, Pertti; Porkka-Heiskanen, Tarja; Wigren, Henna-Kaisa

    2017-06-01

    Sleep-or sleep-like states-have been reported in adult and larval zebrafish using behavioural criteria. These reversible quiescent periods, displaying circadian rhythmicity, have been used in pharmacological, genetic and neuroanatomical studies of sleep-wake regulation. However, one of the important criteria for sleep, namely sleep homeostasis, has not been demonstrated unequivocally. To study rest homeostasis in zebrafish larvae, we rest-deprived 1-week-old larvae with a novel, ecologically relevant method: flow of water. Stereotyped startle responses to sensory stimuli were recorded after the rest deprivation to study arousal threshold using a high-speed camera, providing an appropriate time resolution to detect species-specific behavioural responses occurring in a millisecond time-scale. Rest-deprived larvae exhibited fewer startle responses than control larvae during the remaining dark phase and the beginning of the light phase, which can be interpreted as a sign of rest homeostasis-often used as equivalent of sleep homeostasis. To address sleep homeostasis further, we probed the adenosinergic system, which in mammals regulates sleep homeostasis. The adenosine A1 receptor agonist, cyclohexyladenosine, administered during the light period, decreased startle responses and increased immobility bouts, while the adenosine antagonist, caffeine, administered during the dark period, decreased immobility bouts. These results suggest that the regulation of sleep homeostasis in zebrafish larvae consists of the same elements as that of other species. © 2017 European Sleep Research Society.

  3. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie

    2014-11-16

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named “glycogenetic” hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  4. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    Science.gov (United States)

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of

  5. [Natural factors influencing sleep].

    Science.gov (United States)

    Jurkowski, Marek K; Bobek-Billewicz, Barbara

    2007-01-01

    Sleep is a universal phenomenon of human and animal lives, although the importance of sleep for homeo-stasis is still unknown. Sleep disturbances influence many behavioral and physiologic processes, leading to health complications including death. On the other hand, sleep improvement can beneficially influence the course of healing of many disorders and can be a prognostic of health recovery. The factors influencing sleep have different biological and chemical origins. They are classical hormones, hypothalamic releasing and inhibitory hormones, neuropeptides, peptides and others as cytokines, prostaglandins, oleamid, adenosine, nitric oxide. These factors regulate most physiologic processes and are likely elements integrating sleep with physiology and physiology with sleep in health and disorders.

  6. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    Science.gov (United States)

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat

    International Nuclear Information System (INIS)

    Kransler, Kevin M.; Tonucci, David A.; McGarrigle, Barbara P.; Napoli, Joseph L.; Olson, James R.

    2007-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 μg/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure to TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis

  8. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila.

    Science.gov (United States)

    Thimgan, Matthew S; Seugnet, Laurent; Turk, John; Shaw, Paul J

    2015-05-01

    Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.

  9. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  10. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chunxia He

    Full Text Available Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY, a homolog of Drosophila neuropeptide F (NPF, is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1 on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies.

  11. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Directory of Open Access Journals (Sweden)

    Daniel P. Venâncio

    2012-01-01

    Full Text Available We investigated the effect of 96 h paradoxical sleep deprivation (PSD and 21-day sleep restriction (SR on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR.

  12. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Science.gov (United States)

    Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.

    2012-01-01

    We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719

  13. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    Science.gov (United States)

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  14. Alterations in vitamin A/retinoic acid homeostasis in diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Mody, Nimesh

    2017-11-01

    Vitamin A is an essential micronutrient for life and the phytochemical β-carotene, also known as pro-vitamin A, is an important dietary source of this vitamin. Vitamin A (retinol) is the parent compound of all bioactive retinoids but it is retinoic acid (RA) that is the active metabolite of vitamin A. The plasma concentration of retinol is maintained in a narrow range and its normal biological activities strictly regulated since excessive intake can lead to toxicity and thus also be detrimental to life. The present review will give an overview of how vitamin A homeostasis is maintained and move on to focus on the link between circulating vitamin A and metabolic disease states. Finally, we will examine how pharmacological or genetic alterations in vitamin A homeostasis and RA-signalling can influence body fat and blood glucose levels including a novel link to the liver secreted hormone fibroblast growth factor 21, an important metabolic regulator.

  15. Sleep-dependent memory consolidation in patients with sleep disorders.

    Science.gov (United States)

    Cipolli, Carlo; Mazzetti, Michela; Plazzi, Giuseppe

    2013-04-01

    Sleep can improve the off-line memory consolidation of new items of declarative and non-declarative information in healthy subjects, whereas acute sleep loss, as well as sleep restriction and fragmentation, impair consolidation. This suggests that, by modifying the amount and/or architecture of sleep, chronic sleep disorders may also lead to a lower gain in off-line consolidation, which in turn may be responsible for the varying levels of impaired performance at memory tasks usually observed in sleep-disordered patients. The experimental studies conducted to date have shown specific impairments of sleep-dependent consolidation overall for verbal and visual declarative information in patients with primary insomnia, for verbal declarative information in patients with obstructive sleep apnoeas, and for visual procedural skills in patients with narcolepsy-cataplexy. These findings corroborate the hypothesis that impaired consolidation is a consequence of the chronically altered organization of sleep. Moreover, they raise several novel questions as to: a) the reversibility of consolidation impairment in the case of effective treatment, b) the possible negative influence of altered prior sleep also on the encoding of new information, and c) the relationships between altered sleep and memory impairment in patients with other (medical, psychiatric or neurological) diseases associated with quantitative and/or qualitative changes of sleep architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Relationship between Sleep Problems, Neurobiological Alterations, Core Symptoms of Autism Spectrum Disorder, and Psychiatric Comorbidities

    Directory of Open Access Journals (Sweden)

    Luigi Mazzone

    2018-05-01

    Full Text Available Children with Autism Spectrum Disorder (ASD are at an increased risk for sleep disturbances, and studies indicate that between 50 and 80% of children with ASD experience sleep problems. These problems increase parental stress and adversely affect family quality of life. Studies have also suggested that sleep disturbances may increase behavioral problems in this clinical population. Although understanding the causes of sleep disorders in ASD is a clinical priority, the causal relationship between these two conditions remains unclear. Given the complex nature of ASD, the etiology of sleep problems in this clinical population is probably multi-factorial. In this overview, we discuss in detail three possible etiological explanations of sleep problems in ASD that can all contribute to the high rate of these symptoms in ASD. Specifically, we examine how neurobiological alterations, genetic mutations, and disrupted sleep architecture can cause sleep problems in individuals with ASD. We also discuss how sleep problems may be a direct result of core symptoms of ASD. Finally, a detailed examination of the relationship between sleep problems and associated clinical features and psychiatric comorbidities in individuals with ASD is described.

  17. The role of sleep in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Gold AK

    2016-06-01

    Full Text Available Alexandra K Gold,1 Louisa G Sylvia,1,2 1Department of Psychiatry, Massachusetts General Hospital, 2Harvard Medical School, Boston, MA, USA Abstract: Bipolar disorder is a serious mental illness characterized by alternating periods of elevated and depressed mood. Sleep disturbances in bipolar disorder are present during all stages of the condition and exert a negative impact on overall course, quality of life, and treatment outcomes. We examine the partnership between circadian system (process C functioning and sleep–wake homeostasis (process S on optimal sleep functioning and explore the role of disruptions in both systems on sleep disturbances in bipolar disorder. A convergence of evidence suggests that sleep problems in bipolar disorder result from dysregulation across both process C and process S systems. Biomarkers of depressive episodes include heightened fragmentation of rapid eye movement (REM sleep, reduced REM latency, increased REM density, and a greater percentage of awakenings, while biomarkers of manic episodes include reduced REM latency, greater percentage of stage I sleep, increased REM density, discontinuous sleep patterns, shortened total sleep time, and a greater time awake in bed. These findings highlight the importance of targeting novel treatments for sleep disturbance in bipolar disorder. Keywords: bipolar disorder, circadian rhythms, sleep–wake homeostasis

  18. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Ledri, Marco; Melis, Miriam

    2017-01-01

    Chloride ions play an important role in controlling excitability of principal neurons in the central nervous system. When neurotransmitter GABA is released from inhibitory interneurons, activated GABA type A (GABAA) receptors on principal neurons become permeable to chloride. Typically, chloride...... neurons, and promote AP generation. It is generally recognized that altered chloride homeostasis per se has no effect on the AP threshold. Here, we demonstrate that chloride overload of mouse principal CA3 pyramidal neurons not only makes these cells more excitable through GABAA receptor activation...

  19. REM-sleep alterations in children with co-existence of tic disorders and attention-deficit/hyperactivity disorder: impact of hypermotor symptoms.

    Science.gov (United States)

    Kirov, Roumen; Banaschewski, Tobias; Uebel, Henrik; Kinkelbur, Jörg; Rothenberger, Aribert

    2007-06-01

    To characterize precisely the sleep pattern in children with co-existence of TD + ADHD. By means of polysomnography, sleep pattern was investigated in 19 children with TD + ADHD unmedicated before and during study and 19 healthy controls, matched for age, gender, and intelligence. Compared with healthy controls, children with TD + ADHD displayed shorter REM sleep latency and increased REM sleep duration. There was a negative correlational relationship between these REM-sleep alterations and they were determined by hyperactivity symptoms. Sleep in children with coexistence of TD + ADHD may be characterized by an elevated REM sleep drive. Common mechanisms are suggested to underpin hypermotor symptoms and REM sleep regulation.

  20. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    Science.gov (United States)

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  1. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    Science.gov (United States)

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  2. [How does sleeping restore our brain?].

    Science.gov (United States)

    Wigren, Henna-Kaisa; Stenberg, Tarja

    2015-01-01

    The central function of sleep is to keep our brain functional, but what is the restoration that sleep provides? Sleep after learning improves learning outcomes. According to the theory of synaptic homeostasis the total strength of synapses, having increased during the day, is restored during sleep, making room for the next day's experiences. According to the theory of active synaptic consolidation, repetition during sleep strengthens the synapses, and these strengthened synapses form a permanent engram. According to a recent study, removal of waste products from the brain may also be one of the functions of sleep.

  3. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    Directory of Open Access Journals (Sweden)

    Joyce R.S. Raimundo

    Full Text Available OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi, renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure, cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  4. Neuronal redox imbalance results in altered energy homeostasis and early postnatal lethality.

    Science.gov (United States)

    Maity-Kumar, Gandhari; Thal, Dietmar R; Baumann, Bernd; Scharffetter-Kochanek, Karin; Wirth, Thomas

    2015-07-01

    Redox imbalance is believed to contribute to the development and progression of several neurodegenerative disorders. Our aim was to develop an animal model that exhibits neuron-specific oxidative stress in the CNS to study the consequences and eventually find clues regarding the pathomechanisms of oxidative insults in neuronal homeostasis. We therefore generated a novel neuron-specific superoxide dismutase 2 (SOD2)-deficient mouse by deleting exon 3 of the SOD2 gene using CamKIIα promoter-driven Cre expression. These neuron-specific SOD2 knockout (SOD2(nko)) mice, although born at normal frequencies, died at the age of 4 weeks with critical growth retardation, severe energy failure, and several neurologic phenotypes. In addition, SOD2(nko) mice exhibited severe neuronal alterations such as reactive astrogliosis, neuronal cell cycle inhibition, and induction of apoptosis. JNK activation and stabilization of p53, as a result of reactive oxygen species accumulation, are most likely the inducers of neuronal apoptosis in SOD2(nko) mice. It is remarkable that hypothalamic regulation of glucose metabolism was affected, which in turn induced necrotic brain lesions in SOD2(nko) mice. Taken together, our findings suggest that exclusive deficiency of SOD2 in neurons results in an impaired central regulation of energy homeostasis that leads to persistent hypoglycemia, hypoglycemia-related neuropathology, and an early lethality of the mutant mice. © FASEB.

  5. Altered sleep-wake patterns in blindness

    DEFF Research Database (Denmark)

    Aubin, S.; Gacon, C.; Jennum, P.

    2016-01-01

    discuss variability in the sleep–wake pattern between blind and normal-sighted individuals. Methods Thirty-day actigraphy recordings were collected from 11 blind individuals without residual light perception and 11 age- and sex-matched normal-sighted controls. From these recordings, we extracted...... the Pittsburgh Sleep Quality Index, and chronotype, using the Morningness-Eveningness Questionnaire. Results Although no group differences were found when averaging over the entire recording period, we found a greater variability throughout the 30-days in both sleep efficiency and timing of the night-time sleep...

  6. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    Directory of Open Access Journals (Sweden)

    Michael W. Chi

    2014-08-01

    Full Text Available Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  7. Creatine supplementation reduces sleep need and homeostatic sleep pressure in rats.

    Science.gov (United States)

    Dworak, Markus; Kim, Tae; Mccarley, Robert W; Basheer, Radhika

    2017-06-01

    Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders. © 2017 European Sleep Research Society.

  8. Alterations in Skin Temperature and Sleep in the Fear of Harm Phenotype of Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Patricia J. Murphy

    2014-08-01

    Full Text Available In children diagnosed with pediatric bipolar disorder (PBD, disturbances in the quality of sleep and wakefulness are prominent. A novel phenotype of PBD called Fear of Harm (FOH associated with separation anxiety and aggressive obsessions is associated with sleep onset insomnia, parasomnias (nightmares, night-terrors, enuresis, REM sleep-related problems, and morning sleep inertia. Children with FOH often experience thermal discomfort (e.g., feeling hot, excessive sweating in neutral ambient temperature conditions, as well as no discomfort during exposure to the extreme cold, and alternate noticeably between being excessively hot in the evening and cold in the morning. We hypothesized that these sleep- and temperature-related symptoms were overt symptoms of an impaired ability to dissipate heat, particularly in the evening hours near the time of sleep onset. We measured sleep/wake variables using actigraphy, and nocturnal skin temperature variables using thermal patches and a wireless device, and compared these data between children with PBD/FOH and a control sample of healthy children. The results are suggestive of a thermoregulatory dysfunction that is associated with sleep onset difficulties. Further, they are consistent with our hypothesis that alterations in neural circuitry common to thermoregulation and emotion regulation underlie affective and behavioral symptoms of the FOH phenotype.

  9. Why does serotonergic activity drastically decrease during REM sleep?

    Science.gov (United States)

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  10. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice.

    Science.gov (United States)

    Sabir, Meriem; Gaudreault, Pierre-Olivier; Freyburger, Marlène; Massart, Renaud; Blanchet-Cohen, Alexis; Jaber, Manar; Gosselin, Nadia; Mongrain, Valérie

    2015-07-01

    Traumatic brain injury (TBI), including mild TBI (mTBI), is importantly associated with vigilance and sleep complaints. Because sleep is required for learning, plasticity and recovery, we here evaluated the bidirectional relationship between mTBI and sleep with two specific objectives: (1) Test that mTBI rapidly impairs sleep-wake architecture and the dynamics of the electrophysiological marker of sleep homeostasis (i.e., non-rapid eye movement sleep delta (1-4Hz) activity); (2) evaluate the impact of sleep loss following mTBI on the expression of plasticity markers that have been linked to sleep homeostasis and on genome-wide gene expression. A closed-head injury model was used to perform a 48h electrocorticographic (ECoG) recording in mice submitted to mTBI or Sham surgery. mTBI was found to immediately decrease the capacity to sustain long bouts of wakefulness as well as the amplitude of the time course of ECoG delta activity during wakefulness. Significant changes in ECoG spectral activity during wakefulness, non-rapid eye movement and rapid eye movement sleep were observed mainly on the second recorded day. A second experiment was performed to measure gene expression in the cerebral cortex and hippocampus after a mTBI followed either by two consecutive days of 6h sleep deprivation (SD) or of undisturbed behavior (quantitative PCR and next-generation sequencing). mTBI modified the expression of genes involved in immunity, inflammation and glial function (e.g., chemokines, glial markers) and SD changed that of genes linked to circadian rhythms, synaptic activity/neuronal plasticity, neuroprotection and cell death and survival. SD appeared to affect gene expression in the cerebral cortex more importantly after mTBI than Sham surgery including that of the astrocytic marker Gfap, which was proposed as a marker of clinical outcome after TBI. Interestingly, SD impacted the hippocampal expression of the plasticity elements Arc and EfnA3 only after mTBI. Overall, our

  11. Functional data analysis of sleeping energy expenditure.

    Science.gov (United States)

    Lee, Jong Soo; Zakeri, Issa F; Butte, Nancy F

    2017-01-01

    Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of SEE and to discriminate SEE between obese and non-obese children. Minute-by-minute SEE in 109 children, ages 5-18, was measured in room respiration calorimeters. A smoothing spline method was applied to the calorimetric data to extract the true smoothing function for each subject. Functional principal component analysis was used to capture the important modes of variation of the functional data and to identify differences in SEE patterns. Combinations of functional principal component analysis and classifier algorithm were used to classify SEE. Smoothing effectively removed instrumentation noise inherent in the room calorimeter data, providing more accurate data for analysis of the dynamics of SEE. SEE exhibited declining but subtly undulating patterns throughout the night. Mean SEE was markedly higher in obese than non-obese children, as expected due to their greater body mass. SEE was higher among the obese than non-obese children (p0.1, after post hoc testing). Functional principal component scores for the first two components explained 77.8% of the variance in SEE and also differed between groups (p = 0.037). Logistic regression, support vector machine or random forest classification methods were able to distinguish weight-adjusted SEE between obese and non-obese participants with good classification rates (62-64%). Our results implicate other factors, yet to be uncovered, that affect the weight-adjusted SEE of obese and non-obese children. Functional data analysis revealed differences in the structure of SEE between obese and non-obese children that may contribute to disruption of metabolic homeostasis.

  12. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  13. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    Science.gov (United States)

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  14. Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Camilo eLibedinsky

    2011-10-01

    Full Text Available Even a single night of total sleep-deprivation (SD can have dramatic effects on economic decision making. Here we tested the novel hypothesis that SD influences economic decisions by altering the valuation process. Using functional magnetic resonance imaging (fMRI we identified value signals related to the anticipation and the experience of monetary and social rewards (attractive female faces. We then derived decision value signals that were predictive of each participant’s willingness to exchange money for brief views of attractive faces in an independent market task. Strikingly, SD altered decision value signals in ventromedial prefrontal cortex (VMPFC in proportion to the corresponding change in economic preferences. These changes in preference were independent of the effects of SD on attention and vigilance. Our results provide novel evidence that signals in VMPFC track the current state of the individual, and thus reflect not static but constructed preferences.

  15. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    Science.gov (United States)

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  16. Sleep Deprivation and the Epigenome.

    Science.gov (United States)

    Gaine, Marie E; Chatterjee, Snehajyoti; Abel, Ted

    2018-01-01

    Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.

  17. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  18. Brain Networks are Independently Modulated by Donepezil, Sleep, and Sleep Deprivation.

    Science.gov (United States)

    Wirsich, Jonathan; Rey, Marc; Guye, Maxime; Bénar, Christian; Lanteaume, Laura; Ridley, Ben; Confort-Gouny, Sylviane; Cassé-Perrot, Catherine; Soulier, Elisabeth; Viout, Patrick; Rouby, Franck; Lefebvre, Marie-Noëlle; Audebert, Christine; Truillet, Romain; Jouve, Elisabeth; Payoux, Pierre; Bartrés-Faz, David; Bordet, Régis; Richardson, Jill C; Babiloni, Claudio; Rossini, Paolo Maria; Micallef, Joelle; Blin, Olivier; Ranjeva, Jean-Philippe

    2018-05-01

    Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly linked to donepezil intake and sleep deprivation. Taking into account the sleep stages extracted from the EEG data we revealed that a network linked to sleep is interacting with sleep deprivation but not with medication intake. We successfully extracted the functional resting-state networks modified by donepezil intake, sleep and SD. We observed donepezil induced whole brain connectivity alterations forming a network separated from the changes induced by sleep and SD, a result which shows the utility of this approach to check for the validity of pharmacological resting-state analysis of the tested medications without the need of taking into account the subject specific vigilance.

  19. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia.

    Science.gov (United States)

    Smith, Shari E; Prosser-Loose, Erin J; Colbourne, Frederick; Paterson, Phyllis G

    2011-02-01

    Co-existing protein-energy malnutrition (PEM), characterized by deficits in both protein and energy status, impairs functional outcome following global ischemia and has been associated with increased reactive gliosis. Since temperature is a key determinant of brain damage following an ischemic insult, the objective was to investigate whether alterations in post-ischemic temperature regulation contribute to PEM-induced reactive gliosis following ischemia. Male Sprague-Dawley rats (190-280 g) were assigned to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7 days prior to either global ischemia or sham surgery. There was a rapid disruption in thermoregulatory function in rats fed the low protein diet as assessed by continuous recording of core temperature with bio-electrical sensor transmitters. Both daily temperature fluctuation and mean temperature increased within the first 24 hours, and these remained significantly elevated throughout the 7 day pre-ischemic period (p protein diet rapidly impairs the ability to maintain thermoregulatory homeostasis, and the resultant PEM also diminishes the ability to thermoregulate in response to a challenge. Since temperature regulation is a key determinant of brain injury following ischemia, these findings suggest that the pathophysiology of brain injury could be altered in stroke victims with coexisting PEM.

  20. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Sonia Jego

    Full Text Available The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH in neurons from the tuberal hypothalamic area (THA which are recruited during sleep states, especially paradoxical sleep (PS. To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2 prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS. Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.

  1. Sleep Deprivation and the Epigenome

    Directory of Open Access Journals (Sweden)

    Marie E. Gaine

    2018-02-01

    Full Text Available Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i DNA methylation; (ii histone modifications; and (iii non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.

  2. Partial sleep deprivation does not alter processes involved in semantic word priming: event-related potential evidence.

    Science.gov (United States)

    Tavakoli, Paniz; Muller-Gass, Alexandra; Campbell, Kenneth

    2015-03-01

    Sleep deprivation has generally been observed to have a detrimental effect on tasks that require sustained attention for successful performance. It might however be possible to counter these effects by altering cognitive strategies. A recent semantic word priming study indicated that subjects used an effortful predictive-expectancy search of semantic memory following normal sleep, but changed to an automatic, effortless strategy following total sleep deprivation. Partial sleep deprivation occurs much more frequently than total sleep deprivation. The present study therefore employed a similar priming task following either 4h of sleep or following normal sleep. The purpose of the study was to determine whether partial sleep deprivation would also lead to a shift in cognitive strategy to compensate for an inability to sustain attention and effortful processing necessary for using the predicative expectancy strategy. Sixteen subjects were presented with word pairs, a prime and a target that were either strongly semantically associated (cat...dog), weakly associated (cow...barn) or not associated (apple...road). The subject's task was to determine if the target word was semantically associated to the prime. A strong priming effect was observed in both conditions. RTs were slower, accuracy lower, and N400 larger to unassociated targets, independent of the amount of sleep. The overall N400 did not differ as a function of sleep. The scalp distribution of the N400 was also similar following both normal sleep and sleep loss. There was thus little evidence of a difference in the processing of the target stimulus as a function of the amount sleep. Similarly, ERPs in the period between the onset of the prime and the subsequent target also did not differ between the normal sleep and sleep loss conditions. In contrast to total sleep deprivation, subjects therefore appeared to use a common predictive expectancy strategy in both conditions. This strategy does however require an

  3. Developmental care does not alter sleep and development of premature infants.

    Science.gov (United States)

    Ariagno, R L; Thoman, E B; Boeddiker, M A; Kugener, B; Constantinou, J C; Mirmiran, M; Baldwin, R B

    1997-12-01

    The Neonatal Individualized Developmental Care Program (NIDCAP) for very low birth weight (VLBW) preterm infants has been suggested by Als et al to improve several medical outcome variables such as time on ventilator, time to nipple feed, the duration of hospital stay, better behavioral performance on Assessment of Preterm Infants' Behavior (APIB), and improved neurodevelopmental outcomes. We have tested the hypothesis of whether the infants who had received NIDCAP would show advanced sleep-wake pattern, behavioral, and neurodevelopmental outcome. Thirty-five VLBW infants were randomly assigned to receive NIDCAP or routine infant care. The goals for NIDCAP intervention were to enhance comfort and stability and to reduce stress and agitation for the preterm infants by: a) altering the environment by decreasing excess light and noise in the neonatal intensive care unit (NICU) and by using covers over the incubators and cribs; b) use of positioning aids such as boundary supports, nests, and buntings to promote a balance of flexion and extension postures; c) modification of direct hands-on caregiving to maximize preparation of infants for, tolerance of, and facilitation of recovery from interventions; d) promotion of self-regulatory behaviors such as holding on, grasping, and sucking; e) attention to the readiness for and the ability to take oral feedings; and f) involving parents in the care of their infants as much as possible. The infants' sleep was recorded at 36 weeks postconceptional age (PCA) and at 3 months corrected age (CA) using the Motility Monitoring System (MMS), an automated, nonintrusive procedure for determining sleep state from movement and respiration patterns. Behavioral and developmental outcome was assessed by the Neurobehavioral Assessment of the Preterm Infant (NAPI) at 36 weeks PCA, the APIB at 42 weeks PCA, and by the Bayley Scales of Infant Development (BSID) at 4, 12, and 24 months CA. Sleep developmental measures at 3 months CA showed a

  4. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    Science.gov (United States)

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [ 14 C]CD or [ 14 C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  6. Operation of a homeostatic sleep switch.

    Science.gov (United States)

    Pimentel, Diogo; Donlea, Jeffrey M; Talbot, Clifford B; Song, Seoho M; Thurston, Alexander J F; Miesenböck, Gero

    2016-08-18

    Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the

  7. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    Science.gov (United States)

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  8. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    Science.gov (United States)

    Trksak, George H.; Bracken, Bethany K.; Jensen, J. Eric; Plante, David T.; Penetar, David M.; Tartarini, Wendy L.; Maywalt, Melissa A.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent [31]P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, [31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse. PMID:24250276

  9. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Lyssimachou, Angeliki; Navarro, Juan Carlos; Bachmann, Jean; Porte, Cinta

    2009-05-01

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males.

  10. Neurobiology of Sleep and Sleep Treatment Response in PTSD

    Science.gov (United States)

    2009-10-01

    conducted in PTSD samples, these sleep measurement methods do not allow the identification of neurobio - logical underpinnings of trauma-related...vided valuable insights into the potential neurobio - logical underpinnings of altered REM and NREM sleep mechanisms following stress exposure PTSD...nightmare patients often report improvements In sleep quality, feeling more rested upon awakening and having more davtime energy , and reduction in

  11. Remission of encephalopathy with status epilepticus (ESES) during sleep renormalizes regulation of slow wave sleep

    DEFF Research Database (Denmark)

    Bölsterli, Bigna K.; Gardella, Elena; Pavlidis, Elena

    2017-01-01

    Objective: In previous studies, we showed an altered overnight decrease of non–rapid-eye-movement (NREM) sleep slow waves in children with encephalopathy related to status epilepticus during sleep (ESES). Here, we test the hypothesis that these alterations renormalize after remission of ESES...

  12. Information processing during NREM sleep and sleep quality in insomnia.

    Science.gov (United States)

    Ceklic, Tijana; Bastien, Célyne H

    2015-12-01

    Insomnia sufferers (INS) are cortically hyperaroused during sleep, which seems to translate into altered information processing during nighttime. While information processing, as measured by event-related potentials (ERPs), during wake appears to be associated with sleep quality of the preceding night, the existence of such an association during nighttime has never been investigated. This study aims to investigate nighttime information processing among good sleepers (GS) and INS while considering concomitant sleep quality. Following a multistep clinical evaluation, INS and GS participants underwent 4 consecutive nights of PSG recordings in the sleep laboratory. Thirty nine GS (mean age 34.56±9.02) and twenty nine INS (mean age 43.03±9.12) were included in the study. ERPs (N1, P2, N350) were recorded all night on Night 4 (oddball paradigm) during NREM sleep. Regardless of sleep quality, INS presented a larger N350 amplitude during SWS (p=0.042) while GS showed a larger N350 amplitude during late-night stage 2 sleep (p=0.004). Regardless of diagnosis, those who slept objectively well showed a smaller N350 amplitude (p=0.020) while those who slept subjectively well showed a smaller P2 (pInformation processing seems to be associated with concomitant subjective and objective sleep quality for both GS and INS. However, INS show an alteration in information processing during sleep, especially for inhibition processes, regardless of their sleep quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Sleep variability in adolescence is associated with altered brain development.

    Science.gov (United States)

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Sleep disorders in Parkinson's disease: insomnia and sleep fragmentation, daytime hypersomnia, alterations to the circadian rhythm and sleep apnea syndrome].

    Science.gov (United States)

    Mondragón-Rezola, E; Arratíbel-Echarren, I; Ruiz-Martínez, J; Martí-Massó, J F

    2010-02-08

    Sleep disorders in Parkinson's disease are present in 60-98% of patients and reduce their quality of life. To review the pathophysiology, diagnostic approach and management of the different sleep disorders. We describe the pathophysiology associated with neurodegeneration, due to symptoms (motor and nonmotor) and drug therapies. This article reviews insomnia, excessive daytime sleepiness, circadian sleep disorders and sleep apnea. Subjective or objective sleepiness assessment should routinely be performed by physicians looking after Parkinson's disease patients. Management is difficult and should be targeted to the specific sleep disorder and its likely cause.

  15. Dopaminergic Neurogenetics of Sleep Disorders in Reward Deficiency Syndrome (RDS).

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra D; Khurshid, Khurshid A; Gold, Mark S

    2014-02-18

    It is well-known that sleep has a vital function especially as it relates to prevention of substance-related disorders as discussed in the DSM-V. We are cognizant that certain dopaminergic gene polymorphisms have been associated with various sleep disorders. The importance of "normal dopamine homeostasis" is tantamount for quality of life especially for the recovering addict. Since it is now know that sleep per se has been linked with metabolic clearance of neurotoxins in the brain, it is parsonomiuos to encourage continued research in sleep science, which should ultimately result in attenuation of sleep deprivation especially associated with substance related disorders.

  16. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    Science.gov (United States)

    Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394

  17. Sleep deprivation: a mind-body approach.

    Science.gov (United States)

    Aguirre, Claudia C

    2016-11-01

    The purpose of this review is to summarize recent advances in our understanding of the impact sleep disturbances have on our health, with particular focus on the brain. The present review considers the influence of sleep disturbance on the neurovascular unit; the role of sleep disturbance in neurodegenerative diseases; and relevant strategies of neuro-immuno-endocrine interactions that likely contribute to the restorative power of sleep. Given the latest discoveries about the brain's waste clearance system and its relationship to neurodegenerative diseases like Alzheimer's disease, this review gives a brief overview on the molecular mechanisms behind sleep loss-related impairments. Recent evidence indicates that sleep plays a vital role in neuro-immuno-endocrine homeostasis. Sleep loss has been linked to elevated risks for cognitive and mood disorders, underscored by impaired synaptic transmission. The glymphatic system has been shown to be modulated by sleep and implicated in neurodegenerative disorders. Interactions between sleep quality, the immune system, and neurodegenerative disease are complex and a challenge to distil. These interactions are frequently bidirectional, because of sleep's characterization as an early symptom and as a potential factor contributing to the development and progression of mood and cognitive disorders. VIDEO ABSTRACT.

  18. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    Directory of Open Access Journals (Sweden)

    Jun Lv

    Full Text Available Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG and functional magnetic resonance imaging (fMRI time series.In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  19. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  20. Sleep spindle density in narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias

    2017-01-01

    BACKGROUND: Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether...... the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). METHODS: All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin...... levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2...

  1. Alcohol and the sleeping brain.

    Science.gov (United States)

    Colrain, Ian M; Nicholas, Christian L; Baker, Fiona C

    2014-01-01

    Alcohol acts as a sedative that interacts with several neurotransmitter systems important in the regulation of sleep. Acute administration of large amounts of alcohol prior to sleep leads to decreased sleep-onset latency and changes in sleep architecture early in the night, when blood alcohol levels are high, with subsequent disrupted, poor-quality sleep later in the night. Alcohol abuse and dependence are associated with chronic sleep disturbance, lower slow-wave sleep, and more rapid-eye-movement sleep than normal, that last long into periods of abstinence and may play a role in relapse. This chapter outlines the evidence for acute and chronic alcohol effects on sleep architecture and sleep electroencephalogram, evidence for tolerance with repeated administration, and possible underlying neurochemical mechanisms for alcohol's effects on sleep. Also discussed are sex differences as well as effects of alcohol on sleep homeostasis and circadian regulation. Evidence for the role of sleep disruption as a risk factor for developing alcohol dependence is discussed in the context of research conducted in adolescents. The utility of sleep-evoked potentials in the assessment of the effects of alcoholism on sleep and the brain and in abstinence-mediated recovery is also outlined. The chapter concludes with a series of questions that need to be answered to determine the role of sleep and sleep disturbance in the development and maintenance of problem drinking and the potential beneficial effects of the treatment of sleep disorders for maintenance of abstinence in alcoholism. © 2014 Elsevier B.V. All rights reserved.

  2. Sleep and cardiometabolic risk in children and adolescents

    DEFF Research Database (Denmark)

    Quist, Jonas Salling; Sjödin, Anders Mikael; Chaput, Jean-Philippe

    2016-01-01

    The evidence for a link between sleep and cardiometabolic risk factors in children and adolescents is accumulating; however, the literature has not yet been reviewed. Seventy-five studies investigating associations between sleep variables and measures of abdominal adiposity, glucose homeostasis......, blood lipids, blood pressure (BP), and inflammatory markers were included in the present review. The current evidence indicates that inadequate sleep may play a role in cardiometabolic risk at a later age for children and adolescents. Most compelling is the evidence for an association between inadequate...... sleep and abdominal adiposity, decreased insulin sensitivity as well as high BP, whereas the evidence for potential links between sleep and blood lipids as well as inflammatory markers is less convincing. It should, however, be noted that the majority of studies linking sleep with cardiometabolic...

  3. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    Energy Technology Data Exchange (ETDEWEB)

    Lyssimachou, Angeliki [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Navarro, Juan Carlos [Institute of Aquaculture of Torre de la Sal, CSIC, 12595 Ribera de Cabanes, Castellon (Spain); Bachmann, Jean [Department of Ecology and Evolution-Ecotoxicology, Johann Wolfgang Goethe-University Frankfurt, D-60054 Frankfurt am Main (Germany); Porte, Cinta, E-mail: cinta.porte@cid.csic.e [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain)

    2009-05-15

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  4. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    International Nuclear Information System (INIS)

    Lyssimachou, Angeliki; Navarro, Juan Carlos; Bachmann, Jean; Porte, Cinta

    2009-01-01

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  5. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  6. Sleep and metabolic function.

    Science.gov (United States)

    Morselli, Lisa L; Guyon, Aurore; Spiegel, Karine

    2012-01-01

    Evidence for the role of sleep on metabolic and endocrine function has been reported more than four decades ago. In the past 30 years, the prevalence of obesity and diabetes has greatly increased in industrialized countries, and self-imposed sleep curtailment, now very common, is starting to be recognized as a contributing factor, alongside with increased caloric intake and decreased physical activity. Furthermore, obstructive sleep apnea, a chronic condition characterized by recurrent upper airway obstruction leading to intermittent hypoxemia and sleep fragmentation, has also become highly prevalent as a consequence of the epidemic of obesity and has been shown to contribute, in a vicious circle, to the metabolic disturbances observed in obese patients. In this article, we summarize the current data supporting the role of sleep in the regulation of glucose homeostasis and the hormones involved in the regulation of appetite. We also review the results of the epidemiologic and laboratory studies that investigated the impact of sleep duration and quality on the risk of developing diabetes and obesity, as well as the mechanisms underlying this increased risk. Finally, we discuss how obstructive sleep apnea affects glucose metabolism and the beneficial impact of its treatment, the continuous positive airway pressure. In conclusion, the data available in the literature highlight the importance of getting enough good sleep for metabolic health.

  7. Altered Nocturnal Cardiovascular Control in Children With Sleep-Disordered Breathing.

    Science.gov (United States)

    El-Hamad, Fatima; Immanuel, Sarah; Liu, Xiao; Pamula, Yvonne; Kontos, Anna; Martin, James; Kennedy, Declan; Kohler, Mark; Porta, Alberto; Baumert, Mathias

    2017-10-01

    To assess cardiovascular control during sleep in children with sleep-disordered breathing (SDB) and the effect of adenotonsillectomy in comparison to healthy nonsnoring children. Cardiorespiratory signals obtained from overnight polysomnographic recordings of 28 children with SDB and 34 healthy nonsnoring children were analyzed. We employed an autoregressive closed-loop model with heart period (RR) and pulse transit time (PTT) as outputs and respiration as an external input to obtain estimates of respiratory gain and baroreflex gain. Mean and variability of PTT were increased in children with SDB across all stages of sleep. Low frequency power of RR and PTT were attenuated during non-rapid eye movement (REM) sleep. Baroreflex sensitivity was reduced in children with SDB in stage 2 sleep, while respiratory gain was increased in slow wave sleep. After adenotonsillectomy, these indices normalized in the SDB group attaining values comparable to those of healthy children. In children with mild-to-moderate SDB, vasomotor activity is increased and baroreflex sensitivity decreased during quiet, event-free non-REM sleep. Adenotonsillectomy appears to reverse this effect. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality.

    Science.gov (United States)

    Metzger, Michael W; Walser, Sandra M; Dedic, Nina; Aprile-Garcia, Fernando; Jakubcakova, Vladimira; Adamczyk, Marek; Webb, Katharine J; Uhr, Manfred; Refojo, Damian; Schmidt, Mathias V; Friess, Elisabeth; Steiger, Axel; Kimura, Mayumi; Chen, Alon; Holsboer, Florian; Arzt, Eduardo; Wurst, Wolfgang; Deussing, Jan M

    2017-11-29

    A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders. SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders. Copyright © 2017 the authors 0270-6474/17/3711688-13$15.00/0.

  9. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.

    Science.gov (United States)

    Kong, Danyang; Asplund, Christopher L; Ling, Aiqing; Chee, Michael W L

    2015-08-01

    Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. Sleep laboratory. There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes. © 2015 Associated Professional Sleep

  10. Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention.

    Science.gov (United States)

    Mander, Bryce A; Reid, Kathryn J; Davuluri, Vijay K; Small, Dana M; Parrish, Todd B; Mesulam, M-Marsel; Zee, Phyllis C; Gitelman, Darren R

    2008-06-27

    One function of spatial attention is to enable goal-directed interactions with the environment through the allocation of neural resources to motivationally relevant parts of space. Studies have shown that responses are enhanced when spatial attention is predictively biased towards locations where significant events are expected to occur. Previous studies suggest that the ability to bias attention predictively is related to posterior cingulate cortex (PCC) activation [Small, D.M., et al., 2003. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18, 633-41]. Sleep deprivation (SD) impairs selective attention and reduces PCC activity [Thomas, M., et al., 2000. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9, 335-352]. Based on these findings, we hypothesized that SD would affect PCC function and alter the ability to predictively allocate spatial attention. Seven healthy, young adults underwent functional magnetic resonance imaging (fMRI) following normal rest and 34-36 h of SD while performing a task in which attention was shifted in response to peripheral targets preceded by spatially informative (valid), misleading (invalid), or uninformative (neutral) cues. When rested, but not when sleep-deprived, subjects responded more quickly to targets that followed valid cues than those after neutral or invalid cues. Brain activity during validly cued trials with a reaction time benefit was compared to activity in trials with no benefit. PCC activation was greater during trials with a reaction time benefit following normal rest. In contrast, following SD, reaction time benefits were associated with activation in the left intraparietal sulcus, a region associated with receptivity to stimuli at unexpected locations. These changes may render sleep-deprived individuals less able

  11. SLEEP AND MENTAL DISORDERS: A META-ANALYSIS OF POLYSOMNOGRAPHIC RESEARCH

    Science.gov (United States)

    Baglioni, Chiara; Nanovska, Svetoslava; Regen, Wolfram; Spiegelhalder, Kai; Feige, Bernd; Nissen, Christoph; Reynolds, Charles F.; Riemann, Dieter

    2016-01-01

    Investigating sleep in mental disorders has the potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms. This meta-analysis aimed at determining the polysomnographic (PSG) characteristics of several mental disorders. Relevant studies were searched through standard strategies. Controlled PSG studies evaluating sleep in affective, anxiety, eating, pervasive developmental, borderline and antisocial personality disorders, ADHD, and schizophrenia were included. PSG variables of sleep continuity, depth, and architecture, as well as rapid-eye movement (REM) sleep were considered. Calculations were performed with the “Comprehensive Meta-Analysis” and “R” softwares. Using random effects modeling, for each disorder and each variable, a separate meta-analysis was conducted if at least 3 studies were available for calculation of effect sizes as standardized means (Hedges’g). Sources of variability, i.e., sex, age, and mental disorders comorbidity, were evaluated in subgroup analyses. Sleep alterations were evidenced in all disorders, with the exception of ADHD and seasonal affective disorders. Sleep continuity problems were observed in most mental disorders. Sleep depth and REM pressure alterations were associated with affective, anxiety, autism and schizophrenia disorders. Comorbidity was associated with enhanced REM sleep pressure and more inhibition of sleep depth. No sleep parameter was exclusively altered in one condition; however, no two conditions shared the same PSG profile. Sleep continuity disturbances imply a transdiagnostic imbalance in the arousal system likely representing a basic dimension of mental health. Sleep depth and REM variables might play a key role in psychiatric comorbidity processes. Constellations of sleep alterations may define distinct disorders better than alterations in one single variable. PMID:27416139

  12. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  13. Sleep spindle alterations in patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Warby, Simon C.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score...

  14. Sleeping to fuel the immune system: mammalian sleep and resistance to parasites

    Directory of Open Access Journals (Sweden)

    Opp Mark R

    2009-01-01

    Full Text Available Abstract Sleep is an enigma. Why animals forgo eating and reproducing, while potentially increasing their risk of predation remains unknown. Although some may question whether all animals sleep, it is clear that all living organisms possess defenses against attack by pathogens. Immune responses of humans and animals are impaired by sleep loss, and responses to immune challenge include altered sleep. Thus, sleep is hypothesized to be a component of the acute phase response to infection and to function in host defense. Examining phylogenetic relationships among sleep parameters, components of the mammalian immune system and resistance to infection may provide insight into the evolution of sleep and lead to a greater appreciation for the role of sleep in host defense.

  15. [Midface alterations in childhood as pathogenesis of obstructive sleep apnea syndrome].

    Science.gov (United States)

    Rangel Chávez, José de Jesús; Espinosa Martínez, Cynthia; Medina Serpa, Aldo Uzziel

    The onset of nasal breathing sets a genetically determined impulse to aerate the face cavities or paranasal sinuses, which in turn initiate its growth creating the useful trafficable space for air during the development of the midface. Considering the evidence that the upper airway obstruction has a primary role in the pathogenesis of respiratory sleep disorders, any condition that causes a permanent difficulty to the nasal airflow during breathing will cause hypo-development of the required amplitude in this airway, reducing the growth stimulation of the sinus cavities and altering the development of the midface as a whole. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  16. Role of sleep quality in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Koren D

    2016-08-01

    Full Text Available Dorit Koren,1,2 Magdalena Dumin,1 David Gozal2,3 1Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, 2Section of Pediatric Sleep Medicine, 3Section of Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA Abstract: Emerging evidence has assigned an important role to sleep as a modulator of metabolic homeostasis. The impact of variations in sleep duration, sleep-disordered breathing, and chronotype to cardiometabolic function encompasses a wide array of perturbations spanning from obesity, insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular disease risk and mortality in both adults and children. Here, we critically and extensively review the published literature on such important issues and provide a comprehensive overview of the most salient pathophysiologic pathways underlying the links between sleep, sleep disorders, and cardiometabolic functioning. Keywords: sleep apnea, circadian clock, insulin resistance, obesity, cardiovascular risk

  17. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    Science.gov (United States)

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Sleep and mental disorders: A meta-analysis of polysomnographic research.

    Science.gov (United States)

    Baglioni, Chiara; Nanovska, Svetoslava; Regen, Wolfram; Spiegelhalder, Kai; Feige, Bernd; Nissen, Christoph; Reynolds, Charles F; Riemann, Dieter

    2016-09-01

    Investigating sleep in mental disorders has the potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms. This meta-analysis aimed at determining the polysomnographic (PSG) characteristics of several mental disorders. Relevant studies were searched through standard strategies. Controlled PSG studies evaluating sleep in affective, anxiety, eating, pervasive developmental, borderline and antisocial personality disorders, attention-deficit-hyperactivity disorder (ADHD), and schizophrenia were included. PSG variables of sleep continuity, depth, and architecture, as well as rapid-eye movement (REM) sleep were considered. Calculations were performed with the "Comprehensive Meta-Analysis" and "R" software. Using random effects modeling, for each disorder and each variable, a separate meta-analysis was conducted if at least 3 studies were available for calculation of effect sizes as standardized means (Hedges' g). Sources of variability, that is, sex, age, and mental disorders comorbidity, were evaluated in subgroup analyses. Sleep alterations were evidenced in all disorders, with the exception of ADHD and seasonal affective disorders. Sleep continuity problems were observed in most mental disorders. Sleep depth and REM pressure alterations were associated with affective, anxiety, autism and schizophrenia disorders. Comorbidity was associated with enhanced REM sleep pressure and more inhibition of sleep depth. No sleep parameter was exclusively altered in 1 condition; however, no 2 conditions shared the same PSG profile. Sleep continuity disturbances imply a transdiagnostic imbalance in the arousal system likely representing a basic dimension of mental health. Sleep depth and REM variables might play a key role in psychiatric comorbidity processes. Constellations of sleep alterations may define distinct disorders better than alterations in 1 single variable. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. The Zfhx3-Mediated Axis Regulates Sleep and Interval Timing in Mice

    Directory of Open Access Journals (Sweden)

    Edoardo Balzani

    2016-07-01

    Full Text Available An AT motif-dependent axis, modulated by the transcription factor Zfhx3, influences the circadian clock in mice. In particular, gain of function of Zfhx3 significantly shortens circadian rhythms and alters the transcriptional activity of an important class of neuropeptides that controls intercellular signaling in the suprachiasmatic nucleus (SCN of the hypothalamus. The ZFHX3/AT axis revealed an important, largely cell-nonautonomous control of the circadian clock. Here, by studying the recently identified circadian mouse mutant Zfhx3Sci/+, we identify significant effects on sleep homeostasis, a phenomenon that is outside the canonical circadian clock system and that is modulated by the activity of those neuropeptides at a circuit level. We show that the Zfhx3Sci/+ mutation accelerates the circadian clock at both the hourly scale (i.e., advancing circadian rhythms and the seconds-to-minutes scale (i.e., anticipating behavioral responses in mice. The in vivo results are accompanied by a significant presence of sleep targets among protein-protein interactions of the Zfhx3Sci/+-dependent network.

  20. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption.

    Directory of Open Access Journals (Sweden)

    Jana Husse

    Full Text Available Human and animal studies demonstrate that short sleep or poor sleep quality, e.g. in night shift workers, promote the development of obesity and diabetes. Effects of sleep disruption on glucose homeostasis and liver physiology are well documented. However, changes in adipokine levels after sleep disruption suggest that adipocytes might be another important peripheral target of sleep. Circadian clocks regulate metabolic homeostasis and clock disruption can result in obesity and the metabolic syndrome. The finding that sleep and clock disruption have very similar metabolic effects prompted us to ask whether the circadian clock machinery may mediate the metabolic consequences of sleep disruption. To test this we analyzed energy homeostasis and adipocyte transcriptome regulation in a mouse model of shift work, in which we prevented mice from sleeping during the first six hours of their normal inactive phase for five consecutive days (timed sleep restriction--TSR. We compared the effects of TSR between wild-type and Per1/2 double mutant mice with the prediction that the absence of a circadian clock in Per1/2 mutants would result in a blunted metabolic response to TSR. In wild-types, TSR induces significant transcriptional reprogramming of white adipose tissue, suggestive of increased lipogenesis, together with increased secretion of the adipokine leptin and increased food intake, hallmarks of obesity and associated leptin resistance. Some of these changes persist for at least one week after the end of TSR, indicating that even short episodes of sleep disruption can induce prolonged physiological impairments. In contrast, Per1/2 deficient mice show blunted effects of TSR on food intake, leptin levels and adipose transcription. We conclude that the absence of a functional clock in Per1/2 double mutants protects these mice from TSR-induced metabolic reprogramming, suggesting a role of the circadian timing system in regulating the physiological effects

  1. Daily rhythms of the sleep-wake cycle

    Directory of Open Access Journals (Sweden)

    Waterhouse Jim

    2012-03-01

    Full Text Available Abstract The amount and timing of sleep and sleep architecture (sleep stages are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'. The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population; and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes are examined.

  2. Sleep in childhood and adolescence: age-specific sleep characteristics, common sleep disturbances and associated difficulties.

    Science.gov (United States)

    Barclay, Nicola L; Gregory, Alice M

    2014-01-01

    Sleep changes throughout the lifespan, with particularly salient alterations occurring during the first few years of life, as well as during the transition from childhood to adolescence. Such changes are partly the result of brain maturation; complex changes in the organisation of the circadian system; as well as changes in daily routine, environmental demands and responsibilities. Despite the automaticity of sleep, given that it is governed by a host of complex mechanisms, there are times when sleep becomes disturbed. Sleep disturbances in childhood are common and may stem from behavioural difficulties or abnormalities in physiological processes-and, in some cases manifest into diagnosable sleep disorders. As well as occurring exclusively, childhood sleep disturbances often co-occur with other difficulties. The purpose of this chapter is to outline the neurobiology of typical sleep/wake processes, and describe changes in sleep physiology and architecture from birth to adulthood. Furthermore, common childhood sleep disorders are described as are their associations with other traits, including all of the syndromes presented in this handbook: ASDs, ADHD, schizophrenia and emotional/behavioural difficulties. Throughout, we attempt to explain possible mechanisms underlying these disorders and their associations.

  3. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research

    Directory of Open Access Journals (Sweden)

    Sergio Tufik

    2009-09-01

    Full Text Available Sleep comprises approximately one-third of a person's lifetime, but its impact on health and medical conditions remains partially unrecognized. The prevalence of sleep disorders is increasing in modern societies, with significant repercussions on people's well-being. This article reviews past and current literature on the paradoxical sleep deprivation method as well as data on its consequences to animals, ranging from behavioral changes to alterations in the gene expression. More specifically, we highlight relevant experimental studies and our group's contribution over the last three decades.O sono ocupa cerca de um terço de nossas vidas, entretanto seu impacto na saúde e sua influência nas condições patológicas ainda não foi completamente elucidado. A prevalência dos distúrbios de sono é cada vez maior, sobretudo nas regiões mais industrializadas, repercutindo diretamente no bem-estar da população. Este artigo tem como objetivo sintetizar e atualizar a literatura a respeito do método de privação de sono paradoxal e seu panorama de conseqüências desde comportamentais até genéticas em animais. Ainda, destacamos a contribuição e relevância dos estudos experimentais realizados por nosso grupo nas ultimas três décadas.

  4. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  5. Train hard, sleep well? Perceived training load, sleep quantity and sleep stage distribution in elite level athletes.

    Science.gov (United States)

    Knufinke, Melanie; Nieuwenhuys, Arne; Geurts, Sabine A E; Møst, Els I S; Maase, Kamiel; Moen, Maarten H; Coenen, Anton M L; Kompier, Michiel A J

    2018-04-01

    Sleep is essential for recovery and performance in elite athletes. While it is generally assumed that exercise benefits sleep, high training load may jeopardize sleep and hence limit adequate recovery. To examine this, the current study assessed objective sleep quantity and sleep stage distributions in elite athletes and calculated their association with perceived training load. Mixed-methods. Perceived training load, actigraphy and one-channel EEG recordings were collected among 98 elite athletes during 7 consecutive days of regular training. Actigraphy revealed total sleep durations of 7:50±1:08h, sleep onset latencies of 13±15min, wake after sleep onset of 33±17min and sleep efficiencies of 88±5%. Distribution of sleep stages indicated 51±9% light sleep, 21±8% deep sleep, and 27±7% REM sleep. On average, perceived training load was 5.40±2.50 (scale 1-10), showing large daily variability. Mixed-effects models revealed no alteration in sleep quantity or sleep stage distributions as a function of day-to-day variation in preceding training load (all p's>.05). Results indicate healthy sleep durations, but elevated wake after sleep onset, suggesting a potential need for sleep optimization. Large proportions of deep sleep potentially reflect an elevated recovery need. With sleep quantity and sleep stage distributions remaining irresponsive to variations in perceived training load, it is questionable whether athletes' current sleep provides sufficient recovery after strenuous exercise. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Sleep quality, sleep duration and physical activity in obese adolescents: effects of exercise training.

    Science.gov (United States)

    Mendelson, M; Borowik, A; Michallet, A-S; Perrin, C; Monneret, D; Faure, P; Levy, P; Pépin, J-L; Wuyam, B; Flore, P

    2016-02-01

    Decreased sleep duration and altered sleep quality are risk factors for obesity in youth. Structured exercise training has been shown to increase sleep duration and improve sleep quality. This study aimed at evaluating the impact of exercise training for improving sleep duration, sleep quality and physical activity in obese adolescents (OB). Twenty OB (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 healthy-weight adolescents (HW) completed an overnight polysomnography and wore an accelerometer (SenseWear Bodymedia) for 7 days. OB participated in a 12-week supervised exercise-training programme consisting of 180 min of exercise weekly. Exercise training was a combination of aerobic exercise and resistance training. Sleep duration was greater in HW compared with OB (P < 0.05). OB presented higher apnoea-hypopnoea index than HW (P < 0.05). Physical activity (average daily metabolic equivalent of tasks [METs]) by accelerometer was lower in OB (P < 0.05). After exercise training, obese adolescents increased their sleep duration (+64.4 min; effect size: 0.88; P = 0.025) and sleep efficiency (+7.6%; effect size: 0.76; P = 0.028). Physical activity levels were increased in OB as evidenced by increased steps per day and average daily METs (P < 0.05). Improved sleep duration was associated with improved average daily METs (r = 0.48, P = 0.04). The present study confirms altered sleep duration and quality in OB. Exercise training improves sleep duration, sleep quality and physical activity. © 2015 World Obesity.

  7. Sleep, Health and Wellness at Work: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Nicola Magnavita

    2017-11-01

    Full Text Available Many occupational factors may interfere with sleep. Sleep disturbances can, in turn, endanger the health and safety of workers. This rapid review of the literature identifies the main factors that alter the quantity and quality of sleep, indicates the effects these alterations have on the wellbeing of workers and suggests some health promotion measures.

  8. Can sleep deprivation studies explain why human adults sleep?

    Science.gov (United States)

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  9. Removal of unwanted variation reveals novel patterns of gene expression linked to sleep homeostasis in murine cortex

    Directory of Open Access Journals (Sweden)

    Jason R. Gerstner

    2016-10-01

    Full Text Available Abstract Background Why we sleep is still one of the most perplexing mysteries in biology. Strong evidence indicates that sleep is necessary for normal brain function and that sleep need is a tightly regulated process. Surprisingly, molecular mechanisms that determine sleep need are incompletely described. Moreover, very little is known about transcriptional changes that specifically accompany the accumulation and discharge of sleep need. Several studies have characterized differential gene expression changes following sleep deprivation. Much less is known, however, about changes in gene expression during the compensatory response to sleep deprivation (i.e. recovery sleep. Results In this study we present a comprehensive analysis of the effects of sleep deprivation and subsequent recovery sleep on gene expression in the mouse cortex. We used a non-traditional analytical method for normalization of genome-wide gene expression data, Removal of Unwanted Variation (RUV. RUV improves detection of differential gene expression following sleep deprivation. We also show that RUV normalization is crucial to the discovery of differentially expressed genes associated with recovery sleep. Our analysis indicates that the majority of transcripts upregulated by sleep deprivation require 6 h of recovery sleep to return to baseline levels, while the majority of downregulated transcripts return to baseline levels within 1–3 h. We also find that transcripts that change rapidly during recovery (i.e. within 3 h do so on average with a time constant that is similar to the time constant for the discharge of sleep need. Conclusions We demonstrate that proper data normalization is essential to identify changes in gene expression that are specifically linked to sleep deprivation and recovery sleep. Our results provide the first evidence that recovery sleep is comprised of two waves of transcriptional regulation that occur at different times and affect functionally

  10. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  11. Diurnal Variation and Twenty-Four Hour Sleep Deprivation Do Not Alter Supine Heart Rate Variability in Healthy Male Young Adults.

    Directory of Open Access Journals (Sweden)

    Daniel S Quintana

    Full Text Available Heart rate variability (HRV has become an increasingly popular index of cardiac autonomic control in the biobehavioral sciences due to its relationship with mental illness and cognitive traits. However, the intraindividual stability of HRV in response to sleep and diurnal disturbances, which are commonly reported in mental illness, and its relationship with executive function are not well understood. Here, in 40 healthy adult males we calculated high frequency HRV-an index of parasympathetic nervous system (PNS activity-using pulse oximetry during brain imaging, and assessed attentional and executive function performance in a subsequent behavioral test session at three time points: morning, evening, and the following morning. Twenty participants were randomly selected for total sleep deprivation whereas the other 20 participants slept as normal. Sleep deprivation and morning-to-night variation did not influence high frequency HRV at either a group or individual level; however, sleep deprivation abolished the relationship between orienting attention performance and HRV. We conclude that a day of wake and a night of laboratory-induced sleep deprivation do not alter supine high frequency HRV in young healthy male adults.

  12. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Urinary Neurotransmitters Are Selectively Altered in Children With Obstructive Sleep Apnea and Predict Cognitive Morbidity

    Science.gov (United States)

    Kheirandish-Gozal, Leila; McManus, Corena J. T.; Kellermann, Gottfried H.; Samiei, Arash

    2013-01-01

    Background: Pediatric obstructive sleep apnea (OSA) is associated with cognitive dysfunction, suggesting altered neurotransmitter function. We explored overnight changes in neurotransmitters in the urine of children with and without OSA. Methods: Urine samples were collected from children with OSA and from control subjects before and after sleep studies. A neurocognitive battery assessing general cognitive ability (GCA) was administered to a subset of children with OSA. Samples were subjected to multiple enzyme-linked immunosorbent assays for 12 neurotransmitters, and adjusted for creatinine concentrations. Results: The study comprised 50 children with OSA and 20 control subjects. Of the children with OSA, 20 had normal GCA score (mean ± SD) (101.2 ± 14.5) and 16 had a reduced GCA score (87.3 ± 13.9; P neurotransmitters enabled prediction of OSA (area under the curve [AUC]: 0.923; P neurotransmitters in urine may not only predict OSA but also the presence of cognitive deficits. Larger cohort studies appear warranted to confirm these findings. PMID:23306904

  14. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Valérie Mongrain

    Full Text Available We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP, we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset, -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  15. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Science.gov (United States)

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  16. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  17. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  18. How (and why) the immune system makes us sleep.

    Science.gov (United States)

    Imeri, Luca; Opp, Mark R

    2009-03-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

  19. The Effects of Sleep Deprivation on Pain

    OpenAIRE

    Kundermann, Bernd; Krieg, Jürgen-Christian; Schreiber, Wolfgang; Lautenbacher, Stefan

    2004-01-01

    Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can c...

  20. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Science.gov (United States)

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel

  1. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    Science.gov (United States)

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  2. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration.

    Science.gov (United States)

    Le Dantec, Y; Hache, G; Guilloux, J P; Guiard, B P; David, D J; Adrien, J; Escourrou, P

    2014-08-22

    Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 μg/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines.

    Science.gov (United States)

    Venancio, Daniel Paulino; Suchecki, Deborah

    2015-07-01

    Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (pmetabolic syndrome-related alterations that may be mediated by inflammation of the RPAT. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Arterial alterations in severely obese children with obstructive sleep apnoea.

    Science.gov (United States)

    Dubern, Beatrice; Aggoun, Yacine; Boulé, Michèle; Fauroux, Brigitte; Bonnet, Damien; Tounian, Patrick

    2010-05-03

    Obstructive sleep apnoea (OSA) in obese adults is associated with cardiovascular disease independently of obesity. Vascular alterations exist in children with obesity and may constitute the first stage in the development of adulthood cardiovascular disease. To investigate the relationship between OSA and early arterial alterations in obese children. Cross-sectional study of a prospective cohort. A total of 51 children with severe obesity managed at a teaching hospital outpatient clinic. Polysomnography was performed. We measured the intima-media thickness and incremental elastic modulus (Einc) to assess the mechanical characteristics of the common carotid artery. Arterial endothelial function was evaluated by measuring flow-mediated dilation and glyceryl trinitrate-mediated dilation (GTNMD) of the brachial artery. A total of 24 (47%) children had a desaturation index (DI) >10/h and 7 (14%) had a respiratory event index >10/h. DI >10/h was associated with significantly higher values of Einc (4.0 + or - 0.5 vs. 2.4 + or - 0.4 mm Hg(-1) x 10(3), p=0.003) and GTNMD (18.0 + or - 1.1 vs. 14.1 + or - 1.0 %, p=0.02) after adjustment for age, sex, body mass index, fasting insulin, and leptin. In the univariate analysis, GTNMD correlated positively with DI (r=0.14, p=0.02) after adjustment for age, sex, fasting insulin and leptin. By multivariate analysis with BMI as an additional independent variable, both GTNMD and Einc correlated significantly with DI (beta=0.4, p=0.02 and beta=0.27, p=0.04, respectively). OSA in children is associated with arterial alterations independently from obesity. The increased vasodilation in response to glyceryl trinitrate reflects pre-existing vasoconstriction probably induced by intermittent hypoxia. OSA should be detected early in children with severe obesity.

  5. Sleep-inducing factors.

    Science.gov (United States)

    García-García, Fabio; Acosta-Peña, Eva; Venebra-Muñoz, Arturo; Murillo-Rodríguez, Eric

    2009-08-01

    Kuniomi Ishimori and Henri Piéron were the first researchers to introduce the concept and experimental evidence for a chemical factor that would presumably accumulate in the brain during waking and eventually induce sleep. This substance was named hypnotoxin. Currently, the variety of substances which have been shown to alter sleep includes peptides, cytokines, neurotransmitters and some substances of lipidic nature, many of which are well known for their involvement in other biological activities. In this chapter, we describe the sleep-inducing properties of the vasoactive intestinal peptide, prolactin, adenosine and anandamide.

  6. Altering Adolescents' Pre-Bedtime Phone Use to Achieve Better Sleep Health.

    Science.gov (United States)

    Bartel, K; Scheeren, R; Gradisar, M

    2018-01-09

    Mobile phone use is often blamed for adolescent sleeping difficulties in the popular and scientific literature, with correlations observed between adolescents' mobile phone use and their bedtime. We aimed to obtain experimental evidence to support these causal claims. A within-subjects experiment (baseline, intervention) was conducted in adolescents' homes, to determine the effect of restricting adolescents' pre-bed mobile phone use on school night sleep habits. Following a baseline week, adolescents were given individualized phone stop times, 1 hour before bed for one school week. An online sleep diary was used to monitor bedtime, lights out time, sleep latency and total sleep. Sixty three adolescents (age range 14-18, M = 16.3, SD = 0.93yrs; 17%male) provided data. During one week of phone restriction, adolescents stopped using their phones earlier (80 min, p phone use. Overall, there are potential benefits of restricted mobile phone use during the pre-sleep period, yet, future research is needed to identify non-technological interventions to increase adherence to phone restriction (e.g., motivational interviewing) or otherwise decrease pre-sleep arousal (e.g., cognitive strategies).

  7. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  8. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  9. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    Science.gov (United States)

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  10. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  11. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  12. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility.

    Science.gov (United States)

    Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2016-12-12

    The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1 -/- mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.

  13. Molecular Pathways of Disturbed Sleep and Depression: Studies on Adenosine and Gene Expression Patterns

    OpenAIRE

    Gass, Natalia

    2010-01-01

    Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has...

  14. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  15. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration.

    Science.gov (United States)

    Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A

    2016-01-01

    Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.

  16. SLEEP HABITS AMONG FIRST YEAR MEDICAL STUDENTS

    OpenAIRE

    Neera; Varun; Yogesh

    2016-01-01

    Sleep is part of the rhythm of life; without a good sleep the mind is less adaptive, mood is altered and the body loses the ability to refresh. The sleep-wake cycle of medical students is quite different and sleep deprivation, poor sleep quality, occurrence of napping episodes during the day. This study was designed to assess sleep habits in first year medical students. MATERIAL AND METHODS Participants of this study were healthy medical students of first year MBBS course of S...

  17. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions

    Directory of Open Access Journals (Sweden)

    Ayumu eInutsuka

    2013-03-01

    Full Text Available The hypothalamus monitors body homeostasis and regulates various behaviors such as feeding, thermogenesis, and sleeping. Orexins (also known as hypocretins were identified as endogenous ligands for two orphan G-protein-coupled receptors in the lateral hypothalamic area. They were initially recognized as regulators of feeding behavior, but they are mainly regarded as key modulators of the sleep/wakefulness cycle. Orexins activate orexin neurons, monoaminergic and cholinergic neurons in the hypothalamus/brainstem regions, to maintain a long, consolidated awake period. Anatomical studies of neural projections from/to orexin neurons and phenotypic characterization of transgenic mice revealed various roles for orexin neurons in the coordination of emotion, energy homeostasis, reward system, and arousal. For example, orexin neurons are regulated by peripheral metabolic cues, including ghrelin, leptin, and glucose concentration. This suggests that they may provide a link between energy homeostasis and arousal states. A link between the limbic system and orexin neurons might be important for increasing vigilance during emotional stimuli. Orexins are also involved in reward systems and the mechanisms of drug addiction. These findings suggest that orexin neurons sense the outer and inner environment of the body and maintain the proper wakefulness level of animals for survival. This review discusses the mechanism by which orexins maintain sleep/wakefulness states and how this mechanism relates to other systems that regulate emotion, reward, and energy homeostasis.

  18. Sleep in elite athletes and nutritional interventions to enhance sleep.

    Science.gov (United States)

    Halson, Shona L

    2014-05-01

    Sleep has numerous important physiological and cognitive functions that may be particularly important to elite athletes. Recent evidence, as well as anecdotal information, suggests that athletes may experience a reduced quality and/or quantity of sleep. Sleep deprivation can have significant effects on athletic performance, especially submaximal, prolonged exercise. Compromised sleep may also influence learning, memory, cognition, pain perception, immunity and inflammation. Furthermore, changes in glucose metabolism and neuroendocrine function as a result of chronic, partial sleep deprivation may result in alterations in carbohydrate metabolism, appetite, food intake and protein synthesis. These factors can ultimately have a negative influence on an athlete's nutritional, metabolic and endocrine status and hence potentially reduce athletic performance. Research has identified a number of neurotransmitters associated with the sleep-wake cycle. These include serotonin, gamma-aminobutyric acid, orexin, melanin-concentrating hormone, cholinergic, galanin, noradrenaline, and histamine. Therefore, nutritional interventions that may act on these neurotransmitters in the brain may also influence sleep. Carbohydrate, tryptophan, valerian, melatonin and other nutritional interventions have been investigated as possible sleep inducers and represent promising potential interventions. In this review, the factors influencing sleep quality and quantity in athletic populations are examined and the potential impact of nutritional interventions is considered. While there is some research investigating the effects of nutritional interventions on sleep, future research may highlight the importance of nutritional and dietary interventions to enhance sleep.

  19. Late Sleeping Affects Sleep Duration and Body Mass Index in Adolescents

    Directory of Open Access Journals (Sweden)

    Rajesh G.Kathrotia1,

    2010-03-01

    Full Text Available During adolescence, there is a tendency to sleep late andsleep less because of altered psychosocial and life-stylechanges. Recent studies have demonstrated the link betweensleeping less and gaining weight in children, adolescents, andadults. We studied the effect of late sleeping and sleepingless on body mass index (BMI in medical college freshmen.All participants were adolescents (104 male and 38 femaleadolescents, mean age 17.77±0.79 years. After obtaininginformed consent, they filled out a questionnaire about theirsleeping habits. Height and weight were measured after abrief history taking and clinical examination. BMI increasedsignificantly with decrease in total sleep duration and withdelayed bedtime. Late sleeping individuals (after midnighthad significantly less sleep duration (6.78 hours v 7.74 hours,P<0.001, more day time sleepiness (85.2% v 69.3%,P=0.033 and more gap between dinner time and going tosleep (234.16 min v 155.45 min, P<0.001. Increased BMI inlate sleepers may be explained by low physical activity duringthe day caused by excess sleepiness and increased calorieintake with a gap of 5-6 hours between dinner and sleep.Sleep habits of late sleeping and sleeping less contribute toincrease BMI in adolescents.

  20. Short-term total sleep deprivation alters delay-conditioned memory in the rat.

    Science.gov (United States)

    Tripathi, Shweta; Jha, Sushil K

    2016-06-01

    Short-term sleep deprivation soon after training may impair memory consolidation. Also, a particular sleep stage or its components increase after learning some tasks, such as negative and positive reinforcement tasks, avoidance tasks, and spatial learning tasks, and so forth. It suggests that discrete memory types may require specific sleep stage or its components for their optimal processing. The classical conditioning paradigms are widely used to study learning and memory but the role of sleep in a complex conditioned learning is unclear. Here, we have investigated the effects of short-term sleep deprivation on the consolidation of delay-conditioned memory and the changes in sleep architecture after conditioning. Rats were trained for the delay-conditioned task (for conditioning, house-light [conditioned stimulus] was paired with fruit juice [unconditioned stimulus]). Animals were divided into 3 groups: (a) sleep deprived (SD); (b) nonsleep deprived (NSD); and (c) stress control (SC) groups. Two-way ANOVA revealed a significant interaction between groups and days (training and testing) during the conditioned stimulus-unconditioned stimulus presentation. Further, Tukey post hoc comparison revealed that the NSD and SC animals exhibited significant increase in performances during testing. The SD animals, however, performed significantly less during testing. Further, we observed that wakefulness and NREM sleep did not change after training and testing. Interestingly, REM sleep increased significantly on both days compared to baseline more specifically during the initial 4-hr time window after conditioning. Our results suggest that the consolidation of delay-conditioned memory is sleep-dependent and requires augmented REM sleep during an explicit time window soon after training. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  2. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice.

    Science.gov (United States)

    Albu, Stefana; Romanowski, Christoph P N; Letizia Curzi, M; Jakubcakova, Vladimira; Flachskamm, Cornelia; Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Schmidt, Ulrike; Rein, Theo; Holsboer, Florian; Hausch, Felix; Paez-Pereda, Marcelo; Kimura, Mayumi

    2014-04-01

    FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders. © 2013 European Sleep Research Society.

  3. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans.

    Science.gov (United States)

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J; Dinges, David F; Kuna, Samuel T; Maislin, Greg; Van Dongen, Hans P A; Tufik, Sergio; Hogenesch, John B; Hakonarson, Hakon; Pack, Allan I

    2014-08-01

    Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336.

  4. A link between sleep loss, glucose metabolism and adipokines

    Directory of Open Access Journals (Sweden)

    H.G. Padilha

    2011-10-01

    Full Text Available The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

  5. Mitochondrial DNA alteration in obstructive sleep apnea.

    Science.gov (United States)

    Lacedonia, Donato; Carpagnano, Giovanna E; Crisetti, Elisabetta; Cotugno, Grazia; Palladino, Grazia P; Patricelli, Giulia; Sabato, Roberto; Foschino Barbaro, Maria P

    2015-04-07

    Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations. 46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test). MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.

  6. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NARCIS (Netherlands)

    Meerlo, P; Koehl, M; van der Borght, K; Turek, FW

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine

  7. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice.

    Science.gov (United States)

    Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul

    2015-09-01

    That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Mouse sleep-recording facility. Per2::Luciferase knock-in mice. N/A. Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. © 2015 Associated Professional Sleep Societies, LLC.

  8. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  9. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Tang, Yunzhao; Meng, Lingling; Li, Daiqing; Yang, Min; Zhu, Yanjuan; Li, Chenguang; Jiang, Zhenhuan; Yu, Ping; Li, Zhu; Song, Hongna; Ni, Changlin

    2014-01-01

    Copious evidence from epidemiological and laboratory studies has revealed that sleep status is associated with glucose intolerance, insulin resistance, thus increasing the risk of developing type 2 diabetes. The aim of this study was to reveal the interaction of sleep quality and sleep quantity on glycemic control in patients with type 2 diabetes mellitus. From May 2013 to May 2014, a total of 551 type 2 diabetes patients in Tianjin Metabolic Diseases Hospital were enrolled. Blood samples were taken to measure glycosylated hemoglobin (HbA1c), and all the patients completed the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) questionnaire to evaluate their sleep status. "Good sleep quality" was defined as PQSI quality" was defined as PQSI 6-8, and "poor sleep quality" was defined as PQSI >8. Poor glycemic control was defined as HbA1c ≥7%. Sleep quantity was categorized as 8 hours/night. Short sleep time was defined as sleep duration quality in poor glycemic control group was much greater than that in the average control group (χ(2) = 9.79, P = 0.007). After adjusted by gender, age, body mass index, and disease duration, the adjusted PSQI score's OR was 1.048 (95% CI 1.007-1.092, P = 0.023) for HbA1c level. The sleep duration's OR was 0.464 (95% CI 0.236-0.912, P = 0.026) for HbA1c level. One-way analysis of variance showed that the poor sleep quality group had the highest homeostasis model assessment-insulin resistance (P quality and quantity, should be regarded as a plausible risk factor for glycemic control in type 2 diabetes. Poor sleep might bring much more serious insulin resistance and could be the reason for bad glycemic control. A good night's sleep should be seen as a critical health component tool in the prevention and treatment of type 2 diabetes. It is important for clinicians to target the root causes of short sleep duration and/or poor sleep quality.

  10. Epidemiological analysis of structural alterations of the nasal cavity associated with obstructive sleep apnea syndrome (OSA).

    Science.gov (United States)

    Mekhitarian Neto, Levon; Fava, Antonio Sérgio; Lopes, Hugo Canhete; Stamm, Aldo

    2005-01-01

    The objective of this paper is to demonstrate that structural alterations of the nasal cavity, e.g. septal deviation and conchal hypertrophy have high incidence in patients with sleep apnea and hypopnea syndrome and must be addressed with associated specific procedures of the syndrome. Clinical retrospective. A retrospective study of 200 patients was performed, with 196 male and 4 female, attended at the otorhinolaryngology ambulatory of Hospital Prof. Edmundo Vasconcelos and Unidade Paulista de Otorrinolaringologia, all of them subjected to polysomnography, otorhinolaryngological physical exam, endoscopy exam, and surgical treatment with nasal and pharyngeal procedures. All of them were subjected to pharyngeal procedure: uvulopalatopharyngoplasty or uvulopalatoplasty and nose procedure: 176 septoplasty with partial turbinectomy (88%) and 24 isolated turbinectomy, with satisfactory results. We can see that structural alterations of the nasal cavity have high incidence in patients with OSA.

  11. Sleep Dysfunction and Gastrointestinal Diseases.

    Science.gov (United States)

    Khanijow, Vikesh; Prakash, Pia; Emsellem, Helene A; Borum, Marie L; Doman, David B

    2015-12-01

    Sleep deprivation and impaired sleep quality have been associated with poor health outcomes. Many patients experience sleep disturbances, which can increase the risk of medical conditions such as hypertension, obesity, stroke, and heart disease as well as increase overall mortality. Recent studies have suggested that there is a strong association between sleep disturbances and gastrointestinal diseases. Proinflammatory cytokines, such as tumor necrosis factor, interleukin-1, and interleukin-6, have been associated with sleep dysfunction. Alterations in these cytokines have been seen in certain gastrointestinal diseases, such as gastroesophageal reflux disease, inflammatory bowel disease, liver disorders, and colorectal cancer. It is important for gastroenterologists to be aware of the relationship between sleep disorders and gastrointestinal illnesses to ensure good care for patients. This article reviews the current research on the interplay between sleep disorders, immune function, and gastrointestinal diseases.

  12. [Sleep apnea and heart failure: pathophysiology, diagnosis and therapy].

    Science.gov (United States)

    Monda, Cinzia; Scala, Oriana; Paolillo, Stefania; Savarese, Gianluigi; Cecere, Milena; D'Amore, Carmen; Parente, Antonio; Musella, Francesca; Mosca, Susanna; Filardi, Pasquale Perrone

    2010-11-01

    Sleep apnea, defined as a pathologic pause in breathing during sleep >10 s, promotes the progression of chronic heart failure and may be a predictor of poor prognosis. It causes, in fact, several mechanical, hemodynamic, chemical and inflammatory changes that negatively compromise cardiovascular homeostasis of heart failure patients. Sleep apnea is recognized as sleep apnea syndrome when specific symptoms, such as sleepiness and headache during the daytime and snoring, are present and is diagnosed with an overnight test called polysomnography. There are two different forms of sleep apnea, central and obstructive. Breathing is interrupted by the loss of respiratory drive and the lack of respiratory effort in the central form, which affects about 40-60% of heart failure patients. In obstructive sleep apnea, breathing stops when throat muscles relax, despite respiratory effort. This form affects about 3% of the general population, while it is present in at least 30% of heart failure patients. The diagnosis of sleep disorders in heart failure becomes very important to help patients adopting lifestyle changes and starting specific therapies to improve quality of life and retard the progression of chronic heart failure.

  13. Software thresholds alter the bias of actigraphy for monitoring sleep in team-sport athletes.

    Science.gov (United States)

    Fuller, Kate L; Juliff, Laura; Gore, Christopher J; Peiffer, Jeremiah J; Halson, Shona L

    2017-08-01

    Actical ® actigraphy is commonly used to monitor athlete sleep. The proprietary software, called Actiware ® , processes data with three different sleep-wake thresholds (Low, Medium or High), but there is no standardisation regarding their use. The purpose of this study was to examine validity and bias of the sleep-wake thresholds for processing Actical ® sleep data in team sport athletes. Validation study comparing actigraph against accepted gold standard polysomnography (PSG). Sixty seven nights of sleep were recorded simultaneously with polysomnography and Actical ® devices. Individual night data was compared across five sleep measures for each sleep-wake threshold using Actiware ® software. Accuracy of each sleep-wake threshold compared with PSG was evaluated from mean bias with 95% confidence limits, Pearson moment-product correlation and associated standard error of estimate. The Medium threshold generated the smallest mean bias compared with polysomnography for total sleep time (8.5min), sleep efficiency (1.8%) and wake after sleep onset (-4.1min); whereas the Low threshold had the smallest bias (7.5min) for wake bouts. Bias in sleep onset latency was the same across thresholds (-9.5min). The standard error of the estimate was similar across all thresholds; total sleep time ∼25min, sleep efficiency ∼4.5%, wake after sleep onset ∼21min, and wake bouts ∼8 counts. Sleep parameters measured by the Actical ® device are greatly influenced by the sleep-wake threshold applied. In the present study the Medium threshold produced the smallest bias for most parameters compared with PSG. Given the magnitude of measurement variability, confidence limits should be employed when interpreting changes in sleep parameters. Copyright © 2017 Sports Medicine Australia. All rights reserved.

  14. Sleep disturbances after non-cardiac surgery

    DEFF Research Database (Denmark)

    Rosenberg, Jacob

    2001-01-01

    . The sleep disturbances seem to be related to the magnitude of trauma and thereby to the surgical stress response and/or post-operative opioid administration. Post-operative sleep disturbances may contribute to the development of early post-operative fatigue, episodic hypoxaemia, haemodynamic instability......After major non-cardiac surgery sleep pattern is usually disturbed with initial suppression of rapid eye movement sleep with a subsequent rebound during the first post-operative week. Deep sleep is also suppressed for several days after the operation and subjective sleep quality is impaired...... and altered mental status, all with a potential negative effect on post-operative outcome. Minimizing surgical trauma and avoiding or minimizing use of opioids for pain relief may prevent or reduce post-operative sleep disturbances. Post-operative sleep pattern represents an important research field, since...

  15. A moderate increase of physiological CO2 in a critical range during stable NREM sleep episode: A potential gateway to REM sleep

    Directory of Open Access Journals (Sweden)

    Vibha eMadan

    2012-02-01

    Full Text Available Sleep is characterized as rapid eye movement (REM and non-rapid eye movement (NREM sleep. Studies suggest that wake-related neurons in the basal forebrain, posterior hypothalamus and brainstem and NREM sleep-related neurons in the anterior-hypothalamic area inhibit each other, thus alternating sleep-wakefulness. Similarly, pontine REM-ON and REM-OFF neurons reciprocally inhibit each other for REM sleep modulation. It has been proposed that inhibition of locus coeruleus (LC REM-OFF neurons is pre-requisite for REM sleep genesis, but it remains ambiguous how REM-OFF neurons are hyperpolarized at REM sleep onset. The frequency of breathing pattern remains high during wake, slows down during NREM sleep but further escalates during REM sleep. As a result, brain CO2 level increases during NREM sleep, which may alter REM sleep manifestation. It has been reported that hypocapnia decreases REM sleep while hypercapnia increases REM sleep periods. The groups of brainstem chemosensory neurons, including those present in LC, sense the alteration in CO2 level and respond accordingly. For example; one group of LC neurons depolarize while other hyperpolarize during hypercapnia. In another group, hypercapnia initially depolarizes but later hyperpolarizes LC neurons. Besides chemosensory functions, LC’s REM-OFF neurons are an integral part of REM sleep executive machinery. We reason that increased CO2 level during a stable NREM sleep period may hyperpolarize LC neurons including REM-OFF, which may help initiate REM sleep. We propose that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  16. Preserved sleep microstructure in blind individuals

    DEFF Research Database (Denmark)

    Aubin, Sébrina; Christensen, Julie A.E.; Jennum, Poul

    2018-01-01

    , as light is the primary zeitgeber of the master biological clock found in the suprachiasmatic nucleus of the hypothalamus. In addition, a greater number of sleep disturbances is often reported in blind individuals. Here, we examined various electroencephalographic microstructural components of sleep, both...... during rapid-eye-movement (REM) sleep and non-REM (NREM) sleep, between blind individuals, including both of early and late onset, and normal-sighted controls. During wakefulness, occipital alpha oscillations were lower, or absent in blind individuals. During sleep, differences were observed across...... electrode derivations between the early and late blind samples, which may reflect altered cortical networking in early blindness. Despite these differences in power spectra density, the electroencephalography microstructure of sleep, including sleep spindles, slow wave activity, and sawtooth waves, remained...

  17. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    Science.gov (United States)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  18. [The relationship between sleep and obesity: current perspective].

    Science.gov (United States)

    Piskáčková, Zlata; Forejt, Martin; Martykánová, Lucie

    2012-01-01

    Disruption of circadian rhythms negatively affects regulation of metabolism and energy homeostasis. Disrupted metabolism in response to disrupted biological rhythms might lead, together with genetic background, to obesity and to other health complications. Results of epidemiologic surveys are consistent with mechanistic theory showing the interconnection between the biological rhythms, sleep and metabolism. Epidemiologic surveys confirm that sleep duration of less than 6 hours increases significantly the risk of obesity. Systematic reviews of epidemiologic surveys examining association of sleep and obesity refer to large heterogeneity in involved subjects, methodological approaches of measuring obesity and sleep, and confounders. Design of study plays also essential role in interpretation and definition of causal relationship. Reduced sleep duration in relation to obesity is in the literature discussed from different points of view: 1. as a possible primary cause of obesity, 2. as a result of comorbidities resulting from obesity and 3. as an accompanied part of the third factor contributing to obesity (e.g. long working hours, chronic emotional stress, overusing of media). Causal relationship between sleep and obesity is not yet fully elucidated, however the association is supposed to be bidirectional. The article gives an overview of current knowledge concerning the influence of sleep on the development of obesity and points to the critical points of current research.

  19. Sleep wake pattern analysis: Study of 131 medical students

    OpenAIRE

    Nita Ninama; Jaydeep Kangathara

    2012-01-01

    Objective:Sleep is part of the rhythm of life. Without a good sleep the mind is less adapts, mood is altered and the body loses the ability to refresh. The sleep wake cycle of the students is quite different and characterized by delayed onset, partial sleep deprivation, poor sleep quality, insufficient sleep duration and occurrence of napping episodes during the day The aim of the present study is to know sleep wake pattern in medical student, role of residence and individual characterization...

  20. Effect of escitalopram combined with zolpidem on sleep structure, sleep process and neurotransmitter in elderly patients with chronic insomnia

    Directory of Open Access Journals (Sweden)

    Ji-Peng Zhu

    2016-12-01

    Full Text Available Objective: To analyze the effect of escitalopram combined with zolpidem on sleep structure, sleep process and neurotransmitter in elderly patients with chronic insomnia. Methods: A total of 112 elderly patients with chronic insomnia treated in our hospital were included in the study and randomly divided into observation group and control group (n=56. Control group received zolpidem therapy alone, observation group received escitalopram combined with zolpidem therapy, and then differences in sleep structure and process, neurotransmitter, stress hormones, hypothalamus-pituitary-thyroid axis indexes and so on were compared between two groups of patients. Results: The sleep structure and sleep process parameters SL, RL and S2 levels of observation group after treatment were significantly lower than those of control group while TST, S3 and REM levels were significantly higher than those of control group; Orexin, ACTH, 5-HT, NE, CRH, E, AngⅡ, Cor, ALD, DA and TGA content in serum were significantly lower than those of control group while T3, T4, TSH and TRH content were significantly higher than those of control group. Conclusions: Escitalopram combined with zolpidem can optimize the sleep structure and process in elderly patients with chronic insomnia, and also plays a prominent role in regulating the body's homeostasis.

  1. Effect of escitalopram combined with zolpidem on sleep structure, sleep process and neurotransmitter in elderly patients with chronic insomnia

    Institute of Scientific and Technical Information of China (English)

    Ji-Peng Zhu

    2016-01-01

    Objective:To analyze the effect of escitalopram combined with zolpidem on sleep structure, sleep process and neurotransmitter in elderly patients with chronic insomnia.Methods:A total of 112 elderly patients with chronic insomnia treated in our hospital were included in the study and randomly divided into observation group and control group (n=56). Control group received zolpidem therapy alone, observation group received escitalopram combined with zolpidem therapy, and then differences in sleep structure and process, neurotransmitter, stress hormones, hypothalamus-pituitary-thyroid axis indexes and so on were compared between two groups of patients.Results: The sleep structure and sleep process parameters SL, RL and S2 levels of observation group after treatment were significantly lower than those of control group while TST, S3 and REM levels were significantly higher than those of control group; Orexin, ACTH, 5-HT, NE, CRH, E, AngⅡ, Cor, ALD, DA and TGA content in serum were significantly lower than those of control group while T3, T4, TSH and TRH content were significantly higher than those of control group.Conclusions:Escitalopram combined with zolpidem can optimize the sleep structure and process in elderly patients with chronic insomnia, and also plays a prominent role in regulating the body's homeostasis.

  2. Sleep Structure in Children With Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Akinci, Gulcin; Oztura, Ibrahim; Hiz, Semra; Akdogan, Ozlem; Karaarslan, Dilay; Ozek, Handan; Akay, Aynur

    2015-10-01

    The authors evaluated basic sleep architecture and non-rapid eye movement (NREM) sleep alterations in drug-naïve attention-deficit/hyperactivity disorder (ADHD) children without psychiatric or other comorbidities. This cross-sectional case-control study included 28 drug-naïve children with ADHD and 15 healthy controls. This subjective studies revealed that children with ADHD had a worse sleep quality and increased daytime sleepiness. Polysomnography data showed that the sleep macrostructure was not significantly different in children with ADHD. Sleep microstructure was altered in ADHD children by means of reduced total cyclic alternating pattern rate and duration of cyclic alternating pattern sequences. This reduction was associated with a selective decrease of A1 index during stage 2 NREM. SpO2 in total sleep was slightly decreased; however, the incidence of sleep disordered breathing showed no significant difference. The authors suggest that cyclic alternating pattern scoring would provide a further insight to obtain a better understanding of the sleep structure in children with ADHD. © The Author(s) 2015.

  3. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    Science.gov (United States)

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (palpha amylase (palpha amylase (pamylase were negatively associated with sleep duration (palpha amylase.

  4. Obstructive sleep apnea and cognitive impairment: Addressing the blood–brain barrier

    Science.gov (United States)

    Lim, Diane C.; Pack, Allan I.

    2013-01-01

    SUMMARY Increasing data support a connection between obstructive sleep apnea (OSA) and cognitive impairment but a causal link has yet to be established. Although neuronal loss has been linked to cognitive impairment, emerging theories propose that changes in synaptic plasticity can cause cognitive impairment. Studies demonstrate that disruption to the blood–brain barrier (BBB), which is uniquely structured to tightly maintain homeostasis inside the brain, leads to changes in the brain’s microenvironment and affects synaptic plasticity. Cyclical intermittent hypoxia is a stressor that could disrupt the BBB via molecular responses already known to occur in either OSA patients or animal models of intermittent hypoxia. However, we do not yet know if or how intermittent hypoxia can cause cognitive impairment by mechanisms operating at the BBB. Therefore, we propose that initially, adaptive homeostatic responses at the BBB occur in response to increased oxygen and nutrient demand, specifically through regulation of influx and efflux BBB transporters that alter microvessel permeability. We further hypothesize that although these responses are initially adaptive, these changes in BBB transporters can have long-term consequences that disrupt the brain’s microenvironment and alter synaptic plasticity leading to cognitive impairment. PMID:23541562

  5. Impact of Acute Sleep Deprivation on Sarcasm Detection

    OpenAIRE

    Deliens, Ga?tane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another pe...

  6. Sleep and inflammatory bowel disease: exploring the relationship between sleep disturbances and inflammation.

    Science.gov (United States)

    Kinnucan, Jami A; Rubin, David T; Ali, Tauseef

    2013-11-01

    Sleep disturbances are associated with a greater risk of serious adverse health events, economic consequences, and, most importantly, increased all-cause mortality. Several studies support the associations among sleep, immune function, and inflammation. The relationship between sleep disturbances and inflammatory conditions is complex and not completely understood. Sleep deprivation can lead to increased levels of inflammatory cytokines, including interleukin (IL)-1β IL-6, tumor necrosis factor-α and C-reactive protein, which can lead to further activation of the inflammatory cascade. The relevance of sleep in inflammatory bowel disease (IBD), a chronic immune-mediated inflammatory disease of the gastrointestinal tract, has recently received more attention. Several studies have shown that patients with both inactive and active IBD have self-reported sleep disturbances. Here, we present a concise review of sleep and its association with the immune system and the process of inflammation. We discuss the studies that have evaluated sleep in patients with IBD as well as possible treatment options for those patients with sleep disturbances. An algorithm for evaluating sleep disturbances in the IBD population is also proposed. Further research is still needed to better characterize sleep disturbances in the IBD population as well as to assess the effects of various therapeutic interventions to improve sleep quality. It is possible that the diagnosis and treatment of sleep disturbances in this population may provide an opportunity to alter disease outcomes.

  7. Alteration of choroidal thickness in patients with obstructive sleep apnea hyponea syndrome

    Directory of Open Access Journals (Sweden)

    Jing-Bo Wang

    2018-02-01

    Full Text Available AIM:To analyze the choroidal thickness alteration in patients with obstructive sleep apnea hypopnea syndrome(OSAHS. METHODS: Seventeen patients who were diagnosed with OSAHS initially and 31 healthy individuals were enrolled. Enhanced depth imaging choriodal scans were obtained by spectral-domain optical coherence tomography. Choroidal thickness of subfovea, 2mm superior, inferior, nasal and temporal to the fovea were measured and statistically analyzed. RESULTS: Subfoveal choroidal thickness of the control group and the OSAHS group was 323.58±58.63μm and 316.82±46.43μm respectively, and the difference was unsignificant(t=0.409, P=0.684. Choroidal thickness at 2mm superior to the fovea of the control group and the OSAHS group was 318.29±56.89μm and 314.29±59.8μm respectively, and the difference was unsignificant(t=0.229, P=0.820. Choroidal thickness at 2mm inferior to the fovea of the control group and the OSAHS group was 308.42±54.95μm and 291.65±55.37μm respectively, and the difference was not significant(t=1.009, P=0.318. Choroidal thickness at 2mm temporal to the fovea of the control group and the OSAHS group was 308.23±54.62μm and 302.76±46.97μm respectively, and the difference was not significant(t=0.347, P=0.730. Choroidal thickness at 2mm nasal to the fovea of the control group and the OSAHS group was 266.23±58.10μm and 277.12±63.99μm respectively, and the difference was not significant(t=-0.599, P=0.552. There were no significant differences among subgroups after grading based on the severity of sleep apnea hypopnea index and blood oxygen concentration. CONCLUSION: Compared with healthy individuals, choroidal thickness of patients with OSAHS decreases slightly(except for the location of 2mm nasal to the fovea, but the alteration is not significant. The severity of OSAHS has no effect on the choroidal thickness for the patients first diagnosis of OSAHS.

  8. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    International Nuclear Information System (INIS)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T.; Enciso, R.; Ogawa, T.

    2007-01-01

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  9. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y; Shintaku, W H; Clark, G T [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  10. Neurobiological linkage between stress and sleep

    Science.gov (United States)

    Sanford, Larry D.; Wellman, Laurie L.

    2012-10-01

    Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath of exposure to a psychologically traumatic event.

  11. Solving the mystery of human sleep schedules one mutation at a time.

    Science.gov (United States)

    Hallows, William C; Ptáček, Louis J; Fu, Ying-Hui

    2013-01-01

    Sleep behavior remains one of the most enigmatic areas of life. The unanswered questions range from "why do we sleep?" to "how we can improve sleep in today's society?" Identification of mutations responsible for altered circadian regulation of human sleep lead to unique opportunities for probing these territories. In this review, we summarize causative circadian mutations found from familial genetic studies to date. We also describe how these mutations mechanistically affect circadian function and lead to altered sleep behaviors, including shifted or shortening of sleep patterns. In addition, we discuss how the investigation of mutations can not only expand our understanding of the molecular mechanisms regulating the circadian clock and sleep duration, but also bridge the pathways between clock/sleep and other human physiological conditions and ailments such as metabolic regulation and migraine headaches.

  12. Sleep Changes in a Rat Prenatal Stress Model of Depression

    DEFF Research Database (Denmark)

    Skoven, Christian; Sickman, Helle M.; Bastlund, Jesper Frank

    Major depression is one of the most frequently occurring mental health disorders, but is characterized by diverse symptomatology. Sleep disturbances, however, are commonplace in depressive patients. These alterations include increased duration of Rapid Eye Movement Sleep (REMS) and increased sleep...... determination of sleep-wakefulness state. As traumatic episodes can trigger episodes of clinical depression, we also investigated effects of an acute stressor during the recording period. PNS animals (n=21) had an 82% increase in amount of REMS (11.6±1.4% vs 6.3±0.9%; p...-related increase in REMS after lights-off (pREMS rebound thus seems blunted in PNS animals. PNS alters sleep-wakefulness behavior under baseline conditions and after acute stress. This underscores the value of the PNS...

  13. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  14. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Science.gov (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  15. Spontaneous hemodynamic oscillations during human sleep and sleep stage transitions characterized with near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Tiina Näsi

    Full Text Available Understanding the interaction between the nervous system and cerebral vasculature is fundamental to forming a complete picture of the neurophysiology of sleep and its role in maintaining physiological homeostasis. However, the intrinsic hemodynamics of slow-wave sleep (SWS are still poorly known. We carried out 30 all-night sleep measurements with combined near-infrared spectroscopy (NIRS and polysomnography to investigate spontaneous hemodynamic behavior in SWS compared to light (LS and rapid-eye-movement sleep (REM. In particular, we concentrated on slow oscillations (3-150 mHz in oxy- and deoxyhemoglobin concentrations, heart rate, arterial oxygen saturation, and the pulsation amplitude of the photoplethysmographic signal. We also analyzed the behavior of these variables during sleep stage transitions. The results indicate that slow spontaneous cortical and systemic hemodynamic activity is reduced in SWS compared to LS, REM, and wakefulness. This behavior may be explained by neuronal synchronization observed in electrophysiological studies of SWS and a reduction in autonomic nervous system activity. Also, sleep stage transitions are asymmetric, so that the SWS-to-LS and LS-to-REM transitions, which are associated with an increase in the complexity of cortical electrophysiological activity, are characterized by more dramatic hemodynamic changes than the opposite transitions. Thus, it appears that while the onset of SWS and termination of REM occur only as gradual processes over time, the termination of SWS and onset of REM may be triggered more abruptly by a particular physiological event or condition. The results suggest that scalp hemodynamic changes should be considered alongside cortical hemodynamic changes in NIRS sleep studies to assess the interaction between the autonomic and central nervous systems.

  16. The role of sleep duration and sleep disordered breathing in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Joshua J. Gooley

    2018-01-01

    Full Text Available Many women experience sleep problems during pregnancy. This includes difficulty initiating and maintaining sleep due to physiologic changes that occur as pregnancy progresses, as well as increased symptoms of sleep-disordered breathing (SDB. Growing evidence indicates that sleep deficiency alters glucose metabolism and increases risk of diabetes. Poor sleep may exacerbate the progressive increase in insulin resistance that normally occurs during pregnancy, thus contributing to the development of maternal hyperglycemia. Here, we critically review evidence that exposure to short sleep duration or SDB during pregnancy is associated with gestational diabetes mellitus (GDM. Several studies have found that the frequency of GDM is higher in women exposed to short sleep compared with longer sleep durations. Despite mixed evidence regarding whether symptoms of SDB (e.g., frequent snoring are associated with GDM after adjusting for BMI or obesity, it has been shown that clinically-diagnosed SDB is prospectively associated with GDM. There are multiple mechanisms that may link sleep deprivation and SDB with insulin resistance, including increased levels of oxidative stress, inflammation, sympathetic activity, and cortisol. Despite emerging evidence that sleep deficiency and SDB are associated with increased risk of GDM, it has yet to be demonstrated that improving sleep in pregnant women (e.g., by extending sleep duration or treating SDB protects against the development of hyperglycemia. If a causal relationship can be established, behavioral therapies for improving sleep can potentially be used to reduce the risk and burden of GDM. Keywords: Pregnancy, Sleep duration, Sleep disordered breathing, Gestational diabetes, Women, Metabolism

  17. Sleep homeostatic pressure and PER3 VNTR gene polymorphism influence antidepressant response to sleep deprivation in bipolar depression.

    Science.gov (United States)

    Dallaspezia, Sara; Locatelli, Clara; Lorenzi, Cristina; Pirovano, Adele; Colombo, Cristina; Benedetti, Francesco

    2016-03-01

    Combined Total sleep deprivation (TSD) and light therapy (LT) cause a rapid improvement in bipolar depression which has been hypothesized to be paralleled by changes in sleep homeostasis. Recent studies showed that bipolar patients had lower changes of EEG theta power after sleep and responders to antidepressant TSD+LT slept less and showed a lower increase of EEG theta power then non-responders. A polymorphism in PER3 gene has been associated with diurnal preference, sleep structure and homeostatic response to sleep deprivation in healthy subjects. We hypothesized that the individual variability in the homeostatic response to TSD could be a correlate of antidepressant response and be influenced by genetic factors. We administered three TSD+LT cycles to bipolar depressed patients. Severity of depression was rated on Hamilton Depression Rating Scale. Actigraphic recordings were performed in a group of patients. PER3 polymorphism influenced changes in total sleep time (F=2.24; p=0.024): while PER3(4/4) and PER3(4/5) patients showed a reduction in it after treatment, PER3(5/5) subjects showed an increase of about 40min, suggesting a higher homeostatic pressure. The same polymorphism influenced the change of depressive symptomatology during treatment (F=3.72; p=0.028). Sleep information was recorded till the day after the end of treatment: a longer period of observation could give more information about the possible maintenance of allostatic adaptation. A higher sleep homeostatic pressure reduced the antidepressant response to TSD+LT, while an allostatic adaptation to sleep loss was associated with better response. This process seems to be under genetic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diet and Sleep Physiology: Public Health and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Sarah Frank

    2017-08-01

    Full Text Available This mini-review examines the complex relationship between diet and sleep and explores the clinical and public health implications of the current evidence. Dietary quality and intake of specific nutrients can impact regulatory hormonal pathways to alter sleep quantity and quality. Sleep, in turn, affects the intake of total energy, as well as of specific foods and nutrients, through biological and behavioral mechanisms. Initial research in this field focused primarily on the effects of short sleep duration on nutritional quality. However, more recent studies have explored the dynamic relationship between long sleep duration and diet. Current evidence suggests that extremes of sleep duration alter sleep patterns, hormonal levels, and circadian rhythms, which contribute to weight-related outcomes and obesity, and other risk factors for the development of chronic disease such as type 2 diabetes and cardiovascular disease. These patterns may begin as early as childhood and have impacts throughout the life course. Given that non-communicable diseases are among the leading causes of death globally, deeper understanding of the interactions between sleep and nutrition has implications for both public health and clinical practice.

  19. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  20. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sleep Disorders in Children: Collaboration for School-Based Intervention

    Science.gov (United States)

    Everhart, D. Erik

    2011-01-01

    The effects of sleep disturbance on children are wide ranging and include alterations in behavior, mood, cognition, and academic performance. Screening and intervention for pediatric sleep disorders within the schools are not widely implemented, and the concept of integrating school personnel into the multidisciplinary sleep team has yet to be…

  2. CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone.

    Directory of Open Access Journals (Sweden)

    James L Young

    Full Text Available The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS, may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.

  3. CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    Science.gov (United States)

    Young, James L.; Mora, Alfonso; Cerny, Anna; Czech, Michael P.; Woda, Bruce; Kurt-Jones, Evelyn A.; Finberg, Robert W.; Corvera, Silvia

    2012-01-01

    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis. PMID:22253759

  4. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  5. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  6. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

    Directory of Open Access Journals (Sweden)

    Tae Won Kim

    2015-01-01

    Full Text Available The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity.

  7. Dim light at night does not disrupt timing or quality of sleep in mice.

    Science.gov (United States)

    Borniger, Jeremy C; Weil, Zachary M; Zhang, Ning; Nelson, Randy J

    2013-10-01

    Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8-10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in

  8. The Effects of Sleep Deprivation on Pain

    Directory of Open Access Journals (Sweden)

    Bernd Kundermann

    2004-01-01

    Full Text Available Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can counteract analgesic effects of pharmacological treatments involving opioidergic and serotoninergic mechanisms of action. The heterogeneity of the human data and the exclusive interest in rapid eye movement sleep deprivation in animals so far do not allow us to draw firm conclusions as to whether the hyperalgesic effects are due to the deprivation of specific sleep stages or whether they result from a generalized disruption of sleep continuity. The significance of opioidergic and serotoninergic processes as mediating mechanisms of the hyperalgesic changes produced by sleep deprivation are discussed.

  9. Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea.

    Science.gov (United States)

    Dergacheva, Olga; Weigand, Letitia A; Dyavanapalli, Jhansi; Mares, Jacquelyn; Wang, Xin; Mendelowitz, David

    2014-01-01

    Parasympathetic cardiac vagal neurons (CVNs) in the brainstem dominate the control of heart rate. Previous work has determined that these neurons are inherently silent, and their activity is largely determined by synaptic inputs to CVNs that include four major types of synapses that release glutamate, GABA, glycine, or serotonin. Whereas prior reviews have focused on glutamatergic, GABAergic and glycinergic pathways, and the receptors in CVNs activated by these neurotransmitters, this review focuses on the alterations in CVN activity with hypoxia-, sleep-, and sleep-related cardiovascular diseases including obstructive sleep apnea. © 2014 Elsevier B.V. All rights reserved.

  10. The PAr index, an indicator reflecting altered vitamin B-6 homeostasis, is associated with long-term risk of stroke in the general population: the Hordaland Health Study (HUSK).

    Science.gov (United States)

    Zuo, Hui; Tell, Grethe S; Ueland, Per M; Nygård, Ottar; Vollset, Stein E; Midttun, Øivind; Meyer, Klaus; Ulvik, Arve

    2018-01-01

    Vitamin B-6 homeostasis is altered during inflammation and immune activation. It is unknown whether altered vitamin B-6 homeostasis is associated with the risk of stroke. We investigated the relation between the ratio plasma 4-pyridoxic acid: (pyridoxal + pyridoxal-5'-phosphate) (PAr) as an indicator of altered vitamin B-6 homeostasis and the risk of stroke in the general population. We conducted a prospective analysis of the community-based Hordaland Health Study (HUSK) in 6891 adults (born during 1925-1927 and 1950-1951) without known stroke at baseline (1998-1999). Participants were followed via linkage to the CVDNOR (Cardiovascular Disease in Norway) project and the Cause of Death Registry. HRs and 95% CIs were calculated using Cox proportional hazards analyses. A total of 390 participants (193 men and 197 women) developed stroke over a median follow-up period of 11 y. Study participants with elevated PAr experienced a higher risk of incident stroke in an essentially linear dose-response fashion. The HR (95% CI) for the highest compared with the lowest quartile of PAr was 1.97 (1.42, 2.73; P-trend trend <0.001) for ischemic stroke after adjustment for age, sex, body mass index (BMI), smoking, education, physical activity, estimated glomerular filtration rate, hypertension, diabetes, total cholesterol, and statin use. PAr had greater predictive strength than did C-reactive protein, current smoking, diabetes, hypertension, estimated glomerular filtration rate, and physical activity. The associations were similar in subgroups stratified by age group, sex, BMI, current smoking, hypertension, diabetes, and statin use at baseline. Higher plasma PAr was independently associated with increased risk of incident stroke in all participants and across all subgroups stratified by conventional risk predictors. Our novel findings point to and expand the range of inflammation and immune activation processes that may be relevant for the pathogenesis and prevention of stroke

  11. [Sleep disturbances in children with autistic spectrum disorders].

    Science.gov (United States)

    Kelmanson, I A

    2015-01-01

    An association between sleep disorders and autistic spectrum disorders in children is considered. Characteristic variants of sleep disorders, including resistance to going to bed, frequent night awakenings, parasomnias, changes in sleep structure, primarily, the decrease in the percentage of rapid eye movement sleep, are presented. Attention is focused on the possibility of the direct relationship between sleep disturbance and the pathogenesis of autistic spectrum disorders. A role of pathological alterations in the production of neuromediators and morphological changes in the brain structures characteristic of autistic spectrum disorders in the genesis of sleep disorders in children is discussed. Possible non-pharmacological and pharmacological approaches are suggested.

  12. Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection

    NARCIS (Netherlands)

    Mast, de Q.; Nadjm, B.; Reyburn, H.; Kemna, E.H.J.M.; Amos, B.; Laarakkers, C.M.M.; Silalye, S.; Verhoef, H.; Sauerwein, R.W.; Swinkels, D.W.; Ven, van der A.J.A.M.

    2009-01-01

    Disturbances in iron homeostasis are frequently observed in individuals with malaria. To study the effect of malaria and its treatment on iron homeostasis and to provide a mechanistic explanation for observed alterations in iron distribution, we studied the course of the iron regulatory hormone

  13. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep.

    Science.gov (United States)

    St-Onge, Marie-Pierre; Roberts, Amy; Shechter, Ari; Choudhury, Arindam Roy

    2016-01-01

    Sleep restriction alters food intake, but less is known about how dietary patterns affect sleep. Current goals were to determine whether: (1) sleep is different after consumption of a controlled diet vs. an ad libitum diet, and (2) dietary intake during ad libitum feeding is related to nocturnal sleep. Twenty-six normal weight adults (30-45 y), habitually sleeping 7-9 h/night, participated in a randomized-crossover inpatient study with 2 phases of 5 nights: short (4 h in bed) or habitual (9 h in bed) sleep. Only data from the habitual sleep phase were used for the present analyses. During the first 4 days, participants consumed a controlled diet; on day 5, food intake was self-selected. Linear regression was used to determine relations between daytime food intake and nighttime sleep on day 5. Sleep duration did not differ after 3 days of controlled feeding vs. a day of ad libitum intake. However, sleep after ad libitum eating had less slow wave sleep (SWS, P = 0.0430) and longer onset latency (P = 0.0085). Greater fiber intake predicted less stage 1 (P = 0.0198) and more SWS (P = 0.0286). Percent of energy from saturated fat predicted less SWS (P = 0.0422). Higher percent of energy from sugar and other carbohydrates not considered sugar or fiber was associated with arousals (P = 0.0320 and 0.0481, respectively). Low fiber and high saturated fat and sugar intake is associated with lighter, less restorative sleep with more arousals. Diet could be useful in the management of sleep disorders but this needs to be tested. http://www.clinicaltrials.gov, #NCT00935402. © 2016 American Academy of Sleep Medicine.

  14. Relationships between parental sleep quality, fatigue, cognitions about infant sleep, and parental depression pre and post-intervention for infant behavioral sleep problems.

    Science.gov (United States)

    Hall, Wendy A; Moynihan, Melissa; Bhagat, Radhika; Wooldridge, Joanne

    2017-04-04

    Maternal and paternal depression has been associated with infants' behavioral sleep problems. Behavioral sleep interventions, which alter parental cognitions about infant sleep, have improved infant sleep problems. This study reports relationships between parental depression, fatigue, sleep quality, and cognitions about infant sleep pre and post-intervention for a behavioral sleep problem. This secondary analysis of data from Canadian parents (n = 455), with healthy infants aged 6-to-8-months exposed to a behavioral sleep intervention, examined baseline data and follow-up data from 18 or 24 weeks post intervention (group teaching or printed material) exposure. Parents reported on sleep quality, fatigue, depression, and cognitions about infant sleep. Data were analyzed using Pearson's r and stepwise regression analysis. Parents' fatigue, sleep quality, sleep cognitions, and depression scores were correlated at baseline and follow-up. At baseline, sleep quality (b = .52, 95% CI .19-.85), fatigue (b = .48, 95% CI .33-.63), doubt about managing infant sleep (b = .44, 95% CI .19-.69), and anger about infant sleep (b = .69, 95% CI .44-.94) were associated with mothers' depression. At baseline, fathers' depression related to sleep quality (b = .42, 95% CI .01-.83), fatigue (b = .47, 95% CI .32-.63), and doubt about managing infant sleep (b = .50, 95% CI .24-.76). At follow-up, mothers' depression was associated with sleep quality (b = .76, 95% CI .41-1.12), fatigue (b = .25, 95% CI .14-.37), doubt about managing infant sleep (b = .44, 95% CI .16-.73), sleep anger (b = .31, 95% CI .02-.59), and setting sleep limits (b = -.22, 95% CI -.41-[-.03]). At follow-up, fathers' depression related to sleep quality (b = .84, 95% CI .46-1.22), fatigue (b = .31, 95% CI .17-.45), sleep doubt (b = .34, 95% CI .05-.62), and setting sleep limits (b = .25, 95% CI .01-.49). Mothers' and fathers' cognitions about infant

  15. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro

    2017-08-01

    We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila

    Science.gov (United States)

    Vienne, Julie; Spann, Ryanne; Guo, Fang; Rosbash, Michael

    2016-01-01

    Study Objectives: Physiological studies show that aging affects both sleep quality and quantity in humans, and sleep complaints increase with age. Along with knowledge about the negative effects of poor sleep on health, understanding the enigmatic relationship between sleep and aging is important. Because human sleep is similar to Drosophila (fruit fly) sleep in many ways, we addressed the effects of aging on sleep in this model organism. Methods: Baseline sleep was recorded in five different Drosophila genotypes raised at either 21°C or 25°C. The amount of sleep recovered was then investigated after a nighttime of sleep deprivation (12 h) and after chronic sleep deprivation (3 h every night for multiple nights). Finally, the effects of aging on arousal, namely, sensitivity to neuronal and mechanical stimuli, were studied. Results: We show that fly sleep is affected by age in a manner similar to that of humans and other mammals. Not only do older flies of several genotypes have more fragmented sleep and reduced total sleep time compared to young flies, but older flies also fail to recover as much sleep after sleep deprivation. This suggests either lower sleep homeostasis and/or a failure to properly recover sleep. Older flies also show a decreased arousal threshold, i.e., an increased response to neuronal and mechanical wake-promoting stimuli. The reduced threshold may either reflect or cause the reduced recovery sleep of older flies compared to young flies after sleep deprivation. Conclusions: Further studies are certainly needed, but we suggest that the lower homeostatic sleep drive of older flies causes their decreased arousal threshold. Citation: Vienne J, Spann R, Guo F, Rosbash M. Age-related reduction of recovery sleep and arousal threshold in Drosophila. SLEEP 2016;39(8):1613–1624. PMID:27306274

  17. Neuroendocrine Alterations in Obese Patients with Sleep Apnea Syndrome

    Directory of Open Access Journals (Sweden)

    Fabio Lanfranco

    2010-01-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is a serious, prevalent condition that has significant morbidity and mortality when untreated. It is strongly associated with obesity and is characterized by changes in the serum levels or secretory patterns of several hormones. Obese patients with OSAS show a reduction of both spontaneous and stimulated growth hormone (GH secretion coupled to reduced insulin-like growth factor-I (IGF-I concentrations and impaired peripheral sensitivity to GH. Hypoxemia and chronic sleep fragmentation could affect the sleep-entrained prolactin (PRL rhythm. A disrupted Hypothalamus-Pituitary-Adrenal (HPA axis activity has been described in OSAS. Some derangement in Thyroid-Stimulating Hormone (TSH secretion has been demonstrated by some authors, whereas a normal thyroid activity has been described by others. Changes of gonadal axis are common in patients with OSAS, who frequently show a hypogonadotropic hypogonadism. Altogether, hormonal abnormalities may be considered as adaptive changes which indicate how a local upper airway dysfunction induces systemic consequences. The understanding of the complex interactions between hormones and OSAS may allow a multi-disciplinary approach to obese patients with this disturbance and lead to an effective management that improves quality of life and prevents associated morbidity or death.

  18. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    Science.gov (United States)

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Sleep Enhances a Spatially Mediated Generalization of Learned Values

    Science.gov (United States)

    Javadi, Amir-Homayoun; Tolat, Anisha; Spiers, Hugo J.

    2015-01-01

    Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered…

  20. Losing Neutrality: The Neural Basis of Impaired Emotional Control without Sleep.

    Science.gov (United States)

    Simon, Eti Ben; Oren, Noga; Sharon, Haggai; Kirschner, Adi; Goldway, Noam; Okon-Singer, Hadas; Tauman, Rivi; Deweese, Menton M; Keil, Andreas; Hendler, Talma

    2015-09-23

    Sleep deprivation has been shown recently to alter emotional processing possibly associated with reduced frontal regulation. Such impairments can ultimately fail adaptive attempts to regulate emotional processing (also known as cognitive control of emotion), although this hypothesis has not been examined directly. Therefore, we explored the influence of sleep deprivation on the human brain using two different cognitive-emotional tasks, recorded using fMRI and EEG. Both tasks involved irrelevant emotional and neutral distractors presented during a competing cognitive challenge, thus creating a continuous demand for regulating emotional processing. Results reveal that, although participants showed enhanced limbic and electrophysiological reactions to emotional distractors regardless of their sleep state, they were specifically unable to ignore neutral distracting information after sleep deprivation. As a consequence, sleep deprivation resulted in similar processing of neutral and negative distractors, thus disabling accurate emotional discrimination. As expected, these findings were further associated with a decrease in prefrontal connectivity patterns in both EEG and fMRI signals, reflecting a profound decline in cognitive control of emotion. Notably, such a decline was associated with lower REM sleep amounts, supporting a role for REM sleep in overnight emotional processing. Altogether, our findings suggest that losing sleep alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality. Significance statement: Sleep loss is known as a robust modulator of emotional reactivity, leading to increased anxiety and stress elicited by seemingly minor triggers. In this work, we aimed to portray the neural basis of these emotional impairments and their possible association with frontal regulation of emotional processing, also known as cognitive control of emotion. Using specifically suited EEG and f

  1. Sleep patterns and predictors of disturbed sleep in a large population of college students.

    Science.gov (United States)

    Lund, Hannah G; Reider, Brian D; Whiting, Annie B; Prichard, J Roxanne

    2010-02-01

    To characterize sleep patterns and predictors of poor sleep quality in a large population of college students. This study extends the 2006 National Sleep Foundation examination of sleep in early adolescence by examining sleep in older adolescents. One thousand one hundred twenty-five students aged 17 to 24 years from an urban Midwestern university completed a cross-sectional online survey about sleep habits that included the Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale, the Horne-Ostberg Morningness-Eveningness Scale, the Profile of Mood States, the Subjective Units of Distress Scale, and questions about academic performance, physical health, and psychoactive drug use. Students reported disturbed sleep; over 60% were categorized as poor-quality sleepers by the PSQI, bedtimes and risetimes were delayed during weekends, and students reported frequently taking prescription, over the counter, and recreational psychoactive drugs to alter sleep/wakefulness. Students classified as poor-quality sleepers reported significantly more problems with physical and psychological health than did good-quality sleepers. Students overwhelmingly stated that emotional and academic stress negatively impacted sleep. Multiple regression analyses revealed that tension and stress accounted for 24% of the variance in the PSQI score, whereas exercise, alcohol and caffeine consumption, and consistency of sleep schedule were not significant predictors of sleep quality. These results demonstrate that insufficient sleep and irregular sleep-wake patterns, which have been extensively documented in younger adolescents, are also present at alarming levels in the college student population. Given the close relationships between sleep quality and physical and mental health, intervention programs for sleep disturbance in this population should be considered. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.

  2. Role of Sex and the Environment in Moderating Weight Gain Due to Inadequate Sleep.

    Science.gov (United States)

    Coborn, Jamie E; Houser, Monica M; Perez-Leighton, Claudio E; Teske, Jennifer A

    2017-12-01

    The growing prevalence of obesity, inadequate sleep and sleep disorders together with the negative impact of lack of sleep on overall health highlights the need for therapies targeted towards weight gain due to sleep loss. Sex disparities in obesity and sleep disorders are present; yet, the role of sex is inadequately addressed and thus it is unclear whether sensitivity to sleep disruption differs between men and women. Like sex, environmental factors contribute to the development of obesity and poor sleep. The obesogenic environment is characterized by easy access to palatable foods and a low demand for energy expenditure in daily activities. These and other environmental factors are discussed, as they drive altered sleep or their interaction with food choice and intake can promote obesity. We discuss data that suggest differences in sleep patterns and responses to sleep disruption influence sex disparities in weight gain, and that enviromental disturbances alter sleep and interact with features of the obesogenic environment that together promote obesity.

  3. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    Directory of Open Access Journals (Sweden)

    Qinna NA

    2015-05-01

    Full Text Available Nidal A Qinna,1 Adnan A Badwan2 1Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, 2Research and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Co. Plc. (JPM, Amman, Jordan Abstract: Streptozotocin (STZ is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL, noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were

  4. The periodicity of sleep duration – an infradian rhythm in spontaneous living

    Directory of Open Access Journals (Sweden)

    Wong SN

    2013-01-01

    Full Text Available Shi Ngar Wong, Mark Halaki, Chin Moi ChowDiscipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, AustraliaAbstract: The sleep–wake cycle is a process not only dictated by homeostatic and circadian factors but also by social and environmental influences. Thus, the total sleep time partly reflects sleep need, which is integral to the dynamics of sleep loss recovery. This study explored the nature of the observed oscillations in total sleep time in healthy adults under spontaneous living conditions. Actigraph-measured sleep data for 13 healthy young male adults were collected over 14 consecutive days and analyzed for habitual sleep duration. The total sleep time periodicity was modeled using the cosinor method for each individual across the 14 days. The findings confirm the existence of periodicity in habitual sleep duration as there were clear periodic patterns in the majority of the participants. Although exclusive to each individual, the observed oscillations may be a resultant response of homeostatic sleep need, circadian timing, and/or social and environmental influences. These findings instigate further indepth studies into the periodicity of sleep duration in healthy individuals to provide a better understanding of sleep need in short versus long sleepers, in predicting work performance, and reducing sleepiness-related accidents following shift work, and how this periodicity may impact sleep treatment outcome in clinical populations.Keywords: sleep regulation, homeostasis, habitual sleep, spontaneous living, healthy males

  5. Sleep and obsessive-compulsive disorder (OCD).

    Science.gov (United States)

    Paterson, Jessica L; Reynolds, Amy C; Ferguson, Sally A; Dawson, Drew

    2013-12-01

    Obsessive-compulsive disorder (OCD) is a chronic mental illness that can have a debilitating effect on daily functioning. A body of research reveals altered sleep behaviour in OCD sufferers; however, findings are inconsistent and there is no consensus on the nature of this relationship. Understanding sleep disturbance in OCD is of critical importance given the known negative consequences of disturbed sleep for mood and emotional wellbeing. A systematic literature search was conducted of five databases for studies assessing sleep in adults diagnosed with OCD. Fourteen studies met inclusion criteria and qualitative data analysis methods were used to identify common themes. There was some evidence of reduced total sleep time and sleep efficiency in OCD patients. Many of the sleep disturbances noted were characteristic of depression. However, some OCD sufferers displayed delayed sleep onset and offset and an increased prevalence of delayed sleep phase disorder (DSPD). Severe OCD symptoms were consistently associated with greater sleep disturbance. While the sleep of OCD patients has not been a major focus to date, the existing literature suggests that addressing sleep disturbance in OCD patients may ensure a holistic approach to treatment, enhance treatment efficacy, mitigate relapse and protect against the onset of co-morbid psychiatric illnesses. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J.; Petit, Jean-Marie

    2016-01-01

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs

  7. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  8. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling

    Science.gov (United States)

    Gonzales, Erin D.; Tanenhaus, Anne K.; Zhang, Jiabin; Chaffee, Ryan P.; Yin, Jerry C.P.

    2016-01-01

    Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention. PMID:26604145

  9. Sleep deprived and sweating it out: the effects of total sleep deprivation on skin conductance reactivity to psychosocial stress.

    Science.gov (United States)

    Liu, Jean C J; Verhulst, Silvan; Massar, Stijn A A; Chee, Michael W L

    2015-01-01

    We examined how sleep deprivation alters physiological responses to psychosocial stress by evaluating changes in skin conductance. Between-subjects design with one group allocated to 24 h of total sleep deprivation and the other to rested wakefulness. The study took place in a research laboratory. Participants were 40 healthy young adults recruited from a university. Sleep deprivation and feedback. Electrodermal activity was monitored while participants completed a difficult perceptual task with false feedback. All participants showed increased skin conductance levels following stress. However, compared to well-rested participants, sleep deprived participants showed higher skin conductance reactivity with increasing stress levels. Our results suggest that sleep deprivation augments allostatic responses to increasing psychosocial stress. Consequentially, we propose sleep loss as a risk factor that can influence the pathogenic effects of stress. © 2014 Associated Professional Sleep Societies, LLC.

  10. From Sleep Duration to Childhood Obesity

    DEFF Research Database (Denmark)

    Börnhorst, Claudia; Hense, Sabrina; Ahrens, Wolfgang

    2012-01-01

    Sleep duration has been identified as risk factor for obesity already in children. Besides investigating the role of fat mass (FM), this study addressed the question whether endocrine mechanisms act as intermediates in the association between sleep duration and overweight/obesity. Within...... the framework of the IDEFICS study, the present research was conducted in 609 German resident children aged 2–9 years with information on fasting insulin, C-reactive protein and cortisol levels next to anthropometric measurements and parental questionnaires. Emphasising methodological aspects, an age......-specific measure of sleep duration was derived to account for alteration in sleep duration during childhood/period of growth. Multivariate linear regression and quantile regression models confirmed an inverse relationship between sleep duration and measures of overweight/obesity. The estimate for the association...

  11. Sleep Quality Estimation based on Chaos Analysis for Heart Rate Variability

    Science.gov (United States)

    Fukuda, Toshio; Wakuda, Yuki; Hasegawa, Yasuhisa; Arai, Fumihito; Kawaguchi, Mitsuo; Noda, Akiko

    In this paper, we propose an algorithm to estimate sleep quality based on a heart rate variability using chaos analysis. Polysomnography(PSG) is a conventional and reliable system to diagnose sleep disorder and to evaluate its severity and therapeatic effect, by estimating sleep quality based on multiple channels. However, a recording process requires a lot of time and a controlled environment for measurement and then an analyzing process of PSG data is hard work because the huge sensed data should be manually evaluated. On the other hand, it is focused that some people make a mistake or cause an accident due to lost of regular sleep and of homeostasis these days. Therefore a simple home system for checking own sleep is required and then the estimation algorithm for the system should be developed. Therefore we propose an algorithm to estimate sleep quality based only on a heart rate variability which can be measured by a simple sensor such as a pressure sensor and an infrared sensor in an uncontrolled environment, by experimentally finding the relationship between chaos indices and sleep quality. The system including the estimation algorithm can inform patterns and quality of own daily sleep to a user, and then the user can previously arranges his life schedule, pays more attention based on sleep results and consult with a doctor.

  12. Sleep deprivation alters effort discounting but not delay discounting of monetary rewards.

    Science.gov (United States)

    Libedinsky, Camilo; Massar, Stijn A A; Ling, Aiqing; Chee, Weiyan; Huettel, Scott A; Chee, Michael W L

    2013-06-01

    To determine whether sleep deprivation would affect the discounting of delayed rewards, of rewards entailing the expense of effort, or both. We measured rates of two types of reward discounting under conditions of rested wakefulness (RW) and sleep deprivation (SD). Delay discounting was defined as the willingness to accept smaller monetary rewards sooner rather than larger monetary rewards later. Effort discounting was defined as the willingness to accept smaller rewards that require less effort to obtain (e.g., typing a small number of letter strings backward) over larger but more effortful rewards (e.g., typing more letter strings to receive the reward). The first two experiments used a crossover design in which one session was conducted after a normal night of sleep (RW), and the other after a night without sleep (SD). The first experiment evaluated only temporal discounting whereas the second evaluated temporal and effort discounting. In the second experiment, the discounting tasks were repeatedly administered prior to the state comparisons to minimize the effects of order and/or repeated testing. In a third experiment, participants were studied only once in a between-subject evaluation of discounting across states. The study took place in a research laboratory. Seventy-seven healthy young adult participants: 20 in Experiment 1, 27 in Experiment 2, and 30 in Experiment 3. N/A. Sleep deprivation elicited increased effort discounting but did not affect delay discounting. The dissociable effects of sleep deprivation on two forms of discounting behavior suggest that they may have differing underlying neural mechanisms.

  13. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats.

    Science.gov (United States)

    Everson, Carol A; Henchen, Christopher J; Szabo, Aniko; Hogg, Neil

    2014-12-01

    Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. © 2014 Associated Professional Sleep Societies, LLC.

  14. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    Science.gov (United States)

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  15. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-hours Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Priyanka eChanana

    2016-03-01

    Full Text Available ABSTRACTRationale- Panax quinquefolius (American Ginseng is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid plays an important role in sleep wake cycle homeostasis. Thus there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems.Objective- The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-hours sleep deprivation induced anxiety like behaviour, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation.Materials and Methods- Male laca mice were sleep deprived for 72-hours by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100 and 200 mg/kg was administered alone and in combination with GABA modulators (GABA Cl- channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist for 8 days, starting five days prior to 72-hours sleep deprivation period. Various behavioural (locomotor activity, mirror chamber test, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels, mitochondrial complexes, neuroinflammation marker (Tumour Necrosis Factor, TNF-alpha, serum corticosterone, and histopathological sections of brains were assessed. Results- 72-hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behaviour, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg treatment restored the behavioural, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of

  16. Sleep deprivation influences some but not all processes of supervisory attention

    Science.gov (United States)

    Jennings, J. R.; Monk, T. H.; van der Molen, M. W.

    2003-01-01

    Does one night of sleep deprivation alter processes of supervisory attention in general or only a specific subset of such processes? Twenty college-aged volunteers, half female, performed a choice reaction time task. A cue indicated that compatible (e.g., right button, right-pointing arrow) or incompatible (e.g., left button, right-pointing arrow) responses were to be given to a stimulus that followed 50 or 500 ms later. The paradigm assessed response inhibition, task-shifting skill, and task strategy-processes inherent in supervisory attention. Performance, along with heart rate, was assessed for 12 hr following normal sleep or a night of complete sleep deprivation. Sleep deprivation altered neither preparation for task shifting nor response inhibition. The ability to use preparatory bias to speed performance did decrease with sleep deprivation. Sleep deprivation appears to selectively affect this supervisory attention process, which is perceived as an active effort to cope with a challenging task.

  17. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    Science.gov (United States)

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  18. Effects of Diet on Sleep Quality.

    Science.gov (United States)

    St-Onge, Marie-Pierre; Mikic, Anja; Pietrolungo, Cara E

    2016-09-01

    There is much emerging information surrounding the impact of sleep duration and quality on food choice and consumption in both children and adults. However, less attention has been paid to the effects of dietary patterns and specific foods on nighttime sleep. Early studies have shown that certain dietary patterns may affect not only daytime alertness but also nighttime sleep. In this review, we surveyed the literature to describe the role of food consumption on sleep. Research has focused on the effects of mixed meal patterns, such as high-carbohydrate plus low-fat or low-carbohydrate diets, over the short term on sleep. Such studies highlight a potential effect of macronutrient intakes on sleep variables, particularly alterations in slow wave sleep and rapid eye movement sleep with changes in carbohydrate and fat intakes. Other studies instead examined the intake of specific foods, consumed at a fixed time relative to sleep, on sleep architecture and quality. Those foods, specifically milk, fatty fish, tart cherry juice, and kiwifruit, are reviewed here. Studies provide some evidence for a role of certain dietary patterns and foods in the promotion of high-quality sleep, but more studies are necessary to confirm those preliminary findings. © 2016 American Society for Nutrition.

  19. Short sleep duration and poor sleep quality predict next-day suicidal ideation: an ecological momentary assessment study.

    Science.gov (United States)

    Littlewood, Donna L; Kyle, Simon D; Carter, Lesley-Anne; Peters, Sarah; Pratt, Daniel; Gooding, Patricia

    2018-04-26

    Sleep problems are a modifiable risk factor for suicidal thoughts and behaviors. Yet, sparse research has examined temporal relationships between sleep disturbance, suicidal ideation, and psychological factors implicated in suicide, such as entrapment. This is the first in-the-moment investigation of relationships between suicidal ideation, objective and subjective sleep parameters, and perceptions of entrapment. Fifty-one participants with current suicidal ideation completed week-long ecological momentary assessments. An actigraph watch was worn for the duration of the study, which monitored total sleep time, sleep efficiency, and sleep latency. Daily sleep diaries captured subjective ratings of the same sleep parameters, with the addition of sleep quality. Suicidal ideation and entrapment were measured at six quasi-random time points each day. Multi-level random intercept models and moderation analyses were conducted to examine the links between sleep, entrapment, and suicidal ideation, adjusting for anxiety and depression severity. Analyses revealed a unidirectional relationship whereby short sleep duration (both objective and subjective measures), and poor sleep quality, predicted the higher severity of next-day suicidal ideation. However, there was no significant association between daytime suicidal ideation and sleep the following night. Sleep quality moderated the relationship between pre-sleep entrapment and awakening levels of suicidal ideation. This is the first study to report night-to-day relationships between sleep disturbance, suicidal ideation, and entrapment. Findings suggest that sleep quality may alter the strength of the relationship between pre-sleep entrapment and awakening suicidal ideation. Clinically, results underscore the importance of assessing and treating sleep disturbance when working with those experiencing suicidal ideation.

  20. The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2007-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  1. Sleep patterning changes in a prenatal stress model of depression

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Skoven, C; Bastlund, Jesper F

    2018-01-01

    /wakefulness behavior around the change from light-to-dark phase. Control and PNS Sprague-Dawley rats were implanted with electrodes for continuous monitoring of electroencephalic activity used to determine behavioral state. The distribution of slow-wave sleep (SWS), rapid eye movement sleep (REMS) and wakefulness......Clinical depression is accompanied by changes in sleep patterning, which is controlled in a circadian fashion. It is thus desirable that animal models of depression mirror such diurnally-specific state alterations, along with other behavioral and physiological changes. We previously found several...... changes in behavior indicative of a depression-like phenotype in offspring of rats subjected to repeated, variable prenatal stress (PNS), including increased locomotor activity during specific periods of the circadian cycle. We, therefore, investigated whether PNS rats also exhibit alterations in sleep...

  2. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity

    Directory of Open Access Journals (Sweden)

    Niels Niethard

    2017-09-01

    Full Text Available Sleep is thought to be involved in the regulation of synaptic plasticity in two ways: by enhancing local plastic processes underlying the consolidation of specific memories and by supporting global synaptic homeostasis. Here, we briefly summarize recent structural and functional studies examining sleep-associated changes in synaptic morphology and neural excitability. These studies point to a global down-scaling of synaptic strength across sleep while a subset of synapses increases in strength. Similarly, neuronal excitability on average decreases across sleep, whereas subsets of neurons increase firing rates across sleep. Whether synapse formation and excitability is down or upregulated across sleep appears to partly depend on the cell’s activity level during wakefulness. Processes of memory-specific upregulation of synapse formation and excitability are observed during slow wave sleep (SWS, whereas global downregulation resulting in elimination of synapses and decreased neural firing is linked to rapid eye movement sleep (REM sleep. Studies of the excitation/inhibition balance in cortical circuits suggest that both processes are connected to a specific inhibitory regulation of cortical principal neurons, characterized by an enhanced perisomatic inhibition via parvalbumin positive (PV+ cells, together with a release from dendritic inhibition by somatostatin positive (SOM+ cells. Such shift towards increased perisomatic inhibition of principal cells appears to be a general motif which underlies the plastic synaptic changes observed during sleep, regardless of whether towards up or downregulation.

  3. Sleep-wake habits in middle and late adolescence and the criteria for the choice of subjects on sleep research

    OpenAIRE

    林, 光緒; 田中, 秀樹; 岩城, 達也; 福田, 一彦; 堀, 忠雄

    1997-01-01

    Sleep-wake habits in middle and late adolescence were surveyed for college of technology (n=799), college of nursing (n=460) and university (n=1062) students. Daytime sleepiness and nodding off were often occurred. They made up for shortened sleep time at holiday. One third of them took replacement naps. Some of them had the irregular life habits, such as delayed bed-time, shortened sleep time, irregular meal time and engaging in night work, suggesting that these habits might alter the phase ...

  4. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    Directory of Open Access Journals (Sweden)

    Munazah Fazal Qureshi

    2014-01-01

    Full Text Available Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg were injected intraperitoneally in the same animal (n=7 and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26±1.03 and 9.09±0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle and 34.21% (from low dose. Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p. (n=5 did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  5. Effect of non-alcoholic beer on Subjective Sleep Quality in a university stressed population.

    Science.gov (United States)

    Franco, L; Bravo, R; Galán, C; Rodríguez, A B; Barriga, C; Cubero, Javier

    2014-09-01

    Sleep deprivation affects the homeostasis of the physiological functions in the human organism. Beer is the only beverage that contains hops, a plant which has a sedative effect. Our objective is to determine the improvement of subjective sleep quality using the Pittsburgh Sleep Quality Index (PSQI). The sample was conducted among a population of 30 university students. The study took place during a period of 3 weeks, the first 7 days were used for the Control, and during the following 14 days the students ingested beer (were asked to drink non-alcoholic beer) while having dinner. The results revealed that Subjective Sleep Quality improved in the case of those students who drank one beer during dinner compared to the Control, this is corroborated by the fact that Sleep Latency decreased (p < 0.05) compared to their Control. The overall rating Global Score of Quality of Sleep also improved significantly (p < 0.05). These results confirm that the consumption of non-alcoholic beer at dinner time helps to improve the quality of sleep at night.

  6. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  7. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  8. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  9. Type 2 diabetes affects sleep quality by disrupting the respiratory function.

    Science.gov (United States)

    Colbay, Gulcan; Cetin, Mustafa; Colbay, Mehmet; Berker, Dilek; Guler, Serdar

    2015-09-01

    The effects of diabetes on the respiratory system were investigated with arterial blood gas, sleep quality index and respiratory functions tests. Fifty-three patients with type II diabetes and 41 healthy cases were included. Their biochemical data, demographic characteristics, anthropometric measurements and echocardiographic findings were collected from polyclinic records. Respiratory function tests were performed for all subjects and Pittsburgh Sleep Quality Index questionnaire was conducted. Aforementioned data were compared between these two groups. The age, body weight and body mass index were similar but oxygen pressure, oxygen saturation, forced vital capacity (FVC; %), and sleep quality were decreased in patients with diabetes. Sleep quality was correlated with the presence of diabetes and hypertension, duration of diabetes, fasting and postprandial blood glucose levels, homeostasis model of assessment-insulin resistance, Glycosylated hemoglobin levels, and FVC. Half of the diabetic patients exhibited respiratory failure during sleep. Especially diabetic patients with autonomic neuropathy, experienced a more severe and prolonged decrease in oxygen saturation. Blood gas, respiratory functions and sleep quality, which need to be evaluated as a whole, were affected in patients with diabetes. Assessment of sleep and its quality requires special attention in patients with diabetes. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  10. Rapid eye movement-sleep is reduced in patients with acute uncomplicated diverticulitis—an observational study

    DEFF Research Database (Denmark)

    Huang, Chenxi; Alamili, Mahdi; Nielsen, Claus Henrik

    2015-01-01

    responses are believed to cause postoperative sleep disturbances, as inflammatory responses can alter sleep architecture through cytokine-brain interactions. Our aim was to investigate alteration of sleep architecture during acute infection and its relationships to inflammation and clinical symptoms......Introduction. Sleep disturbances are commonly found in patients in the postoperative period. Sleep disturbances may give rise to several complications including cardiopulmonary instability, transient cognitive dysfunction and prolonged convalescence. Many factors including host inflammatory....... Materials & Methods. In this observational study, we included patients with acute uncomplicated diverticulitis as a model to investigate the isolated effects of inflammatory responses on sleep. Eleven patients completed the study. Patients were admitted and treated with antibiotics for two nights, during...

  11. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    Science.gov (United States)

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  12. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Dal-Pont, Gustavo; Sangaletti-Pereira, Heron; Gava, Fernanda F; Peterle, Bruna R; Carvalho, André F; Varela, Roger B; Dal-Pizzol, Felipe; Quevedo, João

    2017-06-01

    The goal of the present study was to investigate the effects of lithium administration on behavior, oxidative stress parameters and cytokine levels in the periphery and brain of mice subjected to an animal model of mania induced by paradoxical sleep deprivation (PSD). Male C57 mice were treated with saline or lithium for 7 days. The sleep deprivation protocol started on the 5th day during for the last 36 hours of the treatment period. Immediately after the sleep deprivation protocol, animals locomotor activity was evaluated and serum and brain samples was extracted to evaluation of corticosterone and adrenocorticotropic hormone circulating levels, oxidative stress parameters and citokynes levels. The results showed that PSD induced hyperactivity in mice, which is considered a mania-like behavior. PSD increased lipid peroxidation and oxidative damage to DNA, as well as causing alterations to antioxidant enzymes in the frontal cortex, hippocampus and serum of mice. In addition, PSD increased the levels of cytokines in the brains of mice. Treatment with lithium prevented the mania-like behavior, oxidative damage and cytokine alterations induced by PSD. Improving our understanding of oxidative damage in biomolecules, antioxidant mechanisms and the inflammatory system - alterations presented in the animal models of mania - is important in helping us to improve our knowledge concerning the pathophysiology of BD, and the mechanisms of action employed by mood stabilizers. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Leptin: A biomarker for sleep disorders?

    OpenAIRE

    Pan, Weihong; Kastin, Abba J.

    2013-01-01

    Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal an...

  14. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain.

    Science.gov (United States)

    Vanini, Giancarlo

    2016-01-01

    Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. © 2016 Associated Professional Sleep Societies, LLC.

  15. The Effect of Total Sleep Deprivation and Recovery Sleep on Cognitive on Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2005-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  16. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice.

    Science.gov (United States)

    Vecsey, Christopher G; Wimmer, Mathieu E J; Havekes, Robbert; Park, Alan J; Perron, Isaac J; Meerlo, Peter; Abel, Ted

    2013-04-01

    Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6(th) day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6(th) day, stress hormone levels are unaltered by handling. It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation.

  17. Ventilatory sensitivity to mild asphyxia: prone versus supine sleep position

    OpenAIRE

    Galland, B; Bolton, D; Taylor, B; Sayers, R; Williams, S

    2000-01-01

    AIMS—To compare the effects of prone and supine sleep position on the main physiological responses to mild asphyxia: increase in ventilation and arousal.
METHODS—Ventilatory and arousal responses to mild asphyxia (hypercapnia/hypoxia) were measured in 53 healthy infants at newborn and 3 months of age, during quiet sleep (QS) and active sleep (AS), and in supine and prone sleep positions. The asphyxial test mimicked face down rebreathing by slowly altering the inspired air: C...

  18. Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis.

    Science.gov (United States)

    Topf, Ulrike; Wrobel, Lidia; Chacinska, Agnieszka

    2016-08-01

    Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Age-related changes in sleep-wake rhythm in dog.

    Science.gov (United States)

    Takeuchi, Takashi; Harada, Etsumori

    2002-10-17

    To investigate a sleep-wake rhythm in aged dogs, a radio-telemetry monitoring was carried out for 24 h. Electrodes and telemetry device were surgically implanted in four aged dogs (16-18 years old) and four young dogs (3-4 years old). Electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG) were recorded simultaneously as parameters to determine vigilance states and an autonomic nervous function. Wakefulness, slow wave sleep (SWS) and paradoxical sleep (PS) were identified according to the EEG and EMG pattern. We also examined whether absolute powers and the low frequency-to-high frequency ratio (LF/HF) derived from the heart rate variability power spectrum could detect shifts in autonomic balance correlated with aging. The aged dogs showed a marked reduction of PS and a fragmentation of wakefulness in the daytime and a sleep disruption in the night. The pattern of 24 h sleep and waking was dramatically altered in the aged dog. It was characterized by an increase in the total amount of time spent in SWS during the daytime followed by an increasing of time spent in wakefulness during the night. Furthermore, LF/HF ratio showed a very low amplitude of variance throughout the day in the aged dog. These results suggest that the aged dog is a useful model to investigate sleep disorders in human such as daytime drowsiness, difficulties in sleep maintenance. The abnormality in sleep-wake cycle might be reflected by the altered autonomic balance in the aged dogs.

  20. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  1. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    Science.gov (United States)

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  2. Sleep Sleeping Patch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Sleep Sleeping Patch is a new kind of external patch based on modern sleep medicine research achievements, which uses the internationally advanced transdermal therapeutic system (TTS). The Sleep Sleeping Patch transmits natural sleep inducers such as peppermint and liquorice extracts and melatonin through the skin to induce sleep. Clinical research proves that the Sleep Sleeping Patch can effectively improve insomnia and the quality of sleep. Highly effective: With the modern TTS therapy,

  3. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  4. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  5. Sleep and Epilepsy: Strange Bedfellows No More.

    Science.gov (United States)

    St Louis, Erik K

    2011-09-01

    Ancient philosophers and theologians believed that altered consciousness freed the mind to prophesy the future, equating sleep with seizures. Only recently has the bidirectional influences of epilepsy and sleep upon one another received more substantive analysis. This article reviews the complex and increasingly recognized interrelationships between sleep and epilepsy. NREM sleep differentially activates interictal epileptiform discharges during slow wave (N3) sleep, while ictal seizure events occur more frequently during light NREM stages N1 and N2. The most commonly encountered types of sleep-related epilepsies (those with preferential occurrence during sleep or following arousal) include frontal and temporal lobe partial epilepsies in adults, and benign epilepsy of childhood with centrotemporal spikes (benign rolandic epilepsy) and juvenile myoclonic epilepsy in children and adolescents. Comorbid sleep disorders are frequent in patients with epilepsy, particularly obstructive sleep apnea in refractory epilepsy patients which may aggravate seizure burden, while treatment with nasal continuous positive airway pressure often improves seizure frequency. Distinguishing nocturnal events such as NREM parasomnias (confusional arousals, sleep walking, and night terrors), REM parasomnias including REM sleep behavior disorder, and nocturnal seizures if frequently difficult and benefits from careful history taking and video-EEG-polysomnography in selected cases. Differentiating nocturnal seizures from primary sleep disorders is essential for determining appropriate therapy, and recognizing co-existent sleep disorders in patients with epilepsy may improve their seizure burden and quality of life.

  6. Complement: a key system for immune surveillance and homeostasis.

    Science.gov (United States)

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D

    2010-09-01

    Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

  7. Sleep disturbances in Parkinsonism.

    Science.gov (United States)

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  8. Metabolic biomarkers in community obese children: effect of obstructive sleep apnea and its treatment.

    Science.gov (United States)

    Alonso-Álvarez, María Luz; Terán-Santos, Joaquin; Gonzalez Martinez, Mónica; Cordero-Guevara, José Aurelio; Jurado-Luque, María José; Corral-Peñafiel, Jaime; Duran-Cantolla, Joaquin; Ordax Carbajo, Estrella; MasaJimenez, Fernando; Kheirandish-Gozal, Leila; Gozal, David

    2017-09-01

    Obesity and obstructive sleep apnea in children have been associated with metabolic morbidities. The present study aimed to evaluate the presence of metabolic alterations among obese children recruited from the community, with and without obstructive sleep apnea syndrome (OSAS), and the impact of treatment of OSAS on metabolic profiles. A cross-sectional, prospective, multicenter study of Spanish children aged 3-14 years with a body mass index (BMI) ≥95th percentile for age and sex were randomly selected in the first phase. Four groups emerged for follow-up: (1) no treatment; (2) dietary intervention; (3) surgical treatment of OSA; and (4) continuous positive airway pressure (CPAP) treatment of OSA. Fasting blood tests were performed at baseline (T0) and approximately one year after the intervention (T1). A total of 113 obese children with a mean age of 11.3 ± 2.9 years completed T0 and T1 assessments. Their mean BMI z-score at T1 was 1.34 ± 0.59, and mean Respiratory Disturbance Index was 8.6 ± 13.0 at T0 and 3.3 ± 4.0/hour total sleep time at T1. Only glucose fasting levels differed among metabolic parameters in obese children with OSAS and without OSAS at baseline (T0) (p = 0.018). There were statistically significant differences between surgically treated OSAS (p = 0.002), and CPAP-treated OSAS (p = 0.024) versus the non-OSAS group in the glucose levels between baseline (T0) and follow-up (T1) after controlling for age and change in BMI. Significant univariate associations between BMI and C-reactive protein, insulin, and homeostasis model assessment of insulin resistance emerged at both T0 and T1. Concurrent obesity and OSAS could promote metabolic and inflammatory alterations, and the latter appeared to be sensitive to OSAS treatment outcomes. ClinicalTrials.gov Identifier: NCT01322763. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lifestyle modification for obstructive sleep apnoea.

    Science.gov (United States)

    Shneerson, J; Wright, J

    2001-01-01

    Obstructive sleep apnoeas are due to transient closure of the upper airway during sleep and merge into hypopnoeas in which the airway narrows, but some airflow continues. They are due to the forces compressing the airway overcoming those which stabilise its patency. The commonest association is obesity in which fatty tissue is deposited around the airway. Exercise has been recommended as a method of losing weight, but other techniques which achieve this are also thought to improve symptoms due to sleep apnoeas. Sleep hygiene may alter the sleep structure and the control of the upper airway during sleep and thus promote its patency. The objectives of this review are to determine whether weight loss, sleep hygiene and exercise are effective in the treatment of obstructive sleep apnoeas. The Cochrane Airways Group Trials Register, MEDLINE, EMBASE, CINAHL and reference lists of review articles have been searched. Randomised, single or double blind placebo controlled, either parallel group or crossover design studies of any of these interventions were to have been included. No completed trials have been identified. No randomised trial data were available for analysis. There is a need for randomised controlled trials of these commonly used treatments in obstructive sleep apnoeas. These should identify which sub groups of patients with sleep apnoeas benefit most from each type of treatment and they should have clear and standardised outcome measures.

  10. Elevation in brain temperature during paradoxical sleep.

    Science.gov (United States)

    Kawamura, H; Sawyer, C H

    1965-11-12

    During ordinary sleep, the temperature of the rabbit brain tended to drop, but during paradoxical sleep it rose sharply 0.1 degrees to 0.4 degrees C, a greater elevation than was observed during arousal. Changes in body temperature generally did not parallel the alterations in brain temperature. Shifts of direct-current potential in the brain are basically independent of the changes in brain temperature.

  11. The important role of sleep in metabolism.

    Science.gov (United States)

    Copinschi, Georges; Leproult, Rachel; Spiegel, Karine

    2014-01-01

    Both reduction in total sleep duration with slow-wave sleep (SWS) largely preserved and alterations of sleep quality (especially marked reduction of SWS) with preservation of total sleep duration are associated with insulin resistance without compensatory increase in insulin secretion, resulting in impaired glucose tolerance and increased risk of type 2 diabetes. When performed under rigorously controlled conditions of energy intake and physical activity, sleep restriction is also associated with a decrease in circulating levels of leptin (an anorexigenic hormone) and an increase in circulating levels of ghrelin (an orexigenic hormone), hunger and appetite. Furthermore, sleep restriction is also associated with a stimulation of brain regions sensitive to food stimuli, indicating that sleep loss may lead to obesity through the selection of high-calorie food. There is also evidence that sleep restriction could provide a permissive environment for the activation of genes that promote obesity. Indeed, the heritability of body mass index is increased in short sleepers. Thus, chronic sleep curtailment, which is on the rise in modern society, including in children, is likely to contribute to the current epidemics of type 2 diabetes and obesity. © 2014 S. Karger AG, Basel.

  12. PR01 - The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2006-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  13. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Davis

    2017-06-01

    Full Text Available Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory cytokine, interleukin-37 (IL-37 on sleep in a mouse strain that expresses human IL-37b (IL37tg mice. Constitutive expression of the IL-37 gene in the brains of these mice under resting conditions is low; however, upon an inflammatory stimulus, expression increases dramatically. We measured sleep in three conditions; (a under baseline conditions and after 6 h of sleep loss, (b after bolus intraperitoneal administration of lipopolysaccharide (LPS or IL-1β and (c after intranasal influenza virus challenge. Under baseline conditions, the IL37tg mice had 7% more spontaneous non-rapid eye movement sleep (NREMS during the light period than wild-type (WT mice. After sleep deprivation both WT mice and IL37tg mice slept an extra 21% and 12%, respectively, during the first 6 h of recovery. NREMS responses after sleep deprivation did not significantly differ between WT mice and IL37tg mice. However, in response to either IL-1β or LPS, the increases in time spent in NREMS were about four-fold greater in the WT mice than in the IL37tg mice. In contrast, in response to a low dose of mouse-adapted H1N1 influenza virus, sleep responses developed slowly over the 6 day recording period. By day 6, NREMS increased by 10% and REMS increased by 18% in the IL37tg mice compared to the WT mice. Further, by day 4 IL37tg mice lost less weight, remained more active, and retained their body temperatures closer to baseline values than WT mice. We conclude that conditions that promote IL-37 expression attenuate morbidity to severe inflammatory challenge.

  14. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

    Directory of Open Access Journals (Sweden)

    Yan-Ling Yang

    Full Text Available BACKGROUND: Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS: Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE. The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS: In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION: Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.

  15. New Hypothesis and Theory about Functions of Sleep and Dreams

    Directory of Open Access Journals (Sweden)

    Nikola N. Ilanković

    2014-03-01

    Conclusion: IEP-P1 could be a new biological marker to distinction of sleep organization in different psychotic states and other states of altered consciousness. The developed statistical models could be the basis for new hypothesis and theories about functions of sleep and dreams.

  16. Role of orexins in the central and peripheral regulation of glucose homeostasis: Evidences & mechanisms.

    Science.gov (United States)

    Rani, Monika; Kumar, Raghuvansh; Krishan, Pawan

    2018-04-01

    Orexins (A & B), neuropeptides of hypothalamic origin, act through G-protein coupled receptors, orexin 1 receptor (OX 1 R) and orexin 2 receptor (OX 2 R). The wide projection of orexin neurons in the hypothalamic region allows them to interact with the other neurons and regulate food intake, emotional status, sleep wake cycle and energy metabolism. The autonomic nervous system plays an important regulatory role in the energy metabolism as well as glucose homeostasis. Orexin neurons are also under the control of GABAergic neurons. Emerging preclinical as well as clinical research has reported the role of orexins in the glucose homeostasis since orexins are involved in hypothalamic metabolism circuitry and also rely on sensing peripheral metabolic signals such as gut, adipose derived and pancreatic peptides. Apart from the hypothalamic origin, integration and control in various physiological functions, peripheral origin in wide organs, raises the possibility of use of orexins as a therapeutic biomarker in the management of metabolic disorders. The present review focuses the central as well as peripheral roles of orexins in the glucose homeostasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Accommodating adolescent sleep-wake patterns: the effects of shifting the timing of sleep on training effectiveness.

    Science.gov (United States)

    Miller, Nita Lewis; Tvaryanas, Anthony P; Shattuck, Lawrence G

    2012-08-01

    This study evaluated the effect of accommodating adolescent sleep-wake patterns by altering the timing of the major sleep period of US Army recruits. The quasi-experimental study compared recruits assigned to one of two training companies: one with a customary sleep regimen (20:30 to 04:30) while the other employed a phase-delayed sleep regimen (23:00 to 07:00), the latter aligning better with biologically driven sleep-wake patterns of adolescents. The study was conducted during Basic Combat Training (BCT) at Fort Leonard Wood, Missouri. TRAINEES: The study included 392 trainees: 209 received the intervention, while 183 composed the Comparison group. Demographic and psychophysiological measures were collected on all trainees. Weekly assessments of subjective fatigue and mood, periodic physical fitness, marksmanship scores, and attrition rates from BCT were studied. Actigraphy was collected on approximately 24% of trainees. Based on actigraphy, trainees on the phase-delayed sleep schedule obtained 31 m more sleep/night than trainees on the customary sleep schedule. The Intervention group reported less total mood disturbance relative to baseline. Improvements in marksmanship correlated positively with average nightly sleep during the preceding week when basic marksmanship skills were taught. No differences were seen in physical fitness or attrition rates. In contrast to the Intervention group, the Comparison group was 2.3 times more likely to experience occupationally significant fatigue and 5.5 times more likely to report poor sleep quality. Accommodating adolescent sleep patterns significantly improves mental health and performance in the training environment.

  18. Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance.

    Science.gov (United States)

    1987-06-01

    endotoxin, and I FN c’iti ,I ,r lcli 1)!,.pacid metabolism (31) , thus possibly alteriir, PD proict ion: 11(i *PcD( C2’. enhance release of %I11( 104...interleukin-l in homeostasis. In: The Phys- iologic, Metabolic , and Immunologic Actions of Interleukin-l, edited by M. J. Kluger, J. J. Oppenheim...1980. 99. Sakaguchi, S., S. F. Glotzbach, and H. C. Heller. Influence of hypot!;a- lamic and ambient temperatures on sleep in kangaroo rats. Am. J

  19. The effects of total sleep deprivation on Bayesian updating

    Directory of Open Access Journals (Sweden)

    David L. Dickinson

    2008-02-01

    Full Text Available Subjects performed a decision task (Grether, 1980 in both a well-rested and experimentally sleep-deprived state. We found two main results: 1 final choice accuracy was unaffected by sleep deprivation, and yet 2 the estimated decision model differed significantly following sleep-deprivation. Following sleep deprivation, subjects placed significantly less weight on new information in forming their beliefs. Because the altered decision process still maintains decision accuracy, it may suggest that increased accident and error rates attributed to reduced sleep in modern society stem from reduced auxiliary function performance (e.g., slowed reaction time, reduced motor skills or other components of decision making, rather than the inability to integrate multiple pieces of information.

  20. Effects of (± 3,4-Methylenedioxymethamphetamine (MDMA on Sleep and Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Una D. McCann

    2007-01-01

    Full Text Available Abuse of stimulant drugs invariably leads to a disruption in sleep-wake patterns by virtue of the arousing and sleep-preventing effects of these drugs. Certain stimulants, such as 3,4-methylenedioxymethamphetamine (MDMA, may also have the potential to produce persistent alterations in circadian regulation and sleep because they can be neurotoxic toward brain monoaminergic neurons involved in normal sleep regulation. In particular, MDMA has been found to damage brain serotonin (5-HT neurons in a variety of animal species, including nonhuman primates, with growing evidence that humans are also susceptible to MDMA-induced brain 5-HT neurotoxicity. 5-HT is an important modulator of sleep and circadian rhythms and, therefore, individuals who sustain MDMA-induced 5-HT neurotoxicity may be at risk for developing chronic abnormalities in sleep and circadian patterns. In turn, such abnormalities could play a significant role in other alterations reported in abstinent in MDMA users (e.g., memory disturbance. This paper will review preclinical and clinical studies that have explored the effects of prior MDMA exposure on sleep, circadian activity, and the circadian pacemaker, and will highlight current gaps in knowledge and suggest areas for future research.

  1. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway

    Directory of Open Access Journals (Sweden)

    Ramesh Vijay

    2012-05-01

    Full Text Available Abstract Background Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who have disrupted sleep as a result of obstructive sleep apnea, a condition associated with prominent sleep fragmentation. The aim of this study was to examine role of the TNF-α pathway after long-term sleep fragmentation in mice. Methods The effect of chronic sleep fragmentation during the sleep-predominant period on sleep architecture, sleep latency, cognitive function, behavior, and inflammatory markers was assessed in C57BL/6 J and in mice lacking the TNF-α receptor (double knockout mice. In addition, we also assessed the above parameters in C57BL/6 J mice after injection of a TNF-α neutralizing antibody. Results Mice subjected to chronic sleep fragmentation had preserved sleep duration, sleep state distribution, and cumulative delta frequency power, but also exhibited excessive sleepiness, altered cognitive abilities and mood correlates, reduced cyclic AMP response element-binding protein phosphorylation and transcriptional activity, and increased phosphodiesterase-4 expression, in the absence of AMP kinase-α phosphorylation and ATP changes. Selective increases in cortical expression of TNF-α primarily circumscribed to neurons emerged. Consequently, sleepiness and cognitive dysfunction were absent in TNF-α double receptor knockout mice subjected to sleep fragmentation, and similarly, treatment with a TNF-α neutralizing antibody abrogated sleep fragmentation-induced learning deficits and increases in sleep propensity. Conclusions Taken together

  2. Sleep disorders in children after treatment for a CNS tumour

    NARCIS (Netherlands)

    Verberne, Lisa M.; Maurice-Stam, Heleen; Grootenhuis, Martha A.; van Santen, Hanneke M.; Schouten-van Meeteren, Antoinette Y. N.

    2012-01-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with

  3. Epigenomic profiling in visceral white adipose tissue of offspring of mice exposed to late gestational sleep fragmentation.

    Science.gov (United States)

    Cortese, R; Khalyfa, A; Bao, R; Andrade, J; Gozal, D

    2015-07-01

    Sleep fragmentation during late gestation (LG-SF) is one of the major perturbations associated with sleep apnea and other sleep disorders during pregnancy. We have previously shown that LG-SF induces metabolic dysfunction in offspring mice during adulthood. To investigate the effects of late LG-SF on metabolic homeostasis in offspring and to determine the effects of LG-SF on the epigenome of visceral white adipose tissue (VWAT) in the offspring. Time-pregnant mice were exposed to LG-SF or sleep control during LG (LG-SC) conditions during the last 6 days of gestation. At 24 weeks of age, lipid profiles and metabolic parameters were assessed in the offspring. We performed large-scale DNA methylation analyses using methylated DNA immunoprecipitation (MeDIP) coupled with microarrays (MeDIP-chip) in VWAT of 24-week-old LG-SF and LG-SC offspring (n=8 mice per group). Univariate multiple-testing adjusted statistical analyses were applied to identify differentially methylated regions (DMRs) between the groups. DMRs were mapped to their corresponding genes, and tested for potential overlaps with biological pathways and gene networks. We detected significant increases in body weight (31.7 vs 28.8 g; P=0.001), visceral (642.1 vs 497.0 mg; P=0.002) and subcutaneous (293.1 vs 250.1 mg; P=0.001) fat mass, plasma cholesterol (110.6 vs 87.6 mg dl(-1); P=0.001), triglycerides (87.3 vs 84.1 mg dl(-1); P=0.003) and homeostatic model assessment-insulin resistance values (8.1 vs 6.1; P=0.007) in the LG-SF group. MeDIP analyses revealed that 2148 DMRs (LG-SF vs LG-SC; Pgenes have reported functions that are altered in obesity and metabolic syndrome, such as Cartpt, Akt2, Apoe, Insr1 and so on. Overrepresented pathways and gene networks were related to metabolic regulation and inflammatory response. Our findings show a major role for epigenomic regulation of pathways associated with the metabolic processes and inflammatory responses in VWAT. LG-SF-induced epigenetic

  4. Sleep disorders in Parkinson's disease: a narrative review of the literature.

    Science.gov (United States)

    Raggi, Alberto; Bella, Rita; Pennisi, Giovanni; Neri, Walter; Ferri, Raffaele

    2013-01-01

    Parkinson's disease (PD) is classically considered to be a motor system affliction; however, also non-motor alterations, including sleep disorders, are important features of the disease. The aim of this review is to provide data on sleep disturbances in PD in the following grouping: difficulty initiating sleep, frequent night-time awakening and sleep fragmentation, nocturia, restless legs syndrome/periodic limb movements, sleep breathing disorders, drug induced symptoms, parasomnias associated with rapid eye movements (REM) sleep, sleep attacks, reduced sleep efficiency and excessive daytime sleepiness. Research has characterized some of these disturbances as typical examples of dissociated states of wakefulness and sleep that are admixtures or incomplete declarations of wakefulness, REM sleep, and non-REM (NREM) sleep. Moreover, sleep disorders may precede the typical motor system impairment of PD and their ability to predict disease has important implications for development of neuroprotective treatment; in particular, REM sleep behavior disorder may herald any other clinical manifestation of PD by more than 10 years.

  5. Sleep as a New Target for Improving Outcomes in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Mermigkis, Charalampos; Bouloukaki, Izolde; Schiza, Sophia E

    2017-12-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia but remains a disease with a poor outcome. Two drugs, pirfenidone and nintedanib, have shown promising results at stalling disease progression; however, the interplay of sleep disruption or sleep disorders overall and in relation to medication effectiveness remains understudied. In the past, there was limited interest in the role of sleep in patients with IPF. Treating physicians tended to address only the daily disabling symptoms while disregarding the possible significant role of sleep alterations or coexisting sleep disorders. During the past few years, there has been more research related to sleep disturbances in patients with IPF and their possible role in sleep and overall life quality, disease progression, and outcome. In summary, sleep in patients with IPF is significantly impaired, with alterations in sleep architecture, changes in sleep breathing pattern, and decreases in oxygen saturation mainly during vulnerable rapid eye movement sleep. There also is evidence that OSA has an increased prevalence in these patients, playing an important role in the already worse sleep quality related to the disease itself. The focus of this review is not only to present current data related to sleep in patients with IPF but also to point out that therapy for sleep problems and OSA is likely to improve sleep and life quality as well as disease outcome. The main priority remains to increase awareness among treating physicians about early diagnosis of OSA in patients with IPF and to emphasize the need for intense future research, especially on the role of intermittent hypoxia superimposed on chronic hypoxia during sleep in patients with IPF. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. A novel unsupervised analysis of electrophysiological signals reveals new sleep substages in mice.

    Directory of Open Access Journals (Sweden)

    Vasiliki-Maria Katsageorgiou

    2018-05-01

    Full Text Available Sleep science is entering a new era, thanks to new data-driven analysis approaches that, combined with mouse gene-editing technologies, show a promise in functional genomics and translational research. However, the investigation of sleep is time consuming and not suitable for large-scale phenotypic datasets, mainly due to the need for subjective manual annotations of electrophysiological states. Moreover, the heterogeneous nature of sleep, with all its physiological aspects, is not fully accounted for by the current system of sleep stage classification. In this study, we present a new data-driven analysis approach offering a plethora of novel features for the characterization of sleep. This novel approach allowed for identifying several substages of sleep that were hidden to standard analysis. For each of these substages, we report an independent set of homeostatic responses following sleep deprivation. By using our new substages classification, we have identified novel differences among various genetic backgrounds. Moreover, in a specific experiment with the Zfhx3 mouse line, a recent circadian mutant expressing both shortening of the circadian period and abnormal sleep architecture, we identified specific sleep states that account for genotypic differences at specific times of the day. These results add a further level of interaction between circadian clock and sleep homeostasis and indicate that dissecting sleep in multiple states is physiologically relevant and can lead to the discovery of new links between sleep phenotypes and genetic determinants. Therefore, our approach has the potential to significantly enhance the understanding of sleep physiology through the study of single mutations. Moreover, this study paves the way to systematic high-throughput analyses of sleep.

  7. Restraint stress impairs glucose homeostasis through altered insulin ...

    African Journals Online (AJOL)

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were ...

  8. Obstructive sleep apnea is associated with altered midbrain chemical concentrations.

    Science.gov (United States)

    Macey, Paul M; Sarma, Manoj K; Prasad, Janani P; Ogren, Jennifer A; Aysola, Ravi; Harper, Ronald M; Thomas, M Albert

    2017-11-05

    Obstructive sleep apnea (OSA) is accompanied by altered structure and function in cortical, limbic, brainstem, and cerebellar regions. The midbrain is relatively unexamined, but contains many integrative nuclei which mediate physiological functions that are disrupted in OSA. We therefore assessed the chemistry of the midbrain in OSA in this exploratory study. We used a recently developed accelerated 2D magnetic resonance spectroscopy (2D-MRS) technique, compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (4D-EP-JRESI), to measure metabolites in the midbrain of 14 OSA (mean age±SD:54.6±10.6years; AHI:35.0±19.4; SAO 2 min:83±7%) and 26 healthy control (50.7±8.5years) subjects. High-resolution T1-weighted scans allowed voxel localization. MRS data were processed with custom MATLAB-based software, and metabolite ratios calculated with respect to the creatine peak using a prior knowledge fitting (ProFit) algorithm. The midbrain in OSA showed decreased N-acetylaspartate (NAA; OSA:1.24±0.43, Control:1.47±0.41; p=0.03; independent samples t-test), a marker of neuronal viability. Increased levels in OSA over control subjects appeared in glutamate (Glu; OSA:1.23±0.57, Control:0.98±0.33; p=0.03), ascorbate (Asc; OSA:0.56±0.28, Control:0.42±0.20; (50.7±8.5years; p=0.03), and myo-inositol (mI; OSA:0.96±0.48, Control:0.72±0.35; p=0.03). No differences between groups appeared in γ-aminobutyric acid (GABA) or taurine. The midbrain in OSA patients shows decreased NAA, indicating neuronal injury or dysfunction. Higher Glu levels may reflect excitotoxic processes and astrocyte activation, and higher mI is also consistent with glial activation. Higher Asc levels may result from oxidative stress induced by intermittent hypoxia in OSA. Additionally, Asc and Glu are involved with glutamatergic processes, which are likely upregulated in the midbrain nuclei of OSA patients. The altered metabolite levels help explain dysfunction and structural deficits in

  9. Manipulating the circadian and sleep cycles to protect against metabolic disease

    Directory of Open Access Journals (Sweden)

    Kazunari eNohara

    2015-03-01

    Full Text Available Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g. obesity involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude enhancing small molecules (CEMs identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  10. Manipulating the circadian and sleep cycles to protect against metabolic disease.

    Science.gov (United States)

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  11. Period3 gene in disorder of consciousness: The role of neuroimaging in understanding the relationship between genotype and sleep. A brief communication.

    Science.gov (United States)

    Bedini, Gloria; Bersano, Anna; D'Incerti, Ludovico; Marotta, Giorgio; Rosazza, Cristina; Rossi Sebastiano, Davide; Franceschetti, Silvana; Sattin, Davide; Leonardi, Matilde; Nigri, Anna; Ferraro, Stefania; Parati, Eugenio Agostino

    2017-10-15

    Several methodologies including neuroimaging and sleep evaluation are being developed to complement the clinical bedside examinations in patients with disorder of consciousness (DOC). Recently, we demonstrated a possible association between Period3 (Per3) variable number tandem repeat (VNTR) polymorphism and functional impairment of DOC patients, speculating a possible role of this gene in sleep regulation. To assess whether the degree of structural and metabolic damage of the main brain areas involved in the sleep generation and homeostasis may influence the different outcome of DOC patients carrying the Per3 5/5 genotype in comparison to Per3 4/4 ones. For the present study, we reviewed 44 DOC patients from the Coma Research Centre of the Fondazione IRCCS Istituto Neurologico "C. Besta" of Milan. All patients underwent to polysomnographic sleep evaluation, cerebral structural magnetic resonance imaging (MRI) and 18 F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) analysis. Our DOC patients presented a moderate anatomical (median score 2) and metabolic damage (median value 2.36 SUVmean) of the sleep areas at both MRI and FDG-PET evaluation. Total sleep time seemed to be higher in 5/5 genotype DOC patients (median value Per3 5/5 , 221min, range 126-323min; median value Per3 4/4 , 167min, range 36-477min; and median value Per3 4/5 , 187min, range 29-422min). However, the MRI scores and FDG-PET values of whole brain, overall sleep areas, hypothalamus, midbrain and thalamus did not differ by genotype distribution. Although limited by the small sample size, our data might support the idea that Per3 genetic predisposition in DOC patients could affect impairment and residual cognitive functions through sleep homeostasis independently from structural and/or metabolic integrity of sleep areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Visibility graph analysis of very short-term heart rate variability during sleep

    Science.gov (United States)

    Hou, F. Z.; Li, F. W.; Wang, J.; Yan, F. R.

    2016-09-01

    Based on a visibility-graph algorithm, complex networks were constructed from very short-term heart rate variability (HRV) during different sleep stages. Network measurements progressively changed from rapid eye movement (REM) sleep to light sleep and then deep sleep, exhibiting promising ability for sleep assessment. Abnormal activation of the cardiovascular controls with enhanced 'small-world' couplings and altered fractal organization during REM sleep indicates that REM could be a potential risk factor for adverse cardiovascular event, especially in males, older individuals, and people who are overweight. Additionally, an apparent influence of gender, aging, and obesity on sleep was demonstrated in healthy adults, which may be helpful for establishing expected sleep-HRV patterns in different populations.

  13. Sleep disturbances, body fat distribution, food intake and/or energy expenditure: pathophysiological aspects

    Science.gov (United States)

    Shechter, Ari

    2015-01-01

    Data from cross-sectional and longitudinal studies have illustrated a relationship between short sleep duration (SSD) and weight gain. Individuals with SSD are heavier and gain more weight over time than normal-duration sleepers. This sleep-obesity relationship may have consequences for obesity treatments, as it appears that short sleepers have reduced ability to lose weight. Laboratory-based clinical studies found that experimental sleep restriction affects energy expenditure and intake, possibly providing a mechanistic explanation for the weight gain observed in chronic short sleepers. Specifically, compared to normal sleep duration, sleep restriction increases food intake beyond the energetic costs of increased time spent awake. Reasons for this increased energy intake after sleep restriction are unclear but may include disrupted appetite-regulating hormones, altered brain mechanisms involved in the hedonic aspects of appetite, and/or changes in sleep quality and architecture. Obstructive sleep apnea (OSA) is a disorder at the intersection of sleep and obesity, and the characteristics of the disorder illustrate many of the effects of sleep disturbances on body weight and vice versa. Specifically, while obesity is among the main risk factors for OSA, the disorder itself and its associated disturbances in sleep quality and architecture seem to alter energy balance parameters and may induce further weight gain. Several intervention trials have shown that weight loss is associated with reduced OSA severity. Thus, weight loss may improve sleep, and these improvements may promote further weight loss. Future studies should establish whether increasing sleep duration/improving sleep quality can induce weight loss. PMID:25372728

  14. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  15. Postprandial thermogenesis and substrate oxidation are unaffected by sleep restriction

    Science.gov (United States)

    Shechter, Ari; Rising, Russell; Wolfe, Scott; Albu, Jeanine B.; St-Onge, Marie-Pierre

    2014-01-01

    Background/Objectives The extent to which alterations in energy expenditure (EE) in response to sleep restriction contribute to the short sleep-obesity relationship is not clearly defined. Short sleep may induce changes in resting metabolic rate (RMR), thermic effect of food (TEF), and postprandial substrate oxidation. Subjects/Methods Ten females (age and BMI: 22-43 y and 23.4-28 kg/m2) completed a randomized, crossover study assessing the effects of short (4 h/night) and habitual (8 h/night) sleep duration on fasting and postprandial RMR and respiratory quotient (RQ). Measurements were taken after 3 nights using whole-room indirect calorimetry. The TEF was assessed over a 6-h period following consumption of a high-fat liquid meal. Results Short vs. habitual sleep did not affect RMR (1.01 ± 0.05 and 0.97 ± 0.04 kcal/min; p=0.23). Fasting RQ was significantly lower after short vs. habitual sleep (0.84 ± 0.01 and 0.88 ± 0.01; p=0.028). Postprandial EE (short: 1.13 ± 0.04 and habitual: 1.10 ± 0.04, p=0.09) and RQ (short: 0.88 ± 0.01 and habitual: 0.88 ± 0.01, p=0.50) after the high-fat meal were not different between conditions. TEF was similar between conditions (0.24 ± 0.02 kcal/min in both; p=0.98), as was the ~6-h incremental area under the curve (1.16 ± 0.10 and 1.17 ± 0.09 kcal/min x 356 min after short and habitual sleep, respectively; p=0.92). Conclusions Current findings observed in non-obese healthy premenopausal women do not support the hypothesis that alterations in TEF and postprandial substrate oxidation are major contributors to the higher rate of obesity observed in short sleepers. In exploring a role of sleep duration on EE, research should focus on potential alterations in physical activity to explain the increased obesity risk in short sleepers. PMID:24352294

  16. Post-operative sleep disturbance: causes, factors and effects on outcome

    DEFF Research Database (Denmark)

    Rosenberg, J; Rosenberg-Adamsen, S; Kehlet, H

    1995-01-01

    Post-operative sleep disturbance, with suppression of rapid eye movement sleep and slow wave sleep followed by a subsequent rebound, seems to be related to the magnitude of trauma and thereby to the surgical stress response. In this context, cortisol, autonomic stimulation, and certain cytokines...... may lead to abnormal sleep. Furthermore, the environment, pain and the administration of analgesics seem to be important factors in the precipitation of sleep abnormalities. Post-operative sleep disturbance may contribute to the development of episodic hypoxaemia, haemodynamic instability and altered...... mental status, all of which have an influence on post-operative morbidity and mortality. Prevention or reduction of the post-operative sleep disturbance may be achieved by minimizing surgical trauma, changing the conventional nursing procedures, avoiding opioids and treating pain with non...

  17. Sleep, immunity and inflammation in gastrointestinal disorders.

    Science.gov (United States)

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  18. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  19. Is Lack of Sleep Capable of Inducing DNA Damage in Aged Skin?

    OpenAIRE

    Kahan, Vanessa [UNIFESP; Ribeiro, Daniel Araki [UNIFESP; Egydio, Flavia [UNIFESP; Barros, L. A. [UNIFESP; Tomimori, Jane [UNIFESP; Tufik, Sergio [UNIFESP; Andersen, Monica Levy [UNIFESP

    2014-01-01

    Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. the aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation...

  20. Sleep and rhythm changes at the time of Trypanosoma brucei invasion of the brain parenchyma in the rat.

    Science.gov (United States)

    Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe

    2012-05-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.

  1. Hypnosis in the Management of Sleep Disorders.

    Science.gov (United States)

    Becker, Philip M

    2015-03-01

    Hypnosis has been used to manage insomnia and disorders of arousal. The alteration in the state of consciousness produced during hypnotic trance is more similar to relaxed reverie than sleep. Hypnosis typically occurs in a state of repose and the accomplished subject may have no recollection of the experience during a trance, 2 commonalities with sleep. Because hypnosis allows for relaxation, increased suggestibility, posthypnotic suggestion, imagery rehearsal, access to preconscious cognitions and emotions, and cognitive restructuring, disorders of sleep such as the insomnias, parasomnias, and related mood or anxiety disorders can be amenable to this therapeutic intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Increased delta power and discrepancies in objective and subjective sleep measurements in borderline personality disorder.

    Science.gov (United States)

    Philipsen, Alexandra; Feige, Bernd; Al-Shajlawi, Anam; Schmahl, Christian; Bohus, Martin; Richter, Harald; Voderholzer, Ulrich; Lieb, Klaus; Riemann, Dieter

    2005-09-01

    Previous studies have shown depression-like sleep abnormalities in borderline personality disorder (BPD). However, findings in BPD are not unequivocal for REM dysregulation, as well as for a decrement of slow wave sleep and sleep continuity disturbances. Earlier findings in sleep EEG abnormalities in BPD may have been confounded by concomitant depressive symptoms. Twenty unmedicated female BPD patients without current comorbid major depression and 20 sex- and age-matched control subjects entered the study. Conventional polysomnographic parameters and for the first time sleep EEG spectral power analysis was performed on two sleep laboratory nights. Subjective sleep parameters were collected by sleep questionnaires in order to assess the relationship between objective and subjective sleep measurements. BPD patients showed a tendency for shortened REM latency and significantly decreased NonREM sleep (stage 2). Spectral EEG analysis showed increased delta power in total NREM sleep as well as in REM sleep in BPD patients. Subjective ratings documented drastically impaired sleep quality in BPD patients for the two weeks before the study and during the two laboratory nights. Not-depressed BPD patients only showed tendencies for depression-like REM sleep abnormalities. Surprisingly, BPD patients displayed higher levels of delta power in the sleep EEG in NREM sleep than healthy control subjects. There was a marked discrepancy between objective and subjective sleep measurements, which indicates an altered perception of sleep in BPD. The underlying psychological and neurobiological mechanisms of these alterations are still unclear and need to be clarified in future studies including interventions on a pharmacological and cognitive-behavioral level.

  3. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    Science.gov (United States)

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  4. Impact of sleep duration on seizure frequency in adults with epilepsy: a sleep diary study.

    Science.gov (United States)

    Cobabe, Maurine M; Sessler, Daniel I; Nowacki, Amy S; O'Rourke, Colin; Andrews, Noah; Foldvary-Schaefer, Nancy

    2015-02-01

    Prolonged sleep deprivation activates epileptiform EEG abnormalities and seizures in people with epilepsy. Few studies have addressed the effect of chronic partial sleep deprivation on seizure occurrence in populations with epilepsy. We tested the primary hypothesis that partial sleep deprivation over 24- and 72-hour periods increases seizure occurrence in adults with epilepsy. Forty-four subjects completed a series of self-reported instruments, as well as 1-month sleep and seizure diaries, to characterize their sleep and quality of life. Diaries were used to determine the relationship between seizure occurrence and total sleep time 24 and 72h before seizure occurrence using random effects models and a logistic regression model fit by generalized estimating equations. A total of 237 seizures were recorded during 1295 diary days, representing 5.5±7.0 (mean±SD) seizures per month. Random effects models for 24- and 72-hour total sleep times showed no clinically or statistically significant differences in the total sleep time between preseizure periods and seizure-free periods. The average 24-hour total sleep time during preseizure 24-hour periods was 8min shorter than that during seizure-free periods (p=0.51). The average 72-hour total sleep time during preseizure periods was 20min longer than that during seizure-free periods (p=0.86). The presence of triggers was a significant predictor of seizure occurrence, with stress/anxiety noted most often as a trigger. Mean total sleep time was 9h, and subjects took an average of 12±10 naps per month, having a mean duration of 1.9±1.2h. Daytime sleepiness, fatigue, and insomnia symptoms were commonly reported. Small degrees of sleep loss were not associated with seizure occurrence in our sample of adults with epilepsy. Our results also include valuable observations of the altered sleep times and frequent napping habits of adults with refractory epilepsy and the potential contribution of these habits to quality of life and

  5. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis.

    Science.gov (United States)

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2017-12-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.

  6. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil)

    Science.gov (United States)

    Yarmolinsky, James; Mueller, Noel T.; Duncan, Bruce B.; Bisi Molina, Maria del Carmen; Goulart, Alessandra C.; Schmidt, Maria Inês

    2015-01-01

    Introduction Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. Methods We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and –2-hour postload insulin and measures of insulin sensitivity. Results We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2–3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Conclusion Our present study provides further evidence of a protective effect of coffee on risk of adult-onset diabetes. This effect appears to act primarily, if not exclusively, through postprandial, as opposed to fasting, glucose homeostasis. PMID:25978631

  7. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil.

    Directory of Open Access Journals (Sweden)

    James Yarmolinsky

    Full Text Available Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals.We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil. Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and -2-hour postload insulin and measures of insulin sensitivity.We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2-3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p3 times/day: 262.2 pmol/L, p = 0.0005 but not with fasting insulin concentrations (p = .58.Our present study provides further evidence of a protective effect of coffee on risk of adult-onset diabetes. This effect appears to act primarily, if not exclusively, through postprandial, as opposed to fasting, glucose homeostasis.

  8. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  9. Sleep disruption and the sequelae associated with traumatic brain injury.

    Science.gov (United States)

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  10. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2018-06-01

    Full Text Available In recent years, the first-line anti-diabetic drug metformin has been shown to be also useful for the treatment of other diseases like cancer. To date, few reports were about the impact of metformin on gut microbiota. To fully understand the mechanism of action of metformin in treating diseases other than diabetes, it is especially important to investigate the impact of long-term metformin treatment on the gut microbiome in non-diabetic status. In this study, we treated healthy mice with metformin for 30 days, and observed 46 significantly changed gut microbes by using the 16S rRNA-based microbiome profiling technique. We found that microbes from the Verrucomicrobiaceae and Prevotellaceae classes were enriched, while those from Lachnospiraceae and Rhodobacteraceae were depleted. We further compared the altered microbiome profile with the profiles under various disease conditions using our recently developed comparative microbiome tool known as MicroPattern. Interestingly, the treatment of diabetes patients with metformin positively correlates with colon cancer and type 1 diabetes, indicating a confounding effect on the gut microbiome in patients with diabetes. However, the treatment of healthy mice with metformin exhibits a negative correlation with multiple inflammatory diseases, indicating a protective anti-inflammatory role of metformin in non-diabetes status. This result underscores the potential effect of metformin on gut microbiome homeostasis, which may contribute to the treatment of non-diabetic diseases.

  11. Sleep restriction and delayed sleep associate with psychological health and biomarkers of stress and inflammation in women.

    Science.gov (United States)

    Tartar, Jaime L; Fins, Ana I; Lopez, Andrea; Sierra, Linett A; Silverman, Sarah A; Thomas, Samuel V; Craddock, Travis J A

    2015-12-01

    Despite strong associations between sleep duration and health, there is no clear understanding of how volitional chronic sleep restriction (CSR) alters the physiological processes that lead to poor health in women. We focused on biochemical and psychological factors that previous research suggests are essential to uncovering the role of sleep in health. Cross-sectional study. University-based. Sixty female participants (mean age, 19.3; SD, 2.1 years). We analyzed the association between self-reported volitional CSR and time to go to sleep on a series of sleep and psychological health measures as well as biomarkers of immune functioning/inflammation (interleukin [IL]-1β), stress (cortisol), and sleep regulation (melatonin). Across multiple measures, poor sleep was associated with decreased psychological health and a reduced perception of self-reported physical health. Volitional CSR was related to increased cortisol and increased IL-1β levels. We separately looked at individuals who experienced CSR with and without delayed sleep time and found that IL-1β levels were significantly elevated in CSR alone and in CSR combined with a late sleep time. Cortisol, however, was only elevated in those women who experienced CSR combined with a late sleep time. We did not observe any changes in melatonin across groups, and melatonin levels were not related to any sleep measures. New to our study is the demonstration of how an increase in a proinflammatory process and an increase in hypothalamic-pituitary-adrenal axis activity both relate to volitional CSR, with and without a delayed sleep time. We further show how these mechanisms relate back to psychological and self-reported health in young adult women. Copyright © 2015 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  12. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  13. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  14. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    Full Text Available BACKGROUND: We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1 and D(2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. CONCLUSIONS/SIGNIFICANCE: These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.

  15. A systematic review and meta-analysis of sleep architecture and chronic traumatic brain injury.

    Science.gov (United States)

    Mantua, Janna; Grillakis, Antigone; Mahfouz, Sanaa H; Taylor, Maura R; Brager, Allison J; Yarnell, Angela M; Balkin, Thomas J; Capaldi, Vincent F; Simonelli, Guido

    2018-02-02

    Sleep quality appears to be altered by traumatic brain injury (TBI). However, whether persistent post-injury changes in sleep architecture are present is unknown and relatively unexplored. We conducted a systematic review and meta-analysis to assess the extent to which chronic TBI (>6 months since injury) is characterized by changes to sleep architecture. We also explored the relationship between sleep architecture and TBI severity. In the fourteen included studies, sleep was assessed with at least one night of polysomnography in both chronic TBI participants and controls. Statistical analyses, performed using Comprehensive Meta-Analysis software, revealed that chronic TBI is characterized by relatively increased slow wave sleep (SWS). A meta-regression showed moderate-severe TBI is associated with elevated SWS, reduced stage 2, and reduced sleep efficiency. In contrast, mild TBI was not associated with any significant alteration of sleep architecture. The present findings are consistent with the hypothesis that increased SWS after moderate-severe TBI reflects post-injury cortical reorganization and restructuring. Suggestions for future research are discussed, including adoption of common data elements in future studies to facilitate cross-study comparability, reliability, and replicability, thereby increasing the likelihood that meaningful sleep (and other) biomarkers of TBI will be identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  17. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Digital Media and Sleep in Childhood and Adolescence.

    Science.gov (United States)

    LeBourgeois, Monique K; Hale, Lauren; Chang, Anne-Marie; Akacem, Lameese D; Montgomery-Downs, Hawley E; Buxton, Orfeu M

    2017-11-01

    Given the pervasive use of screen-based media and the high prevalence of insufficient sleep among American youth and teenagers, this brief report summarizes the literature on electronic media and sleep and provides research recommendations. Recent systematic reviews of the literature reveal that the vast majority of studies find an adverse association between screen-based media consumption and sleep health, primarily via delayed bedtimes and reduced total sleep duration. The underlying mechanisms of these associations likely include the following: (1) time displacement (ie, time spent on screens replaces time spent sleeping and other activities); (2) psychological stimulation based on media content; and (3) the effects of light emitted from devices on circadian timing, sleep physiology, and alertness. Much of our current understanding of these processes, however, is limited by cross-sectional, observational, and self-reported data. Further experimental and observational research is needed to elucidate how the digital revolution is altering sleep and circadian rhythms across development (infancy to adulthood) as pathways to poor health, learning, and safety outcomes (eg, obesity, depression, risk-taking). Copyright © 2017 by the American Academy of Pediatrics.

  19. Alterations in redox homeostasis in the elite endurance athlete.

    Science.gov (United States)

    Lewis, Nathan A; Howatson, Glyn; Morton, Katie; Hill, Jessica; Pedlar, Charles R

    2015-03-01

    The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes. Low to moderate doses of ROS and RNS play a role in muscle adaptation to endurance training, but an overwhelming increase in RNS and ROS may lead to increased cell apoptosis and immunosuppression, fatigued states and underperformance. The objectives of this systematic review are: (a) to test the hypotheses that ARH occur in elite endurance athletes; following an acute exercise bout, in an endurance race or competition; across a micro-, meso- or macro-training cycle; following a training taper; before, during and after altitude training; in females with amenorrhoea versus eumenorrhoea; and in non-functional over-reaching (NFOR) and overtraining states (OTS); (b) to report any relationship between ARH and training load and ARH and performance; and (c) to apply critical difference values for measures of oxidative stress/ARH to address whether there is any evidence of ARH being of physiological significance (not just statistical) and thus relevant to health and performance in the elite athlete. Electronic databases, Embase, MEDLINE, and SPORTDiscus were searched for relevant articles. Only studies that were observational articles of cross-sectional or longitudinal design, and included elite athletes competing at national or international level in endurance sports were included. Studies had to include biomarkers of ARH; oxidative damage, antioxidant enzymes, antioxidant capacity, and antioxidant vitamins and nutrients in urine, serum, plasma, whole blood, red blood cells (RBCs) and white blood cells (WBCs). A total of 3,057 articles were identified from the electronic searches. Twenty-eight articles met the inclusion criteria

  20. Sleep-Wake State Tradeoffs, Impulsivity and Life History Theory

    Directory of Open Access Journals (Sweden)

    Alissa A. Miller

    2012-04-01

    Full Text Available Evolutionary ecological theory predicts that sleep-wake state tradeoffs may be related to local environmental conditions and should therefore correlate to alterations in behavioral life history strategies. It was predicted that firefighters who slept more and reported better quality sleep on average would exhibit lower impulsivity inclinations related to slower life history trajectories. UPPS impulsivity scores and self-reported sleep averages were analyzed and indicated a negative association between sleep variables and urgency and a positive association with premeditation. Perseverance, and in some cases premeditation, however, disclosed an unpredicted marginally significant positive association between increased and emergency nighttime waking-related sleep deprivation. Sensation seeking was not associated with sleep variables, but was strongly associated with number of biological children. This research contributes to understanding the implications of human sleep across ecological and behavioral contexts and implies further research is necessary for constructing evolutionarily oriented measures of impulsivity inclination and its meaning in the context of life history strategies.

  1. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.

    Directory of Open Access Journals (Sweden)

    Violetta Pilorz

    2016-06-01

    Full Text Available Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4-expressing photosensitive retinal ganglion cells (pRGCs in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-, resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO, whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.

  2. Improvement of mood and sleep alterations in posttraumatic stress disorder patients by eye movement desensitization and reprocessing

    Directory of Open Access Journals (Sweden)

    Mara Regina Raboni

    2014-06-01

    Full Text Available Posttraumatic stress disorder (PTSD patients exhibit depressive and anxiety symptoms, in addition to nightmares, which interfere with sleep continuity. Pharmacologic treatment of these sleep problems improves PTSD symptoms, but very few studies have used psychotherapeutic interventions to treat PTSD and examined their effects on sleep quality. Therefore, in the present study, we sought to investigate the effects of Eye Movement Desensitization Reprocessing therapy on indices of mood, anxiety, subjective and objective sleep. The sample was composed of 11 healthy controls and 13 PTSD patients that were victims of assault and/or kidnapping. All participants were assessed before, and one day after, the end of treatment for depressive and anxiety profile, general well-being and subjective sleep by filling out specific questionnaires. In addition, objective sleep patterns were evaluated by polysomnographic recording. Healthy volunteers were submitted to the therapy for three weekly sessions, whereas PTSD patients underwent five sessions, on average. Before treatment, PTSD patients exhibited high levels of anxiety and depression, poor quality of life and poor sleep, assessed both subjectively and objectively; the latter was reflected by increased time of waking after sleep onset. After completion of treatment, patients exhibited improvement in depression and anxiety symptoms, and in quality of life; with indices that were no longer different from control volunteers. Moreover, these patients showed more consolidated sleep, with reduction of time spent awake after sleep onset. In conclusion, Eye Movement Desensitization and Reprocessing was an effective treatment of PTSD patients and improved the associated sleep and psychological symptoms.

  3. Energy homeostasis and running wheel activity during pregnancy in the mouse.

    Science.gov (United States)

    Ladyman, S R; Carter, K M; Grattan, D R

    2018-05-05

    Pregnancy and lactation are metabolically challenging states, where the mother must supply all the energy requirements for the developing fetus and growing pups respectively. The aim of the current study was to characterize many aspects of energy homeostasis before and during pregnancy in the mouse, and to examine the role of voluntary activity on changes in energy expenditure during pregnancy. In a secondary aim, we evaluate measures of energy homeostasis during pregnancy in mice that successfully reared their litter or in mice that went on to abandon their litter, to determine if an impairment in pregnancy-induced adaptation of energy homeostasis might underlie the abandonment of pups soon after birth. During pregnancy, food intake was increased, characterized by increased meal size and duration but not number of meals per day. The duration of time spent inactive, predicted to indicate sleep behaviour, was increased both early and late in pregnancy compared to pre-pregnancy levels. Increased x + y beam breaks, as a measure of activity increased during pregnancy and this reflected an increase in ambulatory behaviour in mid pregnancy and an increase in non-ambulatory movement in late pregnancy. Energy expenditure, as measured by indirect calorimetry, increased across pregnancy, likely due to the growth and development of fetal tissue. There was also a dramatic reduction in voluntary wheel running as soon as the mice became pregnant. Compared with successful pregnancies and lactations, pregnancies where pups were abandoned soon after birth were associated with reduced body weight gain and an increase in running wheel activity at the end of pregnancy, but no difference in food intake or energy expenditure. Overall, during pregnancy there are multiple adaptations to change energy homeostasis, resulting in partitioning of provisions of energy to the developing fetus and storing energy for future metabolic demands. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The Role of Angiopoietin-like 4 in Lipid Homeostasis

    OpenAIRE

    Gray, Nora

    2012-01-01

    AbstractThe Role of Angiopoietin-like 4 in Lipid HomeostasisbyNora Elizabeth Forbes GrayDoctor of Philosophy in Molecular and Biochemical NutritionUniversity of California, BerkeleyProfessor Jen-Chywan Wang, ChairAlterations in the regulation of lipid homeostasis are major causes of metabolic diseases like obesity, insulin resistance and the metabolic syndrome. These diseases affect millions of people and therefore constitute a pressing public health concern. The mobilization of lipids is a k...

  5. Are sleep disturbances preclinical markers of Parkinson’s disease?

    DEFF Research Database (Denmark)

    Brito dos Santos, Altair; Kohlmeier, Kristi Anne; Barreto, George

    2015-01-01

    REM sleep behaviour and currently several other disturbances have gained importance as potential markers, such as excessive daytime sleepiness, restless legs syndrome and new evidence also points to changes in circadian rhythms. Here we present a brief review of the major evidence indicating......Parkinson’s disease (PD) is a neurobehavioral disorder characterized by motor symptoms and signs, and non-motor abnormalities such as olfactory dysfunction, pain, sleep disorders and cognitive impairment. Amongst these alterations, sleep disturbances play an important role in the pathology......, but presence of disturbed sleep is not currently considered in diagnosis. However, sleeping problems may precede by many years the classic motor abnormalities of PD and should be clinically evaluated as a potential marker before disease onset. The first disturbance reported with this potential was the disorder...

  6. Effects of quetiapine on sleep architecture in patients with unipolar or bipolar depression

    Directory of Open Access Journals (Sweden)

    Laura Gedge

    2010-08-01

    Full Text Available Laura Gedge1, Lauren Lazowski1, David Murray2, Ruzica Jokic2,3, Roumen Milev2,31Centre for Neuroscience Studies, 2Department of Psychiatry, Queen’s University, Kingston, 3Providence Care-Mental Health Services, Kingston, Ontario, CanadaObjective: To determine the effect of adjunctive quetiapine therapy on the sleep architecture of patients with bipolar or unipolar depression.Methods: This is a prospective, single-blind, repeated measures polysomnographic study. Sleep architecture was analyzed by overnight polysomnography, and subjective sleep quality was measured using the Pittsburgh Sleep Quality Index. The Hamilton Rating Scale for Depression, Montgomery Asberg Depression Rating Scale, Young Mania Rating Scale, and Clinical Global Impression-Severity Scale were employed to quantify changes in illness severity with adjunctive quetiapine treatment. Polysomnographs and clinical measures were administered at baseline, after 2–4 days of treatment, and after 21–28 days of quetiapine treatment. The average dose of quetiapine was 155 mg, ranging from 100–200 mg.Results: Adjunctive quetiapine therapy did not significantly alter sleep efficiency, sleep continuity, or Pittsburgh Sleep Quality Index scores. Respiratory Disturbance Index and percentage of total time in rapid eye movement (REM sleep significantly decreased and the percentage of total time in non-REM sleep, and duration of Stage 2 and non-REM sleep significantly increased after 2–4 days of quetiapine treatment. Illness severity significantly decreased over time.Conclusions: Adjunctive quetiapine treatment alters sleep architecture in patients with major depressive disorder or bipolar disorder, which may partially explain its early antidepressant properties. Changes in sleep architecture are more robust and significant within two to four days of starting treatment.Keywords: quetiapine, sleep architecture, depression, bipolar disorder

  7. Re-patterning sleep architecture in Drosophila through gustatory perception and nutritional quality.

    Directory of Open Access Journals (Sweden)

    Nancy J Linford

    Full Text Available Organisms perceive changes in their dietary environment and enact a suite of behavioral and metabolic adaptations that can impact motivational behavior, disease resistance, and longevity. However, the precise nature and mechanism of these dietary responses is not known. We have uncovered a novel link between dietary factors and sleep behavior in Drosophila melanogaster. Dietary sugar rapidly altered sleep behavior by modulating the number of sleep episodes during both the light and dark phase of the circadian period, independent of an intact circadian rhythm and without affecting total sleep, latency to sleep, or waking activity. The effect of sugar on sleep episode number was consistent with a change in arousal threshold for waking. Dietary protein had no significant effect on sleep or wakefulness. Gustatory perception of sugar was necessary and sufficient to increase the number of sleep episodes, and this effect was blocked by activation of bitter-sensing neurons. Further addition of sugar to the diet blocked the effects of sweet gustatory perception through a gustatory-independent mechanism. However, gustatory perception was not required for diet-induced fat accumulation, indicating that sleep and energy storage are mechanistically separable. We propose a two-component model where gustatory and metabolic cues interact to regulate sleep architecture in response to the quantity of sugar available from dietary sources. Reduced arousal threshold in response to low dietary availability may have evolved to provide increased responsiveness to cues associated with alternative nutrient-dense feeding sites. These results provide evidence that gustatory perception can alter arousal thresholds for sleep behavior in response to dietary cues and provide a mechanism by which organisms tune their behavior and physiology to environmental cues.

  8. Re-patterning sleep architecture in Drosophila through gustatory perception and nutritional quality.

    Science.gov (United States)

    Linford, Nancy J; Chan, Tammy P; Pletcher, Scott D

    2012-01-01

    Organisms perceive changes in their dietary environment and enact a suite of behavioral and metabolic adaptations that can impact motivational behavior, disease resistance, and longevity. However, the precise nature and mechanism of these dietary responses is not known. We have uncovered a novel link between dietary factors and sleep behavior in Drosophila melanogaster. Dietary sugar rapidly altered sleep behavior by modulating the number of sleep episodes during both the light and dark phase of the circadian period, independent of an intact circadian rhythm and without affecting total sleep, latency to sleep, or waking activity. The effect of sugar on sleep episode number was consistent with a change in arousal threshold for waking. Dietary protein had no significant effect on sleep or wakefulness. Gustatory perception of sugar was necessary and sufficient to increase the number of sleep episodes, and this effect was blocked by activation of bitter-sensing neurons. Further addition of sugar to the diet blocked the effects of sweet gustatory perception through a gustatory-independent mechanism. However, gustatory perception was not required for diet-induced fat accumulation, indicating that sleep and energy storage are mechanistically separable. We propose a two-component model where gustatory and metabolic cues interact to regulate sleep architecture in response to the quantity of sugar available from dietary sources. Reduced arousal threshold in response to low dietary availability may have evolved to provide increased responsiveness to cues associated with alternative nutrient-dense feeding sites. These results provide evidence that gustatory perception can alter arousal thresholds for sleep behavior in response to dietary cues and provide a mechanism by which organisms tune their behavior and physiology to environmental cues.

  9. Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Fangxu Li

    Full Text Available The levels of malondialdehyde (MDA are high in the brain during carbonyl stress, such as following daily activities and sleep deprivation. To examine our hypothesis that MDA is one of the major substances in the brain leading to fatigue, the influences of MDA on brain functions and neuronal encodings in red-eared turtle (Trachemys scripta were studied. The intrathecal injections of MDA brought about sleep-like EEG and fatigue-like behaviors in a dose-dependent manner. These changes were found associated with the deterioration of encoding action potentials in cortical neurons. In addition, MDA increased the ratio of γ-aminobutyric acid to glutamate in turtle's brain, as well as the sensitivity of GABAergic neurons to inputs compared to excitatory neurons. Therefore, MDA, as a metabolic product in the brain, may weaken cerebral function during carbonyl stress through breaking the homeostasis between excitatory and inhibitory neurons.

  10. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  12. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    Science.gov (United States)

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  13. Sleep disturbances in drug naïve Parkinson′s disease (PD patients and effect of levodopa on sleep

    Directory of Open Access Journals (Sweden)

    Teresa Ferreira

    2014-01-01

    tremors, as observed in PDSS scores. Levodopa improves sleep efficiency by improving motor scores without altering sleep architecture. Conclusions: Poor sleep quality and sleep architecture changes occur secondary to the neurodegenerative process in PD patients. Though levodopa improves sleep quality by reducing rigidity and tremor, it does not reverse sleep architecture changes.

  14. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings.

    Science.gov (United States)

    Perikleous, Evanthia; Steiropoulos, Paschalis; Tzouvelekis, Argyris; Nena, Evangelia; Koffa, Maria; Paraskakis, Emmanouil

    2018-01-01

    Obstructive sleep apnea (OSA) is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3) DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS) gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.

  15. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings

    Directory of Open Access Journals (Sweden)

    Evanthia Perikleous

    2018-05-01

    Full Text Available Obstructive sleep apnea (OSA is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3 DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.

  16. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals.

    Science.gov (United States)

    Benedict, Christian; Vogel, Heike; Jonas, Wenke; Woting, Anni; Blaut, Michael; Schürmann, Annette; Cedernaes, Jonathan

    2016-12-01

    Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance). However, whether sleep loss affects the gut microbiota remains unknown. In a randomized within-subject crossover study utilizing a standardized in-lab protocol (with fixed meal times and exercise schedules), we studied nine normal-weight men at two occasions: after two nights of partial sleep deprivation (PSD; sleep opportunity 02:45-07:00 h), and after two nights of normal sleep (NS; sleep opportunity 22:30-07:00 h). Fecal samples were collected within 24 h before, and after two in-lab nights, of either NS or PSD. In addition, participants underwent an oral glucose tolerance test following each sleep intervention. Microbiota composition analysis (V4 16S rRNA gene sequencing) revealed that after two days of PSD vs. after two days of NS, individuals exhibited an increased Firmicutes:Bacteroidetes ratio, higher abundances of the families Coriobacteriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes (all P < 0.05) - previously all associated with metabolic perturbations in animal or human models. However, no PSD vs. NS effect on beta diversity or on fecal short-chain fatty acid concentrations was found. Fasting and postprandial insulin sensitivity decreased after PSD vs. NS (all P < 0.05). Our findings demonstrate that short-term sleep loss induces subtle effects on human microbiota. To what extent the observed changes to the microbial community contribute to metabolic consequences of sleep loss warrants further investigations in larger and more prolonged sleep studies, to also assess how sleep loss impacts the microbiota in individuals who already are metabolically compromised.

  17. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals

    Directory of Open Access Journals (Sweden)

    Christian Benedict

    2016-12-01

    Full Text Available Objective: Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance. However, whether sleep loss affects the gut microbiota remains unknown. Methods: In a randomized within-subject crossover study utilizing a standardized in-lab protocol (with fixed meal times and exercise schedules, we studied nine normal-weight men at two occasions: after two nights of partial sleep deprivation (PSD; sleep opportunity 02:45–07:00 h, and after two nights of normal sleep (NS; sleep opportunity 22:30–07:00 h. Fecal samples were collected within 24 h before, and after two in-lab nights, of either NS or PSD. In addition, participants underwent an oral glucose tolerance test following each sleep intervention. Results: Microbiota composition analysis (V4 16S rRNA gene sequencing revealed that after two days of PSD vs. after two days of NS, individuals exhibited an increased Firmicutes:Bacteroidetes ratio, higher abundances of the families Coriobacteriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes (all P < 0.05 – previously all associated with metabolic perturbations in animal or human models. However, no PSD vs. NS effect on beta diversity or on fecal short-chain fatty acid concentrations was found. Fasting and postprandial insulin sensitivity decreased after PSD vs. NS (all P < 0.05. Discussion: Our findings demonstrate that short-term sleep loss induces subtle effects on human microbiota. To what extent the observed changes to the microbial community contribute to metabolic consequences of sleep loss warrants further investigations in larger and more prolonged sleep studies, to also assess how sleep loss impacts the microbiota in individuals who already are metabolically compromised. Author Video: Author Video Watch what authors say about their articles Keywords: Bacteroidetes, Firmicutes, Insulin resistance

  18. Medical image of the week: REM sleep behavior disorder in Parkinson disease

    Directory of Open Access Journals (Sweden)

    Nahapetian RR

    2014-06-01

    Full Text Available No abstract available. Article truncated after first 150 words. A 55 year old female with a past medical history significant for Parkinson disease status-post implantation of bilateral deep brain stimulators, depression, and restless legs syndrome, who initially presented to the sleep clinic on referral by neurology for evaluation of disordered sleep. Medications included carbidopa-levodopa, escitalopram, gabapentin, lorazepam, ambien, and pramipexole. Her subjective sleep complaints included snoring, restless sleep, difficulty in maintaining sleep, sleep related anxiety, dream enactment behavior, nightmares, and sleep talking. She was sent to the sleep laboratory for evaluation of suspected rapid eye movement behavior disorder (RBD. Overnight polysomnogram did not show evidence for sleep disordered breathing. The sleep study was notable for rapid eye movement (REM sleep without atonia, visible arm and leg movements, and audible moaning, speaking, and crying out. These findings corroborated the subjective complaints expressed by the patient and her husband. Her medication regimen was altered. Zolpidem and lorazepam were discontinued and she ...

  19. Sleep spindle activity in double cortex syndrome: a case report.

    Science.gov (United States)

    Sforza, Emilia; Marcoz, Jean-Pierre; Foletti, Giovanni

    2010-09-01

    Cortical dysgenesis is increasingly recognised as a cause of epilepsy. We report a case with double cortex heterotopia and secondarily generalized seizures with a generalised spike wave pattern. During the course of the disease, the child developed electrical status epilepticus in slow wave sleep. From the first examination, sleep pattern revealed increased frequency and amplitude of spindle activity, more evident in anterior areas. The role of the thalamocortical pathway in increased sleep spindle activity is discussed with emphasis on the possible role of altered thalamocortical pathways in abnormal cortical migration. A strong suspicion of cortical dysgenesis may therefore be based on specific EEG sleep patterns.

  20. Nocturnal sleep in isolation-reared monkeys: evidence for enviromental independence.

    Science.gov (United States)

    Reite, M; Short, R

    1977-11-01

    Thirteen all-night recordings were obtained from 3 infant pigtailed (Macaca nemestrina) monkeys raised on a cloth surrogate mother and under conditions of social isolation. Totally implantable biotelemetry systems were used to record the sleep physiology from the unrestrained animals. Sleep stages and night-to-night variability were virtually identical to values previously found in 8 mother-reared group-living infants. Sustained alterations in the early rearing enviroment, even though considerably modifying the organism's development, did not appear to result in differences in sleep organization.

  1. Quality of sleep and selective attention in university students: descriptive cross-sectional study

    Directory of Open Access Journals (Sweden)

    Silvia Alicia Fontana

    2014-09-01

    Full Text Available INTRODUCTION Sleep quality not only refers to sleeping well at night, but also includes appropriate daytime functioning. Poor quality of sleep can affect a variety of attention processes. PURPOSE The aim of this investigation was to evaluate the relationship between the perceived quality of sleep and selective focus in a group of college students. METHODS A descriptive cross-sectional study was carried out in a group of 52 Argentinian college students of the Universidad Adventista del Plata. The Pittsburgh Sleep Quality Index, the Continuous Performance Test and the Trail Making Test were applied. RESULTS The main results indicate that students sleep an average of 6.48 hours. Generally half of the population tested had a good quality of sleep. However, the dispersion seen in some components demonstrates the heterogeneity of the sample in these variables. It was observed that the evaluated attention processes yielded different levels of alteration in the total sample: major variability in the process of process and in the divided-attention processes were detected. A lower percentage of alteration was observed in the process of attention support. CONCLUSION Poor quality of sleep has more impact in the sub processes with greater participation of corticocortical circuits (selective and divided attention and greater involvement of the prefrontal cortex. Fewer difficulties were found in the attention-support processes that rely on subcortical regions and have less frontal involvement.

  2. [Quality of sleep and selective attention in university students: descriptive cross-sectional study].

    Science.gov (United States)

    Fontana, Silvia Alicia; Raimondi, Waldina; Rizzo, María Laura

    2014-09-05

    Sleep quality not only refers to sleeping well at night, but also includes appropriate daytime functioning. Poor quality of sleep can affect a variety of attention processes. The aim of this investigation was to evaluate the relationship between the perceived quality of sleep and selective focus in a group of college students. A descriptive cross-sectional study was carried out in a group of 52 Argentinian college students of the Universidad Adventista del Plata. The Pittsburgh Sleep Quality Index, the Continuous Performance Test and the Trail Making Test were applied. The main results indicate that students sleep an average of 6.48 hours. Generally half of the population tested had a good quality of sleep. However, the dispersion seen in some components demonstrates the heterogeneity of the sample in these variables. It was observed that the evaluated attention processes yielded different levels of alteration in the total sample: major variability in the process of process and in the divided-attention processes were detected. A lower percentage of alteration was observed in the process of attention support. Poor quality of sleep has more impact in the sub processes with greater participation of corticocortical circuits (selective and divided attention) and greater involvement of the prefrontal cortex. Fewer difficulties were found in the attention-support processes that rely on subcortical regions and have less frontal involvement.

  3. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  4. Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions

    Directory of Open Access Journals (Sweden)

    Br

    2011-06-01

    Full Text Available Serge Brand1, Roumen Kirov21Depression and Sleep Research Unit, Psychiatric Hospital of the University of Basel, Basel, Switzerland; 2Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, BulgariaThe authors contributed equally to this workAbstract: Restoring sleep is strongly associated with a better physical, cognitive, and psychological well-being. By contrast, poor or disordered sleep is related to impairment of cognitive and psychological functioning and worsened physical health. These associations are well documented not only in adults but also in children and adolescents. Importantly, adolescence is hallmarked by dramatic maturational changes in sleep and its neurobiological regulation, hormonal status, and many psychosocial and physical processes. Thus, the role of sleep in mental and physical health during adolescence and in adolescent patients is complex. However, it has so far received little attention. This review first presents contemporary views about the complex neurobiology of sleep and its functions with important implications for adolescence. Second, existing complex relationships between common adolescent somatic/organic, sleep-related, and psychiatric disorders and certain sleep alterations are discussed. It is concluded that poor or altered sleep in adolescent patients may trigger and maintain many psychiatric and physical disorders or combinations of these conditions, which presumably hinder recovery and may cross into later stages of life. Therefore, timely diagnosis and management of sleep problems appear critical for growth and development in adolescent patients.Keywords: cognitive, psychological, neurobiology, growth, development, sleep physiology, rapid eye movement, non-REM sleep, behavioral disorders, adolescents

  5. Rapid eye movement-sleep is reduced in patients with acute uncomplicated diverticulitis—an observational study

    Directory of Open Access Journals (Sweden)

    Chenxi Huang

    2015-08-01

    Full Text Available Introduction. Sleep disturbances are commonly found in patients in the postoperative period. Sleep disturbances may give rise to several complications including cardiopulmonary instability, transient cognitive dysfunction and prolonged convalescence. Many factors including host inflammatory responses are believed to cause postoperative sleep disturbances, as inflammatory responses can alter sleep architecture through cytokine-brain interactions. Our aim was to investigate alteration of sleep architecture during acute infection and its relationships to inflammation and clinical symptoms.Materials & Methods. In this observational study, we included patients with acute uncomplicated diverticulitis as a model to investigate the isolated effects of inflammatory responses on sleep. Eleven patients completed the study. Patients were admitted and treated with antibiotics for two nights, during which study endpoints were measured by polysomnography recordings, self-reported discomfort scores and blood samples of cytokines. One month later, the patients, who now were in complete remission, were readmitted and the endpoints were re-measured (the baseline values.Results. Total sleep time was reduced 4% and 7% the first (p = 0.006 and second (p = 0.014 nights of diverticulitis, compared to baseline, respectively. The rapid eye movement sleep was reduced 33% the first night (p = 0.016, compared to baseline. Moreover, plasma IL-6 levels were correlated to non-rapid eye movement sleep, rapid eye movement sleep and fatigue.Conclusion. Total sleep time and rapid eye movement sleep were reduced during nights with active diverticulitis and correlated with markers of inflammation.

  6. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    Directory of Open Access Journals (Sweden)

    Dante Picchioni

    2014-03-01

    Full Text Available Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.

  7. Sleep and Obesity: A focus on animal models

    Science.gov (United States)

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  8. Aircraft noise: effects on macro- and microstructure of sleep.

    Science.gov (United States)

    Basner, Mathias; Glatz, Christian; Griefahn, Barbara; Penzel, Thomas; Samel, Alexander

    2008-05-01

    The effects of aircraft noise on sleep macrostructure (Rechtschaffen and Kales) and microstructure (American Sleep Disorders Association [ASDA] arousal criteria) were investigated. For each of 10 subjects (mean age 35.3 years, 5 males), a baseline night without aircraft noise (control), and two nights with exposure to 64 noise events with a maximum sound pressure level (SPL) of either 45 or 65 dBA were chosen. Spontaneous and noise-induced alterations during sleep classified as arousals (ARS), changes to lighter sleep stages (CSS), awakenings including changes to sleep stage 1 (AS1), and awakenings (AWR) were analyzed. The number of events per night increased in the order AWR, AS1, CSS, and ARS under control conditions as well as under the two noise conditions. Furthermore, probabilities for sleep disruptions increased with increasing noise level. ARS were observed about fourfold compared to AWR, irrespective of control or noise condition. Under the conditions investigated, different sleep parameters show different sensitivities, but also different specificities for noise-induced sleep disturbances. We conclude that most information on sleep disturbances can be achieved by investigating robust classic parameters like AWR or AS1, although ASDA electroencephalographic (EEG) arousals might add relevant information in situations with low maximum SPLs, chronic sleep deprivation or chronic exposure.

  9. Taste bud homeostasis in health, disease, and aging.

    Science.gov (United States)

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  10. Taste Bud Homeostasis in Health, Disease, and Aging

    Science.gov (United States)

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  11. Acute sleep deprivation increases food purchasing in men.

    Science.gov (United States)

    Chapman, Colin D; Nilsson, Emil K; Nilsson, Victor C; Cedernaes, Jonathan; Rångtell, Frida H; Vogel, Heike; Dickson, Suzanne L; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2013-12-01

    To investigate if acute sleep deprivation affects food purchasing choices in a mock supermarket. On the morning after one night of total sleep deprivation (TSD) or after one night of sleep, 14 normal-weight men were given a fixed budget (300 SEK-approximately 50 USD). They were instructed to purchase as much as they could out of a possible 40 items, including 20 high-caloric foods (>2 kcal/g) and 20 low-caloric foods (foods were then varied (75%, 100% (reference price), and 125%) to determine if TSD affects the flexibility of food purchasing. Before the task, participants received a standardized breakfast, thereby minimizing the potential confound produced by hunger. In addition, morning plasma concentrations of the orexigenic hormone ghrelin were measured under fasting conditions. Independent of both type of food offered and price condition, sleep-deprived men purchased significantly more calories (+9%) and grams (+18%) of food than they did after one night of sleep (both P food purchasing. This experiment demonstrates that acute sleep loss alters food purchasing behavior in men. Copyright © 2013 The Obesity Society.

  12. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    Directory of Open Access Journals (Sweden)

    Munazah F. Qureshi

    2017-11-01

    Full Text Available The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i sleep deprivation on contextual fear conditioned memory, and also (ii contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a non-sleep deprived (NSD; (b stress control (SC; and (c sleep-deprived (SD groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001 on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation.

  13. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    Science.gov (United States)

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  14. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  15. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Science.gov (United States)

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  16. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  17. Psychiatric implications of obstructive sleep apnea-hypopnea syndrome (OSAHS

    Directory of Open Access Journals (Sweden)

    Franklin Escobar-Córdoba

    2017-08-01

    Full Text Available Sleep apnea is a syndrome that affects multiple systems and produces varied symptoms. This article reviews the most frequent psychiatric illnesses associated with this condition, as well as the need for an adequate diagnosis and an interdisciplinary treatment. The most common entity observed in patients with sleep apnea is depression, probably caused by sleep fragmentation, which alters the production of neurotransmitters in the brain. Anxiety is the second most common entity, perhaps, due to the release of catecholamines at night. Other symptoms associated with sleep apnea can be found, and should be reviewed and improved with appropriate treatment; addressing such symptoms could also improve the quality of life of patients, since attention, concentration and memory would increase or decrease irritability and other symptoms.

  18. Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul

    2013-01-01

    Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state

  19. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul

    2013-03-01

    Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.

  20. A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide.

    Directory of Open Access Journals (Sweden)

    Yangkyun Oh

    2014-10-01

    Full Text Available Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP, fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis.

  1. Behavioral and biochemical dissociation of arousal and homeostatic sleep need influenced by prior wakeful experience in mice.

    Science.gov (United States)

    Suzuki, Ayako; Sinton, Christopher M; Greene, Robert W; Yanagisawa, Masashi

    2013-06-18

    Sleep is regulated by homeostatic mechanisms, and the low-frequency power in the electroencephalogram (delta power) during non-rapid eye movement sleep reflects homeostatic sleep need. Additionally, sleep is limited by circadian and environmentally influenced arousal. Little is known, however, about the underlying neural substrates for sleep homeostasis and arousal and about the potential link between them. Here, we subjected C57BL/6 mice to 6 h of sleep deprivation using two different methods: gentle handling and continual cage change. Both groups were deprived of sleep to a similar extent (>99%), and, as expected, the delta power increase during recovery sleep was quantitatively similar in both groups. However, in a multiple sleep latency test, the cage change group showed significantly longer sleep latencies than the gentle handling group, indicating that the cage change group had a higher level of arousal despite the similar sleep loss. To investigate the possible biochemical correlates of these behavioral changes, we screened for arousal-related and sleep need-related phosphoprotein markers from the diencephalon. We found that the abundance of highly phosphorylated forms of dynamin 1, a presynaptic neuronal protein, was associated with sleep latency in the multiple sleep latency test. In contrast, the abundance of highly phosphorylated forms of N-myc downstream regulated gene 2, a glial protein, was increased in parallel with delta power. The changes of these protein species disappeared after 2 h of recovery sleep. These results suggest that homeostatic sleep need and arousal can be dissociated behaviorally and biochemically and that phosphorylated N-myc downstream regulated gene 2 and dynamin 1 may serve as markers of homeostatic sleep need and arousal, respectively.

  2. The role of gut microbiota in immune homeostasis and autoimmunity.

    Science.gov (United States)

    Wu, Hsin-Jung; Wu, Eric

    2012-01-01

    Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.

  3. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    Science.gov (United States)

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Is lack of sleep capable of inducing DNA damage in aged skin?

    Science.gov (United States)

    Kahan, V; Ribeiro, D A; Egydio, F; Barros, L A; Tomimori, J; Tufik, S; Andersen, M L

    2014-01-01

    Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. The aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation nor sleep restriction increased genetic damage, measured by tail movement and tail intensity values. Taken together, the findings are consistent with the notion that aging overrides the effect of sleep loss on the genetic damage in elderly mice. © 2014 S. Karger AG, Basel.

  5. Sleep habits and patterns of college students: a preliminary study.

    Science.gov (United States)

    Buboltz, W C; Brown, F; Soper, B

    2001-11-01

    The negative effects of sleep difficulties have been well documented. However, the prevalence of such problems among US college students has not been well studied. Design difficulties are common in the limited number of existing investigations, making it difficult to estimates the prevalence and types of disturbance studied. The authors describe the use of a quantitative-based assessment instrument to provide an initial indication of students' sleep problems and to serve as a means of addressing some of the deficiencies in the literature. In their sample of 191 undergraduates at a rural southern university, they found that most of the students exhibited some form of sleep disturbance and that women, in general, reported more sleep disturbances than men did. They suggest how colleges and university officials can alter procedures to minimize students' sleep disturbances and reduce the deleterious effects of sleep problems on academic performance.

  6. Sleep of professional athletes: Underexploited potential to improve health and performance.

    Science.gov (United States)

    Tuomilehto, Henri; Vuorinen, Ville-Pekka; Penttilä, Elina; Kivimäki, Marko; Vuorenmaa, Markus; Venojärvi, Mika; Airaksinen, Olavi; Pihlajamäki, Jussi

    2017-04-01

    Sleep disorders have become increasingly prevalent affecting health and working ability. Restorative sleep may be considered important for athletes' successful recovery and performance. However, some athletes seem to experience major problems in sleeping. Thus far, there is limited scientific information about their sleep. This study aimed to evaluate the quality of sleep and the prevalence of sleep disorders as well as the impact of a structured sleep counselling protocol in professional athletes. A total of 107 professional ice hockey players participated in the study. The exploratory observational 1-year follow-up study consisted of questionnaire-based sleep assessment followed by general sleep counselling and, when needed, polysomnography and an individual treatment plan. One in every four players was found to have a significant problem in sleeping. All athletes considered sleep essential for their health and three in every four players considered that counselling would improve their performance. Counselling and individual treatment were found to improve significantly the quality of sleep with the mean alteration of 0.6 (95% CI 0.2-1.0, P = 0.004) in a scale from 0 to 10. Our results support that sleep problems are common in professional athletes. However, systematic examination, counselling and individual treatment planning can improve the quality of their sleep.

  7. Serum Amyloid A Production Is Triggered by Sleep Deprivation in Mice and Humans: Is That the Link between Sleep Loss and Associated Comorbidities?

    Science.gov (United States)

    de Oliveira, Edson M.; Visniauskas, Bruna; Tufik, Sergio; Andersen, Monica L.; Chagas, Jair R.; Campa, Ana

    2017-01-01

    Serum amyloid A (SAA) was recently associated with metabolic endotoxemia, obesity and insulin resistance. Concurrently, insufficient sleep adversely affects metabolic health and is an independent predisposing factor for obesity and insulin resistance. In this study we investigated whether sleep loss modulates SAA production. The serum SAA concentration increased in C57BL/6 mice subjected to sleep restriction (SR) for 15 days or to paradoxical sleep deprivation (PSD) for 72 h. Sleep restriction also induced the upregulation of Saa1.1/Saa2.1 mRNA levels in the liver and Saa3 mRNA levels in adipose tissue. SAA levels returned to the basal range after 24 h in paradoxical sleep rebound (PSR). Metabolic endotoxemia was also a finding in SR. Increased plasma levels of SAA were also observed in healthy human volunteers subjected to two nights of total sleep deprivation (Total SD), returning to basal levels after one night of recovery. The observed increase in SAA levels may be part of the initial biochemical alterations caused by sleep deprivation, with potential to drive deleterious conditions such as metabolic endotoxemia and weight gain. PMID:28335560

  8. Cadm2 regulates body weight and energy homeostasis in mice

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2018-02-01

    Full Text Available Objective: Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI and multiple loci near Cell adhesion molecule2 (CADM2, which encodes a mediator of synaptic signaling enriched in the brain. Here we sought to further understand the role of Cadm2 in the pathogenesis of hyperglycemia and weight gain. Methods: We first analyzed Cadm2 expression in the brain of both human subjects and mouse models and subsequently characterized a loss-of-function mouse model of Cadm2 for alterations in glucose and energy homeostasis. Results: We show that the risk variant rs13078960 associates with increased CADM2 expression in the hypothalamus of human subjects. Increased Cadm2 expression in several brain regions of Lepob/ob mice was ameliorated after leptin treatment. Deletion of Cadm2 in obese mice (Cadm2/ob resulted in reduced adiposity, systemic glucose levels, and improved insulin sensitivity. Cadm2-deficient mice exhibited increased locomotor activity, energy expenditure rate, and core body temperature identifying Cadm2 as a potent regulator of systemic energy homeostasis. Conclusions: Together these data illustrate that reducing Cadm2 expression can reverse several traits associated with the metabolic syndrome including obesity, insulin resistance, and impaired glucose homeostasis. Keywords: Cadm2/SynCAM2, Energy homeostasis, Insulin sensitivity, Genome-wide association studies, Leptin signaling

  9. Ramadan fasting, mental health and sleep-wake pattern

    Directory of Open Access Journals (Sweden)

    Mohsen Khoshniat Nikoo

    2012-06-01

    Full Text Available Background: Life style Changes during Ramadan month could possibly affect sleep-related behaviors such as total daily sleep time, sleep and wake up time and brain waves. In addition, Spirituality and religiosity have a marvelous influence on mental health and effective solutions against stress are being religious and believe in God. This review discusses the results of all related studies about possible effects of Ramadan fasting on various aspects of sleep pattern and mental health. Methods: Keywords such as ‘Ramadan’, ‘Ramadan Fasting’, ‘Islamic Fasting’, ‘Fasting in Ramadan’ and Fasting along Sleep, Chronotype, Sleep Latency, REM, NREM, Brain Wave, Psychology, Mental health, Religion, Mood, Depression, Social interaction, Depressive illness, Psychomotor performances, Bipolar disorders, Accident, Mania, Anxiety and Stress were searched via PubMed database, Scientific Information Datebas (SID and also some local journals, hence, 103 related articles from 1972 until 2010 were studied. Results: The results of studies about the effects of Ramadan fasting on sleep pattern is not similar and these differences could be due to cultural and life style discrepancy in several countries. Fasting during Ramadan could lead to delay in sleep-wake cycle, decrease in deep sleep and lack of awareness during the day. Conclusion: There are various reasons such as dietary pattern, hormonal changes and also stress which could alter the quantity and quality of sleep during Ramadan. Also, according to the available information, there is a relationship between fasting and mental health.

  10. Melanopsin gene variations interact with season to predict sleep onset and chronotype.

    Science.gov (United States)

    Roecklein, Kathryn A; Wong, Patricia M; Franzen, Peter L; Hasler, Brant P; Wood-Vasey, W Michael; Nimgaonkar, Vishwajit L; Miller, Megan A; Kepreos, Kyle M; Ferrell, Robert E; Manuck, Stephen B

    2012-10-01

    The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N = 234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p sleep onset among those with the TT genotype was later in the day when individuals were assessed on longer days and earlier in the day on shorter days, whereas individuals in the other genotype groups (i.e., CC and CT) did not show this interaction effect. P10L genotype also interacted in an analogous way with daylength to predict self-reported morningness (interaction p sleep onset and chronotype as a function of daylength, whereas other genotypes at P10L do not seem to have effects that vary by daylength. A better understanding of how melanopsin confers heightened responsivity to daylength may improve our understanding of a broad range of

  11. The effect of REM sleep deprivation on motivation for food reward.

    Science.gov (United States)

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  12. Association of Sleep Duration with Obesity among US High School Students

    Directory of Open Access Journals (Sweden)

    Richard Lowry

    2012-01-01

    Full Text Available Increasing attention is being focused on sleep duration as a potential modifiable risk factor associated with obesity in children and adolescents. We analyzed data from the national Youth Risk Behavior Survey to describe the association of obesity (self-report BMI ≥95th percentile with self-reported sleep duration on an average school night, among a representative sample of US high school students. Using logistic regression to control for demographic and behavioral confounders, among female students, compared to 7 hours of sleep, both shortened (≤4 hours of sleep; adjusted odds ratio (95% confidence interval, AOR = 1.50 (1.05–2.15 and prolonged (≥9 hours of sleep; AOR = 1.54 (1.13–2.10 sleep durations were associated with increased likelihood of obesity. Among male students, there was no significant association between obesity and sleep duration. Better understanding of factors underlying the association between sleep duration and obesity is needed before recommending alteration of sleep time as a means of addressing the obesity epidemic among adolescents.

  13. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    Science.gov (United States)

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  15. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  16. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  17. Night sleep influences white matter microstructure in bipolar depression.

    Science.gov (United States)

    Benedetti, Francesco; Melloni, Elisa M T; Dallaspezia, Sara; Bollettini, Irene; Locatelli, Clara; Poletti, Sara; Colombo, Cristina

    2017-08-15

    Alteration of circadian rhythms and sleep disruption are prominent trait-like features of bipolar disorder (BD). Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with BD. Sleep promotes myelination and oligodendrocyte precursor cells proliferation. We hypothesized a possible association between DTI measures of WM microstructure and sleep quantity measures in BD. We studied 69 inpatients affected by a depressive episode in course of type I BD. We used whole brain tract-based spatial statistics on DTI measures of WM microstructure: axial, radial, and mean diffusivity (AD, RD, MD), and fractional anisotropy (FA). Self-assessed measures of time asleep (TA) and total sleep time (TST) were extracted from the Pittsburgh Sleep Quality Index (PSQI). Actigraphic recordings were performed on a subsample of 23 patients. We observed a positive correlation of DTI measures of FA with actigraphic measures of TA and TST, and with PSQI measure of TA. DTI measures of RD inversely associated with actigraphic measure of TA, and with PSQI measures of TA and TST. Several WM tracts were involved, including corpus callosum, cyngulate gyrus, uncinate fasciculus, left superior and inferior longitudinal and fronto-occipital fasciculi, thalamic radiation, corona radiata, retrolenticular part of internal capsule and corticospinal tract. The study is correlational in nature, and no conclusion about a causal connection can be drawn. Reduced FA with increased RD and MD indicate higher water diffusivity associated with less organized myelin and/or axonal structures. Our findings suggest an association between sleep disruption and these measures of brain microstructure in specific tracts contributing to the functional connectivity in BD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sustained Partial Sleep Deprivation: Effects on Immune Modulation and Growth Factors

    Science.gov (United States)

    Mullington, Janet M.

    1999-01-01

    The vulnerability to medical emergencies is greatest in space where there are real limits to the availability or effectiveness of ground based assistance. Moreover, astronaut safety and health maintenance will be of increasing importance as we venture out into space for extended periods of time. It is therefore critical to understand the mechanisms of the regulatory physiology of homeostatic systems (sleep, circadian, neuroendocrine, fluid and nutritional balance) and the key roles played in adaptation. This synergy project has combined aims of the "Human Performance Factors, Sleep and Chronobiology Team"; the "Immunology, Infection and Hematology Team"; and the "Muscle Alterations and Atrophy Team", to broadly address the effects of long term sleep reduction, as is frequently encountered in space exploration, on neuroendocrine, neuroimmune and circulating growth factors. Astronaut sleep is frequently curtailed to averages of between 4- 6.5 hours per night. There is evidence that this amount of sleep is inadequate for maintaining optimal daytime functioning. However, there is a lack of information concerning the effects of chronic sleep restriction, or reduction, on regulatory physiology in general, and there have been no controlled studies of the cumulative effects of chronic sleep reduction on neuroendocrine and neuroimmune parameters. This synergy project represents a pilot study designed to characterize the effects of chronic partial sleep deprivation (PSD) on neuroendocrine, neuroimmune and growth factors. This project draws its subjects from two (of 18) conditions of the larger NSBRI project, "Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight", one of the projects on the "Human Performance Factors, Sleep and Chronobiology Team ". For the purposes of this study, to investigate the effects of chronic sleep loss on neuroendocrine and neuroimmune function, we have focused on the two extreme sleep conditions

  19. Impact of partial sleep deprivation on immune markers.

    Science.gov (United States)

    Wilder-Smith, A; Mustafa, F B; Earnest, A; Gen, L; Macary, P A

    2013-10-01

    Sleep quality is considered to be an important predictor of immunity. Lack of sleep therefore may reduce immunity, thereby increasing the susceptibility to respiratory pathogens. A previous study showed that reduced sleep duration was associated with an increased likelihood of the common cold. It is important to understand the role of sleep in altering immune responses to understand how sleep deprivation leads to an increased susceptibility to the common cold or other respiratory infections. We sought to examine the impact of partial sleep deprivation on various immune markers. Fifty-two healthy volunteers were partially sleep deprived for one night. We took blood samples before the sleep deprivation, immediately after, and 4 and 7 days after sleep deprivation. We measured various immune markers and used a generalized estimating equation (GEE) to examine the differences in the repeated measures. CD4, CD8, CD14, and CD16 all showed significant time-dependent changes, but CD3 did not. The most striking time-dependent change was observed for the mitogen proliferation assay and for HLA-DR. There was a significant decrease in the mitogen proliferation values and HLA-DR immediately after the sleep deprivation experiment, which started to rise again on day 4 and normalized by day 7. The transiently impaired mitogen proliferation, the decreased HLA-DR, the upregulated CD14, and the variations in CD4 and CD8 that we observed in temporal relationship with partial sleep deprivation could be one possible explanation for the increased susceptibility to respiratory infections reported after reduced sleep duration. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    Science.gov (United States)

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  1. Light pollution disrupts sleep in free-living animals.

    Science.gov (United States)

    Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2015-09-04

    Artificial lighting can alter individual behaviour, with often drastic and potentially negative effects on biological rhythms, daily activity and reproduction. Whether this is caused by a disruption of sleep, an important widespread behaviour enabling animals to recover from daily stress, is unclear. We tested the hypothesis that light pollution disrupts sleep by recording individual sleep behaviour of great tits, Parus major, that were roosting in dark nest-boxes and were exposed to light-emitting diode light the following night. Their behaviour was compared to that of control birds sleeping in dark nest-boxes on both nights. Artificial lighting caused experimental birds to wake up earlier, sleep less (-5%) and spent less time in the nest-box as they left their nest-box earlier in the morning. Experimental birds did not enter the nest-box or fall asleep later than controls. Although individuals in lit nest-boxes did not wake up more often nor decreased the length of their sleep bouts, females spent a greater proportion of the night awake. Our study provides the first direct proof that light pollution has a significant impact on sleep in free-living animals, in particular in the morning, and highlights a mechanism for potential effects of light pollution on fitness.

  2. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  3. Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in Drosophila.

    Science.gov (United States)

    Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y; Van Dongen, Hans P A; Sehgal, Amita

    2016-05-01

    Sleep rebound-the increase in sleep that follows sleep deprivation-is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. We identified two lines that consistently exhibit a blunted increase in the duration and depth of sleep after

  4. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Law, Ian; Wiltschiøtz, Gordon

    2002-01-01

    to other forms of altered awareness, for example, relaxation meditation than to deeper sleep stages. We are of the opinion that stage-1 sleep represents the dreaming state of wakefulness, while rapid eye movement (REM) sleep reflects the dreaming state of the unaware, sleeping brain.......This is the first report on the distribution of regional cerebral blood flow (rCBF) changes during stage-1 sleep or somnolence. Two hypotheses were tested: (A) that rCBF differed between the awake relaxed state and stage-1 sleep, (B) that hypnagogic hallucinations frequently experienced at sleep...... onset would be accompanied by measurable changes in rCBF using positron emission tomography (PET). Eight subjects were PET-scanned with (15)O-labeled water injection in three conditions: awake, stage-1 sleep with reportable experiences and stage-1 sleep without reportable experiences...

  5. Increased daytime somnolence despite normal sleep patterns in patients treated for nonfunctioning pituitary macroadenoma

    NARCIS (Netherlands)

    van der Klaauw, Agatha A.; Dekkers, Olaf M.; Pereira, Alberto M.; van Kralingen, Klaas W.; Romijn, Johannes A.

    2007-01-01

    In patients treated for nonfunctioning pituitary macroadenoma (NFMA), increased fatigue scores on quality of life (QoL) have been reported. Because this may be related to altered sleep patterns, we evaluated daytime sleepiness and sleep patterns in patients successfully treated for NFMA in our

  6. Sleep disturbance in older ICU patients

    Directory of Open Access Journals (Sweden)

    Sterniczuk R

    2014-06-01

    Full Text Available Roxanne Sterniczuk,1–3 Benjamin Rusak,1,2 Kenneth Rockwood31Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, 2Department of Psychiatry, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, NS, 3Division of Geriatric Medicine, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, CanadaAbstract: Maintaining a stable and adequate sleeping pattern is associated with good health and disease prevention. As a restorative process, sleep is important for supporting immune function and aiding the body in healing and recovery. Aging is associated with characteristic changes to sleep quantity and quality, which make it more difficult to adjust sleep–wake rhythms to changing environmental conditions. Sleep disturbance and abnormal sleep–wake cycles are commonly reported in seriously ill older patients in the intensive care unit (ICU. A combination of intrinsic and extrinsic factors appears to contribute to these disruptions. Little is known regarding the effect that sleep disturbance has on health status in the oldest of old (80+, a group, who with diminishing physiological reserve and increasing prevalence of frailty, is at a greater risk of adverse health outcomes, such as cognitive decline and mortality. Here we review how sleep is altered in the ICU, with particular attention to older patients, especially those aged ≥80 years. Further work is required to understand what impact sleep disturbance has on frailty levels and poor outcomes in older critically ill patients.Keywords: intensive care unit, sleep–wake rhythm, aging, frailty

  7. Gemfibrozil disrupts lysophosphatidylcholine and bile acid homeostasis via PPARα and its relevance to hepatotoxicity.

    Science.gov (United States)

    Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J

    2014-04-01

    Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.

  8. Human and rat gut microbiome composition is maintained following sleep restriction.

    Science.gov (United States)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    2017-02-21

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.

  9. The possible role of human milk nucleotides as sleep inducers.

    Science.gov (United States)

    Sánchez, Cristina L; Cubero, Javier; Sánchez, Javier; Chanclón, Belén; Rivero, Montserrat; Rodríguez, Ana B; Barriga, Carmen

    2009-02-01

    Breast-milk contains a potent mixture of diverse components, such as the non-protein nitrogen fraction which includes nucleotides, whose variation in levels is evident throughout lactation. In addition, these substances play an important role in sleep homeostasis. In the present study, human milk samples were analyzed using a capillary electrophoresis system. The rhythmicity of each nucleotide was studied by cosinor analysis. It was found that the nucleotides 5'AMP, 5'GMP, 5'CMP, and 5'IMP have significant (P inducing the 'hypnotic' action of breast-milk at night in the infant.

  10. Sleep duration and the risk of metabolic syndrome – a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Edyta Suliga

    2017-09-01

    Full Text Available Introduction: It has been stated that besides the traditional elements of lifestyle such as diet and physical activity, an additional factor, namely sleep, is involved in metabolic processes, hormonal functions, and energy homeostasis. Aim of the research: To examine relationships between self-reported sleep duration and the risk of metabolic syndrome (MetS and its components, both for men and women. Material and methods: The study involved 10,367 individuals, aged 37 to 66 years. The definition of MetS applied in this paper was developed by the International Diabetes Federation (IDF. Logistic regression was applied to assess the risk (odds ratio – OR of MetS and its components. Results : There was no relationship observed between short sleep duration (≤ 6 h and the risk of MetS. Long sleep duration (≥ 9 h was connected with a higher risk of MetS only in the unadjusted model (OR = 1.11. After adjusting for confounders, a significant association was found between long sleep duration and a higher risk of abdominal obesity in the test group as a whole (OR = 1.16, as well as in the men in the group (OR = 1.22. In women, both with short (OR = 1.08 and long (OR = 1.12 sleep duration, the risk of increased concentration of glucose was found. Conclusions : Our study did not confirm the existence of an association between inadequate sleep duration and the risk of MetS, defined in accordance with IDF criteria. Sleep duration, however, is connected with some of the MetS components. It is therefore necessary to conduct further, long-term tests in this regard.

  11. Endogenous Opiates in the Nucleus Tractus Solitarius Mediate Electroacupuncture-Induced Sleep Activities in Rats

    Directory of Open Access Journals (Sweden)

    Chiung-Hsiang Cheng

    2011-01-01

    Full Text Available Electroacupuncture (EA possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17 acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS. In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  12. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Science.gov (United States)

    Deliens, Gaétane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep deprivation might

  13. Sleep and gastrointestinal disturbances in autism spectrum disorder in children.

    Science.gov (United States)

    Klukowski, Mark; Wasilewska, Jolanta; Lebensztejn, Dariusz

    2015-01-01

    Autism spectrum disorder (ASD), a neurodevelopmental disorder with a prevalence of 1 in 68 children, commonly presents with comorbid conditions which include sleep disorders. Sleep disorders reported in ASD include, among others, increased bedtime resistance, insomnia, parasomnia, sleep disordered breathing, morning rise problems, and daytime sleepiness. Polysomnography studies show that children with ASD have altered sleep architecture including shorter total sleep time and longer sleep latency than typically developing peers. Sleep-related problems have been shown to affect overall autism scores, social skills decits, stereotypic behavior, and cognitive performance. Additionally, problematic sleep in children with ASD has been associated with higher levels of parental stress. Underlying causes specically related to sleep disorders are not fully known. Gastrointestinal (GI) disorders are commonly associated with sleep problems in these patients. Children with ASD and GI symptoms have been found to have a higher prevalence of sleep disturbances compared with typically developing peers who do not have GI symptoms. Treatment approaches to children with sleep disorders are varied and range from lifestyle modications and behavioral interventions to drug therapies and surgical interventions. Physicians should take into account GI disorders as possible underlying causes of sleep-related problems in children with ASD. Therapeutic interventions should begin with less invasive methods before progressing to more invasive options such as pharmacotherapy and should be based on medical indications in order to provide effective care while minimizing potential adverse health effects. Evidence-based studies concerning GI and sleep disorders in children with ASD are limited and further studies are warranted.

  14. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  15. Sleep and memory in the making. Are current concepts sufficient in children?

    Science.gov (United States)

    Peigneux, P

    2014-01-01

    Memory consolidation is an active process wired in brain plasticity. How plasticity mechanisms develop and are modulated after learning is at the core of current models of sleep-dependent memory consolidation. Nowadays, two main classes of sleep-related memory consolidation theories are proposed, namely system consolidation and synaptic homeostasis. However, novel models of consolidation emerge, that might better account for the highly dynamic and interactive processes of encoding and memory consolidation. Processing steps can take place at various temporal phases and be modulated by interactions with prior experiences and ongoing events. In this perspective, sleep might support (or not) memory consolidation processes under specific neurophysiological and environmental circumstances leading to enduring representations in long-term memory stores. We outline here a discussion about how current and emergent models account for the complexity and apparent inconsistency of empirical data. Additionally, models aimed at understanding neurophysiological and/or cognitive processes should not only provide a satisfactory explanation for the phenomena at stake, but also account for their ontogeny and the conditions that disrupt their organisation. Looking at the available literature, this developmental condition appears to remain unfulfilled when trying to understand the relationships between sleep, learning and memory consolidation processes, both in healthy children and in children with pathological conditions.

  16. The Time Course of the Probability of Transition Into and Out of REM Sleep

    Science.gov (United States)

    Bassi, Alejandro; Vivaldi, Ennio A.; Ocampo-Garcés, Adrián

    2009-01-01

    Study Objectives: A model of rapid eye movement (REM) sleep expression is proposed that assumes underlying regulatory mechanisms operating as inhomogenous Poisson processes, the overt results of which are the transitions into and out of REM sleep. Design: Based on spontaneously occurring REM sleep episodes (“Episode”) and intervals without REM sleep (“Interval”), 3 variables are defined and evaluated over discrete 15-second epochs using a nonlinear logistic regression method: “Propensity” is the instantaneous rate of into-REM transition occurrence throughout an Interval, “Volatility” is the instantaneous rate of out-of-REM transition occurrence throughout an Episode, and “Opportunity” is the probability of being in non-REM (NREM) sleep at a given time throughout an Interval, a requisite for transition. Setting: 12:12 light:dark cycle, isolated boxes. Participants: Sixteen male Sprague-Dawley rats Interventions: None. Spontaneous sleep cycles. Measurements and Results: The highest levels of volatility and propensity occur, respectively, at the very beginning of Episodes and Intervals. The new condition stabilizes rapidly, and variables reach nadirs at minute 1.25 and 2.50, respectively. Afterward, volatility increases markedly, reaching values close to the initial level. Propensity increases moderately, the increment being stronger through NREM sleep bouts occurring at the end of long Intervals. Short-term homeostasis is evidenced by longer REM sleep episodes lowering propensity in the following Interval. Conclusions: The stabilization after transitions into Episodes or Intervals and the destabilization after remaining for some time in either condition may be described as resulting from continuous processes building up during Episodes and Intervals. These processes underlie the overt occurrence of transitions. Citation: Bassi A; Vivaldi EA; Ocampo-Garcées A. The time course of the probability of transition into and out of REM sleep. SLEEP 2009

  17. Restricted and disrupted sleep : Effects on autonomic function, neuroendocrine stress systems and stress responsivity

    NARCIS (Netherlands)

    Meerlo, Peter; Sgoifo, Andrea; Suchecki, Deborah

    2008-01-01

    Frequently disrupted and restricted sleep is a common problem for many people in our modern around-the-clock society. In this context, it is an important question how sleep loss affects the stress systems in our bodies since these systems enable us to deal with everyday challenges. Altered activity

  18. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  19. Sleep architecture in school-aged children with primary snoring.

    Science.gov (United States)

    Zhu, Yin; Au, Chun-Ting; Lam, Hugh S; Chan, Ching-Ching K; Ho, Crover; Wing, Yun-Kwok; Li, Albert M

    2014-03-01

    We aimed to examine if sleep architecture was altered in school-aged children with primary snoring (PS). Children ages 6 to 13 years from 13 primary schools were randomly recruited. A validated obstructive sleep apnea (OSA) screening questionnaire was completed by their parents. Children at high risk for OSA and a randomly chosen low-risk group were invited to undergo overnight polysomnography (PSG) and clinical examination. Participants were classified into healthy controls, PS, mild OSA, and moderate to severe OSA (MS OSA) groups for comparison. A total of 619 participants underwent PSG (mean age, 10.0 ± 1.8 years; 396 (64.0%) boys; 524 (84.7%) prepubertal). For the cohort as a whole, there were no significant differences in measures of sleep architecture between PS and nonsnoring healthy controls. In the multiple regression model, percentage of nonrapid eye movement (NREM) stage 1 (N1) sleep had a significantly positive association, whereas percentage of slow-wave sleep (SWS) had a significantly negative association with sleep-disordered breathing (SDB) severity after controlling for age, gender, body mass index (BMI) z score, and pubertal status. In prepubertal children with PS, no significant disruption of sleep architecture was found. However, pubertal adolescent PS participants had significantly higher adjusted percentage of N1 sleep and wake after sleep onset (WASO) compared to healthy controls. PS did not exert significant adverse influences on normal sleep architecture in prepubertal school-aged children. Nevertheless, pubertal adolescents with PS had increased N1 sleep and WASO. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel

    2005-01-01

    administration of UII into the PPT nucleus increases REM sleep without inducing changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical...... dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...... synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors. Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by directly activating cholinergic...

  1. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio).

    Science.gov (United States)

    Pinheiro-da-Silva, Jaquelinne; Silva, Priscila Fernandes; Nogueira, Marcelo Borges; Luchiari, Ana Carolina

    2017-03-01

    The zebrafish is an ideal vertebrate model for neurobehavioral studies with translational relevance to humans. Many aspects of sleep have been studied, but we still do not understand how and why sleep deprivation alters behavioral and physiological processes. A number of hypotheses suggest its role in memory consolidation. In this respect, the aim of this study was to analyze the effects of sleep deprivation on memory in zebrafish (Danio rerio), using an object discrimination paradigm. Four treatments were tested: control, partial sleep deprivation, total sleep deprivation by light pulses, and total sleep deprivation by extended light. The control group explored the new object more than the known object, indicating clear discrimination. The partially sleep-deprived group explored the new object more than the other object in the discrimination phase, suggesting a certain degree of discriminative performance. By contrast, both total sleep deprivation groups equally explored all objects, regardless of their novelty. It seems that only one night of sleep deprivation is enough to affect discriminative response in zebrafish, indicating its negative impact on cognitive processes. We suggest that this study could be a useful screening tool for cognitive dysfunction and a better understanding of the effect of sleep-wake cycles on cognition.

  2. Sleep Moderates and Mediates the Relationship Between Acculturation and Depressive Symptoms in Pregnant Mexican-American Women.

    Science.gov (United States)

    D'Anna-Hernandez, Kimberly L; Garcia, Esmeralda; Coussons-Read, Mary; Laudenslager, Mark L; Ross, Randal G

    2016-02-01

    Greater acculturation is associated with adverse perinatal outcomes in Mexican-American women, but the mechanisms by which acculturation influences perinatal outcomes are unclear. Pregnant acculturated Mexican-American women are more likely to engage in unhealthy prenatal behaviors relative to those less acculturated, including poor sleep. As sleep disruptions are associated with acculturation and negative perinatal outcomes, particularly maternal depression, alterations in sleep may adversely affect pregnant Mexican-American women. Sixty pregnant women of Mexican descent completed surveys about sleep, acculturation, depressive symptoms and potential protective factor of social support. Acculturation, but not social support, significantly predicted increased sleep disruptions as well as overall feeling less refreshed upon waking across pregnancy. Moderation analysis indicated that more acculturated women who took longer to fall asleep reported increased depressive symptoms. Feeling refreshed upon waking also mediated the relationship between increased acculturation and elevated maternal depressive symptoms. Acculturation and altered sleep contribute to greater risk in Mexican-American women for maternal depressive symptoms in the perinatal period. These findings have implications for prevention and treatment of maternal mental health disorders, which may adversely affect perinatal outcomes in the vulnerable Mexican-American population.

  3. Sleep-EEG in dizygotic twins discordant for Williams syndrome.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Szocs, Katalin; Réthelyi, János M; Gerván, Patrícia; Kovács, Ilona

    2014-01-30

    Reports on twin pairs concordant and discordant for Williams syndrome were published before, but no study unravelled sleep physiology in these cases yet. We aim to fill this gap by analyzing sleep records of a twin pair discordant for Williams syndrome extending our focus on presleep wakefulness and sleep spindling. We performed multiplex ligation-dependent probe amplification of the 7q11.23 region of a 17 years old dizygotic opposite-sex twin pair discordant for Williams syndrome. Polysomnography of laboratory sleep at this age was analyzed and followed-up after 1.5 years by ambulatory polysomnography. Sleep stages scoring, EEG power spectra and sleep spindle analyses were carried out. The twin brother showed reduced levels of amplification for all of the probes in the 7q11.23 region indicating a typical deletion spanning at least 1.038 Mb between FKBP6 and CLIP2. The results of the twin sister showed normal copy numbers in the investigated region. Lower sleep times and efficiencies, as well as higher slow wave sleep percents of the twin brother were evident during both recordings. Roughly equal NREM, Stage 2 and REM sleep percents were found. EEG analyses revealed state and derivation-independent decreases in alpha power, lack of an alpha spectral peak in presleep wakefulness, as well as higher NREM sleep sigma peak frequency in the twin brother. Faster sleep spindles with lower amplitude and shorter duration characterized the records of the twin brother. Spectra show a striking reliability and correspondence between the two situations (laboratory vs. home records). Alterations in sleep and specific neural oscillations including the alpha/sigma waves are inherent aspects of Williams syndrome.

  4. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  5. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  6. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Ulukavak Ciftci, Tansu; Kokturk, Oguz; Bukan, Neslihan; Bilgihan, Ayse

    2005-01-01

    Leptin is a hormone with well-investigated functions concerning body composition, energy homeostasis and feeding behavior in humans. The obstructive sleep apnea syndrome (OSAS) is strongly associated with obesity, which is known to be closely associated with hyperleptinemia. More recently, ghrelin, a hormone that also influences appetite and energy homeostasis, has been discovered. The aim of this study was to investigate serum leptin and ghrelin levels in obese patients with OSAS in comparison with equally obese controls without OSAS. Thirty untreated obese patients with moderate-severe OSAS (apnea-hypopnea index: AHI > or =15) and 22 obese controls (AHI <5) were studied. To confirm the diagnosis, all patients underwent standard polysomnography in our sleep disorders center. Serum samples were taken at 08:00 h in the morning after overnight fasting. Significantly higher serum leptin levels were found in OSAS patients compared to controls (p = 0.012), but there was no significant difference in serum ghrelin levels between OSAS patients and controls. Serum leptin levels were significantly correlated with body mass index in both OSAS patients (r = 0.55, p = 0.002) and controls (r = 0.46, p = 0.028), but only in OSAS patients was the leptin level significantly correlated with AHI (r = 0.38, p = 0.036). These data support findings suggesting that leptin is a hormonal factor affected by OSAS and not determined by obesity alone. Further studies are needed to investigate the relationship between serum ghrelin and OSAS. (c) 2005 S. Karger AG, Basel

  7. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  8. Sleep stability and cognitive function in an Arctic Martian analogue.

    Science.gov (United States)

    Gríofa, Marc O; Blue, Rebecca S; Cohen, Kenneth D; O'Keeffe, Derek T

    2011-04-01

    Human performance is affected by sleep disruption and sleep deprivation can critically affect mission outcome in both spaceflight and other extreme environments. In this study, the seven-person crew (four men, three women) lived a Martian sol (24.65 h) for 37 d during a long-term stay at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada. Crewmembers underwent cardiopulmonary monitoring for signs of circadian disruption and completed a modified Pittsburgh Sleep Diary to monitor subjective fatigue. Crewmembers underwent cognitive testing to identify the effects, if any, of sleep disruption upon cognitive skill. A Martian sol was implemented for 37 d during the Arctic mission. Each crewmember completed an adapted version of the Pittsburgh Sleep Diary in tandem with electrocardiograph (ECG) cardiopulmonary monitoring of sleep by the Cardiac Adapted Sleep Parameters Electrocardiogram Recorder (CASPER). Crewmembers also underwent cognitive testing during this time period. Sleep diary data indicate improvement in alertness with the onset of the sol (fatigue decreasing from 5.1 to 4.0, alertness increasing from 6.1 to 7.0). Cardiopulmonary data suggest sleep instability, though trends were not statistically significant. Crewmember decision speed time scores improved from pre-Mars to Mars (average improving from 66.5 to 84.0%), though the remainder of cognitive testing results were not significant. While subjective data demonstrate improved sleep and alertness during the sol, objective data demonstrate no significant alteration of sleep patterns. There was no apparent cognitive decline over the course of the mission.

  9. Aging Worsens the Effects of Sleep Deprivation on Postural Control

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly. PMID:22163330

  10. Aging worsens the effects of sleep deprivation on postural control.

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  11. Sleep, arousal, and circadian rhythms in adults with obsessive-compulsive disorder: a meta-analysis.

    Science.gov (United States)

    Nota, Jacob A; Sharkey, Katherine M; Coles, Meredith E

    2015-04-01

    Findings of this meta-analysis show that obsessive-compulsive disorder (OCD) is related to disruptions in both the duration and timing of sleep. PsycINFO and Google Scholar database searches identified 12 relevant studies that compared measures of sleep in individuals with OCD to those of either a healthy control group or published norms. Sleep measures included sleep onset latency, sleep duration, awakening after sleep onset, percentage of rapid eye movement (REM) sleep, percentage of slow wave sleep, and prevalence of delayed sleep phase disorder (DSPD). Individual effect sizes were pooled using a random effects model. Sleep duration was found to be shorter, and the prevalence of DSPD higher, in individuals with OCD compared to controls. Further, excluding samples with comorbid depression did not meaningfully reduce the magnitude of these effects (although the results were no longer statistically significant) and medication use by participants is unlikely to have systematically altered sleep timing. Overall, available data suggest that sleep disruption is associated with OCD but further research on both sleep duration and sleep timing in individuals with OCD is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hyperactivation in the habenula as a link between depression and sleep disturbance

    Directory of Open Access Journals (Sweden)

    Hidenori eAizawa

    2013-12-01

    Full Text Available Depression occurs frequently with sleep disturbance such as insomnia. Sleep in depression is associated with disinhibition of the rapid eye movement (REM sleep. Despite the coincidence of the depression and sleep disturbance, neural substrate for depressive behaviors and sleep regulation remains unknown.Habenula is an epithalamic structure regulating the activities of monoaminergic neurons in the brain stem. Since the imaging studies showed blood flow increase in the habenula of depressive patients, hyperactivation of the habenula has been implicated in the pathophysiology of the depression. Recent electrophysiological studies reported a novel role of the habenular structure in regulation of REM sleep. In this article, we propose possible cellular mechanisms which could elicit the hyperactivation of the habenular neurons and a hypothesis that dysfunction in the habenular circuit causes the behavioral and sleep disturbance in depression. Analysis of the animals with hyperactivated habenula would open the door to understand roles of the habenula in the heterogeneous symptoms such as reduced motor behavior and altered REM sleep in depression.

  13. Pain Correlates with Sleep Disturbances in Parkinson's Disease Patients.

    Science.gov (United States)

    Fu, Yun-Ting; Mao, Cheng-Jie; Ma, Li-Jing; Zhang, Hui-Jun; Wang, Yi; Li, Jie; Huang, Jun-Ying; Liu, Jun-Yi; Liu, Chun-Feng

    2018-01-01

    Both sleep disorders and pain decrease quality of life in patients with Parkinson's disease (PD). However, little is known about the relationship between objective sleep disturbances and pain in patients with PD. This study aimed to (1) examine the clinical characteristics of pain in PD patients and (2) explore the correlation between pain and sleep disturbances in PD patients. Parkinson's disease patients (N = 144) underwent extensive clinical evaluations of motor and nonmotor symptoms and characteristics of pain. Overnight video-polysomnography was also conducted. Clinical characteristics and sleep parameters were compared between PD patients with or without pain. Pain was reported by 75 patients (52.1%), with 49 (65.3%) reporting pain of at least moderate severity. PD patients with pain were older and had longer disease duration, more severe PD symptoms as assessed by Hoehn and Yahr stage and the Unified Parkinson's Disease Rating Scale, and higher L-dopa equivalent daily dose compared with PD patients without pain. PD patients with pain also showed significantly decreased sleep efficiency (57.06% ± 15.84% vs. 73.80% ± 12.00%, P daily living, depressed mood, higher percentage of N1 sleep, and lower sleep efficiency were independent predictors of pain in patients with PD. Musculoskeletal pain is the most common type of pain in patients with PD. Disrupted sleep continuity, altered sleep architecture, depressed mood, and compromised activities of daily living may be associated with pain in patients with PD. © 2017 World Institute of Pain.

  14. Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI. Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI study during rested wakefulness (RW and after 36 h of total sleep deprivation (TSD. Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN and default mode network (DMN. Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation.

  15. Sleep Quality but Not Quantity Altered With a Change in Training Environment in Elite Australian Rules Football Players.

    Science.gov (United States)

    Pitchford, Nathan W; Robertson, Sam J; Sargent, Charli; Cordy, Justin; Bishop, David J; Bartlett, Jonathan D

    2017-01-01

    To assess the effects of a change in training environment on the sleep characteristics of elite Australian Rules football (AF) players. In an observational crossover trial, 19 elite AF players had time in bed (TIB), total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) assessed using wristwatch activity devices and subjective sleep diaries across 8-d home and camp periods. Repeated-measures ANOVA determined mean differences in sleep, training load (session rating of perceived exertion [RPE]), and environment. Pearson product-moment correlations, controlling for repeated observations on individuals, were used to assess the relationship between changes in sleep characteristics at home and camp. Cohen effect sizes (d) were calculated using individual means. On camp TIB (+34 min) and WASO (+26 min) increased compared with home. However, TST was similar between home and camp, significantly reducing camp SE (-5.82%). Individually, there were strong negative correlations for TIB and WASO (r = -.75 and r = -.72, respectively) and a moderate negative correlation for SE (r = -.46) between home and relative changes on camp. Camp increased the relationship between individual s-RPE variation and TST variation compared with home (increased load r = -.367 vs .051, reduced load r = .319 vs -.033, camp vs home respectively). Camp compromised sleep quality due to significantly increased TIB without increased TST. Individually, AF players with higher home SE experienced greater reductions in SE on camp. Together, this emphasizes the importance of individualized interventions for elite team-sport athletes when traveling and/or changing environments.

  16. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  17. Sleep Applications to Assess Sleep Quality.

    Science.gov (United States)

    Fietze, Ingo

    2016-12-01

    This article highlights the potential uses that smartphone applications may have for helping those with sleep problems. Applications in smartphones offer the promised possibility of detection of sleep. From the author's own experience, one can also conclude that sleep applications are approximately as good as polysomnography in detection of sleep time, similar to the conventional wearable actimeters. In the future, sleep applications will help to further enhance awareness of sleep health and to distinguish those who actually poorly and only briefly sleep from those who suffer more likely from paradox insomnia. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pathophysiology of obstructive sleep apnea-hypopnea syndrome (OSAHS

    Directory of Open Access Journals (Sweden)

    Marco Venegas-Mariño

    2017-08-01

    Full Text Available Obstructive sleep apnea-hypopnea syndrome (OSAHS is a disease characterized by recurrent upper airway obstruction (UAO, with decreased airflow, intermittent hypoxemia, and awakening during sleep. Two essential factors are related to the pathophysiology of OSAHS: anatomical alterations and reduction or absence of neural control. While studying OSAHS, the site or sites of obstruction of the UA should be identified; they may extend from the nasal wings to the hypopharynx. Another important factor in this syndrome is the nervous influence on muscle tone of the hypopharynx, as well as the changes in blood pH, which are secondary to micro-arousals. Body position and sleep stage determine the severity. The pathophysiology of OSAHS should be understood to properly study a patient and provide the best treatment option.

  19. Sleep Architecture in Night Shift Workers Police Officers with Obstructive Sleep Apnea-hypopnea Syndrome.

    Science.gov (United States)

    Verde-Tinoco, Selene; Santana-Miranda, Rafael; Gutiérrez-Escobar, Romel; Haro, Reyes; Miranda-Ortiz, Joana; Berruga-Fernandez, Talia; Jimenez-Correa, Ulises; Poblano, Adrián

    2017-01-01

    Reduced sleep to increase work hours is common among police officers, when this situation is combined with Obstructive sleep apnea/hypopnea syndrome (OSAHS), health consequences are greater, therefore we believe there is a need of research for these alterations. The aim of this study was to measure the changes in sleep architecture (SA) in police officers who currently have Night shift work (NSW) and OSAHS. We compared SA in 107 subjects divided in three groups: the first group included police officers with NSW and severe OSAHS (n = 48); the second group were non-police officers with diurnal work time and severe OSAHS (n = 48) and the third group was formed by healthy controls (n = 11). Polysomnography (PSG) variables and Epworth sleepiness scale (ESS) scores were compared. SA was more disrupted in the group of police officers with NSW and OSAHS than in patients with OSAHS only and in the control group. Police officers with NSW and OSAHS presented an increased number of electroencephalographic activations, apnea/hypopnea index, and sleep latency, and showed lower scores of oxygen saturation, and in the ESS. Multivariate analysis revealed significant influence of age and Body mass index (BMI). Data suggested with caution an additive detrimental effect of NSW and OSAHS in SA and ESS of police officers. However age and BMI must be also taken into account in future studies.

  20. Polysomnographic Aspects of Sleep Architecture on Self-limited Epilepsy with Centrotemporal Spikes: A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Camila dos Santos Halal

    Full Text Available Self-limited epilepsy with centrotemporal spikes is the most common paediatric epileptic syndrome, with growing evidence linking it to various degrees and presentations of neuropsychological dysfunction. The objective of this study is to evaluate the possible sleep macro and microstructural alterations in children with this diagnosis. A systematic review of published manuscripts was carried out in Medline, LILACS and Scielo databases, using the MeSH terms epilepsy, sleep and polysomnography. From 753 retrieved references, 5 were selected, and data from macro and, when available, microstructure of sleep were extracted. Meta-analysis was performed with data from 4 studies using standardized mean difference. Findings were heterogeneous between studies, being the most frequent macrostructural findings a smaller proportion and greater latency of REM sleep in two studies and, in meta-analysis, a longer sleep latency was the most significant finding among epileptic patients. Only one study evaluated sleep microstructure, suggesting possible alterations in cyclic alternating pattern in diagnosed children. Studies evaluating macro and microstructure of sleep in children with self-limited epilepsy with centrotemporal spikes are necessary to a better understanding of mechanisms of the neuropsychologic disturbances that are frequently seen in children with this diagnosis.

  1. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  2. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy?

    Science.gov (United States)

    Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C

    2016-04-01

    Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla.

    Science.gov (United States)

    Plante, David T; Trksak, George H; Jensen, J Eric; Penetar, David M; Ravichandran, Caitlin; Riedner, Brady A; Tartarini, Wendy L; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E; Harper, David G

    2014-12-01

    A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Experimental laboratory study. Outpatient neuroimaging center at a private psychiatric hospital. A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation (SD), and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. PCr increased in gray matter after 2 nights of recovery sleep relative to SD with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in PCr after recovery sleep may be related to sleep homeostasis. © 2014 Associated Professional Sleep Societies, LLC.

  4. The Neurobiology of Orofacial Pain and Sleep and Their Interactions.

    Science.gov (United States)

    Lavigne, G J; Sessle, B J

    2016-09-01

    This article provides an overview of the neurobiology of orofacial pain as well as the neural processes underlying sleep, with a particular focus on the mechanisms that underlie pain and sleep interactions including sleep disorders. Acute pain is part of a hypervigilance system that alerts the individual to injury or potential injury of tissues. It can also disturb sleep. Disrupted sleep is often associated with chronic pain states, including those that occur in the orofacial region. The article presents many insights that have been gained in the last few decades into the peripheral and central mechanisms involved in orofacial pain and its modulation, as well as the circuits and processes in the central nervous system that underlie sleep. Although it has become clear that sleep is essential to preserve and maintain health, it has also been found that pain, particularly chronic pain, is commonly associated with disturbed sleep. In the presence of chronic pain, a circular relationship may prevail, with mutual deleterious influences causing an increase in pain and a disruption of sleep. This article also reviews findings that indicate that reducing orofacial pain and improving sleep need to be targeted together in the management of acute to chronic orofacial pain states in order to improve an orofacial pain patient's quality of life, to prevent mood alterations or exacerbation of sleep disorder (e.g., insomnia, sleep-disordered breathing) that can negatively affect their pain, and to promote healing and optimize their health. © International & American Associations for Dental Research 2016.

  5. Interrelationship of sleep and juvenile myoclonic epilepsy (JME): a sleep questionnaire-, EEG-, and polysomnography (PSG)-based prospective case-control study.

    Science.gov (United States)

    Ramachandraiah, C T; Sinha, S; Taly, A B; Rao, S; Satishchandra, P

    2012-11-01

    We studied the effects of 'epilepsy on sleep and its architecture' and 'sleep on the occurrence and distribution of interictal epileptiform discharges (ED)' using 'sleep questionnaires', 'EEG', and 'PSG' in patients with JME. Forty patients with JME [20 on valproate (Group I - 20.8±4.0 years; M: F=9:11) and 20 drug-naïve (Group II - 24.4±6.7 years; M: F=9:11)] and 20 controls (M: F=9:11; age: 23.5±4.7 years) underwent assessment with Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), overnight PSG, and scalp-EEG. Epileptiform discharges (EDs) were quantified in different sleep stages. The 'ED Index' was derived as number of EDs/min per stage. Statistical Package for the Social Sciences (SPSS) vs. 11 was used for statistical analysis. A 'p' EEG revealed EDs in 22/40 (Group I: 7 and Group II: 15) patients. Thirty-five patients had EDs in various sleep stages during PSG (Group I: 17 and Group II: 18): N1 - Group I: 9 and Group II: 14, N2 - Group I: 14 and Group II: 14, N3 - Group I: 14 and Group II: 10, and REM - Group I: 9 and Group II: 11. The ED Index was higher during N2/N3 in Group I and N1/REM in Group II. The epileptiform discharges were frequently associated with arousals in N1/REM and K-complexes in N2. There was no other significant difference between Groups I and II. In conclusion, there was poor sleep quality in patients with JME compared to controls, especially those on valproate who had altered sleep architecture. Epileptiform activity was observed more often in sleep than wakefulness. Sleep stages had variable effect on epileptiform discharges with light sleep having a facilitatory effect in the drug-naïve group and slow wave sleep having a facilitatory effect in the valproate group. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  7. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    Science.gov (United States)

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2017-08-01

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  8. p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Weilei Yao

    2018-01-01

    Full Text Available The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.

  9. Short-term sleep disturbance-induced stress does not affect basal pain perception, but does delay postsurgical pain recovery

    OpenAIRE

    Wang, Po-Kai; Cao, Jing; Wang, Hongzhen; Liang, Lingli; Zhang, Jun; Lutz, Brianna Marie; Shieh, Kun-Ruey; Bekker, Alex; Tao, Yuan-Xiang

    2015-01-01

    Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during pre- and post-operation periods and have normal pain perception pre-surgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. We here reported that pre- or post-exposure to rapid eye movement sleep disturbance (REMSD) 6 h daily for 3 consecutive days did not alter basal responses t...

  10. Sleep deprivation: cardiovascular effects for anesthesiologists

    Directory of Open Access Journals (Sweden)

    Ali Dabbagh

    2016-03-01

    Full Text Available Sleep and anesthesia have some common or "overlapping" neural pathways. Both involve wakefulness; while they are not the same; anesthesia is an iatrogenic, reversible, pharmacologic-based coma; which could affect the CNS neural pathways at many levels. In the current era of modern anesthesiology, the practice and science of anesthesia is composed of 4 basic elements; (1: 1. hypnosis (i.e. iatrogenic pharmacologicinduced coma 2. amnesia (not to remember the events of the operation 3. analgesia (being painless 4. akinesia (lack of movements to stimuli The first two ingredients of anesthesia could have common points with sleep. Thalamic nuclei are involved both in sleep and anesthesia (2, 3; though, they are not the same phenomena (4. However, could there be any clinical concern if some of our patients have abnormalities in sleep? In fact, the effects of sleep deprivation have long been studied in patients undergoing anesthesia for surgical operations (4, 5. Sleep deprivation causes altered neurohumoral activity, neuroendocrine dysregulations, abnormalities in the immune system and impairments in cardiac autonomic function (6, 7. Sleep deprivation may affect the clinical effects of the anesthetics or it may create unpredicted changes in the clinical response to a determined dose of anesthetic drugs (8. In this volume of the Journal, Choopani et al have published their results regarding sleep deprivation; they have demonstrated that in rats, if sleep deprivation is induced prior to an ischemia/reperfusion event, it can increase the chance for ventricular tachycardia and ventricular fibrillation; also, they have shown that this untoward effect could be eliminated using chemical sympathectomy (9. In clinical practice, the main message from this study could be that when anesthesiologists perform anesthesia for their patients, they should be aware of effects of acute or chronic sleep deprivation. Undoubtedly, sleep deprivation could occur during the

  11. Adolescent sleep disturbance and school performance: the confounding variable of socioeconomics.

    Science.gov (United States)

    Pagel, James F; Forister, Natalie; Kwiatkowki, Carol

    2007-02-15

    To assess how selected socioeconomic variables known to affect school performance alter the association between reported sleep disturbance and poor school performance in a contiguous middle school/high school population. A school district/college IRB approved questionnaire was distributed in science and health classes in middle school and high school. This questionnaire included a frequency scaled pediatric sleep disturbance questionnaire for completion by students and a permission and demographic questionnaire for completion by parents (completed questionnaires n = 238 with 69.3% including GPA). Sleep complaints occur at high frequency in this sample (sleep onset insomnia 60% > 1 x /wk.; 21.2% every night; sleepiness during the day (45.7% > 1 x /wk.; 15.2 % every night), and difficulty concentrating (54.6% > 1 x /wk.; 12.9% always). Students with lower grade point averages (GPAs) were more likely to have restless/aching legs when trying to fall asleep, difficulty concentrating during the day, snoring every night, difficulty waking in the morning, sleepiness during the day, and falling asleep in class. Lower reported GPAs were significantly associated with lower household incomes. After statistically controlling for income, restless legs, sleepiness during the day, and difficulty with concentration continued to significantly affect school performance. This study provides additional evidence indicating that sleep disturbances occur at high frequencies in adolescents and significantly affect daytime performance, as measured by GPA. The socioeconomic variable of household income also significantly affects GPA. After statistically controlling for age and household income, the number and type of sleep variables noted to significantly affect GPA are altered but persistent in demonstrating significant effects on school performance.

  12. Do depression, stress, sleep disruption, and inflammation alter hippocampal apoptosis and neurogenesis?

    NARCIS (Netherlands)

    Lucassen, P.J.; Meerlo, P.; Naylor, A.S.; van Dam, A.M.; Dayer, A.G.; Czeh, B.; Oomen, C.A.; Pariante, C.M.

    2009-01-01

    We discuss the regulation of cellular plasticity, focusing on neurogenesis and apoptosis in the adult hippocampus, by stress, sleep, inflammation, and depression. This is the fourth of five chapters in this book that present not only clinical data but also experimental evidence from animal models

  13. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial.

    Science.gov (United States)

    Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua

    2013-12-01

    The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index scoretemperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and

  14. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    Science.gov (United States)

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  15. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Directory of Open Access Journals (Sweden)

    Gaétane Deliens

    Full Text Available There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15 or a sleep deprivation night (n = 15, participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1 sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic, (2 sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm or (3 sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep

  16. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  17. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  18. Sleep less and bite more: sleep disorders associated with occlusal loads during sleep.

    Science.gov (United States)

    Kato, Takafumi; Yamaguchi, Taihiko; Okura, Kazuo; Abe, Susumu; Lavigne, Gilles J

    2013-04-01

    Occlusal overload during sleep is a significant clinical issue that has negative impacts on the maintenance of teeth and the longevity of dental prostheses. Sleep is usually viewed as an 'out-of-functional' mode for masticatory muscles. However, orodental structures and prostheses are not free from occlusal loads during sleep since masticatory muscles can be activated at a low level within normal sleep continuity. Thus, an increase in masticatory muscle contractions, by whatever the cause, can be associated with a risk of increased occlusal loads during sleep. Among such conditions, sleep bruxism (SB) is a type of sleep-related movement disorders with potential load challenge to the tooth and orofacial structures. Patients with SB usually report frequent tooth grinding noises during sleep and there is a consecutive increase in number and strength of rhythmic masticatory muscle activity (RMMA). Other types of masticatory muscle contractions can be non-specifically activated during sleep, such as brief contractions with tooth tapping, sleep talking, non-rhythmic contractions related to non-specific body movements, etc.; these occur more frequently in sleep disorders. Studies have shown that clinical signs and symptoms of SB can be found in patients with sleep disorders. In addition, sleep becomes compromised with aging process, and a prevalence of most sleep disorders is high in the elderly populations, in which prosthodontic rehabilitations are more required. Therefore, the recognition and understanding of the role of sleep disorders can provide a comprehensive vision for prosthodontic rehabilitations when prosthodontists manage complex orodental cases needing interdisciplinary collaborations between dentistry and sleep medicine. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  20. Polysomnographic sleep, growth hormone insulin-like growth factor-I axis, leptin, and weight loss

    DEFF Research Database (Denmark)

    Rasmussen, Michael; Wildschiødtz, Gordon; Juul, Anders

    2008-01-01

    compared with nonobese subjects After diet-induced weight loss the differences in GH, free IGF-I, and leptin were no longer present between previously obese and nonobese subjects, whereas a significant difference in sleep duration and total IGF-I levels persisted. Rapid eye movement (REM) sleep, non-REM......Short sleep appears to be strongly associated with obesity and altered metabolic function, and sleep and growth hormone (GH) secretion seems interlinked. In obesity, both the GH-insulin-like-growth-factor-I (GH-IGF-I) axis and sleep have been reported to be abnormal, however, no studies have...... investigated sleep in relation to the GH-IGF-I axis and weight loss in obese subjects. In this study polygraphic sleep recordings, 24-h GH release, 24-h leptin levels, free-IGF-I, total-IGF-I, IGF-binding protein-3 (IGFBP-3), acid-labile subunit (ALS), cortisol and insulin sensitivity were determined in six...

  1. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  2. Sleep-Active Neurons: Conserved Motors of Sleep

    Science.gov (United States)

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  3. Sleep Disorders

    DEFF Research Database (Denmark)

    Rahbek Kornum, Birgitte; Mignot, Emmanuel

    2014-01-01

    mediates circadian regulation of sleep. Misalignment with the rhythm of the sun results in circadian disorders and jet lag. The molecular basis of homeostatic sleep regulation is mostly unknown. A network of mutually inhibitory brain nuclei regulates sleep states and sleep-wake transitions. Abnormalities...... in these networks create sleep disorders, including rapid eye movement sleep behavior disorder, sleep walking, and narcolepsy. Physiological changes associated with sleep can be imbalanced, resulting in excess movements such as periodic leg movements during sleep or abnormal breathing in obstructive sleep apneas....... As every organ in the body is affected by sleep directly or indirectly, sleep and sleep-associated disorders are frequent and only now starting to be understood....

  4. In-Home Sleep Recordings in Military Veterans With Posttraumatic Stress Disorder Reveal Less REM and Deep Sleep <1 Hz

    Directory of Open Access Journals (Sweden)

    Julie A. Onton

    2018-05-01

    Full Text Available Veterans with posttraumatic stress disorder (PTSD often report suboptimal sleep quality, often described as lack of restfulness for unknown reasons. These experiences are sometimes difficult to objectively quantify in sleep lab assessments. Here, we used a streamlined sleep assessment tool to record in-home 2-channel electroencephalogram (EEG with concurrent collection of electrodermal activity (EDA and acceleration. Data from a single forehead channel were transformed into a whole-night spectrogram, and sleep stages were classified using a fully automated algorithm. For this study, 71 control subjects and 60 military-related PTSD subjects were analyzed for percentage of time spent in Light, Hi Deep (1–3 Hz, Lo Deep (<1 Hz, and rapid eye movement (REM sleep stages, as well as sleep efficiency and fragmentation. The results showed a significant tendency for PTSD sleepers to spend a smaller percentage of the night in REM (p < 0.0001 and Lo Deep (p = 0.001 sleep, while spending a larger percentage of the night in Hi Deep (p < 0.0001 sleep. The percentage of combined Hi+Lo Deep sleep did not differ between groups. All sleepers usually showed EDA peaks during Lo, but not Hi, Deep sleep; however, PTSD sleepers were more likely to lack EDA peaks altogether, which usually coincided with a lack of Lo Deep sleep. Linear regressions with all subjects showed that a decreased percentage of REM sleep in PTSD sleepers was accounted for by age, prazosin, SSRIs and SNRIs (p < 0.02, while decreased Lo Deep and increased Hi Deep in the PTSD group could not be accounted for by any factor in this study (p < 0.005. Linear regression models with only the PTSD group showed that decreased REM correlated with self-reported depression, as measured with the Depression, Anxiety, and Stress Scales (DASS; p < 0.00001. DASS anxiety was associated with increased REM time (p < 0.0001. This study shows altered sleep patterns in sleepers with PTSD that can be partially accounted

  5. In-Home Sleep Recordings in Military Veterans With Posttraumatic Stress Disorder Reveal Less REM and Deep Sleep <1 Hz.

    Science.gov (United States)

    Onton, Julie A; Matthews, Scott C; Kang, Dae Y; Coleman, Todd P

    2018-01-01

    Veterans with posttraumatic stress disorder (PTSD) often report suboptimal sleep quality, often described as lack of restfulness for unknown reasons. These experiences are sometimes difficult to objectively quantify in sleep lab assessments. Here, we used a streamlined sleep assessment tool to record in-home 2-channel electroencephalogram (EEG) with concurrent collection of electrodermal activity (EDA) and acceleration. Data from a single forehead channel were transformed into a whole-night spectrogram, and sleep stages were classified using a fully automated algorithm. For this study, 71 control subjects and 60 military-related PTSD subjects were analyzed for percentage of time spent in Light, Hi Deep (1-3 Hz), Lo Deep (spend a smaller percentage of the night in REM ( p spending a larger percentage of the night in Hi Deep ( p < 0.0001) sleep. The percentage of combined Hi+Lo Deep sleep did not differ between groups. All sleepers usually showed EDA peaks during Lo, but not Hi, Deep sleep; however, PTSD sleepers were more likely to lack EDA peaks altogether, which usually coincided with a lack of Lo Deep sleep. Linear regressions with all subjects showed that a decreased percentage of REM sleep in PTSD sleepers was accounted for by age, prazosin, SSRIs and SNRIs ( p < 0.02), while decreased Lo Deep and increased Hi Deep in the PTSD group could not be accounted for by any factor in this study ( p < 0.005). Linear regression models with only the PTSD group showed that decreased REM correlated with self-reported depression, as measured with the Depression, Anxiety, and Stress Scales (DASS; p < 0.00001). DASS anxiety was associated with increased REM time ( p < 0.0001). This study shows altered sleep patterns in sleepers with PTSD that can be partially accounted for by age and medication use; however, differences in deep sleep related to PTSD could not be linked to any known factor. With several medications [prazosin, selective serotonin reuptake inhibitors (SSRIs

  6. [Sleep-wake cycle in chemotherapy patients: a retrospective study].

    Science.gov (United States)

    Gonella, S

    2010-06-01

    Over 50% of cancer patients suffer from insomnia, nearly twice the estimated prevalence in the general population. However, this widespread problem has received far less attention compared to cancer pain and fatigue. The aim of this study was to determine whether certain factors can alter the sleep-wake cycle in this patient subgroup and whether altered nyctohemeral sleep rhythms may negatively impact on quality of life. The medical records of 101 patients treated at the Cancer Center, San Giovanni Battista Hospital, Turin, and who had died of cancer in 2007, were reviewed. Extracted from each record were data on: patient age, sex, primary tumor site, presence of pain, concomitant conditions, concomitant medications, type of therapy, chemotherapeutic (CT) scheme, survival, and side effects. The sample was divided into two subgroups defined as inducers or non-inducers, depending on whether the patient had taken medications or not to treat insomnia. Significant differences between the two groups for these variables were tested using statistical analysis. A statistically significant difference between the two groups emerged for anxiety-depression syndromes (P=0.00001), the number of sleeping pills taken in association with a concurrent anxiety-depression syndrome (P=0.01463), and side effects (P=0.0015). There was a statistically significant difference between the inducer and the non-inducer groups for female sex (one-tailed Fisher's exact test; P=0.04170) but the difference was marginal on Fisher's two-tailed test (P=0.06121). No statistically significant differences between the two groups were found for mean age (P=0.61281), median age (P=0.9996), primary tumor site, concomitant conditions (P=0.4205), survival (P=0.5704), presence of pain (P=0.53300) or type of therapy (P=0.6466). Sleep disturbances are a common complaint of cancer patients but have only recently attracted greater attention as the diagnosis of cancer has increased. Sleep disturbances are not an

  7. Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women.

    Science.gov (United States)

    LeRoux, Amanda; Wright, Lisa; Perrot, Tara; Rusak, Benjamin

    2014-11-01

    There is extensive evidence that sleep restriction alters endocrine function in healthy young men, increasing afternoon cortisol levels and modifying levels of other hormones that regulate metabolism. Recent studies have confirmed these effects in young women, but have not investigated whether menstrual cycle phase influences these responses. The effects on cortisol levels of limiting sleep to 3h for one night were assessed in two groups of women at different points in their menstrual cycles: mid-follicular and mid-luteal. Eighteen healthy, young women, not taking oral contraceptives (age: 21.8±0.53; BMI: 22.5±0.58 [mean±SEM]), were studied. Baseline sleep durations, eating habits and menstrual cycles were monitored. Salivary samples were collected at six times of day (08:00, 08:30, 11:00, 14:00, 17:00, 20:00) during two consecutive days: first after a 10h overnight sleep opportunity (Baseline) and then after a night with a 3h sleep opportunity (Post-sleep restriction). All were awakened at the same time of day. Women in the follicular phase showed a significant decrease (p=0.004) in their cortisol awakening responses (CAR) after sleep restriction and a sustained elevation in afternoon/evening cortisol levels (p=0.008), as has been reported for men. Women in the luteal phase showed neither a depressed CAR, nor an increase in afternoon/evening cortisol levels. Secondary analyses examined the impact of sleep restriction on self-reported hunger and mood. Menstrual cycle phase dramatically altered the cortisol responses of healthy, young women to a single night of sleep restriction, implicating effects of spontaneous changes in endocrine status on adrenal responses to sleep loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Subjective-Objective Sleep Discrepancy Is Associated With Alterations in Regional Glucose Metabolism in Patients With Insomnia and Good Sleeper Controls.

    Science.gov (United States)

    Kay, Daniel B; Karim, Helmet T; Soehner, Adriane M; Hasler, Brant P; James, Jeffrey A; Germain, Anne; Hall, Martica H; Franzen, Peter L; Price, Julie C; Nofzinger, Eric A; Buysse, Daniel J

    2017-11-01

    Sleep discrepancies are common in primary insomnia (PI) and include reports of longer sleep onset latency (SOL) than measured by polysomnography (PSG) or "negative SOL discrepancy." We hypothesized that negative SOL discrepancy in PI would be associated with higher relative glucose metabolism during nonrapid eye movement (NREM) sleep in brain networks involved in conscious awareness, including the salience, left executive control, and default mode networks. PI (n = 32) and good sleeper controls (GS; n = 30) completed [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans during NREM sleep, and relative regional cerebral metabolic rate for glucose (rCMRglc) was measured. Sleep discrepancy was calculated by subtracting PSG-measured SOL on the PET night from corresponding self-report values the following morning. We tested for interactions between group (PI vs. GS) and SOL discrepancy for rCMRglc during NREM sleep using both a region of interest mask and exploratory whole-brain analyses. Significant group by SOL discrepancy interactions for rCMRglc were observed in several brain regions (pcorrected PSG-measured SOL) was associated with significantly higher relative rCMRglc in the right anterior insula and middle/posterior cingulate during NREM sleep. In GS, more positive SOL discrepancy (self-reported Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.

    Science.gov (United States)

    Vyazovskiy, V V; Palchykova, S; Achermann, P; Tobler, I; Deboer, T

    2017-02-01

    It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5-4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. © The Author 2017. Published by Oxford University Press.

  10. Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep.

    Science.gov (United States)

    Hendricks, Joan C; Sehgal, Amita

    2004-03-15

    Among simple model systems, Drosophila has specific advantages for neurobehavioral investigations. It has been particularly useful for understanding the molecular basis of circadian rhythms. In addition, the genetics of fruit-fly sleep are beginning to develop. This review summarizes the current state of understanding of circadian rhythms and sleep in the fruit fly for the readers of Sleep. We note where information is available in mammals, for comparison with findings in fruit flies, to provide an evolutionary perspective, and we focus on recent findings and new questions. We propose that sleep-specific neural activity may alter cellular function and thus accomplish the restorative function or functions of sleep. In conclusion, we sound some cautionary notes about some of the complexities of working with this "simple" organism.

  11. Weight loss alters severity of individual nocturnal respiratory events depending on sleeping position

    International Nuclear Information System (INIS)

    Kulkas, A; Leppänen, T; Tiihonen, P; Mervaala, E; Töyräs, J; Sahlman, J; Seppä, J; Kokkarinen, J; Randell, J; Tuomilehto, H

    2014-01-01

    Weight loss is an effective treatment for obstructive sleep apnea (OSA). The mechanisms of how weight loss affects nocturnal breathing are not fully understood. The severity of OSA is currently estimated by the number of respiratory events per hour of sleep (i.e. apnea-hypopnea-index, AHI). AHI neglects duration and morphology of individual respiratory events, which describe the severity of individual events. In the current paper, we investigate the novel Adjusted-AHI parameter (incorporating individual event severity) and AHI after weight loss in relation to sleeping position. It was hypothesised that there are positional differences in individual event severity changes during weight loss. Altogether, 32 successful (> 5% of weight) and 34 unsuccessful weight loss patients at baseline and after 1 year follow-up were analysed. The results revealed that individual respiratory event severity was reduced differently in supine and non-supine positions during weight loss. During weight loss, AHI was reduced by 54% (p = 0.004) and 74% (p < 0.001), while Adjusted-AHI was reduced by 14% (p = 0.454) and 48% (p = 0.003) in supine and non-supine positions, respectively. In conclusion, the severity of individual respiratory events decreased more in the non-supine position. The novel Adjusted-AHI parameter takes these changes into account and might therefore contribute additional information to the planning of treatment of OSA patients. (paper)

  12. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3.

    Science.gov (United States)

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage.

  13. Change in sleep duration and proposed dietary risk factors for obesity in Danish school children

    DEFF Research Database (Denmark)

    Hjorth, M. F.; Quist, J. S.; Andersen, Rikke

    2014-01-01

    Background Recent cross-sectional studies found higher consumption of energy-dense foods among children with short sleep duration; however, longitudinal studies examining changes in sleep and diet over time are needed. Objective This study aimed to investigate prospective associations between...... with no change in energy density of the diet (P = 0.78). Conclusion Our results suggest that a negative change in sleep duration is associated with higher intakes of sugar containing foods/beverages....... changes in objectively measured sleep duration and alterations in proposed dietary risk factors for obesity in 8–11-year-old Danish children. Methods Four hundred forty-one children recorded dietary intake during seven consecutive days, along with accelerometer measurements estimating sleep duration...

  14. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Science.gov (United States)

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  15. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2017-08-01

    Full Text Available Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease.The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi, but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness.The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African

  16. Adolescents' sleep behaviors and perceptions of sleep.

    Science.gov (United States)

    Noland, Heather; Price, James H; Dake, Joseph; Telljohann, Susan K

    2009-05-01

    Sleep duration affects the health of children and adolescents. Shorter sleep durations have been associated with poorer academic performance, unintentional injuries, and obesity in adolescents. This study extends our understanding of how adolescents perceive and deal with their sleep issues. General education classes were randomly selected from a convenience sample of three high schools in the Midwest. Three hundred eighty-four ninth- to twelfth-grade students (57%) completed a self-administered valid and reliable questionnaire on sleep behaviors and perceptions of sleep. Most respondents (91.9%) obtained inadequate sleep (sleep each week night. The majority indicated that not getting enough sleep had the following effects on them: being more tired during the day (93.7%), having difficulty paying attention (83.6%), lower grades (60.8%), increase in stress (59.0%), and having difficulty getting along with others (57.7%). Some students reported engaging in harmful behaviors to help them sleep: taking sleeping pills (6.0%), smoking a cigarette to relax (5.7%), and drinking alcohol in the evening (2.9%). Students who received fewer hours of sleep were significantly more likely to report being stressed (p = .02) and were more likely to be overweight (p = .04). Inadequate sleep time may be contributing to adolescent health problems such as increased stress and obesity. Findings indicate a need for sleep hygiene education for adolescents and their parents. A long-term solution to chronic sleep deprivation among high school students could include delaying high school start times, such as was done successfully in the Minneapolis Public School District.

  17. Daily Acclimation Handling Does Not Affect Hippocampal Long-Term Potentiation or Cause Chronic Sleep Deprivation in Mice

    NARCIS (Netherlands)

    Vecsey, Christopher G.; Wimmer, Mathieu E. J.; Havekes, Robbert; Park, Alan J.; Perron, Isaac J.; Meerlo, Peter; Abel, Ted

    2013-01-01

    Study Objectives: Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to

  18. Sleep apnoea syndrome and 10-year cardiovascular risk in females with type 2 diabetes: relationship with insulin secretion and insulin resistance.

    Science.gov (United States)

    Hermans, Michel P; Ahn, Sylvie A; Mahadeb, Yovan P; Rousseau, Michel F

    2013-03-01

    Obstructive sleep apnoea syndrome (OSAS) is a risk factor for type 2 diabetes mellitus (T2DM) and promotes cardiovascular events, especially in men. The prevalence of sleep apnoea and its association with microvascular and macrovascular diseases and glycaemic control are poorly documented in T2DM women. A total of 305 T2DM women were sleep apnoea diagnosed through (hetero)anamnesis, Epworth's score, oximetry and polysomnography. Sleep apnoea[+] (n = 25) were compared with sleep apnoea[-] (n = 280) regarding cardiovascular risk factors, glucose homeostasis, micro/macrovascular complications and the United Kingdom Prospective Diabetes Study (UKPDS) 10-year risk. Mean (1 SD) age was 66 (12) years, diabetes duration 15 (9) years, sleep apnoea prevalence 8.2% and metabolic syndrome 86%. There were no differences in age, diabetes duration, education, smoking and blood pressure between groups. Sleep apnoea[+] had significantly higher values of body mass index, waist, relative/absolute fat, conicity, visceral fat (all p Women with sleep apnoea had higher UKPDS risk of CAD: 18 (11)% versus 12 (10)% (p = 0.0136). Prevalent micro/macrovascular complications were not different between groups. Sleep apnoea, a frequent comorbidity of T2DM women, is associated with central fat, atherogenic dyslipidaemia, inflammation, worsening β-cell function, poorer glycaemic control and coronary artery disease risk. Sleep apnoea may increase residual vascular risk for microvascular and macrovascular events in T2DM women. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Sleep Architecture in Night Shift Workers Police Officers with Obstructive Sleep Apnea-hypopnea Syndrome

    Directory of Open Access Journals (Sweden)

    Selene Verde-Tinoco

    Full Text Available Introduction: Reduced sleep to increase work hours is common among police officers, when this situation is combined with Obstructive sleep apnea/hypopnea syndrome (OSAHS, health consequences are greater, therefore we believe there is a need of research for these alterations. The aim of this study was to measure the changes in sleep architecture (SA in police officers who currently have Night shift work (NSW and OSAHS. Methods: We compared SA in 107 subjects divided in three groups: the first group included police officers with NSW and severe OSAHS (n = 48; the second group were non-police officers with diurnal work time and severe OSAHS (n = 48 and the third group was formed by healthy controls (n = 11. Polysomnography (PSG variables and Epworth sleepiness scale (ESS scores were compared. Results: SA was more disrupted in the group of police officers with NSW and OSAHS than in patients with OSAHS only and in the control group. Police officers with NSW and OSAHS presented an increased number of electroencephalographic activations, apnea/hypopnea index, and sleep latency, and showed lower scores of oxygen saturation, and in the ESS. Multivariate analysis revealed significant influence of age and Body mass index (BMI. Conclusions: Data suggested with caution an additive detrimental effect of NSW and OSAHS in SA and ESS of police officers. However age and BMI must be also taken into account in future studies.

  20. The influence of sex and gonadal hormones on sleep disorders

    Directory of Open Access Journals (Sweden)

    Orff HJ

    2014-06-01

    Full Text Available Henry J Orff, Charles J Meliska, L Fernando Martinez, Barbara L Parry Department of Psychiatry, University of California, San Diego, CA, USA Abstract: Sleep disorders such as insomnia, sleep-related breathing disorders, circadian rhythm disorders, and sleep-related movement disorders are a significant public health issue, affecting approximately 40 million people in the US each year. Sleep disturbances are observed in both men and women, though prevalence rates often differ between the sexes. In general, research suggests that women more frequently report subjective complaints of insomnia, yet show better sleep than men when evaluated on objective measures of sleep. Men are more likely to be diagnosed with obstructive sleep apnea than women, though rates of obstructive sleep apnea increase after menopause and may be generally underdiagnosed in women. Although circadian rhythm disorders are equally prevalent in men and women, studies find that women typically have earlier bedtimes and exhibit altered temperature and melatonin rhythms relative to men. Lastly, movement disorders appear to be more prevalent in women than men, presumably due to higher rates of anemia and increased risks associated with pregnancy in women. Although gonadal hormones would be expected to play a significant role in the development and/or exacerbation of sleep disturbances, no causal link between these factors has been clearly established. In large part, the impact of hormones on sleep disturbances is significantly confounded by factors such as psychiatric, physical, and lifestyle concerns, which may play an equal or greater role in the development and/or exacerbation of sleep disturbances than do hormonal factors. Current standard of care for persons with sleep disorders includes use of psychological, pharmacologic, and/or medical device supported interventions. Hormonal-based treatments are not typically recommended given the potential for long-term adverse health