WorldWideScience

Sample records for altered rna-binding properties

  1. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA binding properties

    DEFF Research Database (Denmark)

    Bøggild, Andreas; Overgaard, Martin; Valentin-Hansen, Poul

    2009-01-01

    regulating mRNA turnover in eukaryotes. However, bacterial Hfq proteins are homohexameric, whereas eukaryotic Sm/Lsm proteins are heteroheptameric. Recently, Hfq proteins with poor sequence conservation were identified in archaea and cyanobacteria. In this article, we describe crystal structures of the Hfq...... proteins from the cyanobacteria Synechocystis sp. PCC 6803 and Anabaena PCC 7120 at 1.3 and 2.3 A resolution, respectively, and show that they retain the classic Sm fold despite low sequence conservation. In addition, the intersubunit contacts and RNA-binding site are divergent, and we show biochemically...

  2. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties

    DEFF Research Database (Denmark)

    Bøggild, Andreas; Overgaard, Martin; Valentin-Hansen, Poul

    2009-01-01

    regulating mRNA turnover in eukaryotes. However, bacterial Hfq proteins are homohexameric, whereas eukaryotic Sm/Lsm proteins are heteroheptameric. Recently, Hfq proteins with poor sequence conservation were identified in archaea and cyanobacteria. In this article, we describe crystal structures of the Hfq...... proteins from the cyanobacteria Synechocystis sp. PCC 6803 and Anabaena PCC 7120 at 1.3 and 2.3 A resolution, respectively, and show that they retain the classic Sm fold despite low sequence conservation. In addition, the intersubunit contacts and RNA-binding site are divergent, and we show biochemically...

  3. Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, Kimberly A.; Patterson-West, Jennifer; Randolph, Peter S.; Mura, Cameron

    2017-03-31

    The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.

  4. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Bakkar, Nadine; Kovalik, Tina; Lorenzini, Ileana; Spangler, Scott; Lacoste, Alix; Sponaugle, Kyle; Ferrante, Philip; Argentinis, Elenee; Sattler, Rita; Bowser, Robert

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with no effective treatments. Numerous RNA-binding proteins (RBPs) have been shown to be altered in ALS, with mutations in 11 RBPs causing familial forms of the disease, and 6 more RBPs showing abnormal expression/distribution in ALS albeit without any known mutations. RBP dysregulation is widely accepted as a contributing factor in ALS pathobiology. There are at least 1542 RBPs in the human genome; therefore, other unidentified RBPs may also be linked to the pathogenesis of ALS. We used IBM Watson ® to sieve through all RBPs in the genome and identify new RBPs linked to ALS (ALS-RBPs). IBM Watson extracted features from published literature to create semantic similarities and identify new connections between entities of interest. IBM Watson analyzed all published abstracts of previously known ALS-RBPs, and applied that text-based knowledge to all RBPs in the genome, ranking them by semantic similarity to the known set. We then validated the Watson top-ten-ranked RBPs at the protein and RNA levels in tissues from ALS and non-neurological disease controls, as well as in patient-derived induced pluripotent stem cells. 5 RBPs previously unlinked to ALS, hnRNPU, Syncrip, RBMS3, Caprin-1 and NUPL2, showed significant alterations in ALS compared to controls. Overall, we successfully used IBM Watson to help identify additional RBPs altered in ALS, highlighting the use of artificial intelligence tools to accelerate scientific discovery in ALS and possibly other complex neurological disorders.

  5. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    Science.gov (United States)

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Rbfox2 controls autoregulation in RNA-binding protein networks.

    Science.gov (United States)

    Jangi, Mohini; Boutz, Paul L; Paul, Prakriti; Sharp, Phillip A

    2014-03-15

    The tight regulation of splicing networks is critical for organismal development. To maintain robust splicing patterns, many splicing factors autoregulate their expression through alternative splicing-coupled nonsense-mediated decay (AS-NMD). However, as negative autoregulation results in a self-limiting window of splicing factor expression, it is unknown how variations in steady-state protein levels can arise in different physiological contexts. Here, we demonstrate that Rbfox2 cross-regulates AS-NMD events within RNA-binding proteins to alter their expression. Using individual nucleotide-resolution cross-linking immunoprecipitation coupled to high-throughput sequencing (iCLIP) and mRNA sequencing, we identified >200 AS-NMD splicing events that are bound by Rbfox2 in mouse embryonic stem cells. These "silent" events are characterized by minimal apparent splicing changes but appreciable changes in gene expression upon Rbfox2 knockdown due to degradation of the NMD-inducing isoform. Nearly 70 of these AS-NMD events fall within genes encoding RNA-binding proteins, many of which are autoregulated. As with the coding splicing events that we found to be regulated by Rbfox2, silent splicing events are evolutionarily conserved and frequently contain the Rbfox2 consensus UGCAUG. Our findings uncover an unexpectedly broad and multilayer regulatory network controlled by Rbfox2 and offer an explanation for how autoregulatory splicing networks are tuned.

  7. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  8. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. © 2014 The Authors.

  9. A brave new world of RNA-binding proteins.

    Science.gov (United States)

    Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas

    2018-01-17

    RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

  10. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  11. The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P.

    2007-01-01

    The CRS1–YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved “GxxG” loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. PMID:17105995

  12. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  13. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  14. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  15. Conserved asymmetry underpins homodimerization of Dicer-associated double-stranded RNA-binding proteins.

    Science.gov (United States)

    Heyam, Alex; Coupland, Claire E; Dégut, Clément; Haley, Ruth A; Baxter, Nicola J; Jakob, Leonhard; Aguiar, Pedro M; Meister, Gunter; Williamson, Michael P; Lagos, Dimitris; Plevin, Michael J

    2017-12-01

    Double-stranded RNA-binding domains (dsRBDs) are commonly found in modular proteins that interact with RNA. Two varieties of dsRBD exist: canonical Type A dsRBDs interact with dsRNA, while non-canonical Type B dsRBDs lack RNA-binding residues and instead interact with other proteins. In higher eukaryotes, the microRNA biogenesis enzyme Dicer forms a 1:1 association with a dsRNA-binding protein (dsRBP). Human Dicer associates with HIV TAR RNA-binding protein (TRBP) or protein activator of PKR (PACT), while Drosophila Dicer-1 associates with Loquacious (Loqs). In each case, the interaction involves a region of the protein that contains a Type B dsRBD. All three dsRBPs are reported to homodimerize, with the Dicer-binding region implicated in self-association. We report that these dsRBD homodimers display structural asymmetry and that this unusual self-association mechanism is conserved from flies to humans. We show that the core dsRBD is sufficient for homodimerization and that mutation of a conserved leucine residue abolishes self-association. We attribute differences in the self-association properties of Loqs, TRBP and PACT to divergence of the composition of the homodimerization interface. Modifications that make TRBP more like PACT enhance self-association. These data are examined in the context of miRNA biogenesis and the protein/protein interaction properties of Type B dsRBDs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  17. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular...

  18. RNA Binding Proteins Posttranscriptionally Regulate Genes Involved In Oncogenesis

    Science.gov (United States)

    2010-06-01

    lysed in triple- detergent RIPA buffer with protease inhibitor cocktail (Roche, Pleasanton, CA). For nuclear and cytoplasmic fractionation, the NE-PER kit...Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. The Journal of allergy and clinical immunology 2008, 121(4):853-859...and western blot analysis. Western analysis was performed as described previously.12 For detection of VEGFα and TSP1 from tumors, triple- detergent

  19. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-09-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  20. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.

    Science.gov (United States)

    Rausin, Glwadys; Tillemans, Vinciane; Stankovic, Nancy; Hanikenne, Marc; Motte, Patrick

    2010-05-01

    Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.

  1. The Pattern of microRNA Binding Site Distribution

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2017-10-01

    Full Text Available Micro-RNA (miRNA or miR regulates at least 60% of the genes in the human genome through their target sites at mRNA 3’-untranslated regions (UTR, and defects in miRNA expression regulation and target sites are frequently observed in cancers. We report here a systematic analysis of the distribution of miRNA target sites. Using the evolutionarily conserved miRNA binding sites in the TargetScan database (release 7.1, we constructed a miRNA co-regulation network by connecting genes sharing common miRNA target sites. The network possesses characteristics of the ubiquitous small-world network. Non-hub genes in the network—those sharing miRNA target sites with small numbers of genes—tend to form small cliques with their neighboring genes, while hub genes exhibit high levels of promiscuousness in their neighboring genes. Additionally, miRNA target site distribution is extremely uneven. Among the miRNAs, the distribution concentrates on a small number of miRNAs, in that their target sites occur in an extraordinarily large number of genes, that is, they have large numbers of target genes. The distribution across the genes follows a similar pattern; the mRNAs of a small proportion of the genes contain extraordinarily large numbers of miRNA binding sites. Quantitatively, the patterns fit into the P(K ∝ K−α relationship (P(K: the number of miRNAs with K target genes or genes with K miRNA sites; α: a positive constant, the mathematical description of connection distribution among the nodes and a defining characteristic of the so-called scale-free networks—a subset of small-world networks. Notably, well-known tumor-suppressive miRNAs (Let-7, miR-15/16, 26, 29, 31, 34, 145, 200, 203–205, 223, and 375 collectively have more than expected target genes, and well-known cancer genes contain more than expected miRNA binding sites. In summary, miRNA target site distribution exhibits characteristics of the small-world network. The potential to use this

  2. RNA binding efficacy of theophylline, theobromine and caffeine.

    Science.gov (United States)

    Johnson, I Maria; Kumar, S G Bhuvan; Malathi, R

    2003-04-01

    The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 +/- 5%), whereas moderate and comparatively less binding activity for theobromine (45 +/- 5%) and caffeine (30 +/- 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm(-1)), theobromine (3379.8 cm(-1)) and caffeine (3343 cm(-1)) as compared to the free RNA (3341.6 cm(-1)). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (nu(C=O)) of both drug (nu(C=O)=1718, 1666 cm(-1)) as well as RNA (nu(C=O)=1699, 1658 cm(-1)) disappeared and a new vibration band appeared around 1703 cm(-1), indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theobromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.

  3. Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity

    Directory of Open Access Journals (Sweden)

    Zachary T. Campbell

    2012-05-01

    Full Text Available The control and function of RNA are governed by the specificity of RNA binding proteins. Here, we describe a method for global unbiased analysis of RNA-protein interactions that uses in vitro selection, high-throughput sequencing, and sequence-specificity landscapes. The method yields affinities for a vast array of RNAs in a single experiment, including both low- and high-affinity sites. It is reproducible and accurate. Using this approach, we analyzed members of the PUF (Pumilio and FBF family of eukaryotic mRNA regulators. Our data identify effects of a specific protein partner on PUF-RNA interactions, reveal subsets of target sites not previously detected, and demonstrate that designer PUF proteins can precisely alter specificity. The approach described here is, in principle, broadly applicable for analysis of any molecule that binds RNA, including proteins, nucleic acids, and small molecules.

  4. RNA binding specificity of Ebola virus transcription factor VP30.

    Science.gov (United States)

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  5. Multifunctional RNA Binding Protein OsTudor-SN in Storage Protein mRNA Transport and Localization.

    Science.gov (United States)

    Chou, Hong-Li; Tian, Li; Kumamaru, Toshihiro; Hamada, Shigeki; Okita, Thomas W

    2017-12-01

    The multifunctional RNA-binding protein Tudor-SN plays multiple roles in transcriptional and posttranscriptional processes due to its modular domain structure, consisting of four tandem Staphylococcus nuclease (SN)-like domains (4SN), followed by a carboxyl-terminal Tudor domain, followed by a fifth partial SN sequence (Tsn). In plants, it confers stress tolerance, is a component of stress granules and P-bodies, and may participate in stabilizing and localizing RNAs to specific subdomains of the cortical-endoplasmic reticulum in developing rice ( Oryza sativa ) endosperm. Here, we show that, in addition to the intact rice OsTudor-SN protein, the 4SN and Tsn modules exist as independent polypeptides, which collectively may coassemble to form a complex population of homodimer and heteroduplex species. The 4SN and Tsn modules exhibit different roles in RNA binding and as a protein scaffold for stress-associated proteins and RNA-binding proteins. Despite their distinct individual properties, mutations in both the 4SN and Tsn modules mislocalize storage protein mRNAs to the cortical endoplasmic reticulum. These results indicate that the two modular peptide regions of OsTudor-SN confer different cellular properties but cooperate in mRNA localization, a process linking its multiple functions in the nucleus and cytoplasm. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress.

    Science.gov (United States)

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-05-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  9. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    Science.gov (United States)

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. RNA-Binding Domain Proteins in Kinetoplastids: a Comparative Analysis†

    Science.gov (United States)

    De Gaudenzi, Javier; Frasch, Alberto C.; Clayton, Christine

    2005-01-01

    RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein. PMID:16339728

  11. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  12. RNA-binding domain in the nucleocapsid protein of gill-associated nidovirus of penaeid shrimp.

    Directory of Open Access Journals (Sweden)

    Chumporn Soowannayan

    Full Text Available Gill-associated virus (GAV infects Penaeus monodon shrimp and is the type species okavirus in the Roniviridae, the only invertebrate nidoviruses known currently. Electrophoretic mobility shift assays (EMSAs using His(6-tagged full-length and truncated proteins were employed to examine the nucleic acid binding properties of the GAV nucleocapsid (N protein in vitro. The EMSAs showed full-length N protein to bind to all synthetic single-stranded (ssRNAs tested independent of their sequence. The ssRNAs included (+ and (- sense regions of the GAV genome as well as a (+ sense region of the M RNA segment of Mourilyan virus, a crustacean bunya-like virus. GAV N protein also bound to double-stranded (dsRNAs prepared to GAV ORF1b gene regions and to bacteriophage M13 genomic ssDNA. EMSAs using the five N protein constructs with variable-length N-terminal and/or C-terminal truncations localized the RNA binding domain to a 50 amino acid (aa N-terminal sequence spanning Met(11 to Arg(60. Similarly to other RNA binding proteins, the first 16 aa portion of this sequence was proline/arginine rich. To examine this domain in more detail, the 18 aa peptide (M(11PVRRPLPPQPPRNARLI(29 encompassing this sequence was synthesized and found to bind nucleic acids similarly to the full-length N protein in EMSAs. The data indicate a fundamental role for the GAV N protein proline/arginine-rich domain in nucleating genomic ssRNA to form nucleocapsids. Moreover, as the synthetic peptide formed higher-order complexes in the presence of RNA, the domain might also play some role in protein/protein interactions stabilizing the helical structure of GAV nucleocapsids.

  13. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  14. Predictions of RNA-binding ability and aggregation propensity of proteins

    OpenAIRE

    Agostini, Federico, 1985-

    2014-01-01

    RNA-binding proteins (RBPs) control the fate of a multitude of coding and non-coding transcripts. Formation of ribonucleoprotein (RNP) complexes fine-tunes regulation of post-transcriptional events and influences gene expression. Recently, it has been observed that non-canonical proteins with RNA-binding ability are enriched in structurally disordered and low-complexity regions that are generally involved in functional and dysfunctional associations. Therefore, it is possible that interaction...

  15. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    Science.gov (United States)

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    Science.gov (United States)

    Maatz, Henrike; Jens, Marvin; Liss, Martin; Schafer, Sebastian; Heinig, Matthias; Kirchner, Marieluise; Adami, Eleonora; Rintisch, Carola; Dauksaite, Vita; Radke, Michael H; Selbach, Matthias; Barton, Paul J R; Cook, Stuart A; Rajewsky, Nikolaus; Gotthardt, Michael; Landthaler, Markus; Hubner, Norbert

    2014-08-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and quantitative proteomics in cell culture and rat and human hearts to examine how RBM20 regulates alternative splicing in the heart. Our analyses revealed the presence of a distinct RBM20 RNA-recognition element that is predominantly found within intronic binding sites and linked to repression of exon splicing with RBM20 binding near 3' and 5' splice sites. Proteomic analysis determined that RBM20 interacts with both U1 and U2 small nuclear ribonucleic particles (snRNPs) and suggested that RBM20-dependent splicing repression occurs through spliceosome stalling at complex A. Direct RBM20 targets included several genes previously shown to be involved in DCM as well as genes not typically associated with this disease. In failing human hearts, reduced expression of RBM20 affected alternative splicing of several direct targets, indicating that differences in RBM20 expression may affect cardiac function. Together, these findings identify RBM20-regulated targets and provide insight into the pathogenesis of human heart failure.

  17. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina.

    Science.gov (United States)

    Suiko, Takahiko; Kobayashi, Kensuke; Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  18. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  19. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues.

    Science.gov (United States)

    Yan, Jing; Friedrich, Stefanie; Kurgan, Lukasz

    2016-01-01

    Motivated by the pressing need to characterize protein-DNA and protein-RNA interactions on large scale, we review a comprehensive set of 30 computational methods for high-throughput prediction of RNA- or DNA-binding residues from protein sequences. We summarize these predictors from several significant perspectives including their design, outputs and availability. We perform empirical assessment of methods that offer web servers using a new benchmark data set characterized by a more complete annotation that includes binding residues transferred from the same or similar proteins. We show that predictors of DNA-binding (RNA-binding) residues offer relatively strong predictive performance but they are unable to properly separate DNA- from RNA-binding residues. We design and empirically assess several types of consensuses and demonstrate that machine learning (ML)-based approaches provide improved predictive performance when compared with the individual predictors of DNA-binding residues or RNA-binding residues. We also formulate and execute first-of-its-kind study that targets combined prediction of DNA- and RNA-binding residues. We design and test three types of consensuses for this prediction and conclude that this novel approach that relies on ML design provides better predictive quality than individual predictors when tested on prediction of DNA- and RNA-binding residues individually. It also substantially improves discrimination between these two types of nucleic acids. Our results suggest that development of a new generation of predictors would benefit from using training data sets that combine both RNA- and DNA-binding proteins, designing new inputs that specifically target either DNA- or RNA-binding residues and pursuing combined prediction of DNA- and RNA-binding residues. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  1. UPF201 archaeal specific family members reveal structural similarity to RNA-binding proteins but low likelihood for RNA-binding function.

    Directory of Open Access Journals (Sweden)

    Krishnamurthy N Rao

    Full Text Available We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54 to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40% and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel beta-sheet and five alpha-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  2. A versatile assay for RNA-binding proteins in living cells.

    Science.gov (United States)

    Strein, Claudia; Alleaume, Anne-Marie; Rothbauer, Ulrich; Hentze, Matthias W; Castello, Alfredo

    2014-05-01

    RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein-mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.

  3. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  4. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160.

    Science.gov (United States)

    Brykailo, Melissa A; McLane, Laura M; Fridovich-Keil, Judith; Corbett, Anita H

    2007-01-01

    Gene expression is controlled by RNA-binding proteins that modulate the synthesis, processing, transport and stability of various classes of RNA. Some RNA-binding proteins shuttle between the nucleus and cytoplasm and are thought to bind to RNA transcripts in the nucleus and remain bound during translocation to the cytoplasm. One RNA-binding protein that has been hypothesized to function in this manner is the Saccharomyces cerevisiae Scp160 protein. Although the steady-state localization of Scp160 is cytoplasmic, previous studies have identified putative nuclear localization (NLS) and nuclear export (NES) signals. The goal of this study was to test the hypothesis that Scp160 is a nucleocytoplasmic shuttling protein. We exploited a variety of yeast export mutants to capture any potential nuclear accumulation of Scp160 and found no evidence that Scp160 enters the nucleus. These localization studies were complemented by a mutational analysis of the predicted NLS. Results indicate that key basic residues within the predicted NLS of Scp160 can be altered without severely affecting Scp160 function. This finding has important implications for understanding the function of Scp160, which is likely limited to the cytoplasm. Additionally, our results provide strong evidence that the presence of a predicted nuclear localization signal within the sequence of a protein should not lead to the assumption that the protein enters the nucleus in the absence of additional experimental evidence.

  5. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  6. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.

    Science.gov (United States)

    Banroques, Josette; Doère, Monique; Dreyfus, Marc; Linder, Patrick; Tanner, N Kyle

    2010-03-05

    Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (k(cat)), but not the affinity for ATP (K(m)). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of gamma-PO(4) of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the beta,gamma-phosphoanhydride bond of ATP. (c) 2009 Elsevier Ltd. All rights reserved.

  7. The nucleolar RNA-binding protein B-36 is highly conserved among plants.

    Science.gov (United States)

    Guiltinan, M J; Schelling, M E; Ehtesham, N Z; Thomas, J C; Christensen, M E

    1988-08-01

    The nucleolar protein B-36 is an RNA-associated protein which has a number of properties in common with pre-mRNA-binding proteins (hnRNP proteins). Like the hnRNP proteins, B-36 appears to be evolutionarily conserved among various eukaryotes (protists and several animal species). The conservation of B-36 throughout the plant kingdom has been investigated using a panel of nine monoclonal antibodies previously shown to recognize a minimum of four different epitopes in Physarum B-36, the protein used to generate the monoclonal antibodies. Two of the epitopes (I and III) are widely conserved in 34 kDa proteins (presumably B-36 homologues) from the various species tested (Chlamydomonas, moss, fern, oat, onion, carrot, and bean). Using immunofluorescence localization in moss and carrot protoplasts, the cross-reacting proteins were shown to be restricted to the nucleolus, further confirming their probable homology to B-36. Epitopes I and III are also unique to the B-36 homologues as demonstrated by the failure of any other bands to cross-react. Another epitope (IV) was specifically recognized in the plant B-36 homologues but exhibited greatly reduced affinity for the monoclonal antibody relative to Physarum B-36. The remaining epitope (II), unlike the others, exhibited variable conservation in the plant B-36 homologues and, in addition, was present in several other seemingly unrelated proteins. Finally, several of the plant species exhibited two cross-reacting variants at roughly the 34 kDa position and in at least one of these cases a single monoclonal antibody was able to distinguish between the two variants, a result indicating that the variants do have bona fide structural differences.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation.

    Science.gov (United States)

    Popow, Johannes; Alleaume, Anne-Marie; Curk, Tomaz; Schwarzl, Thomas; Sauer, Sven; Hentze, Matthias W

    2015-11-01

    Mitochondrial RNA processing is an essential step for the synthesis of the components of the electron transport chain in all eukaryotic organisms, yet several aspects of mitochondrial RNA biogenesis and regulation are not sufficiently understood. RNA interactome capture identified several disease-relevant RNA-binding proteins (RBPs) with noncanonical RNA-binding architectures, including all six members of the FASTK (FAS-activated serine/threonine kinase) family of proteins. A mutation within one of these newly assigned FASTK RBPs, FASTKD2, causes a rare form of Mendelian mitochondrial encephalomyopathy. To investigate whether RNA binding of FASTKD2 contributes to the disease phenotype, we identified the RNA targets of FASTKD2 by iCLIP. FASTKD2 interacts with a defined set of mitochondrial transcripts including 16S ribosomal RNA (RNR2) and NADH dehydrogenase subunit 6 (ND6) messenger RNA. CRISPR-mediated deletion of FASTKD2 leads to aberrant processing and expression of RNR2 and ND6 mRNA that encodes a subunit of the respiratory complex I. Metabolic phenotyping of FASTKD2-deficient cells reveals impaired cellular respiration with reduced activities of all respiratory complexes. This work identifies key aspects of the molecular network of a previously uncharacterized, disease-relevant RNA-binding protein, FASTKD2, by a combination of genomic, molecular, and metabolic analyses. © 2015 Popow et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat.

    Science.gov (United States)

    Mujeeb, A; Bishop, K; Peterlin, B M; Turck, C; Parslow, T G; James, T L

    1994-01-01

    The Tat protein of human immunodeficiency virus type 1 enhances transcription by binding to a specific RNA element on nascent viral transcripts. Binding is mediated by a 10-amino acid basic domain that is rich in arginines and lysines. Here we report the three-dimensional peptide backbone structure of a biologically active 25-mer peptide that contains the human immunodeficiency virus type 1 Tat basic domain linked to the core regulatory domain of another lentiviral Tat--i.e., that from equine infectious anemia virus. Circular dichroism and two-dimensional proton NMR studies of this hybrid peptide indicate that the Tat basic domain forms a stable alpha-helix, whereas the adjacent regulatory sequence is mostly in extended form. These findings suggest that the tendency to form stable alpha-helices may be a common property of arginine- and lysine-rich RNA-binding domains. Images PMID:8058789

  10. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.T.; Krohne, G.; Franke, W.W. (Institute of Cell and Tumor Biology, Heidelberg (Germany, F.R.))

    1991-01-01

    To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occur in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.

  11. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system.

    Directory of Open Access Journals (Sweden)

    VICENTE ePALLAS

    2013-05-01

    Full Text Available RNA-binding proteins (RBPs govern a myriad of different essential processes in eukaryotic cells. Recent evidence reveals that apart from playing critical roles in RNA metabolism and RNA transport, RBPs perform a key function in plant adaption to various environmental conditions. Long distance RNA transport occurs in land plants through the phloem, a conducting tissue that integrates the wide range of signalling pathways required to regulate plant development and response to stress processes. The macromolecules in the phloem pathway vary greatly and include defence proteins, transcription factors, chaperones acting in long distance trafficking, and RNAs (mRNAs, siRNAs and miRNAs. How these RNA molecules translocate through the phloem is not well understood, but recent evidence indicates the presence of translocatable RNA-binding proteins in the phloem, which act as potential components of long distance RNA transport system. This review updates our knowledge on the characteristics and functions of RBPs present in the phloem.

  12. Polymorphisms in miRNA binding sites of nucleotide excision repair genes and colorectal cancer risk

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Pardini, Barbara; Landi, S.; Landi, D.; Slyšková, Jana; Novotný, J.; Levý, M.; Poláková, Veronika; Lipská, L.; Vodička, Pavel

    2012-01-01

    Roč. 33, č. 7 (2012), s. 1346-1351 ISSN 0143-3334 R&D Projects: GA ČR GAP304/10/1286; GA ČR GP305/09/P194 Institutional research plan: CEZ:AV0Z50390703 Keywords : DNA repair * polymorphisms * miRNA binding sites Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.635, year: 2012

  13. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.

    Science.gov (United States)

    Hirschi, Alexander; Martin, William J; Luka, Zigmund; Loukachevitch, Lioudmila V; Reiter, Nicholas J

    2016-08-01

    Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. © 2016 Hirschi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Polysomes of Trypanosoma brucei: Association with Initiation Factors and RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Cornelia Klein

    Full Text Available We report here the results of experiments designed to identify RNA-binding proteins that might be associated with Trypanosoma brucei polysomes. After some preliminary mass spectrometry of polysomal fractions, we investigated the distributions of selected tagged proteins using sucrose gradients and immunofluorescence. As expected, the polysomal fractions contained nearly all annotated ribosomal proteins, the translation-associated protein folding complex, and many translation factors, but also many other abundant proteins. Results suggested that cap-binding proteins EIF4E3 and EIF4E4 were associated with both free and membrane-bound polysomes. The EIF4E binding partners EIF4G4 and EIF4G3 were present but the other EIF4E and EIF4G paralogues were not detected. The dominant EIF4E in the polysomal fraction is EIF4E4 and very few polysomal mRNAs are associated with EIF4G. Thirteen potential mRNA-binding proteins were detected in the polysomes, including the known polysome-associated protein RBP42. The locations of two of the other proteins were tested after epitope tagging: RBP29 was in the nucleus and ZC3H29 was in the cytoplasm. Quantitative analyses showed that specific association of an RNA-binding protein with the polysome fraction in sucrose gradients will not be detected if the protein is in more than 25-fold molar excess over its target binding sites.

  15. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  16. PiRaNhA: A server for the computational prediction of RNA-binding residues in protein sequences

    OpenAIRE

    Murakami, Yoichi; Spriggs, Ruth V; Nakamura, Haruki; Jones, Susan

    2010-01-01

    The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA server uses a support vector machine (SVM), with position-specific scoring matrices, residue interface propensity, predicted residue acces...

  17. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  18. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    Science.gov (United States)

    2015-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds. PMID:24410502

  19. Missense mutation in the second RNA binding domain reveals a role for Prkra (PACT/RAX during skull development.

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    Full Text Available Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.

  20. Differential analysis of protein expression in RNA-binding-protein transgenic and parental rice seeds cultivated under salt stress.

    Science.gov (United States)

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-02-07

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds.

  1. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding.

    Science.gov (United States)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS(SV40)) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS(SV40) in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS(SV40) formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS(SV40) likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS(SV40) can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene.

    Science.gov (United States)

    Kovacs-Nagy, Reka; Elek, Zsuzsanna; Szekely, Anna; Nanasi, Tibor; Sasvari-Szekely, Maria; Ronai, Zsolt

    2013-06-01

    Rare mutations in the WFS1 gene lead to Wolfram syndrome, a severe multisystem disorder with progressive neurodegeneration and diabetes mellitus causing life-threatening complications and premature death. Only a few association studies using small clinical samples tested the possible effects of common WFS1 gene variants on mood disorders and suicide, the non-clinical spectrum has not been studied yet. Self-report data on Aggression, Impulsiveness, Anxiety, and Depression were collected from a large (N = 801) non-psychiatric sample. Single nucleotide polymorphisms (SNPs) were selected to provide an adequate coverage of the entire WFS1 gene, as well as to include putative microRNA binding site polymorphisms. Molecular analysis of the assumed microRNA binding site variant was performed by an in vitro reporter-gene assay of the cloned 3' untranslated region with coexpression of miR-668. Among the 17 WFS1 SNPs, only the rs1046322, a putative microRNA (miR-668) binding site polymorphism showed significant association with psychological dimensions after correction for multiple testing: those with the homozygous form of the minor allele reported higher aggression on the Buss-Perry Aggression Questionnaire (P = 0.0005). Functional effect of the same SNP was also demonstrated in a luciferase reporter system: the minor A allele showed lower repression compared to the major G allele, if co-expressed with miR-668. To our knowledge, this is the first report describing a microRNA binding site polymorphism of the WFS1 gene and its association with human aggression based on a large, non-clinical sample. Copyright © 2013 Wiley Periodicals, Inc.

  3. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease.

    Science.gov (United States)

    de Bruin, Ruben G; Rabelink, Ton J; van Zonneveld, Anton Jan; van der Veer, Eric P

    2017-05-07

    The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative responses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persistence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover, homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we summarize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact the treatment of cardiovascular disease in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

  4. Predicting sequence and structural specificities of RNA binding regions recognized by splicing factor SRSF1

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2011-12-01

    Full Text Available Abstract Background RNA-binding proteins (RBPs play diverse roles in eukaryotic RNA processing. Despite their pervasive functions in coding and noncoding RNA biogenesis and regulation, elucidating the sequence specificities that define protein-RNA interactions remains a major challenge. Recently, CLIP-seq (Cross-linking immunoprecipitation followed by high-throughput sequencing has been successfully implemented to study the transcriptome-wide binding patterns of SRSF1, PTBP1, NOVA and fox2 proteins. These studies either adopted traditional methods like Multiple EM for Motif Elicitation (MEME to discover the sequence consensus of RBP's binding sites or used Z-score statistics to search for the overrepresented nucleotides of a certain size. We argue that most of these methods are not well-suited for RNA motif identification, as they are unable to incorporate the RNA structural context of protein-RNA interactions, which may affect to binding specificity. Here, we describe a novel model-based approach--RNAMotifModeler to identify the consensus of protein-RNA binding regions by integrating sequence features and RNA secondary structures. Results As an example, we implemented RNAMotifModeler on SRSF1 (SF2/ASF CLIP-seq data. The sequence-structural consensus we identified is a purine-rich octamer 'AGAAGAAG' in a highly single-stranded RNA context. The unpaired probabilities, the probabilities of not forming pairs, are significantly higher than negative controls and the flanking sequence surrounding the binding site, indicating that SRSF1 proteins tend to bind on single-stranded RNA. Further statistical evaluations revealed that the second and fifth bases of SRSF1octamer motif have much stronger sequence specificities, but weaker single-strandedness, while the third, fourth, sixth and seventh bases are far more likely to be single-stranded, but have more degenerate sequence specificities. Therefore, we hypothesize that nucleotide specificity and

  5. Oncoprotein AEG-1 is an Endoplasmic Reticulum RNA Binding Protein Whose Interactome is Enriched In Organelle Resident Protein-Encoding mRNAs.

    Science.gov (United States)

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-02-07

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence > 5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream of encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Spatial regulation of the KH domain RNA-binding protein Rnc1 mediated by a Crm1-independent nuclear export system in Schizosaccharomyces pombe.

    Science.gov (United States)

    Satoh, Ryosuke; Matsumura, Yasuhiro; Tanaka, Akitomo; Takada, Makoto; Ito, Yuna; Hagihara, Kanako; Inari, Masahiro; Kita, Ayako; Fukao, Akira; Fujiwara, Toshinobu; Hirai, Shinya; Tani, Tokio; Sugiura, Reiko

    2017-05-01

    RNA-binding proteins (RBPs) play important roles in the posttranscriptional regulation of gene expression, including mRNA stability, transport and translation. Fission yeast rnc1 + encodes a K Homology (KH)-type RBP, which binds and stabilizes the Pmp1 MAPK phosphatase mRNA thereby suppressing the Cl - hypersensitivity of calcineurin deletion and MAPK signaling mutants. Here, we analyzed the spatial regulation of Rnc1 and discovered a putative nuclear export signal (NES) Rnc1 , which dictates the cytoplasmic localization of Rnc1 in a Crm1-independent manner. Notably, mutations in the NES Rnc1 altered nucleocytoplasmic distribution of Rnc1 and abolished its function to suppress calcineurin deletion, although the Rnc1 NES mutant maintains the ability to bind Pmp1 mRNA. Intriguingly, the Rnc1 NES mutant destabilized Pmp1 mRNA, suggesting the functional importance of the Rnc1 cytoplasmic localization. Mutation in Rae1, but not Mex67 deletion or overproduction, induced Rnc1 accumulation in the nucleus, suggesting that Rnc1 is exported from the nucleus to the cytoplasm via the mRNA export pathway involving Rae1. Importantly, mutations in the Rnc1 KH-domains abolished the mRNA-binding ability and induced nuclear localization, suggesting that Rnc1 may be exported from the nucleus together with its target mRNAs. Collectively, the functional Rae1-dependent mRNA export system may influence the cytoplasmic localization and function of Rnc1. © 2017 John Wiley & Sons Ltd.

  7. RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.

    Science.gov (United States)

    Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan

    2016-10-07

    RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential

  8. Structure of theEscherichia coliProQ RNA-binding protein.

    Science.gov (United States)

    Gonzalez, Grecia M; Hardwick, Steven W; Maslen, Sarah L; Skehel, J Mark; Holmqvist, Erik; Vogel, Jörg; Bateman, Alex; Luisi, Ben F; Broadhurst, R William

    2017-05-01

    The protein ProQ has recently been identified as a global small noncoding RNA-binding protein in Salmonella , and a similar role is anticipated for its numerous homologs in divergent bacterial species. We report the solution structure of Escherichia coli ProQ, revealing an N-terminal FinO-like domain, a C-terminal domain that unexpectedly has a Tudor domain fold commonly found in eukaryotes, and an elongated bridging intradomain linker that is flexible but nonetheless incompressible. Structure-based sequence analysis suggests that the Tudor domain was acquired through horizontal gene transfer and gene fusion to the ancestral FinO-like domain. Through a combination of biochemical and biophysical approaches, we have mapped putative RNA-binding surfaces on all three domains of ProQ and modeled the protein's conformation in the apo and RNA-bound forms. Taken together, these data suggest how the FinO, Tudor, and linker domains of ProQ cooperate to recognize complex RNA structures and serve to promote RNA-mediated regulation. © 2017 Gonzalez et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease

    Directory of Open Access Journals (Sweden)

    Yalin Liao

    2016-08-01

    Full Text Available RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.

  11. The crystal structure and RNA-binding of an orthomyxovirus nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Wenjie Zheng

    2013-09-01

    Full Text Available Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV (genus Isavirus. As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ~12 nts of RNA, shorter than the 24-28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions.

  12. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  13. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    Directory of Open Access Journals (Sweden)

    David Piñeiro

    2015-04-01

    Full Text Available Gemin5 is a RNA-binding protein (RBP that was first identified as a peripheral component of the survival of motor neurons (SMN complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs. Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E. Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  14. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR.

    Science.gov (United States)

    Lebedeva, Svetlana; Jens, Marvin; Theil, Kathrin; Schwanhäusser, Björn; Selbach, Matthias; Landthaler, Markus; Rajewsky, Nikolaus

    2011-08-05

    Posttranscriptional gene regulation relies on hundreds of RNA binding proteins (RBPs) but the function of most RBPs is unknown. The human RBP HuR/ELAVL1 is a conserved mRNA stability regulator. We used PAR-CLIP, a recently developed method based on RNA-protein crosslinking, to identify transcriptome-wide ∼26,000 HuR binding sites. These sites were on average highly conserved, enriched for HuR binding motifs and mainly located in 3' untranslated regions. Surprisingly, many sites were intronic, implicating HuR in mRNA processing. Upon HuR knockdown, mRNA levels and protein synthesis of thousands of target genes were downregulated, validating functionality. HuR and miRNA binding sites tended to reside nearby but generally did not overlap. Additionally, HuR knockdown triggered strong and specific upregulation of miR-7. In summary, we identified thousands of direct and functional HuR targets, found a human miRNA controlled by HuR, and propose a role for HuR in splicing. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Continuous-time random walks that alter environmental transport properties.

    Science.gov (United States)

    Angstmann, C; Henry, B I

    2011-12-01

    We consider continuous-time random walks (CTRWs) in which the walkers have a finite probability to alter the waiting-time and/or step-length transport properties of their environment, resulting in possibly transient anomalous diffusion. We refer to these CTRWs as transmogrifying continuous-time random walks (TCTRWs) to emphasize that they change the form of the transport properties of their environment, and in a possibly strange way. The particular case in which the CTRW waiting-time density has a finite probability to be permanently altered at a given site, following a visitation by a walker, is considered in detail. Master equations for the probability density function of transmogrifying random walkers are derived, and results are compared with Monte Carlo simulations. An interesting finding is that TCTRWs can generate transient subdiffusion or transient superdiffusion without invoking truncated or tempered power law densities for either the waiting times or the step lengths. The transient subdiffusion or transient superdiffusion arises in TCTRWs with Gaussian step-length densities and exponential waiting-time densities when the altered average waiting time is greater than or less than, respectively, the original average waiting time.

  16. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  17. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    Energy Technology Data Exchange (ETDEWEB)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-09-08

    Abstract

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.

  18. Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.

    Science.gov (United States)

    Lewis, H A; Chen, H; Edo, C; Buckanovich, R J; Yang, Y Y; Musunuru, K; Zhong, R; Darnell, R B; Burley, S K

    1999-02-15

    Nova-1 and Nova-2 are related neuronal proteins that were initially cloned using antisera obtained from patients with the autoimmune neurological disease paraneoplastic opsoclonus-myoclonus ataxia (POMA). Both of these disease gene products contain three RNA-binding motifs known as K-homology or KH domains, and their RNA ligands have been identified via binding-site selection experiments. The KH motif structure has been determined previously using NMR spectroscopy, but not using X-ray crystallography. Many proteins contain more than one KH domain, yet there is no published structural information regarding the behavior of such multimers. We have obtained the first X-ray crystallographic structures of KH-domain-containing proteins. Structures of the third KH domains (KH3) of Nova-1 and Nova-2 were determined by multiple isomorphous replacement and molecular replacement at 2.6 A and 2.0 A, respectively. These highly similar RNA-binding motifs form a compact protease-resistant domain resembling an open-faced sandwich, consisting of a three-stranded antiparallel beta sheet topped by three alpha helices. In both Nova crystals, the lattice is composed of symmetric tetramers of KH3 domains that are created by two dimer interfaces. The crystal structures of both Nova KH3 domains are similar to the previously determined NMR structures. The most significant differences among the KH domains involve changes in the positioning of one or more of the alpha helices with respect to the betasheet, particularly in the NMR structure of the KH1 domain of the Fragile X disease protein FMR-1. Loop regions in the KH domains are clearly visible in the crystal structure, unlike the NMR structures, revealing the conformation of the invariant Gly-X-X-Gly segment that is thought to participate in RNA-binding and of the variable region. The tetrameric arrangements of the Nova KH3 domains provide insights into how KH domains may interact with each other in proteins containing multiple KH motifs.

  19. DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets.

    Science.gov (United States)

    Dutertre, Martin; Vagner, Stéphan

    2017-10-27

    Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RNA-binding protein conserved in both microtubule- and microfilament-based RNA localization

    Science.gov (United States)

    Havin, Leora; Git, Anna; Elisha, Zichrini; Oberman, Froma; Yaniv, Karina; Schwartz, Sigal Pressman; Standart, Nancy; Yisraeli, Joel K.

    1998-01-01

    Vg1 mRNA translocation to the vegetal cortex of Xenopus oocytes requires intact microtubules, and a 3′ UTR cis-acting element (termed VLE), which also mediates sequence-specific binding of several proteins. One protein, the 69-kD Vg1 RBP, associates Vg1 RNA to microtubules in vitro. Here we show that Vg1 RBP-binding sites correlate with vegetal localization. Purification and cloning of Vg1 RBP revealed five RNA-binding motifs: four KH and one RRM domains. Surprisingly, Vg1 RBP is highly homologous to the zipcode binding protein implicated in the microfilament-mediated localization of β actin mRNA in fibroblasts. These data support Vg1 RBP’s direct role in vegetal localization and suggest the existence of a general, evolutionarily conserved mechanism for mRNA targeting. PMID:9620847

  1. RNA-binding protein conserved in both microtubule- and microfilament-based RNA localization.

    Science.gov (United States)

    Havin, L; Git, A; Elisha, Z; Oberman, F; Yaniv, K; Schwartz, S P; Standart, N; Yisraeli, J K

    1998-06-01

    Vg1 mRNA translocation to the vegetal cortex of Xenopus oocytes requires intact microtubules, and a 3' UTR cis-acting element (termed VLE), which also mediates sequence-specific binding of several proteins. One protein, the 69-kD Vg1 RBP, associates Vg1 RNA to microtubules in vitro. Here we show that Vg1 RBP-binding sites correlate with vegetal localization. Purification and cloning of Vg1 RBP revealed five RNA-binding motifs: four KH and one RRM domains. Surprisingly, Vg1 RBP is highly homologous to the zipcode binding protein implicated in the microfilament-mediated localization of beta actin mRNA in fibroblasts. These data support Vg1 RBP's direct role in vegetal localization and suggest the existence of a general, evolutionarily conserved mechanism for mRNA targeting.

  2. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  3. Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites.

    Directory of Open Access Journals (Sweden)

    Angela Re

    2016-12-01

    Full Text Available Transcript levels do not faithfully predict protein levels, due to post-transcriptional regulation of gene expression mediated by RNA binding proteins (RBPs and non-coding RNAs. We developed a multivariate linear regression model integrating RBP levels and predicted RBP-mRNA regulatory interactions from matched transcript and protein datasets. RBPs significantly improved the accuracy in predicting protein abundance of a portion of the total modeled mRNAs in three panels of tissues and cells and for different methods employed in the detection of mRNA and protein. The presence of upstream translation initiation sites (uTISs at the mRNA 5' untranslated regions was strongly associated with improvement in predictive accuracy. On the basis of these observations, we propose that the recently discovered widespread uTISs in the human genome can be a previously unappreciated substrate of translational control mediated by RBPs.

  4. KREPA4, an RNA binding protein essential for editosome integrity and survival of Trypanosoma brucei.

    Science.gov (United States)

    Salavati, Reza; Ernst, Nancy Lewis; O'Rear, Jeff; Gilliam, Troy; Tarun, Salvador; Stuart, Kenneth

    2006-05-01

    The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.

  5. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors

    Science.gov (United States)

    Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József

    2006-01-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105

  6. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  7. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition.

    Science.gov (United States)

    Madina, Bhaskara R; Kumar, Vikas; Metz, Richard; Mooers, Blaine H M; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-07-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. © 2014 Madina et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  9. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins.

    Science.gov (United States)

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan

    2017-06-01

    Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  11. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development

    DEFF Research Database (Denmark)

    Nielsen, J; Christiansen, J; Lykke-Andersen, J

    1999-01-01

    Insulin-like growth factor II (IGF-II) is a major fetal growth factor. The IGF-II gene generates multiple mRNAs with different 5' untranslated regions (5' UTRs) that are translated in a differential manner during development. We have identified a human family of three IGF-II mRNA-binding proteins...

  12. Hypoxia alters the physical properties of the tumor microenvironment

    Science.gov (United States)

    Gilkes, Daniele

    Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.

  13. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.

    Science.gov (United States)

    Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro

    2017-12-04

    Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.

  14. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  15. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    International Nuclear Information System (INIS)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko; Sugiyama, Hironobu; Takahashi, Hisaaki; Tanaka, Junya

    2006-01-01

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, a cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25

  16. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4.

    Science.gov (United States)

    Gnazzo, Megan M; Uhlemann, Eva-Maria E; Villarreal, Alex R; Shirayama, Masaki; Dominguez, Eddie G; Skop, Ahna R

    2016-10-15

    The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5-GFP, and ultimately a reduction of ZEN-4-GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5. © 2016 Gnazzo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Handshakes and Fights: The Regulatory Interplay of RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Erik Dassi

    2017-09-01

    Full Text Available What drives the flow of signals controlling the outcome of post-transcriptional regulation of gene expression? This regulatory layer, presiding to processes ranging from splicing to mRNA stability and localization, is a key determinant of protein levels and thus cell phenotypes. RNA-binding proteins (RBPs form a remarkable army of post-transcriptional regulators, strong of more than 1,500 genes implementing this expression fine-tuning plan and implicated in both cell physiology and pathology. RBPs can bind and control a wide array of RNA targets. This sheer amount of interactions form complex regulatory networks (PTRNs where the action of individual RBPs cannot be easily untangled from each other. While past studies have mostly focused on the action of individual RBPs on their targets, we are now observing an increasing amount of evidence describing the occurrence of interactions between RBPs, defining how common target RNAs are regulated. This suggests that the flow of signals in PTRNs is driven by the intertwined contribution of multiple RBPs, concurrently acting on each of their targets. Understanding how RBPs cooperate and compete is thus of paramount importance to chart the wiring of PTRNs and their impact on cell phenotypes. Here we review the current knowledge about patterns of RBP interaction and attempt at describing their general principles. We also discuss future directions which should be taken to reach a comprehensive understanding of this fundamental aspect of gene expression regulation.

  18. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    Science.gov (United States)

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  19. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo.

    Science.gov (United States)

    Apicco, Daniel J; Ash, Peter E A; Maziuk, Brandon; LeBlang, Chelsey; Medalla, Maria; Al Abdullatif, Ali; Ferragud, Antonio; Botelho, Emily; Ballance, Heather I; Dhawan, Uma; Boudeau, Samantha; Cruz, Anna Lourdes; Kashy, Daniel; Wong, Aria; Goldberg, Lisa R; Yazdani, Neema; Zhang, Cheng; Ung, Choong Y; Tripodis, Yorghos; Kanaan, Nicholas M; Ikezu, Tsuneya; Cottone, Pietro; Leszyk, John; Li, Hu; Luebke, Jennifer; Bryant, Camron D; Wolozin, Benjamin

    2018-01-01

    Emerging studies suggest a role for tau in regulating the biology of RNA binding proteins (RBPs). We now show that reducing the RBP T-cell intracellular antigen 1 (TIA1) in vivo protects against neurodegeneration and prolongs survival in transgenic P301S Tau mice. Biochemical fractionation shows co-enrichment and co-localization of tau oligomers and RBPs in transgenic P301S Tau mice. Reducing TIA1 decreased the number and size of granules co-localizing with stress granule markers. Decreasing TIA1 also inhibited the accumulation of tau oligomers at the expense of increasing neurofibrillary tangles. Despite the increase in neurofibrillary tangles, TIA1 reduction increased neuronal survival and rescued behavioral deficits and lifespan. These data provide in vivo evidence that TIA1 plays a key role in mediating toxicity and further suggest that RBPs direct the pathway of tau aggregation and the resulting neurodegeneration. We propose a model in which dysfunction of the translational stress response leads to tau-mediated pathology.

  20. STRUCTURAL CHARACTERIZATION OF THE RNA BINDING DOMAIN OF HUMAN STEM LOOP BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Maruthi Kashyap

    2013-12-01

    Full Text Available A gene encoding the RNA binding domain (RBD of human stem loop binding protein (SLBP was cloned in pET 28a vector and over-expressed in E. coli codon plus cells. The over-expressed SLBP-RBD carried no tag and aggregated as inclusion bodies in the cell lysate. Inclusion bodies were semi-purified to >85% purity by establishing a method involving detergent washing and subsequently denatured in 8 M urea. Refolding of the denatured RBD was carried out by step dialysis in decreasing concentrations of urea and L-arginine. Refolded SLBP-RBD was analyzed using size exclusion chromatography that revealed its monomeric nature and folded state. Uniformly 15N and 15N,13C labeled SLBP-RBD was prepared at concentrations for solution NMR studies. Approximately, 60% of the sequence specific backbone resonance assignments have been achieved through standard triple resonance NMR experiments. Analyses of secondary chemical shifts reveal presence of a small helical secondary structural elements and large intrinsically disordered regions.

  1. TERRA transcripts are bound by a complex array of RNA-binding proteins.

    Science.gov (United States)

    López de Silanes, Isabel; Stagno d'Alcontres, Martina; Blasco, Maria A

    2010-06-29

    Telomeres are transcribed from the telomeric C-rich strand, giving rise to UUAGGG repeat-containing telomeric transcripts or TERRA, which are novel structural components of telomeres. TERRA abundance is highly dependent on developmental status (including nuclear reprogramming), telomere length, cellular stresses, tumour stage and chromatin structure. However, the molecular mechanisms and factors controlling TERRA levels are still largely unknown. In this study, we identify a set of RNA-binding proteins, which endogenously bind and regulate TERRA in the context of primary mouse embryonic fibroblasts. The identification was carried out by biotin pull-down assays followed by LC-MALDI TOF/TOF mass spectrometry. Different members of the heterogeneous nuclear ribonucleoprotein family are among the ribonucleoprotein family that bind more abundantly to TERRA. Downregulation of TERRA-bound RBPs by small interfering RNA further shows that they can impact on TERRA abundance, their location and telomere lengthening. These findings anticipate an impact of TERRA-associated RBPs on telomere biology and telomeres diseases, such as cancer and aging.

  2. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  3. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chiang

    Full Text Available Chromoproteins (CPs have unique colors and can be used in biological applications. In this work, a novel blue CP with a maximum absorption peak (λmax at 608 nm was identified from the carpet anemone Stichodactyla gigantea (sgBP. In vivo expression of sgBP in zebrafish would change the appearance of the fishes to have a blue color, indicating the potential biomarker function. To enhance the color properties, the crystal structure of sgBP at 2.25 Å resolution was determined to allow structure-based protein engineering. Among the mutations conducted in the Gln-Tyr-Gly chromophore and chromophore environment, a S157C mutation shifted the λmax to 604 nm with an extinction coefficient (ε of 58,029 M-1·cm-1 and darkened the blue color expression. The S157C mutation in the sgBP chromophore environment could affect the color expression by altering the deprotonation state of the phenolic group in the chromophore. Our results provide a structural basis for the blue color enhancement of the biomarker development.

  4. A Point Mutation in the RNA-Binding Domain of Human Parainfluenza Virus Type 2 Nucleoprotein Elicits Abnormally Enhanced Polymerase Activity.

    Science.gov (United States)

    Matsumoto, Yusuke; Ohta, Keisuke; Kolakofsky, Daniel; Nishio, Machiko

    2017-05-01

    The genome RNA of human parainfluenza virus type 2 (hPIV2) that acts as the template for the polymerase complex is entirely encapsidated by the nucleoprotein (NP). Recently, the crystal structure of NP of PIV5, a virus closely related to hPIV2, was resolved in association with RNA. Ten amino acids that contact the bound RNA were identified and are strictly conserved between PIV5 and hPIV2 NP. Mutation of hPIV2 NP Q202 (which contacts a base rather than the RNA backbone) to various amino acids resulted in an over 30-fold increase of polymerase activity as evidenced by a minireplicon assay, even though the RNA-binding affinity was unaltered. Using various modified minireplicons, we found that the enhanced reporter gene expression could be accounted for by increased minigenome replication, whereas mRNA synthesis itself was not affected by Q202 mutation. Moreover, the enhanced activities were still observed in minigenomes partially lacking the leader sequence and which were not of hexamer genome length. Unexpectedly, recombinant hPIV2 possessing the NP Q202A mutation could not be recovered from cDNA. IMPORTANCE We examined the importance of amino acids in the putative RNA-binding domain of hPIV2 NP for polymerase activity using minireplicons. Abnormally enhanced genome replication was observed upon substitution mutation of the NP Q202 position to various amino acids. Surprisingly, this mutation enabled polymerase to use minigenomes that were partially lacking the leader sequence and not of hexamer genome length. This mutation does not affect fundamental properties of NP, e.g., recognition of gene junctional and editing signals. However, the strongly enhanced polymerase activity may not be viable for the infectious life cycle. This report highlights the potential of the polymerase complex with point mutations in NP and helps our detailed understanding of the molecular basis of gene expression. Copyright © 2017 American Society for Microbiology.

  5. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  6. Altered plasma fibrin clot properties in essential thrombocythemia.

    Science.gov (United States)

    Małecki, Rafał; Gacka, Małgorzata; Kuliszkiewicz-Janus, Małgorzata; Jakobsche-Policht, Urszula; Kwiatkowski, Jacek; Adamiec, Rajmund; Undas, Anetta

    2016-01-01

    Patients with increased thromboembolic risk tend to form denser fibrin clots which are relatively resistant to lysis. We sought to investigate whether essential thrombocythemia (ET) is associated with altered fibrin clot properties in plasma. Ex vivo plasma fibrin clot permeability coefficient (Ks), turbidimetry and clot lysis time (CLT) were measured in 43 consecutive patients with ET (platelet count from 245 to 991 × 10(3)/µL) and 50 control subjects matched for age, sex and comorbidities. Fibrinolysis proteins and inhibitors together with platelet activation markers were determined. Reduced Ks (-38%, p < 0.0001) and prolonged CLT (+34%, p < 0.0001) were observed in ET. The differences remained significant after adjustment for fibrinogen and platelet count. ET was associated with a slightly shorter lag phase (-5%, p = 0.01) and higher maximum absorbency of the turbidimetric curve (+6%, p < 0.001). The ET patients had higher plasma P-selectin by 193% (p < 0.00001) and platelet factor 4 (PF4) by 173% (p < 0.00001), with higher P-selectin observed in 19 (44%) patients with JAK-2 gene V617F mutation. Higher t-PA (+20%, p < 0.001), 23% higher plasminogen activator inhibitor-1, PAI-1 (+23%, p < 0.01) and unaltered thrombin-activatable fibrinolysis inhibitor, plasminogen and α2-antiplasmin activity were found in the ET group. Ks inversely correlated with fibrinogen, PF4 and C-reactive protein. CLT positively correlated only with PAI-1. Patients with ET display prothrombotic plasma fibrin clot phenotype including impaired fibrinolysis, which represents a new prothrombotic mechanism in this disease.

  7. RNA Binding Proteins in Eye Development and Disease: Implication of Conserved RNA Granule Components

    Science.gov (United States)

    Dash, Soma; Siddam, Archana D.; Barnum, Carrie E.; Janga, Sarath Chandra

    2016-01-01

    The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1 and Bmp4 are commonly required for their development. In contrast, our understanding of post-transcriptional regulation in eye development and disease, particularly regarding the function of RNA binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila, as well as several vertebrate models such as fish, frog, chicken and mouse. Interestingly, of the 42 RBPs that have been investigated with for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as Processing bodies (P-bodies), Stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate post-transcriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2 and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving post-transcriptional regulatory networks in eye development and disease. PMID:27133484

  8. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation.

    Science.gov (United States)

    Di Francesco, Andrea; Di Germanio, Clara; Panda, Amaresh C; Huynh, Phu; Peaden, Robert; Navas-Enamorado, Ignacio; Bastian, Paul; Lehrmann, Elin; Diaz-Ruiz, Alberto; Ross, David; Siegel, David; Martindale, Jennifer L; Bernier, Michel; Gorospe, Myriam; Abdelmohsen, Kotb; de Cabo, Rafael

    2016-10-01

    NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects. Published by Elsevier Inc.

  9. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina

    Science.gov (United States)

    Rodriguez, Allen R.; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C.

    2014-01-01

    There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On Western blots these antibodies recognize a single band at ~24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit and monkey retina. RBPMS immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semi-quantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1) immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at three weeks, and all Brn3a, SMI-32 and melanopsin immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to CFP-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs. PMID:24318667

  10. Both Maintenance and Avoidance of RNA-Binding Protein Interactions Constrain Coding Sequence Evolution.

    Science.gov (United States)

    Savisaar, Rosina; Hurst, Laurence D

    2017-05-01

    While the principal force directing coding sequence (CDS) evolution is selection on protein function, to ensure correct gene expression CDSs must also maintain interactions with RNA-binding proteins (RBPs). Understanding how our genes are shaped by these RNA-level pressures is necessary for diagnostics and for improving transgenes. However, the evolutionary impact of the need to maintain RBP interactions remains unresolved. Are coding sequences constrained by the need to specify RBP binding motifs? If so, what proportion of mutations are affected? Might sequence evolution also be constrained by the need not to specify motifs that might attract unwanted binding, for instance because it would interfere with exon definition? Here, we have scanned human CDSs for motifs that have been experimentally determined to be recognized by RBPs. We observe two sets of motifs-those that are enriched over nucleotide-controlled null and those that are depleted. Importantly, the depleted set is enriched for motifs recognized by non-CDS binding RBPs. Supporting the functional relevance of our observations, we find that motifs that are more enriched are also slower-evolving. The net effect of this selection to preserve is a reduction in the over-all rate of synonymous evolution of 2-3% in both primates and rodents. Stronger motif depletion, on the other hand, is associated with stronger selection against motif gain in evolution. The challenge faced by our CDSs is therefore not only one of attracting the right RBPs but also of avoiding the wrong ones, all while also evolving under selection pressures related to protein structure. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. The α subunit of E. coli RNA polymerase activates RNA binding by NusA

    Science.gov (United States)

    Mah, Thien-Fah; Kuznedelov, Konstantin; Mushegian, Arcady; Severinov, Konstantin; Greenblatt, Jack

    2000-01-01

    The Escherichia coli NusA protein modulates pausing, termination, and antitermination by associating with the transcribing RNA polymerase core enzyme. NusA can be covalently cross-linked to nascent RNA within a transcription complex, but does not bind RNA on its own. We have found that deletion of the 79 carboxy-terminal amino acids of the 495-amino-acid NusA protein allows NusA to bind RNA in gel mobility shift assays. The carboxy-terminal domain (CTD) of the α subunit of RNA polymerase, as well as the bacteriophage λ N gene antiterminator protein, bind to carboxy-terminal regions of NusA and enable full-length NusA to bind RNA. Binding of NusA to RNA in the presence of α or N involves an amino-terminal S1 homology region that is otherwise inactive in full-length NusA. The interaction of the α-CTD with full-length NusA stimulates termination. N may prevent termination by inducing NusA to interact with N utilization (nut) site RNA rather than RNA near the 3′ end of the nascent transcript. Sequence analysis showed that the α-CTD contains a modified helix–hairpin–helix motif (HhH), which is also conserved in the carboxy-terminal regions of some eubacterial NusA proteins. These HhH motifs may mediate protein–protein interactions in NusA and the α-CTD. PMID:11040219

  12. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes.

    Science.gov (United States)

    Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei

    2016-10-01

    Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.

  13. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.......5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1(-/-) mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life...

  14. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.

    Science.gov (United States)

    Lewis, H A; Musunuru, K; Jensen, K B; Edo, C; Chen, H; Darnell, R B; Burley, S K

    2000-02-04

    The structure of a Nova protein K homology (KH) domain recognizing single-stranded RNA has been determined at 2.4 A resolution. Mammalian Nova antigens (1 and 2) constitute an important family of regulators of RNA metabolism in neurons, first identified using sera from cancer patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia (POMA). The structure of the third KH domain (KH3) of Nova-2 bound to a stem loop RNA resembles a molecular vise, with 5'-Ura-Cyt-Ade-Cyt-3' pinioned between an invariant Gly-X-X-Gly motif and the variable loop. Tetranucleotide recognition is supported by an aliphatic alpha helix/beta sheet RNA-binding platform, which mimics 5'-Ura-Gua-3' by making Watson-Crick-like hydrogen bonds with 5'-Cyt-Ade-3'. Sequence conservation suggests that fragile X mental retardation results from perturbation of RNA binding by the FMR1 protein.

  15. Identification of Rift Valley fever virus nucleocapsid protein-RNA binding inhibitors using a high-throughput screening assay.

    Science.gov (United States)

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J Stephen

    2012-09-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration-approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.

  16. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Kafková, Lucie; Ammerman, M. L.; Faktorová, D.; Fisk, J. C.; Zimmer, S.L.; Sobotka, Roman; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2012-01-01

    Roč. 18, č. 10 (2012), s. 1846-1861 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : RNA editing * RNA binding protein * ribonuclear protein (RNP) * mitochondria * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.088, year: 2012 http://rnajournal.cshlp.org/content/18/10/1846

  17. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    OpenAIRE

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in pr...

  18. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis.

    Science.gov (United States)

    Laporte, Philippe; Satiat-Jeunemaître, Béatrice; Velasco, Isabel; Csorba, Tibor; Van de Velde, Willem; Campalans, Anna; Burgyan, Joszef; Arevalo-Rodriguez, Miguel; Crespi, Martin

    2010-04-01

    Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen-fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so-called nodulin genes are induced, including large families that encode small peptides. Using a three-hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA-binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single-stranded RNA-binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA-binding peptides.

  19. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  20. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  1. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing

    Science.gov (United States)

    Aung, Htet; DeAngelo, Bianca; Soldano, John; Kostyk, Piotr; Rodriguez, Braulio; Xu, M.

    2013-02-01

    Clinical tissue processing such as formalin fixing, paraffin-embedding and histological staining alters significantly the optical properties of the tissue. We document the alterations in the optical properties of prostate cancer tissue specimens in the 500nm to 700nm spectral range caused by histological processing with quantitative differential interference contrast (qDIC) microscopy. A simple model to explain these alterations is presented at the end.

  2. Intracellular localization and interaction of mRNA binding proteins as detected by FRET.

    Science.gov (United States)

    David Gerecht, Pamela S; Taylor, Molly A; Port, J David

    2010-09-15

    A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and

  3. ALTERATION OF RHEOLOGICAL PROPERTIES OF BLOOD AT PATIENTS WITH TONSILLITIS

    Directory of Open Access Journals (Sweden)

    I.A. Zaitseva

    2008-09-01

    Full Text Available Complex research of rheological properties of blood at patients with lacunar tonsillitis lead depending on the period of disease. It is shown, that inflammatory process at patients to a great extent defines disturbances of rheological properties of blood. During normalization of a clinical presentation of disease there is no full recovery of rheological properties of blood due to preservation of blood raised viscosity and low deformability of erythrocytes membranes.

  4. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  5. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    Science.gov (United States)

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  6. Viral double-strand RNA-binding proteins can enhance innate immune signaling by toll-like Receptor 3.

    Directory of Open Access Journals (Sweden)

    Yvonne Lai

    Full Text Available Toll-like Receptor 3 (TLR3 detects double-stranded (ds RNAs to activate innate immune responses. While poly(I:C is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV were also potent enhancers of TLR3 signaling by poly(I:C or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.

  7. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs

    Directory of Open Access Journals (Sweden)

    Valentina Iadevaia

    2015-09-01

    Full Text Available Post-transcriptional control of gene expression is mediated by RNA-binding proteins (RBPs and small non-coding RNAs (e.g., microRNAs that bind to distinct elements in their mRNA targets. Here, we review recent examples describing the synergistic and/or antagonistic effects mediated by RBPs and miRNAs to determine the localisation, stability and translation of mRNAs in mammalian cells. From these studies, it is becoming increasingly apparent that dynamic rearrangements of RNA-protein complexes could have profound implications in human cancer, in synaptic plasticity, and in cellular differentiation.

  8. The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2 [v1; ref status: indexed, http://f1000r.es/201

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    2013-10-01

    Full Text Available The primary function of the dsRNA binding protein (dsRBP PACT/RAX is to activate the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT/RAX in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.  The function of PACT/RAX in this context is poorly understood.  Thus, additional models are required to clarify the mechanism by which PACT/RAX functions.  In this study, Drosophila melanogaster was employed to identify functionally orthologous dsRNA-binding proteins.  Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis.  Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.

  9. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  10. Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain.

    Directory of Open Access Journals (Sweden)

    Hua Cao

    Full Text Available Plasmacytoid dendritic cells (pDCs play important roles in antiviral innate immunity by producing type I interferon (IFN. In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i vaccinia virus, but not myxoma virus, expresses inhibitor(s of the poxvirus sensing pathway(s in pDCs; and (ii Heat-VAC infection fails to produce inhibitor(s but rather produces novel activator(s, likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029 lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating

  11. Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Science.gov (United States)

    Dai, Peihong; Wang, Weiyi; Li, Hao; Yuan, Jianda; Wang, Fangjin; Fang, Chee-Mun; Pitha, Paula M; Liu, Jia; Condit, Richard C; McFadden, Grant; Merghoub, Taha; Houghton, Alan N; Young, James W; Shuman, Stewart; Deng, Liang

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of

  12. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.

    Science.gov (United States)

    Siu, Kam-Leung; Yeung, Man Lung; Kok, Kin-Hang; Yuen, Kit-San; Kew, Chun; Lui, Pak-Yin; Chan, Chi-Ping; Tse, Herman; Woo, Patrick C Y; Yuen, Kwok-Yung; Jin, Dong-Yan

    2014-05-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity. Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing

  13. Elevation alters ecosystem properties across temperate treelines globally

    Science.gov (United States)

    Mayor, Jordan R.; Sanders, Nathan J.; Classen, Aimée T.; Bardgett, Richard D.; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K.; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'Ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L.; Wardle, David A.

    2017-01-01

    Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

  14. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  15. Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Benjamin Cieply

    2016-04-01

    Full Text Available Alternative splicing (AS plays a critical role in cell fate transitions, development, and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS, including a splicing program that is unique to transgene-independent induced pluripotent stem cells (iPSCs. Changes in the expression of AS factors Zcchc24, Esrp1, Mbnl1/2, and Rbm47 were demonstrated to contribute to phase-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA-binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1. These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency.

  16. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

    Directory of Open Access Journals (Sweden)

    Youn-Bok Lee

    2013-12-01

    Full Text Available The GGGGCC (G4C2 intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.

  17. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio

    KAUST Repository

    Gomes-Santos, Carina S. S.

    2011-05-19

    Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism. 2011 Gomes-Santos et al.

  18. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins.

    Science.gov (United States)

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-11-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.

  19. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  20. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2010-05-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (dsRNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP that contains the HIV-1 genomic RNA (vRNA, Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1 occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The

  1. SpoVG Is a Conserved RNA-Binding Protein That Regulates Listeria monocytogenes Lysozyme Resistance, Virulence, and Swarming Motility.

    Science.gov (United States)

    Burke, Thomas P; Portnoy, Daniel A

    2016-04-05

    In this study, we sought to characterize the targets of the abundant Listeria monocytogenes noncoding RNA Rli31, which is required for L. monocytogenes lysozyme resistance and pathogenesis. Whole-genome sequencing of lysozyme-resistant suppressor strains identified loss-of-expression mutations in the promoter of spoVG , and deletion of spoVG rescued lysozyme sensitivity and attenuation in vivo of the rli31 mutant. SpoVG was demonstrated to be an RNA-binding protein that interacted with Rli31 in vitro . The relationship between Rli31 and SpoVG is multifaceted, as both the spoVG -encoded protein and the spoVG 5′-untranslated region interacted with Rli31. In addition, we observed that spoVG -deficient bacteria were nonmotile in soft agar and suppressor mutations that restored swarming motility were identified in the gene encoding a major RNase in Gram-positive bacteria, RNase J1. Collectively, these findings suggest that SpoVG is similar to global posttranscriptional regulators, a class of RNA-binding proteins that interact with noncoding RNA, regulate genes in concert with RNases, and control pleiotropic aspects of bacterial physiology. spoVG is widely conserved among bacteria; however, the function of this gene has remained unclear since its initial characterization in 1977. Mutation of spoVG impacts various phenotypes in Gram-positive bacteria, including methicillin resistance, capsule formation, and enzyme secretion in Staphylococcus aureus and also asymmetric cell division, hemolysin production, and sporulation in Bacillus subtilis . Here, we demonstrate that spoVG mutant strains of Listeria monocytogenes are hyper-lysozyme resistant, hypervirulent, nonmotile, and misregulate genes controlling carbon metabolism. Furthermore, we demonstrate that SpoVG is an RNA-binding protein. These findings suggest that SpoVG has a role in L. monocytogenes , and perhaps in other bacteria, as a global gene regulator. Posttranscriptional gene regulators help bacteria adapt to

  2. Alterations in diffusion properties of white matter in Williams syndrome.

    Science.gov (United States)

    Arlinghaus, Lori R; Thornton-Wells, Tricia A; Dykens, Elisabeth M; Anderson, Adam W

    2011-11-01

    Diffusion tensor imaging (DTI) was used to investigate the involvement of brain white matter in Williams syndrome (WS), a genetic neurodevelopmental disorder. Whole-brain DTIs were obtained from 16 young adults with WS and 16 normal controls. A voxel-based analysis was performed to compare fractional anisotropy (FA) values between the two groups. A tract-based analysis was also performed to compare FA values between the two groups along two major white matter tracts that pass through the external capsule: the uncinate and inferior fronto-occipital fasciculi. Several regions of both increased and decreased FA were found within major white matter tracts that connect functional regions that have previously been implicated in the cognitive and neurological symptoms of the syndrome. The tract-based analysis provided additional insight into the involvement of specific white matter tracts implicated in the voxel-based analysis within the external capsule. The results from this study support previously reported changes in white matter diffusion properties in WS and demonstrate the potential usefulness for tract-based analysis in future studies of the disorder. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. KREPA6 is an RNA-binding protein essential for editosome integrity and survival of Trypanosoma brucei.

    Science.gov (United States)

    Tarun, Salvador Zipagan; Schnaufer, Achim; Ernst, Nancy Lewis; Proff, Rosemary; Deng, Junpeng; Hol, Wim; Stuart, Kenneth

    2008-02-01

    Most mitochondrial mRNAs in kinetoplastid protozoa require post-transcriptional RNA editing that inserts and deletes uridylates, a process that is catalyzed by multiprotein editosomes. KREPA6 is the smallest of six editosome proteins that have predicted oligonucleotide-binding (OB) folds. Inactivation of KREPA6 expression results in disruption and ultimate loss of approximately 20S editosomes and inhibition of procyclic form cell growth. Gel shift studies show that recombinant KREPA6 binds RNA, but not DNA, with a preference for oligo-(U) whether on the 3' end of gRNA or as a (UU)(12) homopolymer. Thus, KREPA6 is essential for the structural integrity and presence of approximately 20S editosomes and for cell viability. It functions in RNA binding perhaps primarily through the gRNA 3' oligo(U) tail. The significance of these findings to key steps in editing is discussed.

  4. The nuclear RNA binding protein RBP33 influences mRNA and spliced leader RNA abundance in Trypanosoma brucei.

    Science.gov (United States)

    Cirovic, Olivera; Trikin, Roman; Hoffmann, Anneliese; Doiron, Nicholas; Jakob, Martin; Ochsenreiter, Torsten

    2017-03-01

    RNA recognition motif (RRM) containing proteins are important regulators of gene expression in trypanosomes. Here we expand our current knowledge on the exclusively nuclear localized RRM domain containing protein RBP33 of Trypanosoma brucei. Overexpression of RBP33 leads to a quick growth arrest in G2/M in bloodstream form cells likely due to an overall mRNA- and spliced leader abundance decrease while the ribosomal RNAs remain unaffected. The recombinant RBP33 binds to poly(A) and random sequence RNA in vitro confirming its role as a RNA binding protein. Finally super-resolution microscopy detects RBP33 in small punctae throughout the nucleus and surrounding the nucleolus, however the signal is depleted inside the nucleolus. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  6. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.

    Science.gov (United States)

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-06-15

    Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by

  7. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  8. Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation.

    Science.gov (United States)

    HafezQorani, Saber; Lafzi, Atefeh; de Bruin, Ruben G; van Zonneveld, Anton Jan; van der Veer, Eric P; Son, Yeşim Aydın; Kazan, Hilal

    2016-05-19

    Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3'UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Analysis of the relationship between interleukin polymorphisms within miRNA-binding regions and alcoholic liver disease.

    Science.gov (United States)

    Novo-Veleiro, I; Cieza-Borrella, C; Pastor, I; González-Sarmiento, Rogelio; Laso, F-J; Marcos, M

    2018-03-19

    Alcohol consumption promotes inflammation through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, leading to organic damage. Some micro-RNA (miRNA) molecules modulate this inflammatory response by downregulating TLR4/NF-κB pathway mediators, like interleukins (ILs). Thus, polymorphisms within IL genes located near miRNA binding sites could modify the risk of ethanol-induced damage. The present study analyzed potential relationships between alcoholism or alcoholic liver disease (ALD) and IL12B 2124 G>T (rs1368439), IL16 5000 C>T (rs1131445), IL1R1 3114 C>T (rs3917328), and NFKB1 3400 A>G (rs4648143) polymorphisms. The study included 301 male alcoholic patients and 156 male healthy volunteers. Polymorphisms were genotyped using TaqMan ® PCR assays for allelic discrimination. Allele and genotype frequencies were compared between groups. Logistic regression analysis was performed to analyze the inheritance model. Analysis of the IL1R1 (rs3917328) polymorphism showed that the proportion of alleleT carriers (CT and TT genotypes) was higher in healthy controls (9.7%) than in alcoholic patients (6.5%; P=.042). However, multivariable logistic regression analyses did not yield a significant result. No differences between groups were found for other analyzed polymorphisms. Our study describes, for the first time, the expected frequencies of certain polymorphisms within miRNA-binding sites in alcoholic patients with and without ALD. Further studies should be developed to clarify the potential relevance of these polymorphisms in alcoholism and ALD development. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  10. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues

    OpenAIRE

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents ...

  11. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M. Tanaka; Gavis, Elizabeth R. (Princeton); (NIH)

    2017-04-01

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  12. Rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk

    NARCIS (Netherlands)

    J. Liu (Jingjing); Loncar, I. (Ivona); J.M. Collée; M.K. Bolla (Manjeet K.); J. Dennis (Joe); K. Michailidou (Kyriaki); Wang, Q. (Qin); I.L. Andrulis (Irene); Barile, M. (Monica); M.W. Beckmann (Matthias); T.W. Behrens (Timothy); J. Benítez (Javier); C. Blomqvist (Carl); Boeckx, B. (Bram); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); H. Brauch (Hiltrud); P. Brennan (Paul); H. Brenner (Hermann); A. Broeks (Annegien); B. Burwinkel (Barbara); J. Chang-Claude (Jenny); Chen, S.-T. (Shou-Tung); G. Chenevix-Trench (Georgia); Cheng, C.Y. (Ching Y.); Choi, J.-Y. (Ji-Yeob); F.J. Couch (Fergus); A. Cox (Angela); S.S. Cross (Simon); Cuk, K. (Katarina); K. Czene (Kamila); T. Dörk (Thilo); I. dos Santos Silva (Isabel); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. García-Closas (Montserrat); Giles, G.G. (Graham G.); Glendon, G. (Gord); M.S. Goldberg (Mark); A. González-Neira (Anna); P. Guénel (Pascal); C.A. Haiman (Christopher A.); U. Hamann (Ute); S. Hart (Stewart); Hartman, M. (Mikael); S. Hatse (Sigrid); J.L. Hopper (John); H. Ito (Hidemi); A. Jakubowska (Anna); M. Kabisch (Maria); D. Kang (Daehee); V-M. Kosma (Veli-Matti); Kristensen, V.N. (Vessela N.); L. Le Marchand (Loic); E. Lee (Eunjung); J. Li (Jingmei); A. Lophatananon (Artitaya); J. Lubinski (Jan); A. Mannermaa (Arto); K. Matsuo (Keitaro); R.L. Milne (Roger); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); N. Orr (Nick); J.I.A. Perez (Jose Ignacio Arias); J. Peto (Julian); T.C. Putti (Thomas Choudary); K. Pykäs (Katri); P. Radice (Paolo); Sangrajrang, S. (Suleeporn); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); A. Schneeweiss (Andreas); C.-Y. Shen (Chen-Yang); M. Shrubsole (Martha); X.-O. Shu (Xiao-Ou); J. Simard (Jacques); M.C. Southey (Melissa); A.J. Swerdlow (Anthony ); S.-H. Teo; D.C. Tessier (Daniel C.); Thanasitthichai, S. (Somchai); I.P. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); C.-C. Tseng (Chiu-Chen); C. Vachon (Celine); R. Winqvist (Robert); A.H. Wu (Anna); Yannoukakos, D. (Drakoulis); W. Zheng (Wei); P. Hall (Per); A.M. Dunning (Alison); D.F. Easton (Douglas F.); M.J. Hooning (Maartje); A.M.W. van den Ouweland (Ans); J.W.M. Martens (John); A. Hollestelle (Antoinette)

    2016-01-01

    textabstractNBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3′-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer.

  13. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets.

    Science.gov (United States)

    Farazi, Thalia A; Leonhardt, Carl S; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E A; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-07-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. © 2014 Farazi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins.

    Science.gov (United States)

    Walia, Rasna R; Xue, Li C; Wilkins, Katherine; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-01-01

    Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence

  15. RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins

    Science.gov (United States)

    Walia, Rasna R.; Xue, Li C.; Wilkins, Katherine; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-01-01

    Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence

  16. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  17. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Keryer-Bibens, Cecile, E-mail: cecile.keryer-bibens@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Legagneux, Vincent; Namanda-Vanderbeken, Allen [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Cosson, Bertrand [UPMC Universite de Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Developpement, Station Biologique de Roscoff, 29682 Roscoff (France); CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Paillard, Luc [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Poncet, Didier [Virologie Moleculaire et Structurale, UMR CNRS, 2472, INRA, 1157, 91198 Gif sur Yvette (France); Osborne, H. Beverley, E-mail: beverley.osborne@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France)

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  18. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies.

    Science.gov (United States)

    Moine, H; Cachia, C; Westhof, E; Ehresmann, B; Ehresmann, C

    1997-03-01

    The RNA binding site of ribosomal protein S8 of Escherichia coli is confined to a small region within the stem of a hairpin in 16S rRNA (nt 588-605/633-651), and thus represents a model system for understanding RNA/protein interaction rules. The S8 binding site on 16S rRNA was suspected to contain noncanonical features difficult to prove with classical genetical or biochemical means. We performed in vitro iterative selection of RNA aptamers that bind S8. For the different aptamers, the interactions with the protein were probed with hydroxyl radicals. Aptamers that were recognized according to the same structural rules as wild-type RNA, but with variations not found in nature, were identified. These aptamers revealed features in the S8 binding site that had been concealed during previous characterizations by the high base conservation throughout evolution. Our data demonstrate that the core structure of the S8 binding site is composed of three interdependent bases (nt 597/641/643), with an essential intervening adenine nucleotide (position 642). The other elements important for the binding site are a base pair (598/640) above the three interdependent bases and a bulged base at position 595, the identity of which is not important. Possible implications on the geometry of the S8 binding site are discussed with the help of a three-dimensional model.

  19. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF.

    Science.gov (United States)

    Huang, Huilin; Zhang, Jing; Harvey, Samuel E; Hu, Xiaohui; Cheng, Chonghui

    2017-11-15

    It is generally thought that splicing factors regulate alternative splicing through binding to RNA consensus sequences. In addition to these linear motifs, RNA secondary structure is emerging as an important layer in splicing regulation. Here we demonstrate that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Destroying G-quadruplex-forming capacity while keeping G tracts intact abrogates exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in heterogeneous nuclear ribonucleoprotein F (hnRNPF)-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome. Moreover, hnRNPF regulates an epithelial-mesenchymal transition (EMT)-associated CD44 isoform switch in a G-quadruplex-dependent manner, which results in inhibition of EMT. Mining breast cancer TCGA (The Cancer Genome Atlas) data sets, we demonstrate that hnRNPF negatively correlates with an EMT gene signature and positively correlates with patient survival. These data suggest a critical role for RNA G quadruplexes in regulating alternative splicing. Modulation of G-quadruplex structural integrity may control cellular processes important for tumor progression. © 2017 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  1. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Jia, Weitao; Leary, Julie A; Lucas, William J

    2014-11-01

    In plants, the vascular system, specifically the phloem, functions in delivery of small RNA (sRNA) to exert epigenetic control over developmental and defense-related processes. Although the importance of systemic sRNA delivery has been established, information is currently lacking concerning the nature of the protein machinery involved in this process. Here, we show that a PHLOEM SMALL-RNA BINDING PROTEIN 1 (PSRP1) serves as the basis for formation of an sRNA ribonucleoprotein complex (sRNPC) that delivers sRNA (primarily 24 nt) to sink organs. Assembly of this complex is facilitated through PSRP1 phosphorylation by a phloem-localized protein kinase, PSRPK1. During long-distance transport, PSRP1-sRNPC is stable against phloem phosphatase activity. Within target tissues, phosphatase activity results in disassembly of PSRP1-sRNPC, a process that is probably required for unloading cargo sRNA into surrounding cells. These findings provide an insight into the mechanism involved in delivery of sRNA associated with systemic gene silencing in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Recombinant expression and purification of the RNA-binding LARP6 proteins from fish genetic model organisms.

    Science.gov (United States)

    Castro, José M; Horn, Daniel A; Pu, Xinzhu; Lewis, Karen A

    2017-06-01

    The RNA-binding proteins that comprise the La-related protein (LARP) superfamily have been implicated in a wide range of cellular functions, from tRNA maturation to regulation of protein synthesis. To more expansively characterize the biological function of the LARP6 subfamily, we have recombinantly expressed the full-length LARP6 proteins from two teleost fish, platyfish (Xiphophorus maculatus) and zebrafish (Danio rerio). The yields of the recombinant proteins were enhanced to >2 mg/L using a tandem approach of an N-terminal His 6 -SUMO tag and an iterative solubility screening assay to identify structurally stabilizing buffer components. The domain topologies of the purified fish proteins were probed with limited proteolysis. The fish proteins contain an internal, protease-resistant 40 kDa domain, which is considerably more stable than the comparable domain from the human LARP6 protein. The fish proteins are therefore a lucrative model system in which to study both the evolutionary divergence of this family of La-related proteins and the structure and conformational dynamics of the domains that comprise the LARP6 protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In silico evaluation of miRNA binding site in mutated 3'UTR mRNA of G6PD

    Science.gov (United States)

    Azmi, Syarifah Anis Wafa Binti Syed Mohd; Noorden, Mohd Shihabudin; Yusof, Nurul Yuziana Mohd; Ismail, Endom

    2015-09-01

    MicroRNAs (miRNAs) are small non coding RNA sized 21-25 nucleotide. It has the ability to bind to the 3'- untranslated regions (3'UTR) of their target genes. Consequently, the binding of miRNA in the 3'UTR of targeted mRNA will regulate the expression of this gene. Thus, changes in 3'UTR may affect miRNA binding to mRNA of their target gene, leading to aberrations in mRNA regulations or expression and likely contribute to the various phenotypic changes or clinical risk for certain diseases in man. Therefore, the aim of this study is to evaluate candidate miRNAs species involved during the regulation of glucose-6-phosphate dehydrogenase (G6PD) mRNA with and without a specific 3'UTR nucleotide change that was previously shown to be responsible for G6PD deficiency in a Negrito sub-group of the Malaysian Orang Asli. We have conducted in silico analysis using TargetScan, PITA, RegRNA 2.0 and miRanda platform. Our results indicate that three potential miRNAs may have a functional role towards the regulated expression of those bearing the 3'UTR mutation. The role of these eleven miRNA can be investigated in future in vitro expression studies in order to verify its miRNA:mRNA relationship.

  4. Identification of Splicing Factors Involved in DMD Exon Skipping Events Using an In Vitro RNA Binding Assay.

    Science.gov (United States)

    Miro, Julie; Bourgeois, Cyril F; Claustres, Mireille; Koenig, Michel; Tuffery-Giraud, Sylvie

    2018-01-01

    Mutation-induced exon skipping in the DMD gene can modulate the severity of the phenotype in patients with Duchenne or Becker Muscular Dystrophy. These alternative splicing events are most likely the result of changes in recruitment of splicing factors at cis-acting elements in the mutated DMD pre-mRNA. The identification of proteins involved can be achieved by an affinity purification procedure. Here, we provide a detailed protocol for the in vitro RNA binding assay that we routinely apply to explore molecular mechanisms underlying splicing defects in the DMD gene. In vitro transcribed RNA probes containing either the wild type or mutated sequence are oxidized and bound to adipic acid dihydrazide-agarose beads. Incubation with a nuclear extract allows the binding of nuclear proteins to the RNA probes. The unbound proteins are washed off and then the specifically RNA-bound proteins are released from the beads by an RNase treatment. After separation by SDS-PAGE, proteins that display differential binding affinities for the wild type and mutant RNA probes are identified by mass spectrometry.

  5. Effects of the RNA-binding protein, KSRP, on innate immune response against Helicobacter pylori infection in mice.

    Science.gov (United States)

    Li, Ningzhe; Cao, Mei; Yi, Sijun; Cheng, Juan; Wang, Lei; Tao, Yuwei; Wu, Daoyan; Peng, Jingshan; Zhang, Mao; Qi, Panpan; Zhao, Jian

    2018-01-08

    Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.

    Science.gov (United States)

    Heller, David; Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa

    2017-11-02

    RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM's model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Tangjian; Li, Shengli; Chen, Di; Chen, Bing; Yu, Tao; Zhao, Fangyu; Wang, Qifeng; Yao, Ming; Huang, Shenglin; Chen, Zhiao; He, Xianghuo

    2017-05-01

    RNA-binding proteins (RBPs) play fundamental roles in the RNA life cycle. The aberrant expression of RBPs is often observed in human disease, including cancer. In this study, we screened for the expression levels of 1542 human RBPs in The Cancer Genome Atlas liver hepatocellular carcinoma samples and found 92 consistently upregulated RBP genes in HCC compared with normal samples. Additionally, we undertook a Kaplan-Meier analysis and found that high expression of 15 RBP genes was associated with poor prognosis in patients with HCC. Furthermore, we found that eIF3c promotes HCC cell proliferation in vitro as well as tumorigenicity in vivo. Gene Set Enrichment Analysis showed that high eIF3c expression is positively associated with KRAS, vascular endothelial growth factor, and Hedgehog signaling pathways, all of which are closely associated with specific cancer-related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which eIF3c promotes the development and progression of HCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    Energy Technology Data Exchange (ETDEWEB)

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Llamas-Saiz, Antonio L. [Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Fox, Gavin C. [Spanish CRG Beamline BM16, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, F-38043 Grenoble (France); Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Raaij, Mark J. van, E-mail: vanraaij@usc.es [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain)

    2007-05-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals.

  9. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    International Nuclear Information System (INIS)

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; Raaij, Mark J. van

    2007-01-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals

  10. Structure and RNA-binding properties of the type III-A CRISPR-associated protein Csm3.

    Science.gov (United States)

    Hrle, Ajla; Su, Andreas A H; Ebert, Judith; Benda, Christian; Randau, Lennart; Conti, Elena

    2013-11-01

    The prokaryotic adaptive immune system is based on the incorporation of genome fragments of invading viral genetic elements into clusters of regulatory interspaced short palindromic repeats (CRISPRs). The CRISPR loci are transcribed and processed into crRNAs, which are then used to target the invading nucleic acid for degradation. The large family of CRISPR-associated (Cas) proteins mediates this interference response. We have characterized Methanopyrus kandleri Csm3, a protein of the type III-A CRISPR-Cas complex. The 2.4 Å resolution crystal structure shows an elaborate four-domain fold organized around a core RRM-like domain. The overall architecture highlights the structural homology to Cas7, the Cas protein that forms the backbone of type I interference complexes. Csm3 binds unstructured RNAs in a sequence non-specific manner, suggesting that it interacts with the variable spacer sequence of the crRNA. The structural and biochemical data provide insights into the similarities and differences in this group of Cas proteins.

  11. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    Science.gov (United States)

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  12. Primary Angle Closure and Sequence Variants within MicroRNA Binding Sites of Genes Involved in Eye Development.

    Directory of Open Access Journals (Sweden)

    Haihong Shi

    Full Text Available The formation of primary angle closure (PAC and primary angle closure glaucoma (PACG is regulated by a tissue remodeling pathway that plays a critical role in eye development. MicroRNAs (miRNAs are powerful gene expression regulators and may exert their effects on tissue remodeling genes. This study investigated the associations between gene variants (single-nucleotide polymorphism, SNP in miRNA binding sites in the 3'-UTR region of genes involved in eye development and PAC.The sample consisted of 232 PAC subjects and 306 controls obtained from a population-based cohort in the Funing District of Jiangsu, China. The markers include 9 SNPs in the COL11A1, PCMTD1, ZNRF3, MTHFR, and ALPPL2 genes respectively. SNP genotyping was performed with a TaqMan-MGB probe using an RT-PCR system.Of the 9 SNPs studied, the frequency of the minor A allele of COL11A1 rs1031820 was higher in the PAC group than in the control group in allele analysis (p = 0.047. The genotype analysis indicated that MTHFR rs1537514 is marginally associated with PAC (p = 0.014. The CC genotype of rs1537514 was present solely in the PAC group. However, the differences lost significance after Bonferroni correction.Our study reveals a possible association of COL11A1 and MTHFR with PAC in the Han Chinese population. These results will contribute to an improved understanding of the genetic basis of PACG.

  13. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis.

    Science.gov (United States)

    Panda, Amaresh C; Abdelmohsen, Kotb; Martindale, Jennifer L; Di Germanio, Clara; Yang, Xiaoling; Grammatikakis, Ioannis; Noh, Ji Heon; Zhang, Yongqing; Lehrmann, Elin; Dudekula, Dawood B; De, Supriyo; Becker, Kevin G; White, Elizabeth J; Wilson, Gerald M; de Cabo, Rafael; Gorospe, Myriam

    2016-03-18

    Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates

    Science.gov (United States)

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.

    2015-01-01

    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  15. Meiotic messenger RNA and noncoding RNA targets of the RNA-binding protein Translin (TSN) in mouse testis.

    Science.gov (United States)

    Cho, Yoon Shin; Iguchi, Naoko; Yang, Juxiang; Handel, Mary Ann; Hecht, Norman B

    2005-10-01

    In postmeiotic male germ cells, TSN, formerly known as testis brain-RNA binding protein, is found in the cytoplasm and functions as a posttranscriptional regulator of a group of genes transcribed by the transcription factor CREM-tau. In contrast, in pachytene spermatocytes, TSN is found predominantly in nuclei. Tsn-null males show a reduced sperm count and high levels of apoptosis in meiotic cells, suggesting a critical function for TSN during meiosis. To identify meiotic target RNAs that associate in vivo with TSN, we reversibly cross-linked TSN to RNA in testis extracts from 17-day-old and adult mice and immunoprecipitated the complexes with an affinity-purified TSN antibody. Extracts from Tsn-null mice were used as controls. Cloning and sequencing the immunoprecipitated RNAs, we identified four new TSN target mRNAs, encoding diazepam-binding inhibitor-like 5, arylsulfatase A, a tetratricopeptide repeat structure-containing protein, and ring finger protein 139. In contrast to the population of postmeiotic translationally delayed mRNAs that bind TSN, these four mRNAs are initially expressed in pachytene spermatocytes. In addition, anti-TSN also precipitated a nonprotein-coding RNA (ncRNA), which is abundant in nuclei of pachytene spermatocytes and has a putative polyadenylation signal, but no open reading frame. A second similar ncRNA is adjacent to a GGA repeat, a motif frequently associated with recombination hot spots. RNA gel-shift assays confirm that the four new target mRNAs and the ncRNA specifically bind to TSN in testis extracts. These studies have, for the first time, identified both mRNAs and a ncRNA as TSN targets expressed during meiosis.

  16. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1.

    Science.gov (United States)

    Ariyachet, Chaiyaboot; Beißel, Christian; Li, Xiang; Lorrey, Selena; Mackenzie, Olivia; Martin, Patrick M; O'Brien, Katharine; Pholcharee, Tossapol; Sim, Sue; Krebber, Heike; McBride, Anne E

    2017-05-01

    The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR-like RNA-binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post-transcriptional regulation in these processes. SR (serine-arginine)-rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1-GFP is predominantly nuclear, but also co-fractionates with translating ribosomes. The non-phosphorylatable slr1-6SA-GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1-6SA-GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1-6SA-GFP hyphal tip foci is reduced in the absence of the mRNA-transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA-protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport. © 2017 John Wiley & Sons Ltd.

  17. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells

    Science.gov (United States)

    Gill, Mark E.; Hu, Yueh-Chiang; Lin, Yanfeng; Page, David C.

    2011-01-01

    Mammalian oocytes and spermatozoa derive from fetal cells shared by the sexes. These primordial germ cells (PGCs) migrate to the developing somatic gonad, giving rise to oocytes or spermatozoa. These opposing sexual fates are determined not by the PGCs’ own sex chromosome constitution (XX or XY), but by the sexual identity of the fetal gonad that they enter. We asked whether PGCs undergo a developmental transition that enables them to respond to feminizing or masculinizing cues from fetal ovary or testis. We conducted in vivo genetic studies of DAZL, an RNA-binding protein expressed in both ovarian and testicular germ cells. We found that germ cells in C57BL/6 Dazl-deficient fetuses—whether XX or XY—migrate to the gonad but do not develop either male or female features. Instead, they remain in a sexually undifferentiated state similar to that of migrating PGCs. Thus, germ cells in C57BL/6 Dazl-deficient fetuses do not respond to sexual cues from ovary or testis, whereas the earlier processes of germ cell specification and migration are unaffected. We propose that PGCs of both XX and XY fetuses undergo licensing, an active developmental transition that enables the resultant gametogenesis-competent cells to respond to feminizing or masculinizing cues produced by the fetal ovary or testis and hence to embark on oogenesis or spermatogenesis. In C57BL/6 mice, Dazl is required for licensing. Licensing serves as a gateway from the embryonic processes shared between the sexes—germ cell specification and migration—to the sex-specific pathways of oogenesis and spermatogenesis. PMID:21504946

  18. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    Science.gov (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  19. NF-κB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1β.

    Directory of Open Access Journals (Sweden)

    Christian Brochu

    Full Text Available The cold inducible RNA binding protein (CIRBP responds to a wide array of cellular stresses, including short wavelength ultraviolet light (UVC, at the transcriptional and post-translational level. CIRBP can bind the 3'untranslated region of specific transcripts to stabilize them and facilitate their transport to ribosomes for translation. Here we used RNA interference and oligonucleotide microarrays to identify potential downstream targets of CIRBP induced in response to UVC. Twenty eight transcripts were statistically increased in response to UVC and these exhibited a typical UVC response. Only 5 of the 28 UVC-induced transcripts exhibited a CIRBP-dependent pattern of expression. Surprisingly, 3 of the 5 transcripts (IL1B, IL8 and TNFAIP6 encoded proteins important in inflammation with IL-1β apparently contributing to IL8 and TNFAIP6 expression in an autocrine fashion. UVC-induced IL1B expression could be inhibited by pharmacological inhibition of NFκB suggesting that CIRBP was affecting NF-κB signaling as opposed to IL1B mRNA stability directly. Bacterial lipopolysaccharide (LPS was used as an activator of NF-κB to further study the potential link between CIRBP and NFκB. Transfection of siRNAs against CIRBP reduced the extent of the LPS-induced phosphorylation of IκBα, NF-κB DNA binding activity and IL-1β expression. The present work firmly establishes a novel link between CIRBP and NF-κB signaling in response to agents with diverse modes of action. These results have potential implications for disease states associated with inflammation.

  20. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton.

    Science.gov (United States)

    Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V

    2017-04-01

    The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr 10 and sbr 5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr 12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.

  1. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses.

    Science.gov (United States)

    Lee, Hwa Jung; Kim, Jin Seo; Yoo, Seung Jin; Kang, Eun Young; Han, Song Hee; Yang, Kwang-Yeol; Kim, Young Cheol; McSpadden Gardener, Brian; Kang, Hunseung

    2012-11-01

    Glycine-rich RNA-binding protein7 (AtGRP7) has previously been demonstrated to confer plant defense against Pseudomonas syringae DC3000. Here, we show that AtGRP7 can play different roles in plant defense against diverse pathogens. AtGRP7 enhances resistance against a necrotrophic bacterium Pectobacterium carotovorum SCC1 or a biotrophic virus tobacco mosaic virus. By contrast, AtGRP7 plays a negative role in defense against a necrotrophic fungus Botrytis cinerea. These results provide evidence that AtGRP7 is a potent regulator in plant defense response to diverse pathogens, and suggest that the regulation of RNA metabolism by RNA-binding proteins is important for plant innate immunity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. The RNA binding G-patch domain in retroviral protease is important for infectivity and D-type morphogenesis of Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Bauerová, Helena; Štokrová, Jitka; Stříšovský, Kvido; Hunter, E.; Ruml, Tomáš; Pichová, Iva

    2005-01-01

    Roč. 280, č. 51 (2005), s. 42106-42112 ISSN 0021-9258 R&D Projects: GA MŠk(CZ) 1M0508; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : retroviral protease * RNA binding domain * M-PMV * infectivity * assembly Subject RIV: CE - Biochemistry Impact factor: 5.854, year: 2005

  3. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Roland Baumgartner

    Full Text Available Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig, an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1 and Caprin (Capr and directly interacts with and regulates the RNA-binding protein Rasputin (Rin in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  4. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Science.gov (United States)

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  5. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  6. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness☆

    Science.gov (United States)

    Crone, Julia Sophia; Soddu, Andrea; Höller, Yvonne; Vanhaudenhuyse, Audrey; Schurz, Matthias; Bergmann, Jürgen; Schmid, Elisabeth; Trinka, Eugen; Laureys, Steven; Kronbichler, Martin

    2013-01-01

    Recovery of consciousness has been associated with connectivity in the frontal cortex and parietal regions modulated by the thalamus. To examine this model and to relate alterations to deficits in cognitive functioning and conscious processing, we investigated topological network properties in patients with chronic disorders of consciousness recovered from coma. Resting state fMRI data of 34 patients with unresponsive wakefulness syndrome and 25 in minimally conscious state were compared to 28 healthy controls. We investigated global and local network characteristics. Additionally, behavioral measures were correlated with the local metrics of 28 regions within the fronto-parietal network and the thalamus. In chronic disorders of consciousness, modularity at the global level was reduced suggesting a disturbance in the optimal balance between segregation and integration. Moreover, network properties were altered in several regions which are associated with conscious processing (particularly, in medial parietal, and frontal regions, as well as in the thalamus). Between minimally conscious and unconscious patients the local efficiency of medial parietal regions differed. Alterations in the thalamus were particularly evident in non-conscious patients. Most of the regions affected in patients with impaired consciousness belong to the so-called ‘rich club’ of highly interconnected central nodes. Disturbances in their topological characteristics have severe impact on information integration and are reflected in deficits in cognitive functioning probably leading to a total breakdown of consciousness. PMID:24455474

  7. Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth.

    Science.gov (United States)

    Bowerman, Andrew F; Newberry, Marcus; Dielen, Anne-Sophie; Whan, Alex; Larroque, Oscar; Pritchard, Jenifer; Gubler, Frank; Howitt, Crispin A; Pogson, Barry J; Morell, Matthew K; Ral, Jean-Philippe

    2016-01-01

    Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. A deficiency in cold-inducible RNA-binding protein accelerates the inflammation phase and improves wound healing.

    Science.gov (United States)

    Idrovo, Juan Pablo; Jacob, Asha; Yang, Weng Lang; Wang, Zhimin; Yen, Hao Ting; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2016-02-01

    Chronic or non-healing wounds are a major concern in clinical practice and these wounds are mostly associated with diabetes, and venous and pressure ulcers. Wound healing is a complex process involving overlapping phases and the primary phase in this complex cascade is the inflammatory state. While inflammation is necessary for wound healing, a prolonged inflammatory phase leads to impaired healing. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that are expressed in high levels under stress conditions. Recently, we demonstrated that a deficiency in CIRP led to decreased inflammation and mortality in an experimental model of hemorrhagic shock. Thus, we hypothesized that a deficiency in CIRP would accelerate the inflammatory phase and lead to an improvement in cutaneous wound healing. In this study, to examine this hypothesis, a full-thickness wound was created on the dorsum of wild-type (WT) and CIRP-/- mice. The wound size was measured every other day for 14 days. The wound area was significantly decreased in the CIRP-/- mice by day 9 and continued to decrease until day 14 compared to the WT mice. In a separate cohort, mice were sacrificed on days 3 and 7 after wounding and the skin tissues were harvested for histological analysis and RNA measurements. On day 3, the mRNA expression of tumor necrossis factor (TNF)-α in the skin tissues was increased by 16-fold in the WT mice, whereas these levels were increased by 65-fold in the CIRP-/- mice. Of note on day 7, while the levels of TNF-α remained high in the WT mice, these levels were significantly decreased in the CIRP-/- mice. The histological analysis of the wounded skin tissue indicated an improvement as early as day 3 in the CIRP-/- mice, whereas in the WT mice, infiltrated immune cells were still present on day 7. On day 7 in the CIRP-/- mice, Gr-1 expression was low and CD31 expression was high, whereas in the WT mice, Gr-1 expression was high and CD31 expression was low

  9. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein in human breast cancer is correlated with favourable prognosis

    Directory of Open Access Journals (Sweden)

    Serce Nuran Bektas

    2012-12-01

    Full Text Available Abstract Background Plasminogen activator inhibitor 1 (PAI-1 overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Methods Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25, and in matched pairs of normal (n = 7 and cancerous breast tissues (n = 7. SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs, an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2 and malignant (n = 6 mammary cell lines as well as breast carcinoma lysates (n = 16 were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10 and cancerous (n = 10 breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. Results SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008 between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09 towards favourable prognosis when SERBP1 was overexpressed in breast cancer. Conclusions The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a

  10. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  11. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets.

    Science.gov (United States)

    Cole, Matthew; Lindeque, Penelope K; Fileman, Elaine; Clark, James; Lewis, Ceri; Halsband, Claudia; Galloway, Tamara S

    2016-03-15

    Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL(-1)) and natural prey (∼1650 algae mL(-1)) the copepod Calanus helgolandicus egested faecal pellets with significantly (P microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.

  12. Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Christopher McCrum

    2018-02-01

    Full Text Available Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12–14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80–90% MVC with repetitive loading for up to 3–4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.

  13. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    Science.gov (United States)

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA.

    Science.gov (United States)

    Liu, Dongcheng; Wang, Yan; Yuan, Yan

    2018-01-10

    KSHV lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. Virus-encoded b-Zip family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here we report that K8 is a RNA binding protein, which also associates with many proteins including other RNA binding proteins. Many K8-involved protein-protein interactions are mediated by RNA. Using a c ross l inking and i mmuno p recipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, that include both viral (PAN, T1.4, T0.7 and etc.) and cellular (MALAT-1, MRP, 7SK and etc.) RNAs. An RNA-binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 binding to many noncoding RNAs as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The function of K8 and associated T1.4 RNA was investigated in details and results showed that T1.4 mediates the binding of K8 with ori-Lyt DNA. T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble replication complex. Depletion of T1.4 abolished the DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection. Importance Genome wide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding region are actually transcribed and give rise to stable RNAs. Emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes exampled by ribosome or spliceosome are not ancient relics of the last riboorganism but would be well adapted for

  15. Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest, USA

    Science.gov (United States)

    Robert A. Slesak; Timothy B. Harrington; Anthony W. D′Amato

    2016-01-01

    Backgrounds and aims Scotch broom is an N-fixing invasive species that has high potential to alter soil properties. We compared soil from areas of Scotch broom invasion with nearby areas that had no evidence of invasion to assess the influence of broom on soil P fractions and other chemical properties. Methods The study was...

  16. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Theodore P Ciaraldi

    Full Text Available Skeletal muscle secretes factors, termed myokines. We employed differentiated human skeletal muscle cells (hSMC cultured from Type 2 diabetic (T2D and non-diabetic (ND subjects to investigate the impact of T2D on myokine secretion. Following 24 hours of culture concentrations of selected myokines were determined to range over 4 orders of magnitude. T2D hSMC released increased amounts of IL6, IL8, IL15, TNFa, Growth Related Oncogene (GROa, monocyte chemotactic protein (MCP-1, and follistatin compared to ND myotubes. T2D and ND hSMC secreted similar levels of IL1ß and vascular endothelial growth factor (VEGF. Treatment with the inflammatory agents lipopolysaccharide (LPS or palmitate augmented the secretion of many myokines including: GROa, IL6, IL8, IL15, and TNFa, but did not consistently alter the protein content and/or phosphorylation of IkBa, p44/42 MAPK, p38 MAPK, c-Jun N-terminal kinase (JNK and NF-kB, nor lead to consistent changes in basal and insulin-stimulated glucose uptake or free fatty acid oxidation. Conversely, treatment with pioglitazone or oleate resulted in modest reductions in the secretion of several myokines. Our results demonstrate that altered secretion of a number of myokines is an intrinsic property of skeletal muscle in T2D, suggesting a putative role of myokines in the response of skeletal muscle to T2D.

  17. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    Energy Technology Data Exchange (ETDEWEB)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T.; Tanaka Hall, Traci M.; Goldstrohm, Aaron C.

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  18. Long Non-Coding RNA HOTAIR Promotes Cell Migration and Invasion via Down-Regulation of RNA Binding Motif Protein 38 in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chaofeng Ding

    2014-03-01

    Full Text Available Long non-coding RNA HOTAIR exerts regulatory functions in various biological processes in cancer cells, such as proliferation, apoptosis, mobility, and invasion. We previously found that HOX transcript antisense RNA (HOTAIR is a negative prognostic factor and exhibits oncogenic activity in hepatocellular carcinoma (HCC. In this study, we aimed to investigate the role and molecular mechanism of HOTAIR in promoting HCC cell migration and invasion. Firstly, we profiled its gene expression pattern by microarray analysis of HOTAIR loss in Bel-7402 HCC cell line. The results showed that 129 genes were significantly down-regulated, while 167 genes were significantly up-regulated (fold change >2, p < 0.05. Bioinformatics analysis indicated that RNA binding proteins were involved in this biological process. HOTAIR suppression using RNAi strategy with HepG2 and Bel-7402 cells increased the mRNA and protein expression levels of RNA binding motif protein 38 (RBM38. Moreover, the expression levels of RBM38 in HCC specimens were significantly lower than paired adjacent noncancerous tissues. In addition, knockdown of HOTAIR resulted in a decrease of cell migration and invasion, which could be specifically rescued by down-regulation of RBM38. Taken together, HOTAIR could promote migration and invasion of HCC cells by inhibiting RBM38, which indicated critical roles of HOTAIR and RBM38 in HCC progression.

  19. Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis.

    Science.gov (United States)

    Teng, Ke; Tan, Penghui; Xiao, Guozeng; Han, Liebao; Chang, Zhihui; Chao, Yuehui

    2017-01-01

    A novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene was cloned in this study and its overexpression caused salt sensitivity in transgenic Arabidopsis. Glycine-rich RNA-binding proteins (GRPs) play crucial roles in diverse plant developmental processes. However, the mechanisms and functions of GRPs in salinity stress responses remain largely unknown. In this study, rapid amplification of cDNA end (RACE) PCR methods was adopted to isolate ZjGRP from Zosyia japonica, a salt-tolerant grass species. ZjGRP cDNA was 456 bp in length, corresponding to 151 amino acids. ZjGRP was localized in the nucleus and cytoplasm, and was found particularly abundantly in stomatal guard cells. Quantitative real-time PCR showed that ZjGRP was expressed in the roots, stems, and leaves of Zoysia japonica, with the greatest expression seen in the fast-growing leaves. Furthermore, expression of ZjGRP was strongly induced by treatment with NaCl, ABA, MeJA, and SA. Overexpression of ZjGRP in Arabidopsis reduced the rate of germination and retarded seedling growth. ZjGRP-overexpressing Arabidopsis thaliana exhibited weakened salinity tolerance, likely as a result of effects on ion transportation, osmosis, and antioxidation. This study indicates that ZjGRP plays an essential role in inducing salt sensitivity in transgenic plants.

  20. Insulin-Like Growth Factor II mRNA-Binding Protein 3 Expression Correlates with Poor Prognosis in Acral Lentiginous Melanoma.

    Directory of Open Access Journals (Sweden)

    Yi-Shuan Sheen

    Full Text Available Insulin-like growth factor-II mRNA-binding protein 3 (IMP-3 is an RNA-binding protein expressed in multiple cancers, including melanomas. However, the expression of IMP-3 has not been investigated in acral lentiginous melanoma (ALM. This study sought to elucidate its prognostic value in ALMs. IMP-3 expression was studied in 93 patients diagnosed with ALM via immunohistochemistry. Univariate and multivariate analyses for survival were performed, according to clinical and histologic parameters, using the Cox proportional hazard model. Survival curves were graphed using the Kaplan-Meier method. IMP-3 was over-expressed in 70 out of 93 tumors (75.3%. IMP-3 expression correlated with thick and high-stage tumor and predicted poorer overall, melanoma-specific, recurrence-free and distant metastasis-free survivals (P = 0.002, 0.006, 0.008 and 0.012, respectively. Further analysis showed that patients with tumor thickness ≤ 4.0 mm and positive IMP-3 expression had a significantly worse melanoma-specific survival than those without IMP-3 expression (P = 0.048. IMP-3 (hazard ratio 3.67, 95% confidence intervals 1.35-9.97, P = 0.011 was confirmed to be an independent prognostic factor for melanoma-specific survival in multivariate survival analysis. Positive IMP-3 expression was an important prognostic factor for ALMs.

  1. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  2. Impact attenuation properties of jazz shoes alter lower limb joint stiffness during jump landings.

    Science.gov (United States)

    Fong Yan, Alycia; Smith, Richard M; Hiller, Claire E; Sinclair, Peter J

    2017-05-01

    To quantify the impact attenuation properties of the jazz shoes, and to investigate the in-vivo effect of four jazz shoe designs on lower limb joint stiffness during a dance-specific jump. Repeated measures. A custom-built mechanical shoe tester similar to that used by athletic shoe companies was used to vertically impact the forefoot and heel region of four different jazz shoe designs. Additionally, dancers performed eight sautés in second position in bare feet and the shoe conditions. Force platforms and 3D-motion capture were used to analyse the joint stiffness of the midfoot, ankle, knee and hip during the jump landings. Mechanical testing of the jazz shoes revealed significant differences in impact attenuation characteristics among each of the jazz shoe designs. Gross knee and midfoot joint stiffness were significantly affected by the jazz shoe designs in the dancers' jump landings. The tested jazz shoe designs altered the impact attenuating capacity of jump landing technique in dancers. The cushioned jazz shoes are recommended particularly for injured dancers to reduce impact on the lower limb. Jazz shoe design should consider the impact attenuation properties of the forefoot region, due to the toe-strike landing technique in dance movement. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mutations in the SH1 helix alter the thermal properties of myosin II.

    Science.gov (United States)

    Shibata, Kotomi; Koyama, Tsubasa; Inde, Shohei; Iwai, Sosuke; Chaen, Shigeru

    2017-01-01

    The myosin II SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain and possibly plays a key role in the arrangement of the converter/lever arm. Several point mutations within the SH1 helix in human myosin IIs have been shown to cause diseases. To reveal whether these SH1 helix mutations affect not only motile activities but also thermal properties of myosin II, here we introduced the E683K or R686C point mutation into the SH1 helix in Dictyostelium myosin II. Thermal inactivation as well as thermal aggregation rates of these mutant proteins demonstrated that these mutations decreased the thermal stability of myosin II. Temperature dependence of sliding velocities of actin filaments showed that these mutations also reduced the activation energy of a rate-limiting process involved in actin movement. Given that these mutations are likely to alter coupling between the subdomains, and thus their thermal fluctuations, we propose that the SH1 helix is a key structural element that determines the flexibility and thermal properties of the myosin motor. These characteristics of the SH1 helix may contribute to the pathogenesis of the human diseases caused by mutations within this structural element.

  5. Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant.

    Science.gov (United States)

    Przybyla, Rebecca J; Wright, Jason; Parthiban, Rajan; Nazemidashtarjandi, Saeed; Kaya, Savas; Farnoud, Amir M

    2017-11-17

    Despite their growing popularity, the potential respiratory toxicity of electronic cigarettes (e-cigarettes) remains largely unknown. One potential aspect of e-cigarette toxicity is the effect of e-cigarette vapor on lung surfactant function. Lung surfactant is a mixture of lipids and proteins that lines the alveolar region. The surfactant layer reduces the surface tension of the alveolar fluid, thereby playing a crucial role in lung stability. Due to their small size, particulates in e-cigarette vapor can penetrate the deep lungs and come into contact with the lung surfactant. The current study sought to examine the potential adverse effects of e-cigarette vapor and conventional cigarette smoke on lung surfactant interfacial properties. Infasurf ® , a clinically used and commercially available calf lung surfactant extract, was used as lung surfactant model. Infasurf ® films were spread on top of an aqueous subphase in a Langmuir trough with smoke particulates from conventional cigarettes or vapor from different flavors of e-cigarettes dispersed in the subphase. Surfactant interfacial properties were measured in real-time upon surface compression while surfactant lateral structure after exposure to smoke or vapor was examined using atomic force microscopy (AFM). E-cigarette vapor regardless of the dose and flavoring of the e-liquid did not affect surfactant interfacial properties. In contrast, smoke from conventional cigarettes had a drastic, dose-dependent effect on Infasurf ® interfacial properties reducing the maximum surface pressure from 65.1 ± 0.2 mN/m to 46.1 ± 1.3 mN/m at the highest dose. Cigarette smoke and e-cigarette vapor both altered surfactant microstructure resulting in an increase in the area of lipid multilayers. Studies with individual smoke components revealed that tar was the smoke component most disruptive to surfactant function. While both e-cigarette vapor and conventional cigarette smoke affect surfactant lateral structure

  6. Oral declines and mastication deficiencies cause alteration of food bolus properties.

    Science.gov (United States)

    Peyron, M-A; Santé-Lhoutellier, V; François, O; Hennequin, M

    2018-02-21

    In the elderly, masticatory function often presents failure in certain oral tasks due to impairment such as decline in muscular force, jaw or tongue motility, neuro-muscular coordination, tooth damage, malocclusion and saliva production. Great disparity is observed in the various and potentially cumulative oral declines that occur with ageing. Such difficulties may have an impact on food consumption and nutritional status. To obtain better understanding of the consequences of several oral deficiencies, a series of swallowable boluses were prepared in vitro with the AM 2 masticator apparatus with normal and deficient programming. Physiological normal mastication (NM) was simulated using in vivo data from healthy subjects. Chewing deficiencies were reproduced by alteration of NM programming to perform different levels and combinations of force loss, lack of saliva and decrease in the motility of oral elements. Poultry meatballs were used as test-food. Particle size distribution in the food bolus was measured by sieving and rheological features (hardness, cohesiveness and elasticity) were assessed with a TPA test. Compared to the NM outcome, significant and gradual deterioration of the food bolus was observed and associated with alteration in force, saliva and motility. Combinations of several failures led to greater or cumulative deficiencies in swallowable bolus properties. For the elderly presenting a high prevalence of various oral injuries, tailoring textured food cannot be ignored as a solution for remedying deficiencies and favoring the formation of a safe-swallowable bolus, which is an essential vector of nutrients. Knowing the impacts of oral injuries on the food bolus is obviously a requisite for developing diet strategies, including nutritional items for specific populations.

  7. Study of the confined solutions properties: case of gel formed during nuclear glass alteration

    International Nuclear Information System (INIS)

    Matar-Briman, I.

    2012-01-01

    In this study, we have investigated the thermodynamic properties, the structure and the dynamics of confined solutions in model gels and in a gel coming from glass alteration. The first step was to determine the structure and the dynamics of pure confined water in porous materials by using nuclear magnetic resonance and neutron scattering. Meso-porous silica was elaborated and grafted by sol-gel route to decrease the pore sizes from 2.7 to 2 nm and to modify pore surfaces to have Si-OH, Zr-OH and Al-OH. The second step involved determining the dynamics of water in leachate confined in the model gels and in the gel of altered glass by using neutron scattering. In the model gels and at a 10 -12 -10 -9 second timescale, two kinds of waters were highlighted: first, an interfacial water linked to the pore surfaces and second, a free water in the pore core. Their ratio depends on the pore size and pore surface composition. Whatever the pore surface, when the pore size decreases the free water ratio in the pore center also decreases. For pores smaller than 2.3 nm and pore surfaces with Zr-OH or Al-OH surfaces, water is strongly linked to the surface and few water molecules are mobile. This is due to the ability of alumina and zirconia to immobilize water molecules through chemical coordination bonds stronger than the physical bonds established between silica and water. The result also highlight that pore surface composition could be the predominant parameter affecting the fixed proton content. Moreover, the mobility of water confined in a leachate is not modified. The study of the water dynamics in a gel formed during alteration of glass constituted of SiO 2 , Al 2 O 3 and CaO, and having a porosity between 2 and 7 nm showed the same behavior as water confined in pores presenting an Al-OH surface. (author) [fr

  8. Functional properties of butter oil made from bovine milk with experimentally altered fat composition.

    Science.gov (United States)

    Ortiz-Gonzalez, G; Jimenez-Flores, R; Bremmer, D R; Clark, J H; DePeters, E J; Schmidt, S J; Drackley, J K

    2007-11-01

    Modification of milk fat composition might be desirable to alter manufacturing characteristics or produce low saturated fat dairy products that more closely meet consumer dietary preferences. The aim of this research was to evaluate functional properties of butter oil obtained from milks with fat composition modified by altering the profile of long-chain fatty acids (FA) absorbed from the small intestine of cows. A control and 5 mixtures of long-chain free FA were infused into the abomasum of lactating dairy cows in a 6 x 6 Latin square design with 21-d periods. Treatments were 1) control (no FA infused), 2) mostly saturated FA (C16:C18 = 0.72), 3) low-linoleic palm FA (C16:C18 = 0.85), 4) palm FA (C16:C18 = 0.72), 5) soy FA (C16:C18 = 0.10), and 6) high-palmitic soy FA (C16:C18 = 0.68). All treatments included meat solubles and Tween 80 as emulsifiers. Solid fat content (from 0 to 40 degrees C), melting point, and force at fracture were determined in butter oil. Milk fat from cows infused with palm FA (treatment 4) exhibited functionality equal to or better than control butter oil. Infusion with palm FA increased amounts of triglyceride (TG) fractions with 48, 52, and 54 carbon numbers but decreased TG with 32, 34, 36, and 42 carbon numbers. Infusion with soy FA increased TG with 26, 38, 40, 52, and 54 carbon numbers but decreased TG with 34, 42, and 46 carbons. Infusion of the mostly saturated FA increased TG with 38, 50, 52, and 54 carbon numbers but decreased TG with 32, 34, and 42 carbon numbers. These TG groups were consistently correlated with functional properties of butter oils from different treatments. The content of palmitic acid is important for maintaining functionality in the presence of increased polyunsaturated FA. The composition of milk fat may be able to be optimized through nutritional manipulation of diets for dairy cows if the optimal composition of FA and TG is defined for a particular dairy product.

  9. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons

    Directory of Open Access Journals (Sweden)

    Rosenthal LM

    2017-05-01

    Full Text Available Lisa-Maria Rosenthal,1 Giang Tong,1 Christoph Walker,1 Sylvia J Wowro,1 Jana Krech,1 Constanze Pfitzer,1,2 Georgia Justus,1 Felix Berger,1,3 Katharina Rose Luise Schmitt1 1Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, 2Berlin Institute of Health (BIH, 3Department of Pediatric Cardiology, Charité – University Medical Center, Berlin, Germany Objective: Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global protein synthesis is attenuated by hypothermia, but a small group of RNA-binding proteins including the RNA-binding motif 3 (RBM3 is upregulated in response to cooling. The aim of this study was to establish an in vitro model to investigate the effects of hypoxia and hypothermia on neuronal cell survival, as well as to examine the kinetics of concurrent cold-shock protein RBM3 gene expression. Methods: Experiments were performed by using human SK-N-SH neurons exposed to different oxygen concentrations (21%, 8%, or 0.2% O2 for 24 hours followed by moderate hypothermia (33.5°C or normothermia for 24, 48, or 72 hours. Cell death was determined by quantification of lactate dehydrogenase and neuron-specific enolase releases into the cell cultured medium, and cell morphology was assessed by using immunofluorescence staining. The regulation of RBM3 gene expression was assessed by reverse transcriptase-quantitative polymerase chain reaction and Western blot analysis.Results: Exposure to hypoxia (0.2% O2 for 24 hours resulted in significantly increased cell death in SK-N-SH neurons, whereas exposure to 8% O2 had no significant impact on cell viability. Post-hypoxia treatment with

  10. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    International Nuclear Information System (INIS)

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus, ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37 0 C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl 2 , and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and [U- 14 C] nicotinaide adenine dinucleotide ([ 14 C]NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of [ 14 C] ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film

  11. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  12. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  13. Altered immunomodulating and toxicological properties of degraded Quillaja saponaria Molina saponins.

    Science.gov (United States)

    Marciani, D J; Pathak, A K; Reynolds, R C; Seitz, L; May, R D

    2001-04-01

    Quillaja saponins are readily hydrolyzed under physiological conditions, yielding deacylated forms that are significantly less toxic than their precursors. Yet, deacylated saponins are unable to stimulate a strong primary immune response. Although deacylated saponins elicit a strong total IgG response, their capacity to stimulate a Thl type IgG isotype profile (i.e. high levels of IgG2a and IgG2b) has been significantly diminished. Instead, an IgG profile closer to that of a Th2 immune response is stimulated (i.e. high IgG1 levels). Deacylated saponins have also lost their capacity to elicit an effective T cell immunity, as shown by their stimulation of a marginal lymphoproliferative response and their inability to elicit the production of cytotoxic lymphocytes (CTL). Modification of the immune-modulating properties brought by the degradation of quillaja saponins during vaccine storage may change the intended immune response from a Th1 to a Th2 type. This alteration would have negligible effects on vaccines depending on Th2 immunity mediated by neutralizing antibodies. However, the performance of vaccines directed against intracellular pathogens as well as therapeutic cancer vaccines may be seriously affected by the loss of their capacity to stimulate both a Th1 immune response and the production of CTL.

  14. Properties of altered soils by alkaline solution: contribution in the performance evaluation of repositories

    International Nuclear Information System (INIS)

    Calabria, Jaqueline Alves de Almeida

    2015-01-01

    The radioactive wastes from nuclear technology applications must be properly disposed in a repository, during the necessary time to ensure the human and the environment protection. The surface systems are largely considered for disposal of low and intermediate level radioactive waste, but generally require the use of engineering barriers to control the radionuclides release. An important engineering barrier is the backfill which is situated between the package and structural material, and has the functions of reducing the water infiltration and to promote the retardation of the radionuclide migration, among others. Therefore, the material to be used as backfill such as clays, cement, soils, rocks, must has good sorption, permeability and mechanical properties. The selection of the material will depend also largely on the material availability and installation design. The concrete is also used in the construction of repository, and its interaction with water induces its degradation, resulting in a high pH solution. This solution interacts with the backfilling materials promoting mineralogical alterations that results in significant changes in their key properties and performance as safety component of the repository. In this work, five Brazilian soils of Minas Gerais state, selected according to their generic characteristics along with information from Sistema Brasileiro de Classificacao de Solos (SiBCS) were investigated concerning their potential use as backfilling material in a superficial repository by the determination of retention capacity for cesium and iodine. Sorption-related parameters, used in the performance assessment of the soils, were obtained from experimental data fitting to different sorption isotherms models. The soil that showed the best sorption of Cs, was a clay soil that presented distribution coefficient (K d ) of 90.5 mL.g -1 and maximum sorption capacity (Q max ) of 18.372 mg.g -1 . Regarding the iodine, the sorption was very low for all

  15. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi.

    Science.gov (United States)

    Pérez-Díaz, Leticia; Silva, Tais Caroline; Teixeira, Santuza M R

    2017-01-01

    Amastins are surface glycoproteins, first identified in amastigotes of T. cruzi but later found to be expressed in several Leishmania species, as well as in T. cruzi epimastigotes. Amastins are encoded by a diverse gene family that can be grouped into four subfamilies named α, β, γ, and δ amastins. Differential expression of amastin genes results from regulatory mechanisms involving changes in mRNA stability and/or translational control. Although distinct regulatory elements were identified in the 3' UTR of T. cruzi and Leishmania amastin mRNAs, RNA binding proteins involved with amastin gene regulation have only being characterized in L. infantum where an Alba-domain protein (LiAlba20) able to bind to the 3' UTR of a δ-amastin mRNA was identified. Here we investigated the role of TcAlba30, the LiAlba20 homologue in T. cruzi, in the post transcriptional regulation of amastin genes. TcAlba30 transcripts are present in all stages of the T. cruzi life cycle. RNA immunoprecipitation assays using a transfected cell line expressing a cMyc tagged TcAlba30 revealed that TcAlba30 can interact with β-amastin mRNA. In addition, over-expression of TcAlba30 in epimastigotes resulted in 50% decreased levels of β-amastin mRNAs compared to wild type parasites. Since luciferase assays indicated the presence of regulatory elements in the 3' UTR of β-amastin mRNA and reduced levels of luciferase mRNA were found in parasites over expressing TcAlba30, we conclude that TcAlba30 acts as a T. cruzi RNA binding protein involved in the negative control of β-amastin expression through interactions with its 3'UTR. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons.

    Science.gov (United States)

    Fallini, Claudia; Rouanet, Jeremy P; Donlin-Asp, Paul G; Guo, Peng; Zhang, Honglai; Singer, Robert H; Rossoll, Wilfried; Bassell, Gary J

    2014-03-01

    Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1. Copyright © 2013 Wiley Periodicals, Inc.

  17. PTEN expression is upregulated by a RNA-binding protein RBM38 via enhancing its mRNA stability in breast cancer.

    Science.gov (United States)

    Zhou, Xu-Jie; Wu, Jing; Shi, Liang; Li, Xiao-Xia; Zhu, Lei; Sun, Xi; Qian, Jia-Yi; Wang, Ying; Wei, Ji-Fu; Ding, Qiang

    2017-10-19

    PTEN (phosphatase and tensin homolog gene on chromosome 10), a well-characterized tumor suppressor, is a key regulator of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway involved in cell survival, metastasis and cell renewal. PTEN expression is closely related to the phenotype, prognosis and drug selection in breast cancer. It is mainly regulated by transcriptional and post-transcriptional modifications. RNA binding motif protein 38 (RBM38), an RNA-binding protein (RBP) and a target of P53 family, plays a crucial role in the regulation of cellular processing, especially in post-transcription regulation and gene transcription. In this study, we investigated a new post-transcription regulation mechanism of PTEN expression by RBM38 in breast cancer. Immunohistochemistry, lentivirus transfections, Western blotting analysis, qRT-PCR and ELISA were used to conduct the relation between RBM38 and PTEN. RNA immunoprecipitation, RNA electrophoretic mobility shift and dual-luciferase reporter assays were employed to identify the direct binding sites of RBM38 with PTEN transcript. Colony formation assay was conducted to confirm the function of PTEN in RBM38-induced growth suppression. PTEN expression was positively associated with the expression of RBM38 in breast cancer tissues and breast cancer cells. Moreover, RBM38 stabilized PTEN transcript to enhance PTEN expression via binding to multiple AU/U- rich elements (AREs) in 3'-untranslated region (3'-UTR) of PTEN transcript. Additionally, specific inhibitors of PTEN activity and small interfering (siRNA) of PTEN expression inhibited RBM38-mediated suppression of proliferation, which implied that RBM38 acted as a tumor suppressor partly by enhancing PTEN expression. The present study revealed a new PTEN regulating mechanism that PTEN was positively regulated by RBM38 via stabilizing its transcript stability, which in turn alleviated RBM38-mediated growth suppression.

  18. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    Science.gov (United States)

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A polymerase in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Marisol Pezet-Valdez

    Full Text Available In eukaryotes, polyadenylation of pre-mRNA 3' end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25 from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25 was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A polymerase (EhPAP that is responsible for the synthesis of the poly(A tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A polymerase, another member of the pre-mRNA 3' end processing machinery in this protozoan parasite.

  20. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

    Science.gov (United States)

    Chan, Chi-Ping; Yuen, Chun-Kit; Cheung, Pak-Hin Hinson; Fung, Sin-Yee; Lui, Pak-Yin; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2018-03-07

    PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-β by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

  1. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075 (Japan); Ogawa, Masahiro [Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yanai, Hideyuki [Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075 (Japan); Naka, Daiji [ZOEGENE Corp., 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033 (Japan); Goto, Ayana; Ao, Tomoka [Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanno, Yuji [Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Takeda, Kiyoshi [Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Watanabe, Yoshinori [Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Honda, Kenya [Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Taniguchi, Tadatsugu, E-mail: tada@m.u-tokyo.ac.jp [Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2011-07-22

    Highlights: {yields} We identified RNA-binding motif protein 3 (RBM3) as CpG-B DNA-binding protein. {yields} RBM3 translocates from the nucleus to the cytoplasm and co-localized with CpG-B DNA. {yields} We newly generated Rbm3-deficient (Rbm3{sup -/-}) mice. {yields} DNA-mediated cytokine gene induction was normally occured in Rbm3{sup -/-} cells. {yields}Rbm3{sup -/-} MEFs showed poorer proliferation rate and increased number of G2-phase cells. -- Abstract: The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3{sup -/-}) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3{sup -/-} mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3{sup -/-} mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3{sup -/-} MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.

  2. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger.

    Science.gov (United States)

    Siddiqui; Saqib; Rashid; Rajoka

    2000-10-01

    of active site residues with concomitant alteration in kinetic and thermodynamic properties of the modified CMCases.

  3. Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy.

    Science.gov (United States)

    Kruse, Annika; Schranz, Christian; Svehlik, Martin; Tilp, Markus

    2017-12-01

    Recent ultrasound studies found increased passive muscle stiffness and no difference in tendon stiffness in highly impaired children and young adults with cerebral palsy. However, it is not known if muscle and tendon mechanical properties are already altered in highly functional children with cerebral palsy. Therefore, the purpose of this study was to compare the mechanical and material properties of the plantar flexors in highly functional children with cerebral palsy and typically developing children. Besides strength measurements, ultrasonography was used to assess gastrocnemius medialis and Achilles tendon elongation and stiffness, Achilles tendon stress, strain, and Young's modulus in twelve children with cerebral palsy (GMFCS levels I and II) and twelve typically developing peers during passive dorsiflexion rotations as well as maximum voluntary contractions. Despite no difference in ankle joint stiffness (P>0.05) between groups, passive but not active Achilles tendon stiffness was significantly decreased (-39%) and a tendency of increased passive muscle stiffness was observed even in highly functional children with cerebral palsy. However, material properties of the tendon were not altered. Maximum voluntary contraction showed reduced plantar flexor strength (-48%) in the cerebral palsy group. Even in children with mild spastic cerebral palsy, muscle and tendon mechanical properties are altered. However, it appears that the Achilles tendon stiffness is different only when low forces act on the tendon during passive movements. Although maximum voluntary force is already decreased, forces acting on the Achilles tendon during activity appear to be sufficient to maintain typical material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes

    Directory of Open Access Journals (Sweden)

    Yusuke S. Kato

    2017-12-01

    Full Text Available The influenza A virus, which has an RNA genome, requires RNA-dependent RNA polymerase for transcription and replication. The polymerase is comprised of the subunits PA, PB1, and PB2. The C-terminal RNA-binding domain in PB2 contains lysine 627 (PB2 627, which is associated with pathogenicity and host range. However, the structure and molecular mechanism of PB2 627 in solution remain obscure. Here, we investigated PB2 627 in solution by nuclear magnetic resonance (NMR and detected inhomogeneity in the intensities of backbone amide proton signals due to local fluctuations in structure. To characterize the effects of chemical chaperones on spectral data and improve the data quality, we tested 20 different additives, including L-arginine L-glutamate salt, (L-arginine2SO4, glycerol, β-octylglucoside, 3-[(3-cholamidopropyl dimethylammonio]-1-propanesulfonate, Na2SO4, 1,5-diaminopentane, 1,4-diaminobutane, trehalose, sucrose, glycine, trimethylamine N-oxide, β-alanine, L-α-alanine, hydroxyectoine, betaine, L-proline, and non-detergent sulfobetaine 195, 201, and 256. We evaluated the quality of the resulting spectra by calculating the standard deviation and average of the ratio of signal intensities to noise level of amide peaks, as well as the ratio of the standard deviation to the average. NMR-profile analysis revealed diverse effects of additives on the dynamic properties of PB2 627. Based on such criteria, we found that small osmolytes such as glycine and L-α-alanine reduced structural fluctuations and improved the quality of spectral data, which is likely to facilitate a detailed NMR-based structural analysis. The methodology developed here may also be more generally useful for evaluating the effects of chemical chaperones on the structural integrity of proteins.

  5. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  6. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  7. Alteration of the superconducting properties of A15 compounds and elementary composite superconductors by non-hydrostatic elastic strain

    International Nuclear Information System (INIS)

    Welch, D.O.

    1979-01-01

    Elastic strains alter (usually, but not always, adversely) the critical temperatures, magnetic fields, and current densities of superconducting A15 compounds; non-hydrostatic strain states are particularly effective in this regard. This paper is a review of the experimental evidence, obtained by a variety of techniques, concerning the strain dependence of the critical properties of a number of A15 compounds and a discussion of theoretical models for describing such effects

  8. Characterization of the Expression of the RNA Binding Protein eIF4G1 and Its Clinicopathological Correlation with Serous Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Ovarian cancer is the most lethal type of malignant tumor in gynecological cancers and is associated with a high percentage of late diagnosis and chemotherapy resistance. Thus, it is urgent to identify a tumor marker or a molecular target that allows early detection and effective treatment. RNA-binding proteins (RBPs are crucial in various cellular processes at the post-transcriptional level. The eukaryotic translation initiation factor 4 gamma, 1(eIF4G1, an RNA-binding protein, facilitates the recruitment of mRNA to the ribosome, which is a rate-limiting step during the initiation phase of protein synthesis. However, little is known regarding the characteristics of eIF4G1 expression and its clinical significance in ovarian cancer. Therefore, we propose to investigate the expression and clinicopathological significance of eIF4G1 in ovarian cancer patients.We performed Real-time PCR in 40 fresh serous ovarian cancer tissues and 27 normal ovarian surface epithelial cell specimens to assess eIF4G1mRNA expression. Immunohistochemistry (IHC was used to examine the expression of eIF4G1 at the protein level in 134 patients with serous ovarian cancer and 18 normal ovarian tissues. Statistical analysis was conducted to determine the correlation of the eIF4G1 protein levels with the clinicopathological characteristics and prognosis in ovarian cancer.The expression of eIF4G1 was upregulated in serous ovarian cancer tissues at both the mRNA (P = 0.0375 and the protein (P = 0.0007 levels. The eIF4G1 expression was significantly correlated with the clinical tumor stage (P = 0.0004 and omentum metastasis (P = 0.024. Moreover, patients with low eIF4G1 protein expression had a longer overall survival time (P = 0.026.These data revealed that eIF4G1 is markedly expressed in serous ovarian cancer and that upregulation of the eIF4G1 protein expression is significantly associated with an advanced tumor stage. Besides, the patients with lower expression of eIF4G1 tend

  9. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hidehito Kuroyanagi

    Full Text Available An enormous number of alternative pre-mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a-4c and 7a-7b, of the Caenorhabditis elegans uncoordinated (unc-32 gene, encoding the a subunit of V0 complex of vacuolar-type H(+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA-binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA-binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive

  10. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    Energy Technology Data Exchange (ETDEWEB)

    Metrick, Claire M.; Heldwein, Ekaterina E. (Tufts-MED)

    2016-04-06

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed four regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function.

    IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire

  11. A Novel Antiviral Target Structure Involved in the RNA Binding, Dimerization, and Nuclear Export Functions of the Influenza A Virus Nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Michinori Kakisaka

    2015-07-01

    Full Text Available Developing antiviral therapies for influenza A virus (IAV infection is an ongoing process because of the rapid rate of antigenic mutation and the emergence of drug-resistant viruses. The ideal strategy is to develop drugs that target well-conserved, functionally restricted, and unique surface structures without affecting host cell function. We recently identified the antiviral compound, RK424, by screening a library of 50,000 compounds using cell-based infection assays. RK424 showed potent antiviral activity against many different subtypes of IAV in vitro and partially protected mice from a lethal dose of A/WSN/1933 (H1N1 virus in vivo. Here, we show that RK424 inhibits viral ribonucleoprotein complex (vRNP activity, causing the viral nucleoprotein (NP to accumulate in the cell nucleus. In silico docking analysis revealed that RK424 bound to a small pocket in the viral NP. This pocket was surrounded by three functionally important domains: the RNA binding groove, the NP dimer interface, and nuclear export signal (NES 3, indicating that it may be involved in the RNA binding, oligomerization, and nuclear export functions of NP. The accuracy of this binding model was confirmed in a NP-RK424 binding assay incorporating photo-cross-linked RK424 affinity beads and in a plaque assay evaluating the structure-activity relationship of RK424. Surface plasmon resonance (SPR and pull-down assays showed that RK424 inhibited both the NP-RNA and NP-NP interactions, whereas size exclusion chromatography showed that RK424 disrupted viral RNA-induced NP oligomerization. In addition, in vitro nuclear export assays confirmed that RK424 inhibited nuclear export of NP. The amino acid residues comprising the NP pocket play a crucial role in viral replication and are highly conserved in more than 7,000 NP sequences from avian, human, and swine influenza viruses. Furthermore, we found that the NP pocket has a surface structure different from that of the pocket in host

  12. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    Science.gov (United States)

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC.

    Directory of Open Access Journals (Sweden)

    Mrinmoyee Majumder

    2016-09-01

    Full Text Available RNA-binding proteins (RBP regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1, plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4 RNA structure within both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1 and the non-coding RNA Telomerase RNA Component (TERC, and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells.

  14. The Conserved, Disease-Associated RNA Binding Protein dNab2 Interacts with the Fragile X Protein Ortholog in Drosophila Neurons

    Directory of Open Access Journals (Sweden)

    Rick S. Bienkowski

    2017-08-01

    Full Text Available The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A RNA binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here, we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with the fragile X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory, and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII, but not futsch, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A tail length, similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. Altogether, these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14.

  15. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Science.gov (United States)

    Mitobe, Jiro; Sinha, Ritam; Mitra, Soma; Nag, Dhrubajyoti; Saito, Noriko; Shimuta, Ken; Koizumi, Nobuo; Koley, Hemanta

    2017-07-01

    Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  16. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site.

    Science.gov (United States)

    Nevskaya, N; Tishchenko, S; Nikulin, A; al-Karadaghi, S; Liljas, A; Ehresmann, B; Ehresmann, C; Garber, M; Nikonov, S

    1998-05-29

    S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.

  17. Insulin-like growth factor II messenger RNA-binding protein-3 is an indicator of malignant phyllodes tumor of the breast.

    Science.gov (United States)

    Takizawa, Katsumi; Yamamoto, Hidetaka; Taguchi, Kenichi; Ohno, Shinji; Tokunaga, Eriko; Yamashita, Nami; Kubo, Makoto; Nakamura, Masafumi; Oda, Yoshinao

    2016-09-01

    The aim of this study was to elucidate the clinicopathological and prognostic significance of the expressions of insulin-like growth factor II mRNA-binding protein-3 (IMP3) and epidermal growth factor receptor (EGFR) in phyllodes tumors (PTs). Immunohistochemical staining for IMP3 and EGFR was performed in 130 cases of primary PTs (83 benign, 28 borderline, 19 malignant), 34 recurrent/metastatic PTs, and 26 fibroadenomas (FAs). Among the primary tumors, a high expression of IMP3 was significantly more frequently present in malignant PTs (17/19, 89%) than in the FAs (0/26, 0%), benign PTs (0/83, 0%) and borderline PTs (3/28, 11%). The recurrent and metastatic lesions of malignant PTs also showed high IMP3 expression (3/5 [60%] and 6/6 [100%], respectively). Most malignant PTs showed strong IMP3 expression at the interductal area or more diffusely, whereas weak and focal (low) expression of IMP3 was limited to the periductal area in FAs and benign PTs. EGFR overexpression was significantly correlated with tumor grade and high IMP3 expression. Overexpressions of IMP3 and EGFR were significantly associated with shorter periods of metastasis-free and disease-free survival. The results suggest that high expressions of IMP3 and EGFR with a characteristic staining pattern may be helpful for both identifying malignant PT and predicting the prognosis of these tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1

    Science.gov (United States)

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz

    2017-01-01

    Abstract WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid–nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. PMID:28338757

  19. Ultrafast haplotyping of putative microRNA-binding sites in the WFS1 gene by multiplex polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Kerékgyártó, Márta; Németh, Nóra; Kerekes, Tamás; Rónai, Zsolt; Guttman, András

    2013-04-19

    The transmembrane protein wolframin (WSF1) plays a crucial role in cell integrity in pancreatic beta cells and maintaining ER homeostasis. Genetic variations in the WFS1 gene have been described to be associated with Wolfram syndrome or type 2 diabetes mellitus. In this paper we report on an efficient double-tube allele-specific amplification method in conjunction with ultrafast capillary gel electrophoresis for direct haplotyping analysis of the SNPs in two important miRNA-binding sites (rs1046322 and rs9457) in the WFS1 gene. An automated single-channel capillary gel electrophoresis system was utilized in the method that provided dsDNA fragment analysis in less than 240 s. The light-emitting diode induced fluorescence (LEDIF) detection system enabled excellent sensitivity for automated haplotyping of a large number of clinical samples. The detection limit was 0.002 ng/μL using field amplified injection from water diluted samples. The dynamic quantitation range was 0.08-10.00 ng/μL (R(2)=0.9997) in buffer diluted samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Characterization of the mouse Dazap1 gene encoding an RNA-binding protein that interacts with infertility factors DAZ and DAZL

    Directory of Open Access Journals (Sweden)

    Salido Eduardo C

    2001-09-01

    Full Text Available Abstract Background DAZAP1 (DAZ Associated Protein 1 was originally identified by a yeast two-hybrid system through its interaction with a putative male infertility factor, DAZ (Deleted in Azoospermia. In vitro, DAZAP1 interacts with both the Y chromosome-encoded DAZ and an autosome-encoded DAZ-like protein, DAZL. DAZAP1 contains two RNA-binding domains (RBDs and a proline-rich C-terminal portion, and is expressed most abundantly in the testis. To understand the biological function of DAZAP1 and the significance of its interaction with DAZ and DAZL, we isolated and characterized the mouse Dazap1 gene, and studied its expression and the subcellular localization of its protein product. Results The human and mouse genes have similar genomic structures and map to syntenic chromosomal regions. The mouse and human DAZAP1 proteins share 98% identity and their sequences are highly similar to the Xenopus orthologue Prrp, especially in the RBDs. Dazap1 is expressed throughout testis development. Western blot detects a single 45 kD DAZAP1 protein that is most abundant in the testis. Although a majority of DAZAP1 is present in the cytoplasmic fraction, they are not associated with polyribosomes. Conclusions DAZAP1 is evolutionarily highly conserved. Its predominant expression in testes suggests a role in spermatogenesis. Its subcellular localization indicates that it is not directly involved in mRNA translation.

  1. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis.

    Science.gov (United States)

    Frei dit Frey, Nicolas; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe

    2010-05-01

    Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.

  2. Local helix content and RNA-binding activity of the N-terminal leucine-repeat region of hepatitis delta antigen

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Jyawei; Lin Ijin; Lou Yuanchou; Pai Mingtao [National Tsing Hua University, Department of Life Science (China); Wu Hueynan [Academia Sinica, Institute of Molecular Biology (China)

    1998-07-15

    Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. Our results show that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg), encompassing residues 24-50, binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. The solution conformation of a synthetic peptide corresponding to residues 24-50 of HDAg as determined by two-dimensional {sup 1}H NMR and circular dichroism techniques is found to be an {alpha}-helix. The local helix content of this peptide was analyzed by NOEs and coupling constants. Mutagenesis studies indicate that Lys{sup 38}, Lys{sup 39}, and Lys{sup 40} within this {alpha}-helical peptide may be directly involved in RNA binding. A structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for understanding its role in the interaction with RNA.

  3. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    Science.gov (United States)

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  4. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    Science.gov (United States)

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Yang, Jianyi; Peng, Zhenling; Uversky, Vladimir N; Kurgan, Lukasz

    2015-09-14

    We provide first large scale analysis of the peculiarities of surface areas of 5658 dissimilar (below 50% sequence similarity) proteins with known 3D-structures that bind to proteins, DNA or RNAs. We show here that area of the protein surface is highly correlated with the protein length. The size of the interface surface is only modestly correlated with the protein size, except for RNA-binding proteins where larger proteins are characterized by larger interfaces. Disordered proteins with disordered interfaces are characterized by significantly larger per-residue areas of their surfaces and interfaces when compared to the structured proteins. These result are applicable for proteins involved in interaction with DNA, RNA, and proteins and suggest that disordered proteins and binding regions are less compact and more likely to assume extended shape. We demonstrate that disordered protein binding residues in the interfaces of disordered proteins drive the increase in the per residue area of these interfaces. Our results can be used to predict in silico whether a given protomer from the DNA, RNA or protein complex is likely to be disordered in its unbound form. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein

    Directory of Open Access Journals (Sweden)

    Baptiste Monsion

    2018-02-01

    Full Text Available Double-stranded RNA (dsRNA plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.

  7. Cold stress and light signals induce the expression of cold-inducible RNA binding protein (cirp) in the brain and eye of the Japanese treefrog (Hyla japonica).

    Science.gov (United States)

    Sugimoto, Kenkichi; Jiang, Huijie

    2008-12-01

    Hibernation is an important physiological animal behavior. However, the molecular mechanism by which hibernation is regulated remains unknown. The Japanese treefrog (Hyla japonica) usually hibernates in the winter. Since this treefrog is an ectothermic animal, its hibernation is thought to be linked to the environmental temperature. In murine cells, gene expression for the cold-inducible RNA binding protein (cirp) is induced simply by cold stress. Therefore, it was hypothesized that the treefrog would also have increased expression of cirp during the hibernation season. In this report, we describe the cloning of the treefrog cirp gene and a quantitative analysis of its expression with real-time PCR. Like its homologs, treefrog cirp was found to be expressed in response to a cold stress, and its transcript was detectable in the brain, eye and ovary. Furthermore, we found that light signals could also induce the expression of cirp, and the total amount of cirp expression in both the brain and eye was significantly higher in December than in July. These results suggest that the expression of cirp in this treefrog is physiologically induced by environmental factors, such as cold stress or light signals.

  8. Chemical and mechanical properties of wellbore cement altered by CO₂-rich brine using a multianalytical approach.

    Science.gov (United States)

    Mason, Harris E; Du Frane, Wyatt L; Walsh, Stuart D C; Dai, Zurong; Charnvanichborikarn, Supakit; Carroll, Susan A

    2013-02-05

    Defining chemical and mechanical alteration of wellbore cement by CO(2)-rich brines is important for predicting the long-term integrity of wellbores in geologic CO(2) environments. We reacted CO(2)-rich brines along a cement-caprock boundary at 60 °C and pCO(2) = 3 MPa using flow-through experiments. The results show that distinct reaction zones form in response to reactions with the brine over the 8-day experiment. Detailed characterization of the crystalline and amorphous phases, and the solution chemistry show that the zones can be modeled as preferential portlandite dissolution in the depleted layer, concurrent calcium silicate hydrate (CSH) alteration to an amorphous zeolite and Ca-carbonate precipitation in the carbonate layer, and carbonate dissolution in the amorphous layer. Chemical reaction altered the mechanical properties of the core lowering the average Young's moduli in the depleted, carbonate, and amorphous layers to approximately 75, 64, and 34% of the unaltered cement, respectively. The decreased elastic modulus of the altered cement reflects an increase in pore space through mineral dissolution and different moduli of the reaction products.

  9. Seismic properties of rocks affected by hydrothermal alteration: a case study from the Lalor Lake VMS mining camp

    Science.gov (United States)

    Miah, K.; Bellefleur, G.; Schetselaar, E.

    2013-12-01

    Global demand of base metals, uranium, diamonds, and precious metals has been pushing technological barrier to find and extract minerals at higher depth, which was not feasible in just a few decades ago. Seismic properties of rocks containing and surrounding ore bodies have been useful in characterizing and modeling geologic structures, and mapping high-resolution images of ore bodies. Although seismic surveys and drill hole sonic and density logs are essential for mineral exploration at depth, limited availability of seismic logs to link rock properties of different ore forming geologic structure is a hindrance to seismic interpretations. Volcanogenic Massive Sulphides (VMS) are rich in minerals and of primary interests among geologists and mining industries alike. VMS deposits occur due to focused discharge of metal-enriched fluids associated in the hydrothermal alteration process, and are rich in Zn, Cu, Pb, Ag, Au, etc. Alteration halos surrounding ore deposits can be widespread, and their locations are easier to determine than the deposits within them. Physical rock properties affected by alteration can provide clues on type and potentially size of ore deposits in the surrounding area. In this context, variations in seismic properties of rocks due to hydrothermal alteration near the deposits can help in improving modeling accuracy, and better interpretation of seismic data for economic mineral exploration. While reflection seismic techniques can resolve ore bodies at higher depths than other conventional geophysical techniques, they are relatively expensive both in terms of field data acquisition and post-processing, especially for high-resolution 3D surveys. Acoustic impedance contrasts of ore lenses with their hosting rock environment; geometry, size and spatial location relative to the surface affect their detection with seismic data. Therefore, apriori knowledge of seismic rock properties from drill hole logs and core samples in the potential survey area

  10. RNA Binding Protein RBM38 Regulates Expression of the 11-kDa Protein of Parvovirus B19 which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-02-07

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa, and 11-kDa). Splicing at the second 5' donor site (D2) of the B19V pre-mRNA is essential for the expression of VP2 and 11-kDa. We have previously identified that a cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for expression of the 11-kDa viral non-structural protein. We found that ISE2 harbors a consensus RNA-binding motif protein 38 (RBM38) binding sequence-5' -UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that the RBM38 binds specifically with the ISE2 element in vitro. Knockdown of RBM38 significantly decreases the level of the spliced mRNA at D2 that encodes 11-kDa protein and, thereafter, expression of the 11-kDa protein, but not the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, knockdown of RBM38 decreases virus replication via downregulating 11-kDa expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication, and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immune compromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V to erythroid lineage cells is not only dependent on the expression of viral

  11. Autotaxin Expression Is Regulated at the Post-transcriptional Level by the RNA-binding Proteins HuR and AUF1*

    Science.gov (United States)

    Sun, Shuhong; Zhang, Xiaotian; Lyu, Lin; Li, Xixi; Yao, Siliang; Zhang, Junjie

    2016-01-01

    Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a lysophospholipid mediator that regulates cellular activities through its specific G protein-coupled receptors. The ATX-LPA axis plays an important role in various physiological and pathological processes, especially in inflammation and cancer development. Although the transcriptional regulation of ATX has been widely studied, the post-transcriptional regulation of ATX is largely unknown. In this study, we identified conserved adenylate-uridylate (AU)-rich elements in the ATX mRNA 3′-untranslated region (3′UTR). The RNA-binding proteins HuR and AUF1 directly bound to the ATX mRNA 3′UTR and had antagonistic functions in ATX expression. HuR enhanced ATX expression by increasing ATX mRNA stability, whereas AUF1 suppressed ATX expression by promoting ATX mRNA decay. HuR and AUF1 were involved in ATX regulation in Colo320 human colon cancer cells and the LPS-stimulated human monocytic THP-1 cells. HuR knockdown suppressed ATX expression in B16 mouse melanoma cells, leading to inhibition of cell migration. This effect was reversed by AUF1 knockdown to recover ATX expression or by the addition of LPA. These results suggest that the post-transcriptional regulation of ATX expression by HuR and AUF1 modulates cancer cell migration. In summary, we identified HuR and AUF1 as novel post-transcriptional regulators of ATX expression, thereby elucidating a novel mechanism regulating the ATX-LPA axis. PMID:27784781

  12. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.

    Science.gov (United States)

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated ( p = 0.04). Patients with higher Dnd1 expression level had longer overall survival ( p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  13. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Directory of Open Access Journals (Sweden)

    Jiro Mitobe

    2017-07-01

    Full Text Available Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  14. Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA.

    Science.gov (United States)

    Murray, Rebecca D; Merchant, Michael L; Hardin, Ericka; Clark, Barbara; Khundmiri, Syed J; Lederer, Eleanor D

    2016-02-01

    Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.

  15. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA

    International Nuclear Information System (INIS)

    Soler, Nicolas; Fourmy, Dominique; Yoshizawa, Satoko

    2007-01-01

    The mRNA-binding domain of E. coli selenocysteine-specific elongation factor SelB (residues 478–614; SelB-WH3/4) was overproduced in E. coli and its cognate mRNA ligand, 23 nucleotides of the SECIS RNA hairpin, was prepared by in vitro transcription. The purified SelB-WH3/4–SECIS RNA complex crystallized in space group C2 and diffracted to 2.3 Å. In bacteria, selenocysteine (the 21st amino acid) is incorporated into proteins via machinery that includes SelB, a specific translational elongation factor. SelB binds to an mRNA hairpin called the selenocysteine-insertion sequence (SECIS) and delivers selenocysteyl-tRNA Sec to the ribosomal A site. The minimum C-terminal fragment (residues 478–614) of Escherichia coli SelB (SelB-WH3/4) required for SECIS binding has been overexpressed and purified. This protein was crystallized in complex with 23 nucleotides of the SECIS hairpin at 294 K using the hanging-drop vapour-diffusion method. A data set was collected to 2.3 Å resolution from a single crystal at 100 K using ESRF beamline BM-30. The crystal belongs to space group C2, with unit-cell parameters a = 103.50, b = 56.51, c = 48.41 Å. The asymmetric unit contains one WH3/4-domain–RNA complex. The Matthews coefficient was calculated to be 3.37 Å 3 Da −1 and the solvent content was estimated to be 67.4%

  16. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.

    Science.gov (United States)

    Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena

    2014-01-01

    Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.

  18. Insulin-like growth factor II mRNA-binding protein 3 (IMP3) is a marker that predicts presence of invasion in papillary biliary tumors.

    Science.gov (United States)

    Sasaki, Motoko; Sato, Yasunori

    2017-04-01

    Biliary tumors showing intraductal papillary growth (Pap-BTs) include intraductal papillary neoplasm of the bile duct (IPNB) and papillary cholangiocarcinoma (CC). A differential diagnosis between IPNB and papillary CC currently remains challenging. The aim of the present study is to identify histological features and immunohistochemical markers of malignant potential such as tumor invasion in Pap-BTs. Subjects comprised 37 patients with Pap-BT (intrahepatic and perihilar [proximal], 27: 17 noninvasive and 10 invasive; distal, 10: all invasive). We examined histological features and the expression of p53, enhancer of zeste homolog 2, insulin-like growth factor II mRNA-binding protein 3 (IMP3), and DNA methyltransferase-1 in the intraductal area in Pap-BTs. Noninvasive Pap-BT was characterized by the presence of a low-grade dysplastic area, edematous stroma, and the absence of necrosis. The expression of p53, enhancer of zeste homolog 2, IMP3, and DNA methyltransferase-1 was significantly weaker in noninvasive Pap-BTs than in invasive Pap-BTs (PBTs. IMP3 showed the greatest specificity to predict a presence of invasion. A heatmap demonstrated that proximal noninvasive Pap-BTs and distal Pap-BTs may be completely different. In bile duct biopsies, the expression of IMP3 was the most precise predictor of invasion in Pap-BTs. In conclusion, Pap-BTs may be separated into 3 subgroups: (1) proximal noninvasive Pap-BT, corresponding to IPNB; (2) distal invasive Pap-BT, corresponding to papillary CC; and (3) the remaining Pap-BT including IPNB with associated adenocarcinomas, based on histological and immunohistochemical features. IMP3 may be a useful marker for predicting invasion in Pap-BT. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1.

    Science.gov (United States)

    Wang, Xingang; Duan, Cheng-Guo; Tang, Kai; Wang, Bangshing; Zhang, Huiming; Lei, Mingguang; Lu, Kun; Mangrauthia, Satendra K; Wang, Pengcheng; Zhu, Guohui; Zhao, Yang; Zhu, Jian-Kang

    2013-09-17

    DNA methylation-dependent heterochromatin formation is a conserved mechanism of epigenetic silencing of transposons and other repeat elements in many higher eukaryotes. Genes adjacent to repetitive elements are often also subjected to this epigenetic silencing. Consequently, plants have evolved antisilencing mechanisms such as active DNA demethylation mediated by the REPRESSOR OF SILENCING 1 (ROS1) family of 5-methylcytosine DNA glycosylases to protect these genes from silencing. Some transposons and other repeat elements have found residence in the introns of genes. It is unclear how these intronic repeat elements-containing genes are regulated. We report here the identification of ANTI-SILENCING 1 (ASI1), a bromo-adjacent homology domain and RNA recognition motif-containing protein, from a forward genetic screen for cellular antisilencing factors in Arabidopsis thaliana. ASI1 is required to prevent promoter DNA hypermethylation and transcriptional silencing of some transgenes. Genome-wide DNA methylation analysis reveals that ASI1 has a similar role to that of the histone H3K9 demethylase INCREASE IN BONSAI METHYLATION 1 (IBM1) in preventing CHG methylation in the bodies of thousands of genes. We found that ASI1 is an RNA-binding protein and ensures the proper expression of IBM1 full-length transcript by associating with an intronic heterochromatic repeat element of IBM1. Through mRNA sequencing, we identified many genes containing intronic transposon elements that require ASI1 for proper expression. Our results suggest that ASI1 associates with intronic heterochromatin and binds the gene transcripts to promote their 3' distal polyadenylation. The study thus reveals a unique mechanism by which higher eukaryotes deal with the collateral effect of silencing intronic repeat elements.

  20. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites.

    Science.gov (United States)

    Benhalevy, Daniel; McFarland, Hannah L; Sarshad, Aishe A; Hafner, Markus

    2017-04-15

    The study of protein-RNA interactions is critical for our understanding of cellular processes and regulatory circuits controlled by RNA binding proteins (RBPs). Recent next generation sequencing-based approaches significantly promoted our understanding of RNA biology and its importance for cell function. We present a streamlined protocol for Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a technique that allows for the characterization of RBP binding sites on target RNAs at nucleotide resolution and transcriptome-wide scale. PAR-CLIP involves irreversible UV-mediated crosslinking of RNAs labeled with photoreactive nucleosides to interacting proteins, followed by stringent purification steps and the conversion of crosslinked RNA into small RNA cDNA libraries compatible with next-generation sequencing. The defining hallmark of PAR-CLIP is a diagnostic mutation at the crosslinking site that is introduced into cDNA during the library preparation process. This feature allows for efficient computational removal of contaminating sequences derived from non-crosslinked fragments of abundant cellular RNAs. In the following, we present two different step-by-step procedures for PAR-CLIP, which differ in the small RNA cDNA library preparation procedure: (1) Standard library preparation involving gel size selections after each enzymatic manipulation, and (2) A modified PAR-CLIP procedure ("on-beads" PAR-CLIP), where most RNA manipulations including the necessary adapter ligation steps are performed on the immobilized RNP. This streamlined procedure reduces the protocol preparation time by three days compared to the standard workflow. Copyright © 2016. Published by Elsevier Inc.

  1. Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions.

    Science.gov (United States)

    Park, Ye Rin; Choi, Min Ji; Park, Su Jung; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the stress-responsive roles of zinc-finger RNA-binding proteins (RZs) in several plant species, such as Arabidopsis thaliana, wheat (Triticum aestivum) and rice (Oryza sativa), the functions of RZs in cabbage (Brassica rapa) have not yet been elucidated. In this study, the functional roles of the three RZ family members present in the cabbage genome, designated as BrRZ1, BrRZ2 and BrRZ3, were investigated in transgenic Arabidopsis under normal and environmental stress conditions. Subcellular localization analysis revealed that all BrRZ proteins were exclusively localized in the nucleus. The expression levels of each BrRZ were markedly increased by cold, drought or salt stress and by abscisic acid (ABA) treatment. Expression of BrRZ3 in Arabidopsis retarded seed germination and stem growth and reduced seed yield of Arabidopsis plants under normal growth conditions. Germination of BrRZ2- or BrRZ3-expressing Arabidopsis seeds was delayed compared with that of wild-type seeds under dehydration or salt stress conditions and cold stress conditions, respectively. Seedling growth of BrRZ3-expressing transgenic Arabidopsis plants was significantly inhibited under salt, dehydration or cold stress conditions. Notably, seedling growth of all three BrRZ-expressing transgenic Arabidopsis plants was inhibited upon ABA treatment. Importantly, all BrRZs possessed RNA chaperone activity. Taken together, these results indicate that the three cabbage BrRZs harboring RNA chaperone activity play diverse roles in seed germination and seedling growth of plants under abiotic stress conditions as well as in the presence of ABA. © 2016 Scandinavian Plant Physiology Society.

  2. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    Science.gov (United States)

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  3. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site

    Directory of Open Access Journals (Sweden)

    Feng Cheng

    2017-01-01

    Full Text Available RNA-binding proteins (RBPs and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1, is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p=0.04. Patients with higher Dnd1 expression level had longer overall survival (p=0.0014 by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3′UTR, the stability of Bim-5′UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3′UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3′UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  4. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  5. Alteration in the response properties of primary somatosensory cortex related to differential aversive Pavlovian conditioning.

    Science.gov (United States)

    Diesch, Eugen; Flor, Herta

    2007-09-01

    The effects of differential aversive Pavlovian conditioning on the functional organization of primary somatosensory cortex (SI) were examined in 17 healthy participants. Neuroelectric source imaging from 60 electrodes was employed while nine subjects received an innocuous electric stimulus (conditioned stimulus, CS) to one finger (left or right) that was followed by painful electric shock to the lower back (unconditioned stimulus, US) and an innocuous stimulus to the other finger that was never followed by pain. Eight subjects received a presentation of the innocuous and painful stimuli with equal probability to both fingers (control group). The data included the electromyogram (EMG) from the left m. corrugator, and judgments of intensity, aversiveness, and CS-US contingency. Only the experimental group displayed EMG conditioning, differential contingency judgments, as well as a change of dipole orientation for the CS and an enhanced dipole moment for the US in the electroencephalogram. Intensity and unpleasantness ratings were altered in a more unspecific manner and did not differ between groups and stimulus conditions. The data suggest that SI contributes to memory processes in associative learning. Pavlovian conditioning of tactile responses might be important in the altered processing of painful stimuli in chronic pain patients where enhanced conditioning has been demonstrated.

  6. Altitude training induced alterations in erythrocyte rheological properties: a controlled comparison study in rats.

    Science.gov (United States)

    Bor-Kucukatay, Melek; Colak, Ridvan; Erken, Gülten; Kilic-Toprak, Emine; Kucukatay, Vural

    2014-01-01

    Altitude training is frequently used by athletes to improve sea-level performance. However, the objective benefits of altitude training are controversial. This study aimed to investigate the possible alterations in hemorheological parameters in response to altitude training. Sprague Dawley rats, were divided into 6 groups: live low-train low (LLTL), live high-train high (LHTH), live high-train low (LHTL) and their controls live high and low (LHALC), live high (LHC), live low (LLC). LHC and LHTH groups were exposed to hypoxia (15% O2, altitudes of 3000 m), 4 weeks. LHALC and LHTL were exposed to 12 hours hypoxia/normoxia per day, 4 weeks. Hypoxia was maintained by a hypoxic tent. The training protocol corresponded to 60-70% of maximal exercise capacity. Rats of training groups ran on treadmill for 20-30 min/day, 4 days/week, 4 weeks. Erythrocyte deformability of LHC group was increased compared to LHALC and LLC. Deformability of LHTH group was higher than LHALC and LLTL groups. No statistically significant alteration in erythrocyte aggregation parameters was observed. There were no significant relationships between RBC deformability and exercise performance. The results of this study show that, living (LHC) and training at altitude (LHTH) seems more advantageous in hemorheological point of view.

  7. Cytomechanical properties of papaver pollen tubes are altered after self-incompatibility challenge

    NARCIS (Netherlands)

    Geitmann, A.; McConnaughey, W.; Lang-Pauluzzi, I.; Franklin-Tong, V.E.; Emons, A.M.C.

    2004-01-01

    Self-incompatibility (SI) in Papaver rhoeas triggers a ligand-mediated signal transduction cascade, resulting in the inhibition of incompatible pollen tube growth. Using a cytomechanical approach we have demonstrated that dramatic changes to the mechanical properties of incompatible pollen tubes are

  8. Spinal biomechanical properties are significantly altered with a novel embalming method

    NARCIS (Netherlands)

    Holewijn, Roderick M.; Faraj, Sayf S.A.; Kingma, Idsart; van Royen, Barend J.; de Kleuver, Marinus; van der Veen, Albert J.

    2017-01-01

    In vitro tests on the biomechanical properties of human spines are often performed using fresh frozen specimens. However, this carries the risk of pathogen transfer from specimen to the worker and the specimens can only be used for a limited amount of time. Human spinal specimens embalmed with

  9. Spinal biomechanical properties are significantly altered with a novel embalming method.

    Science.gov (United States)

    Holewijn, Roderick M; Faraj, Sayf S A; Kingma, Idsart; van Royen, Barend J; de Kleuver, Marinus; van der Veen, Albert J

    2017-04-11

    In vitro tests on the biomechanical properties of human spines are often performed using fresh frozen specimens. However, this carries the risk of pathogen transfer from specimen to the worker and the specimens can only be used for a limited amount of time. Human spinal specimens embalmed with formaldehyde carry an almost absent risk of transfer of pathogens and can be stored and used for a long time, but the tissue properties are strongly affected making this method inapplicable for biomechanical testing. In this study, a new embalming technique called Fix for Life (F4L), which claims to preserve the tissue properties, was tested. The range of motion (ROM) and stiffness of six fresh human spinal specimens was measured using a spinal motion simulator before and after F4L embalming. After F4L embalming, spinal stiffness increased in flexion-extension by 230%, in lateral bending by 284% and in axial rotation by 271%. ROM decreased by 46% in flexion-extension, 56% in lateral bending and 54% in axial rotation. In conclusion, based on this study, F4L does not maintain physiological spinal biomechanical properties, and we propose that this method should not be used for biomechanical studies. Nevertheless, the method may be an alternative to formaldehyde fixation in situations such as training and education because the effect on spinal biomechanics is less detrimental than formaldehyde and tissue color is maintained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spinal biomechanical properties are significantly altered with a novel embalming method.

    NARCIS (Netherlands)

    Holewijn, R.M.; Faraj, S.S.; Kingma, I.; Royen, B.J. van; Kleuver, M. de; Veen, A.J. van der

    2017-01-01

    In vitro tests on the biomechanical properties of human spines are often performed using fresh frozen specimens. However, this carries the risk of pathogen transfer from specimen to the worker and the specimens can only be used for a limited amount of time. Human spinal specimens embalmed with

  11. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization.

    Directory of Open Access Journals (Sweden)

    Arthur S Kim

    2014-07-01

    Full Text Available Human antibody 10E8 targets the conserved membrane proximal external region (MPER of envelope glycoprotein (Env subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.

  12. Antibody to gp41 MPER Alters Functional Properties of HIV-1 Env without Complete Neutralization

    Science.gov (United States)

    Kim, Arthur S.; Leaman, Daniel P.; Zwick, Michael B.

    2014-01-01

    Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design. PMID:25058619

  13. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral

    Science.gov (United States)

    Paschalis, E.P.; Tatakis, D.N.; Robins, S.; Fratzl, P.; Manjubala, I.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.; Boskey, A.L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.

    2011-01-01

    In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence

  14. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  15. Isolation and characterization of OmpC porin mutants with altered pore properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.; Benson, S.A.

    1988-02-01

    The LamB protien is normally required for the uptake of maltodextrins. Starting with a LamB/sup -/ OmpF/sup -/ strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex/sup +/ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB/sup -/ OmpF/sup -/ strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of (/sup 14/C) maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain ..beta..-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.

  16. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  17. Variations in the endogenous fluorescence of rabbit corneas after mechanical property alterations

    Science.gov (United States)

    Ortega-Martinez, Antonio; Touchette, Genna; Zhu, Hong; Kochevar, Irene E.; Franco, Walfre

    2017-09-01

    Keratoconus is an eye disease in which the cornea progressively deforms due to loss of cornea mechanical rigidity, and thus causes deterioration of visual acuity. Techniques to characterize the mechanical characteristics of the cornea are important to better monitor changes and response to treatments. To investigate the feasibility of using the endogenous fluorescence of cornea for monitoring alterations of its mechanical rigidity, linear tensiometry was used to quantitate stiffness and Young's modulus (YM) after treatments that increase cornea stiffness (collagen photocross-linking) or decrease stiffness (enzymatic digestion). The endogenous ultraviolet fluorescence of cornea was also measured before and after these treatments. The fluorescence excitation/emission spectral ranges were 280 to 430/390 to 520 nm, respectively. A correlation analysis was carried out to identify fluorescence excitation/emission pairs whose intensity changes correlated with the stiffness. A positive correlation was found between variations in fluorescence intensity of the 415-/485-nm excitation/emission pair and YM of photocross-linked corneas. After treatment of corneas with pepsin, the YM decreased as the fluorescence intensity at 290-/390-nm wavelengths decreased. For weakening of corneas with collagenase, only qualitative changes in the fluorescence spectrum were observed. Changes in the concentration of native or newly created fluorescent molecular species contain information that may be directly or indirectly related to the mechanical structure of the cornea.

  18. Potential petrophysical and chemical property alterations in a compressed air energy storage porous rock reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Stottlemyre, J.A.; Erikson, R.L.; Smith, R.P.

    1979-10-01

    Successful commercialization of Compressed Air Energy Storage (CAES) systems depends on long-term stability of the underground reservoirs subjected to somewhat unique operating conditions. Specifically, these conditions include elevated and time varying temperatures, effective stresses, and air humidities. To minimize the requirements for premium fuels, it may be desirable to retain the thermal energy of compression. Porous media, e.g., sandstone, may hold promise as elevated temperature reservoirs. In this study, a reservoir composed of clean quartz sandstone and injection air temperatures of 300 to 575/sup 0/K are assumed. Numerical modeling is used to estimate temperature, stress, and humidity conditions within this reference porous media reservoir. A discussion on relative importance to CAES of several potential porous media damage mechanisms is presented. In this context, damage is defined as a reduction in intrinsic permeability (measure of air transport capability), a decrease in effective porosity (measure of storage capability), or an increase in elastic and/or inelastic deformation of the porous material. The potential damage mechanisms presented include: (1) disaggregation, (2) particulate plugging, (3) boundary layer viscosity anomalies, (4) inelastic microstructural consolidation, (5) clay swelling and dispersion, (6) hydrothermal mineral alteration, (7) oxidation reactions, and (8) well casing corrosion. These mechanisms are placed in perspective with respect to anticipated CAES conditions and mechanisms suggested are: (1) of academic interest only, (2) readily identified and controlled via engineering, or (3) potential problem areas requiring additional investigation.

  19. Altered Right Ventricular Mechanical Properties Are Afterload Dependent in a Rodent Model of Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Jitandrakumar R. Patel

    2017-10-01

    Full Text Available Infants born premature are at increased risk for development of bronchopulmonary dysplasia (BPD, pulmonary hypertension (PH, and ultimately right ventricular (RV dysfunction, which together carry a high risk of neonatal mortality. However, the role alveolar simplification and abnormal pulmonary microvascular development in BPD affects RV contractile properties is unknown. We used a rat model of BPD to examine the effect of hyperoxia-induced PH on RV contractile properties. We measured in vivo RV pressure as well as passive force, maximum Ca2+ activated force, calcium sensitivity of force (pCa50 and rate of force redevelopment (ktr in RV skinned trabeculae isolated from hearts of 21-and 35-day old rats pre-exposed to 21% oxygen (normoxia or 85% oxygen (hyperoxia for 14 days after birth. Systolic and diastolic RV pressure were significantly higher at day 21 in hyperoxia exposed rats compared to normoxia control rats, but normalized by 35 days of age. Passive force, maximum Ca2+ activated force, and calcium sensitivity of force were elevated and cross-bridge cycling kinetics depressed in 21-day old hyperoxic trabeculae, whereas no differences between normoxic and hyperoxic trabeculae were seen at 35 days. Myofibrillar protein analysis revealed that 21-day old hyperoxic trabeculae had increased levels of beta-myosin heavy chain (β-MHC, atrial myosin light chain 1 (aMLC1; often referred to as essential light chain, and slow skeletal troponin I (ssTnI compared to age matched normoxic trabeculae. On the other hand, 35-day old normoxic and hyperoxic trabeculae expressed similar level of α- and β-MHC, ventricular MLC1 and predominantly cTnI. These results suggest that neonatal exposure to hyperoxia increases RV afterload and affect both the steady state and dynamic contractile properties of the RV, likely as a result of hyperoxia-induced expression of β-MHC, delayed transition of slow skeletal TnI to cardiac TnI, and expression of atrial MLC1. These

  20. HIGH-IMPACT DROP EXERCISE ALTERS MECHANICAL PROPERTIES IN OSTEOPENIC BONE

    Directory of Open Access Journals (Sweden)

    Fábio Senishi Asano

    Full Text Available ABSTRACT Introduction: Osteopenia is a reversible condition and precedes osteoporosis. Physical activity and mechanical loading appear to play an important role in the regulation of bone homeostasis, without the side effects of targeted drug therapy. However, there is controversy as to which type of stimulus promotes more effective adaptations with respect to mechanical properties of bones. Objective: To investigate the effects of high-impact drop training on bone structure after ovariectomy-induced osteopenia in 40 10-week-old female Wistar rats. Methods: Twenty female rats (prevention program were randomly assigned into two groups (n=10: Ovariectomized sedentary (OVXs, and OVX trained (OVX+Dropt. OVX+Dropt animals began training 3 days after surgery. Another twenty female rats (treatment program were randomly assigned to two other groups (n=10: Ovariectomized sedentary (OVXs, and OVX trained (OVX+Dropt. OVX+Dropt animals began training 60 days after surgery. The rats in the trained groups were dropped from 40 cm height 20 times/day, 5 days/week over a period of 12 weeks period. At the end, the biomechanical tests were analyzed. Results: The final load and stiffness of the left tibia in the trained groups were higher than in the sedentary groups (p<0.05. Conclusions: Dropping exercise induced favorable changes in bone mechanical properties. High-impact drop exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established.

  1. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties.

    Science.gov (United States)

    Ribot, Jonathan; Caliaperoumal, Guavri; Paquet, Joseph; Boisson-Vidal, Catherine; Petite, Herve; Anagnostou, Fani

    2017-02-01

    This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN-BMMSCs, the bioactive content of ZDF-BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5-fold; P CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF-1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was

  3. Splice Variants of the Human ZC3H14 Gene Generate Multiple Isoforms of a Zinc Finger Polyadenosine RNA Binding Protein

    Science.gov (United States)

    Leung, Sara W.; Apponi, Luciano H.; Cornejo, Omar E.; Kitchen, Chad M.; Valentini, Sandro R.; Pavlath, Grace K.; Dunham, Christine M.; Corbett, Anita H.

    2009-01-01

    finger polyadenosine RNA binding domain. PMID:19303045

  4. Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5.

    Science.gov (United States)

    Ye, Chengjin; Jia, Lu; Sun, Yanting; Hu, Boli; Wang, Lun; Lu, Xingmeng; Zhou, Jiyong

    2014-10-01

    Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway

  5. A shift in plant proteome profile for a Bromodomain containing RNA binding Protein (BRP1) in plants infected with Cucumber mosaic virus and its satellite RNA.

    Science.gov (United States)

    Chaturvedi, Sonali; Rao, A L N

    2016-01-10

    Host proteins are the integral part of a successful infection caused by a given RNA virus pathogenic to plants. Therefore, identification of crucial host proteins playing an important role in establishing the infection process is likely to help in devising approaches to curbing disease spread. Cucumber mosaic virus (Q-CMV) and its satellite RNA (QsatRNA) are important pathogens of many economically important crop plants worldwide. In a previous study, we demonstrated the biological significance of a Bromodomain containing RNA-binding Protein (BRP1) in the infection cycle of QsatRNA, making BRP1 an important host protein to study. To further shed a light on the mechanistic role of BRP1 in the replication of Q-CMV and QsatRNA, we analyzed the Nicotiana benthamiana host protein interactomes either for BRP1 alone or in the presence of Q-CMV or QsatRNA. Co-immunoprecipitation, followed by LC-MS/MS analysis of BRP1-FLAG on challenging with Q-CMV or QsatRNA has led us to observe a shift in the host protein interactome of BRP1. We discuss the significance of these results in relation to Q-CMV and its QsatRNA infection cycle. Host proteins play an important role in replication and infection of eukaryotic cells by a wide-range of RNA viruses pathogenic to humans, animals and plants. Since a given eukaryotic cell typically contains ~30,000 different proteins, recent advances made in proteomics and bioinformatics approaches allowed the identification of host proteins critical for viral replication and pathogenesis. Although Cucumber mosaic virus (CMV) and its satRNA are well characterized at molecular level, information concerning the network of host factors involved in their replication and pathogenesis is still on its infancy. We have recently observed that a Bromodomain containing host protein (BRP1) is obligatory to transport satRNA to the nucleus. Consequently, it is imperative to apply proteomics and bioinformatics approaches in deciphering how host interactome network

  6. Modulation of the mRNA-binding protein HuR as a novel reversal mechanism of epirubicin-triggered multidrug resistance in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Guan-Liang Lin

    Full Text Available HuR (ELAVL1, a RNA-binding protein, plays a key role in posttranscriptional regulation of multidrug resistance (MDR-related genes. Among various HuR-regulated oncogenic transcripts, the activation of galectin-3/β-catenin survival pathway is critical to induce transcription of cyclin D1, P-glycoprotein (P-gp and/or multidrug resistance-associated proteins (MRPs. In this study, we aim to elucidate the HuR-regulating pathways related to epirubicin-mediated resistance in human colorectal carcinoma cells. The effects and mechanisms of epirubicin treatment on the expressions of upstream survival signals (e.g., β-catenin and downstream MDR transporters (e.g., P-gp and anti-apoptotic pathways (e.g., Bcl-2 were assessed with or without HuR knockdown (siHuR or overexpression (overHuR; ectopic HuR or pcDNA3/HA-HuR. Our results showed that siHuR decreased transcriptional expressions of galectin-3, β-catenin, cyclin D1, Bcl-2, P-gp, MRP1, and MRP2 in epirubicin-treated colon cancer cells. Consistently, the co-treatment of epirubicin and siHuR diminished the expressions of galectin-3, ß-catenin, c-Myc, P-gp and MRP1. HuR silencing enhanced the intracellular accumulation of epirubicin in colon cancer cells. On the other hand, overHuR abolished such effects. Furthermore, siHuR significantly intensified epirubicin-mediated apoptosis via increasing reactive oxygen species and thus promoted the cytotoxic effect of epirubicin. The combined treatments of siHuR and epirubicin significantly reduced the expression of Bcl-2, but increased the expression of Bax, as well as activity and expression levels of caspase-3 and -9. In contrast, overHuR abrogated these effects. Our findings provide insight into the mechanisms by which siHuR potentiated epirubicin-induced cytotoxicity via inhibiting galectin-3/β-catenin signaling, suppressing MDR transporters and provoking apoptosis. To our best knowledge, this is an innovative investigation linking the post

  7. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration.

    Science.gov (United States)

    O'Connell, Grace D; Sen, Sounok; Elliott, Dawn M

    2012-03-01

    The annulus fibrosus (AF) of the intervertebral disk undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential-axial and the radial-axial directions. Data were fit to a structurally motivated anisotropic hyperelastic model composed of isotropic extra-fibrillar matrix, nonlinear fibers, and fiber-matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure-function, and to quantify the effect of degeneration. The biaxial stress-strain response was described well by the model (R (2) > 0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe-region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young's modulus, provided an explanation for the low values in previously published axial direction Young's modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disk finite element model to provide improved quantification of disk mechanics.

  8. Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat.

    Science.gov (United States)

    MacDonell, C W; Power, K E; Chopek, J W; Gardiner, K R; Gardiner, P F

    2015-05-15

    This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the 'tonic' period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor-extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as 'idle' motoneurones. LDP and idle motoneurones during locomotion had hyperpolarized spike threshold (Vth ; LDP: 3.8 mV; idle: 5.8 mV), decreased rheobase and an increased discharge rate (LDP: 64%; idle: 41%) during triangular ramp current injection even though the frequency-current slope was reduced by 70% and 55%, respectively. Modulation began in the tonic period immediately preceding locomotion, with a hyperpolarized Vth and reduced rheobase. Spike frequency adaptation did not occur in spiking LDPs or firing generated from sinusoidal current injection, but occurred during a sustained current pulse during locomotion. Input conductance showed no change. Results suggest motoneurone modulation occurs across the pool and is not restricted to motoneurones engaged in locomotion. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy.

    Science.gov (United States)

    Dimitriu, Bogdan; Vârlan, Constantin; Suciu, Ioana; Vârlan, Virginia; Bodnar, Dana

    2009-01-01

    The aim of this general article is to present an overview of the current knowledge about composition and structural changes and also about specific biomechanical alterations related to vitality loss or endodontic therapy. For a long time, these issues have been controversially approached from a clinical standpoint and are therefore still confusing for many practitioners. Vitality loss or endodontic procedures seem to induce only negligible changes in hard dental tissue moisture. Physico-chemical properties of dentin can be modified by some of the endodontic chemical products used for chemo-mechanical debridement. On the other hand, tooth biomechanical behavior is affected, since tooth strength is reduced proportionally to coronal tissue loss, due to either pre-existent carious/non-carious lesions or cavity acces preparation, besides restorative procedures. The related literature shows the lack of accepted clinical standards and consensus regarding the optimal way of approaching the specific tooth biomechanics following endodontic therapy.

  10. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Rosberg, Mette R.

    2016-01-01

    patients with surgically repaired complete injuries of peripheral nerves of the arm 22 months-26 years prior to investigation, deviation of excitability measures was explained by a hyperpolarizing shift in the resting membrane potential and an increase in the passive 'Barrett and Barrett' conductance (GBB......Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male...... activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment...

  11. Pyrethroid receptor in the insect Na sup + channel: Alteration of its properties in pyrethroid-resistant flies

    Energy Technology Data Exchange (ETDEWEB)

    Pauron, D.; Barhanin, J.; Amichot, M.; Pralavorio, M.; Berge, J.B.; Lazdunski, M. (Centre National de la Recherche Scientifique, Nice (France))

    1989-02-21

    Resistance to insecticides is a major problem in agriculture. ({sup 3}H)Saxitoxin binding experiments have shown that pyrethroid-sensitive and pyrethroid-resistant flies have the same amount of Na{sup +} channel protein in their brain membranes. Also, although flies are resistant to pyrethroids, they remain as sensitive to batrachotoxin, which is another type of Na{sup +} channel activators, as pyrethroid-sensitive flies. Pyrethroid binding sites have been characterized by use of the properties of pyrethroids to increase the specific ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding component. K{sub 0.5} values for association of pyrethroids at the Na{sup +} channel of pyrethroid-sensitive flies are in the range of 0.15-0.25 {mu}M. Conversely, pyrethroids do not produce a significant increase of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding in pyrethroid-resistant flies even at high concentrations of the insecticide. It is concluded that linkage between pyrethroid and batrachotoxin binding sites is altered in the pyrethroid-resistant fly strains. This alteration is probably due to a drastically decreased affinity of the Na{sup +} channel for pyrethroids.

  12. Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quaternary clays

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Erlstroem, M.

    1987-12-01

    Seven pre-quaternary clays with a smectite content ranging between zero and about 25% were taken as possible reaction products resulting from chemical alteration of dense sodium bentonite. They were characterized with respect to the mineral composition and microstructural constitution and tested with reference to their hydraulic conductivity, swelling ability and creep properties. It was found that since they were all less permeable than a typical large granitic rock mass they would serve as flow barriers in a repository. Thus, even rather extreme chemical attack is not expected to eliminate the most important barrier function of Na bentonite in repository environment. However, slight mechanical disturbance of a heterogeneously altered smectite clay buffer or seal, may be critical. Thus, the investigated, less smectitic clays experienced a rather dramatic increase in hydraulic conductivity on expansion and remolding. This is explained by the inability of a microstructurally discontinuous smectite component - particularly in the Ca-form - to swell and fill voids. The minimum content of Na smectite to preserve the self-healing capacity is estimated at 15-25%. Slight or moderate cementation was indicated by two of the clays by the creep tests. At a smectite content of 15-25% it is probable that self-healing will take place after a mechanically induced breakage of the cementing bonds. The tests gave a good basis for future development of rational, routine tests as well as for a relevant characterization of buffer material candidates. (orig.)

  13. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  14. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study.

    Science.gov (United States)

    Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S

    Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.

  15. Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation

    Science.gov (United States)

    Hartlieb, Philipp; Bock, Stefan

    2018-03-01

    This study presents a theoretical analysis of the influence of the rock mass rating on the cutting performance of roadheaders. Existing performance prediction models are assessed for their suitability for forecasting the influence of pre-damaging the rock mass with alternative methods like lasers or microwaves, prior to the mechanical excavation process. Finally, the RMCR model was chosen because it is the only reported model incorporating a range of rock mass properties into its calculations. The results show that even very tough rocks could be mechanically excavated if the occurrence, orientation and condition of joints are favourable for the cutting process. The calculated improvements in the cutting rate (m3/h) are up to 350% for the most favourable cases. In case of microwave irradiation of hard rocks with an UCS of 200 MPa, a reasonable improvement in the performance by 120% can be achieved with as little as an extra 0.7 kWh/m3 (= 1% more energy) compared to cutting only.

  16. Altered Biomechanical Properties of Gastrocnemius Tendons of Turkeys Infected with Turkey Arthritis Reovirus

    Directory of Open Access Journals (Sweden)

    Tamer A. Sharafeldin

    2016-01-01

    Full Text Available Turkey arthritis reovirus (TARV causes lameness and tenosynovitis in commercial turkeys and is often associated with gastrocnemius tendon rupture by the marketing age. This study was undertaken to characterize the biomechanical properties of tendons from reovirus-infected turkeys. One-week-old turkey poults were orally inoculated with O’Neil strain of TARV and observed for up to 16 weeks of age. Lameness was first observed at 8 weeks of age, which continued at 12 and 16 weeks. At 4, 8, 12, and 16 weeks of age, samples were collected from legs. Left intertarsal joint with adjacent gastrocnemius tendon was collected and processed for histological examination. The right gastrocnemius tendon’s tensile strength and elasticity modulus were analyzed by stressing each tendon to the point of rupture. At 16 weeks of age, gastrocnemius tendons of TARV-infected turkeys showed significantly reduced (P<0.05 tensile strength and modulus of elasticity as compared to those of noninfected control turkeys. Gastrocnemius tendons revealed lymphocytic tendinitis/tenosynovitis beginning at 4 weeks of age, continuing through 8 and 12 weeks, and progressing to fibrosis from 12 to 16 weeks of age. We propose that tendon fibrosis is one of the key features contributing to reduction in tensile strength and elasticity of gastrocnemius tendons in TARV-infected turkeys.

  17. Structure alteration and immunological properties of {sup 60}Co gamma rays irradiated bothropstoxin-I

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Janaina A.; Yonamine, Camila Myiagui; Caproni, Priscila; Casare, Murilo; Spencer, Patrick Jack; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: janabap@gmail.com; Andrade Junior, Heitor Franco de; Vieira, Daniel Perez; Galisteo Junior, Andres Jimenez [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Instituto de Medicina Tropical de Sao Paulo, SP (Brazil). Lab. de Protozoologia

    2007-07-01

    About 20000 ophidic accidents are registered every year in Brazil. Serum therapy with equine antisera is the only efficient treatment. The venoms employed for immunization are fairly toxic and some venoms present low immunogenicity. Thus, the obtention of modified antigens with lower toxicity and preserved or improved immunogenicity would be useful. These toxins, when submitted to gamma radiation, in aqueous solution, present structural modifications. This occurs due to reactions with the radiolysis products of water. Some scavenger substances, such as NaNO{sub 3} and t-butanol, remove selectively the water radiolysis products. Ionizing radiation has proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. However, the immune mechanisms involved in recognition, processing and presentation of irradiated antigens are yet unclear. In the present work, we investigated the immunological behavior of bothropstoxin-I (Bthx-1), before and after irradiation, in the presence of selective scavengers. Isogenic mice were immunized with either the native or the irradiated toxin, either with or without scavengers. After three immunizations, serum samples were collected and the antibody titers and isotypes were determined by Enzyme Linked Immuno Sorbent Assay. The antigenic characterization of native and irradiated bothropstoxin-I was performed by Western blot. The detection of expression of murine cytokines (IFN-{gamma} and IL-10) was analyzed by RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction). According to our data, irradiation process has promoted structural modifications in the toxin, characterized by higher molecular weight forms of the protein (aggregates and oligomers). Our data also indicate that irradiated toxins, alone or in the presence of NaNO{sub 3}, an aqueous electron scavenger, were immunogenic and the antibodies elicited by them were able to recognize the native toxin. On the other

  18. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes

    Science.gov (United States)

    Geppert, Mark; Petters, Charlotte; Thiel, Karsten; Dringen, Ralf

    2013-01-01

    Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic applications. Such particles are able to cross the blood-brain barrier and are taken up into brain cells. To test whether serum components affect the properties of IONPs and/or their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic IONPs without and with fetal calf serum (FCS) and have exposed cultured brain astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a concentration-dependent increase in the average hydrodynamic diameter of the particles and of their zeta-potential. In the presence of 10 % FCS, the diameter of the IONPs increased from 57 ± 2 to 107 ± 6 nm and the zeta-potential of the particles from -22 ± 5 to -9 ± 1 mV. FCS affected also strongly the uptake of IONPs by cultured astrocytes. The efficient time- and temperature-dependent cellular accumulation of IONPs was lowered with increasing concentration of FCS by up to 90 %. In addition, in the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and macropinocytosis are involved in astrocytic IONP uptake from serum-containing medium. These data demonstrate that the presence of FCS strongly affects the properties of IONPs as well as their accumulation by cultured brain cells.

  19. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, Mark; Petters, Charlotte [University of Bremen, Centre for Biomolecular Interactions Bremen (Germany); Thiel, Karsten [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (Germany); Dringen, Ralf, E-mail: ralf.dringen@uni-bremen.de [University of Bremen, Centre for Biomolecular Interactions Bremen (Germany)

    2013-01-15

    Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic applications. Such particles are able to cross the blood-brain barrier and are taken up into brain cells. To test whether serum components affect the properties of IONPs and/or their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic IONPs without and with fetal calf serum (FCS) and have exposed cultured brain astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a concentration-dependent increase in the average hydrodynamic diameter of the particles and of their zeta-potential. In the presence of 10 % FCS, the diameter of the IONPs increased from 57 {+-} 2 to 107 {+-} 6 nm and the zeta-potential of the particles from -22 {+-} 5 to -9 {+-} 1 mV. FCS affected also strongly the uptake of IONPs by cultured astrocytes. The efficient time- and temperature-dependent cellular accumulation of IONPs was lowered with increasing concentration of FCS by up to 90 %. In addition, in the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and macropinocytosis are involved in astrocytic IONP uptake from serum-containing medium. These data demonstrate that the presence of FCS strongly affects the properties of IONPs as well as their accumulation by cultured brain cells.

  20. Effects of altered catecholamine metabolism on pigmentation and physical properties of sclerotized regions in the silkworm melanism mutant.

    Directory of Open Access Journals (Sweden)

    Liang Qiao

    Full Text Available Catecholamine metabolism plays an important role in the determination of insect body color and cuticle sclerotization. To date, limited research has focused on these processes in silkworm. In the current study, we analyzed the interactions between catecholamines and melanin genes and their effects on the pigmentation patterns and physical properties of sclerotized regions in silkworm, using the melanic mutant melanism (mln silkworm strain as a model. Injection of β-alanine into mln mutant silkworm induced a change in catecholamine metabolism and turned its body color yellow. Further investigation of the catecholamine content and expression levels of the corresponding melanin genes from different developmental stages of Dazao-mln (mutant and Dazao (wild-type silkworm revealed that at the larval and adult stages, the expression patterns of melanin genes precipitated dopamine accumulation corresponding to functional loss of Bm-iAANAT, a repressive effect of excess NBAD on ebony, and upregulation of tan in the Dazao-mln strain. During the early pupal stage, dopamine did not accumulate in Dazao-mln, since upregulation of ebony and black genes led to conversion of high amounts of dopamine into NBAD, resulting in deep yellow cuticles. Scanning electron microscope analysis of a cross-section of adult dorsal plates from both wild-type and mutant silkworm disclosed the formation of different layers in Dazao-mln owing to lack of NADA, compared to even and dense layers in Dazao. Analysis of the mechanical properties of the anterior wings revealed higher storage modulus and lower loss tangent in Dazao-mln, which was closely associated with the altered catecholamine metabolism in the mutant strain. Based on these findings, we conclude that catecholamine metabolism is crucial for the color pattern and physical properties of cuticles in silkworm. Our results should provide a significant contribution to Lepidoptera cuticle tanning research.

  1. Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer

    LENUS (Irish Health Repository)

    Ehlen, Asa

    2010-08-20

    Abstract Background We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line. Methods RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis. Results Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, p = 0.003) and OS (HR = 0.64, 95% CI = 0.44-0.95, p = 0.024) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, p = 0.003) and OS (HR = 0.62, 95% CI = 0.41-0.95; p = 0.028) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, p = 0.002) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, p = 0.017). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted

  2. 3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages.

    Science.gov (United States)

    Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph

    2017-04-01

    We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.

  3. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  4. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Tao Chen

    Full Text Available Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5, as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II carboxyl terminal domain (CTD phosphatase-like 1 (FRY2/CPL1 both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges.

  5. Ropivacaine alters the mechanical properties of hamstring tendons: In vitro controlled mechanical testing of tendons from living donors.

    Science.gov (United States)

    Ollivier, M; Sbihi, J; Sbihi, A; Pithioux, M; Parratte, S; Argenson, J-N

    2017-11-01

    -term alterations of the mechanical properties of hamstring tendons. If these results hold in vivo, this could lead to weakness of the soft tissues exposed to this product, particularly the tendons and ligaments around the injection area. Experimental study. Level 1. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    Science.gov (United States)

    Boot, Claudia M.; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  7. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  8. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants.

    Science.gov (United States)

    Xu, Qiongying; Wang, Qiandi; Zhang, Weijun; Yang, Peng; Du, Youjing; Wang, Dongsheng

    2018-03-16

    approach to improving sludge dewaterability through the alteration of protein properties by use of physiochemical techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice.

    Science.gov (United States)

    Sofronova, Svetlana I; Tarasova, Olga S; Gaynullina, Dina; Borzykh, Anna A; Behnke, Bradley J; Stabley, John N; McCullough, Danielle J; Maraj, Joshua J; Hanna, Mina; Muller-Delp, Judy M; Vinogradova, Olga L; Delp, Michael D

    2015-04-01

    Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress. Copyright © 2015 the American Physiological Society.

  10. Altered Soil Properties Inhibit Fruit Set but Increase Progeny Performance for a Foundation Tree in a Highly Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Tanya M. Llorens

    2018-04-01

    Full Text Available Failing to test multiple or non-standard variables in studies that investigate the effects of habitat fragmentation on plant populations may limit the detection of unexpected causative relationships. Here, we investigated the impacts of habitat fragmentation on the pollination, reproduction, mating system and progeny performance of Eucalyptus wandoo, a foundation tree that is bird and insect pollinated with a mixed-mating system. We explored a range of possible causative mechanisms, including soil properties that are likely to be altered in the agricultural matrix of a landscape that has naturally nutrient-poor soils and secondary soil salinization caused by the removal of native vegetation. We found very strong negative relationships between soil salinity and fruit production, thus providing some of the first evidence for the effects of salinity on reproduction in remnant plant populations. Additionally, we found unexpectedly higher rates of seedling survival in linear populations, most likely driven by increased soil P content from adjacent cereal cropping. Higher rates of seed germination in small populations were related to both higher pollen immigration and greater nutrient availability. Trees in small populations had unexpectedly much higher levels of pollination than in large populations, but they produced fewer seeds per fruit and outcrossing rates did not vary consistently with fragmentation. These results are consistent with small populations having much higher insect abundances but also increased rates of self-pollination, combined with seed abortion mechanisms that are common in the Myrtaceae. This study highlights the need to better understand and mitigate sub-lethal effects of secondary soil salinity in plants growing in agricultural remnants, and indicates that soil properties may play an important role in influencing seed quality.

  11. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    International Nuclear Information System (INIS)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-01-01

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics

  12. Removable thermoplastic appliances modified by incisal cuts show altered biomechanical properties during tipping of a maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Phillipp Brockmeyer

    2017-08-01

    Full Text Available Abstract Background The present study aimed to evaluate the force delivery of removable thermoplastic appliances (RTAs, modified by different sized incisal cuts, during tipping of a maxillary central incisor in palatal and vestibular direction. Methods Forty-five RTAs from three different materials (Biolon®, Erkodur®, Ideal Clear® of the same thickness (1 mm were used. Analysis was performed on a separated maxillary central incisor which was part of a resin model with a complete dentition. In 15 RTAs, of different material, a cut was inserted at the incisal edge of tooth 11. In 15 other appliances, the cut was extended to teeth 12 and 21. Fifteen aligners remained uncut. The experimental tooth was tipped starting from the zero position in 0.05° steps to a maximal deflection of ± 0.42° of the incisal edge in vestibular and palatal direction, after positioning the RTA onto the model. Results The horizontal (Fx and the vertical (Fz force components were decreased by approximately half with increasing cut size. Fz values changed during palatal tipping from a weak intrusive force, for aligners without cut, to an extrusive force with increasing cut size. Compared to both other materials used (Erkodur® and Ideal Clear®, the Biolon® aligners showed significantly higher Fx and Fz values (p < 0.0001, respectively. Conclusions RTAs modified by different sized incisal cuts show altered biomechanical properties and an inversion of the vertical force component, during tipping of a maxillary central incisor.

  13. Removable thermoplastic appliances modified by incisal cuts show altered biomechanical properties during tipping of a maxillary central incisor.

    Science.gov (United States)

    Brockmeyer, Phillipp; Kramer, Katharina; Böhrnsen, Florian; Gruber, Rudolf Matthias; Batschkus, Sarah; Rödig, Tina; Hahn, Wolfram

    2017-08-28

    The present study aimed to evaluate the force delivery of removable thermoplastic appliances (RTAs), modified by different sized incisal cuts, during tipping of a maxillary central incisor in palatal and vestibular direction. Forty-five RTAs from three different materials (Biolon®, Erkodur®, Ideal Clear®) of the same thickness (1 mm) were used. Analysis was performed on a separated maxillary central incisor which was part of a resin model with a complete dentition. In 15 RTAs, of different material, a cut was inserted at the incisal edge of tooth 11. In 15 other appliances, the cut was extended to teeth 12 and 21. Fifteen aligners remained uncut. The experimental tooth was tipped starting from the zero position in 0.05° steps to a maximal deflection of ± 0.42° of the incisal edge in vestibular and palatal direction, after positioning the RTA onto the model. The horizontal (Fx) and the vertical (Fz) force components were decreased by approximately half with increasing cut size. Fz values changed during palatal tipping from a weak intrusive force, for aligners without cut, to an extrusive force with increasing cut size. Compared to both other materials used (Erkodur® and Ideal Clear®), the Biolon® aligners showed significantly higher Fx and Fz values (p < 0.0001, respectively). RTAs modified by different sized incisal cuts show altered biomechanical properties and an inversion of the vertical force component, during tipping of a maxillary central incisor.

  14. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice.

    Science.gov (United States)

    Moldovan, Mihai; Alvarez, Susana; Rosberg, Mette R; Krarup, Christian

    2016-02-01

    Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male patients with surgically repaired complete injuries of peripheral nerves of the arm 22 months-26 years prior to investigation, deviation of excitability measures was explained by a hyperpolarizing shift in the resting membrane potential and an increase in the passive 'Barrett and Barrett' conductance (GBB) bridging the nodal and internodal compartments. These changes were associated with an increase in the 'fast' K(+) conductance and the inward rectifier conductance (GH). Similar changes were found in regenerated mouse tibial motor axons at 1 month after a sciatic crush lesion. During the first 5 months of regeneration, GH showed partial recovery, which paralleled that in GBB. The internodal length remained one-third of normal. Excitability abnormalities could be reversed by the energy-dependent Na(+)/K(+) pump blocker ouabain resulting in membrane depolarization. Stressing the Na(+) pumping system during a strenuous activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment remains compromised. Due to the persistent increase in number of nodes, the increased activity-dependent Na(+) influx could lead to hyperactivity of the Na(+)/K(+) pump resulting in membrane hyperpolarization and neurotoxic energy insufficiency during strenuous activity. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    Science.gov (United States)

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  16. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d.

    Science.gov (United States)

    Knuckles, Philip; Lence, Tina; Haussmann, Irmgard U; Jacob, Dominik; Kreim, Nastasja; Carl, Sarah H; Masiello, Irene; Hares, Tina; Villaseñor, Rodrigo; Hess, Daniel; Andrade-Navarro, Miguel A; Biggiogera, Marco; Helm, Mark; Soller, Matthias; Bühler, Marc; Roignant, Jean-Yves

    2018-03-01

    N 6 -methyladenosine (m 6 A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m 6 A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m 6 A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m 6 A levels and is involved in sex determination in Drosophila We demonstrate that Flacc promotes m 6 A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m 6 A machinery. © 2018 Knuckles et al.; Published by Cold Spring Harbor Laboratory Press.

  17. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction.

    Science.gov (United States)

    Mina, Sara G; Huang, Peter; Murray, Bruce T; Mahler, Gretchen J

    2017-07-01

    Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm 2 ) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate

  18. Magnetic minerals in Pliocene and Pleistocene marine marls from Southern Italy : rock magnetic properties and alteration during thermal demagnetization

    NARCIS (Netherlands)

    Van Velzen, A.J.

    1994-01-01

    The rock magnetic properties of two different Pliocene to Pleistocene marine marls from southern Italy are studied. Different conditions during sedimentation have led to two completely different magnetic mineralogies in these marls. Chapters 2, 3 and 4 examine the rock magnetic properties of the

  19. Characteristics of Endotoxin-Altering Fractions Derived from Normal Serum III. Isolation and Properties of Horse Serum alpha(2)-Macroglobulin.

    Science.gov (United States)

    Yoshioka, M; Konno, S

    1970-05-01

    The endotoxin-altering activity of fractions isolated from normal horse serum was examined by incubation of Salmonella typhosa strain 0-901 endotoxin (Boivin) in a solution of the fraction, and subsequent quantitation of any diminution in the capacity of endotoxin to be precipitated by specific anti-endotoxin antiserum. The horse serum fraction isolated by precipitation with ammonium sulfate at a concentration between 1.6 and 2.7 m was incubated with Pronase PA and then with trypsin. When this partly digested fraction was passed twice through a Sephadex G-200 column and eluted with 0.2 m tris(hydroxymethyl)aminomethane buffer, most of the endotoxinaltering activity was found in the first protein peak designated F-1a. F-1a was found to be homogeneous and corresponded to an alpha(2)-macroglobulin by the techniques of electrophoresis, immunodiffusion, and ultracentrifugation. Approximately 100-fold more F-1a than endotoxin was needed to reduce the antigenicity of the endotoxin by one-half. Alteration was increased when F-1a was incubated with the endotoxin at acid pH or at 45 C rather than at 37 C and was lost after heating F-1a at 56 C for 30 min. N-ethylmaleimide increased the endotoxin-altering activity of horse serum, F-1a, and human plasma fraction III(0), whereas p-chloromercuribenzoate did not. On the other hand, diazonium-1-H-tetrazole, iodoacetic acid, and benzylchloride suppressed the activity of F-1a. When the interaction of endotoxin and F-1a was examined by immunodiffusion techniques, depolymerization of the endotoxin molecule was indicated. The endotoxin-altering factor of horse serum is discussed in relation to the mechanisms of other known reagents, such as deoxycholate and sodium lauryl sulfate.

  20. Characteristics of Endotoxin-Altering Fractions Derived from Normal Serum III. Isolation and Properties of Horse Serum α2-Macroglobulin

    Science.gov (United States)

    Yoshioka, Morimasa; Konno, Seishi

    1970-01-01

    The endotoxin-altering activity of fractions isolated from normal horse serum was examined by incubation of Salmonella typhosa strain 0-901 endotoxin (Boivin) in a solution of the fraction, and subsequent quantitation of any diminution in the capacity of endotoxin to be precipitated by specific anti-endotoxin antiserum. The horse serum fraction isolated by precipitation with ammonium sulfate at a concentration between 1.6 and 2.7 m was incubated with Pronase PA and then with trypsin. When this partly digested fraction was passed twice through a Sephadex G-200 column and eluted with 0.2 m tris(hydroxymethyl)aminomethane buffer, most of the endotoxinaltering activity was found in the first protein peak designated F-1a. F-1a was found to be homogeneous and corresponded to an α2-macroglobulin by the techniques of electrophoresis, immunodiffusion, and ultracentrifugation. Approximately 100-fold more F-1a than endotoxin was needed to reduce the antigenicity of the endotoxin by one-half. Alteration was increased when F-1a was incubated with the endotoxin at acid pH or at 45 C rather than at 37 C and was lost after heating F-1a at 56 C for 30 min. N-ethylmaleimide increased the endotoxin-altering activity of horse serum, F-1a, and human plasma fraction III0, whereas p-chloromercuribenzoate did not. On the other hand, diazonium-1-H-tetrazole, iodoacetic acid, and benzylchloride suppressed the activity of F-1a. When the interaction of endotoxin and F-1a was examined by immunodiffusion techniques, depolymerization of the endotoxin molecule was indicated. The endotoxin-altering factor of horse serum is discussed in relation to the mechanisms of other known reagents, such as deoxycholate and sodium lauryl sulfate. Images PMID:16557754

  1. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies

    CSIR Research Space (South Africa)

    Motaung, DE

    2015-01-01

    Full Text Available We report on the effect of the synthesis reaction-time on the structural, optical, magnetic and sensing properties of ZnO-nanostructures. Electron paramagnetic resonance and photoluminescence analyses reveal that singly ionized oxygen vacancies (Vþ...

  2. BMPR1B up-regulation via a miRNA binding site variation defines endometriosis susceptibility and CA125 levels.

    Directory of Open Access Journals (Sweden)

    Cherry Yin-Yi Chang

    Full Text Available BACKGROUND: Bone morphogenetic protein receptor I B (BMPR1B is a transmembrane receptor mediating TGF-β signal transduction. Recent studies indicate a tumor suppressor role for BMPR1B in ovarian cancer. Polymorphism at BMPR1B 3'UTR within the miR-125b binding site alters its binding affinity toward the miRNA, which may result in insufficient post-transcriptional repression. METHODS: Single-nucleotide polymorphisms rs1970801, rs1434536, and rs11097457 near the miR-125b binding site in BMPR1B were genotyped by Taqman assay on 193 endometriosis patients and 202 healthy controls. BMPR1B and CA125 levels in ectopic endometrial tissues were evaluated by quantitative PCR and immunohistochemistry. Luciferase reporter assay was utilized to verify regulatory roles of BMPR1B 3'UTR with allelic variants of rs1434536 in a cell line model. Cell proliferation and migration were recorded, while expression of BMPR1B, CA125, glucocorticoid receptor (GCCR and IL-1β were measured by quantitative PCR in endometrial cells transfected with wild-type or mutated miR-125b. RESULTS: This study found two endometriosis-associated SNPs, rs1434536 (P = 0.010 and rs1970801 (P = 0.0087, located within and next to a miR-125b binding site on BMPR1B. Interestingly, patients with homozygous variant alleles at rs1434536 showed significantly lower serum CA125 levels. Immunohistochemistry staining further confirmed inverse correlation between BMPR1B and CA125 levels in three rs1434536 genotypes. Cell assays demonstrated the variant allele of rs1434536 up-regulating BMPR1B at both mRNA and protein levels, which negatively correlated with CA125 and IL-1β levels. Disruption of the binding between miR-125b and BMPR1B hampered abnormal cell proliferation. CONCLUSIONS: SNPs of BMPR1B within and next to the miR-125b binding site manifested strong correlation with endometriosis development in a Taiwanese cohort. Disrupting the binding of miR-125b toward BMPR1B would increase

  3. Alterations in mRNA 3' UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington's Disease Brains.

    Science.gov (United States)

    Romo, Lindsay; Ashar-Patel, Ami; Pfister, Edith; Aronin, Neil

    2017-09-26

    The huntingtin gene has two mRNA isoforms that differ in their 3' UTR length. The relationship of these isoforms with Huntington's disease is not established. We provide evidence that the abundance of huntingtin 3' UTR isoforms differs between patient and control neural stem cells, fibroblasts, motor cortex, and cerebellum. Huntingtin 3' UTR isoforms, including a mid-3' UTR isoform, have different localizations, half-lives, polyA tail lengths, microRNA sites, and RNA-binding protein sites. Isoform shifts in Huntington's disease motor cortex are not limited to huntingtin; 11% of alternatively polyadenylated genes change the abundance of their 3' UTR isoforms. Altered expression of RNA-binding proteins may be associated with aberrant isoform abundance; knockdown of the RNA-binding protein CNOT6 in control fibroblasts leads to huntingtin isoform differences similar to those in disease fibroblasts. These findings demonstrate that mRNA 3' UTR isoform changes are a feature of molecular pathology in the Huntington's disease brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...... interneurons by decreasing the threshold for action potentials. We then tested if Lu AE98134 could normalize the altered firing properties of FSINs in Dlx5/6+/- mutant mice. FSINs of this model for schizophrenia are characterized by broader action potentials and higher spike threshold. We found...

  5. Phosphorylation of the spinach chloroplast 24 kDa RNA-binding protein (24RNP) increases its binding to petD and psbA 3' untranslated regions.

    Science.gov (United States)

    Loza-Tavera, H; Vargas-Suárez, M; Díaz-Mireles, E; Torres-Márquez, M E; González de la Vara, L E; Moreno-Sánchez, R; Gruissem, W

    2006-09-01

    The chloroplast 24 kDa RNA binding protein (24RNP) from Spinacea oleracea is a nuclear encoded protein that binds the 3' untranslated region (3'UTR) of some chloroplast mRNAs and seems to be involved in some processes of mRNA metabolism, such as 3'UTR processing, maturation and stabilization. The 24RNP is similar to the 28RNP which is involved in the correct maturation of petD and psbA 3'UTRs, and when phosphorylated, decreases its binding affinity for RNA. In the present work, we determined that the recombinant 24RNP was phosphorylated in vitro either by an animal protein kinase C, a plant Ca(2+)-dependent protein kinase, or a chloroplastic kinase activity present in a protein extract with 3'-end processing activity in which the 24RNP is also present. Phosphorylation of 24RNP increased the binding capacity (B(max)) 0.25 time for petD 3'UTR, and three times for psbA 3'UTR; the affinity for P-24RNP only increased when the interaction with petD was tested. Competition experiments suggested that B(max), not K(d), might be a more important factor in the P-24RNP-3'UTR interaction. The data suggested that the 24RNP role in chloroplast mRNA metabolism may be regulated in vivo by changes in its phosphorylation status carried out by a chloroplastic kinase.

  6. Effects of tryptophan starvation on levels of the trp RNA-binding attenuation protein (TRAP) and anti-TRAP regulatory protein and their influence on trp operon expression in Bacillus subtilis.

    Science.gov (United States)

    Yang, Wen-Jen; Yanofsky, Charles

    2005-03-01

    The anti-TRAP protein (AT), encoded by the rtpA gene of Bacillus subtilis, can bind to and inhibit the tryptophan-activated trp RNA-binding attenuation protein (TRAP). AT binding can prevent TRAP from promoting transcription termination in the leader region of the trp operon, thereby increasing trp operon expression. We show here that AT levels continue to increase as tryptophan starvation becomes more severe, whereas the TRAP level remains relatively constant and independent of tryptophan starvation. Assuming that the functional form of AT is a trimer, we estimate that the ratios of AT trimers per TRAP molecule are 0.39 when the cells are grown under mild tryptophan starvation conditions, 0.83 under more severe starvation conditions, and approximately 2.0 when AT is expressed maximally. As the AT level is increased, a corresponding increase is observed in the anthranilate synthase level. When AT is expressed maximally, the anthranilate synthase level is about 70% of the level observed in a strain lacking TRAP. In a nutritional shift experiment where excess phenylalanine and tyrosine could potentially starve cells of tryptophan, both the AT level and anthranilate synthase activity were observed to increase. Expression of the trp operon is clearly influenced by the level of AT.

  7. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  8. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  9. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    Science.gov (United States)

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  10. Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease

    OpenAIRE

    Batta, Gyula; Soltész, Lilla; Kovács, Tamás; Bozó, Tamás; Mészár, Zoltán; Kellermayer, Miklós; Szöllősi, János; Nagy, Peter

    2018-01-01

    Gaucher disease is a lysosomal storage disease characterized by the malfunction of glucocerebrosidase resulting in the accumulation of glucosylceramide and other sphingolipids in certain cells. Although the disease symptoms are usually attributed to the storage of undigested substrate in lysosomes, here we show that glycosphingolipids accumulating in the plasma membrane cause profound changes in the properties of the membrane. The fluidity of the sphingolipid-enriched membrane decreased accom...

  11. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy.

    Science.gov (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J

    2017-06-01

    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  12. Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles.

    Science.gov (United States)

    Zacharaki, Polyxeni; Stephanou, Georgia; Demopoulos, Nikos A

    2013-09-01

    We have comparatively investigated the aneugenic activity of two anticancer drugs, nocodazole (NOC) and paclitaxel (PTX), and the antifungal griseofulvin with promising role in cancer treatment (GF), which affect microtubule dynamics in different ways. The comparison was achieved in HFFF2 human fibroblasts, MCF-7 human breast cancer cells and C2C12 mouse myoblasts, and focused on three issues: (i) induction of chromosome delay by estimation of MN frequency using CREST analysis; (ii) disturbance of spindle organization with Aurora-A/β-tubulin immunofluorescence; and (iii) alterations in the expression of Aurora-A, β- and γ-tubulin by western blotting. They induced chromosome delay, provoked metaphase arrest and promoted microtubule disorganization, reflecting their common characteristic of generating aneuploidy. In particular, NOC induced mainly monopolar metaphases, although PTX induced only multipolar metaphases. GF generated different types of abnormal metaphases, exhibiting cell specificity. Additionally, NOC decreased the expression of Aurora-A and β-tubulin, while the opposite held true for PTX and GF. γ-Tubulin expression was not modulated owing to NOC treatment, whereas PTX and GF increased γ-tubulin expression. Our findings throw a light on the manifestation of the aneugenicity of the studied compounds through centrosome proliferation/separation and protein expression, reflecting their different effects on microtubule dynamics. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Elevated NT-proBNP is associated with unfavorably altered plasma fibrin clot properties in atrial fibrillation.

    Science.gov (United States)

    Matusik, Paweł T; Matusik, Patrycja S; Kornacewicz-Jach, Zdzisława; Małecka, Barbara; Ząbek, Andrzej; Undas, Anetta

    2017-09-15

    Dense fibrin clot formation and hypofibrinolysis have been reported in atrial fibrillation (AF). It is unclear which factors affect fibrin clot properties in AF. We investigated plasma fibrin clot permeability (K s ), clot lysis time (CLT), endogenous thrombin potential (ETP) as well as other coagulation and fibrinolysis parameters along with N-terminal pro-B-type natriuretic peptide (NT-proBNP) in 160 AF patients (median age, 70.5years). Previous stroke (n=15; 9.4%) was associated with decreased K s (P=0.04) and longer CLT (P=0.005), together with higher antiplasmin (P=0.03) and lower tissue-type plasminogen activator (P=0.01). Lower K s (P=0.04) and tendency towards longer CLT (P=0.10) were observed in patients with a left atrium diameter>40mm. Patients with a CHA 2 DS 2 -VASc score of 3 or more (82.5%) were characterized by higher thrombin-activatable fibrinolysis inhibitor antigen (P=0.009). K s was inversely correlated with log NT-proBNP (r=-0.34, PCLT was positively correlated with log NT-proBNP (R=0.61, PCLT (the top quartile,≥109min). In AF patients prothrombotic fibrin clot properties assessed ex vivo are determined by PAI-1 and NT-proBNP and this phenotype is associated with prior ischemic stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Humidity-Induced Phase Transitions of Surfactants Embedded in Latex Coatings Can Drastically Alter Their Water Barrier and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Juan F. Gonzalez-Martinez

    2018-03-01

    Full Text Available Latex coatings are environmentally friendly i.e., they are formed from aqueous polymer dispersions, are cheap to produce and provide exceptional mechanical properties. Therefore, they are ubiquitous and can be found in a wide range of different applications such as paints and varnishes, pressure-sensitive adhesives, textiles, construction materials, paper coatings and inks. However, they also have weaknesses and their surfactant content is among them. Surfactants are often needed to stabilize polymer particles in the aqueous latex dispersions. These surfactants also form part of the coatings formed from these dispersions, and it is well-known that they can lower their performance. This work further explores this aspect and focuses on the role that embedded surfactant domains play in the response of latex coatings to humid environments. For this purpose, we made use of several experimental techniques where humidity control was implemented: quartz crystal microbalance with dissipation, atomic force microscopy and differential scanning calorimetry. By means of this multimethodological approach, we report that surfactants embedded in latex coatings can undergo humidity-induced transitions towards more hydrated and softer phases, and that this results in a drastic decrease of the mechanical and water barrier properties of the whole coatings. Subsequently, this work highlights the potential of taking into account the phase behavior of surfactants when choosing which ones to use in the synthesis of latex dispersions as this would help in predicting their performance under different environmental conditions.

  15. Alterations in mechanical properties of the patellar tendon is associated with pain in athletes with patellar tendinopathy.

    Science.gov (United States)

    Lee, W C; Zhang, Z J; Masci, L; Ng, G Y F; Fu, Siu Ngor

    2017-05-01

    To compare tendon strain and stiffness between athletes with patellar tendinopathy and healthy controls, and explore whether the intensity of pain and dysfunction were related to the mechanical properties of the tendon. Thirty-four male athletes with patellar tendinopathy and 13 healthy controls matched by age and activity levels were recruited. The in vivo mechanical properties of the patellar tendon were examined by ultrasonography and dynamometry. In subjects with patellar tendinopathy, the intensities of self-perceived pain (maximal pain in the past 7 days and pain during a single-legged declined-squat test) using the visual analogue scale and the assessment of functional disability using the Victorian Institute of Sport Assessment-patellar questionnaire, were collected. In subjects with patellar tendinopathy, tendon strain was significantly reduced by 22% (8.9 ± 3.7 vs. 14.3 ± 4.7%, P = 0.005) when compared with healthy controls. There was no significant group difference in tendon stiffness (P = 0.27). Significant negative correlations between tendon strain and the maximal self-perceived pain over 7 days (r = -0.37, P = 0.03), and pain during a single-legged declined-squat test (r = -0.37, P = 0.03) were detected. A trend of significant positive correlation was found between tendon stiffness and pain during a single-legged declined-squat test (r = 0.30, P = 0.09). Our findings show that tendon strain is reduced in athletes with patellar tendinopathy, and a lower tendon strain is associated with a greater magnitude of pain perceived.

  16. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography.

    Directory of Open Access Journals (Sweden)

    Hannah V Wilson

    Full Text Available The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG has not been published.To investigate the; (1 reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm, (2 effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude and contraction time (Tc, (3 the effect of changing inter-electrode distance on Dm and Tc.Within subject, repeated measures.10 participants for each objective.Dm and Tc of the rectus femoris, measured using TMG.The coefficient of variance (CV and the intra-class correlation (ICC of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively.Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles.

  17. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy.

    Science.gov (United States)

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2014-11-01

    The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5-6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P cycle and during pregnancy (P cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P cycle and was at its lowest (P cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3).

    Science.gov (United States)

    Yue, Michael M; Lv, Kaosheng; Meredith, Stephen C; Martindale, Jennifer L; Gorospe, Myriam; Schuger, Lucia

    2014-12-05

    P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5'UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5'UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. BRCA-mutated Invasive Breast Carcinomas: Immunohistochemical Analysis of Insulin-like Growth Factor II mRNA-binding Protein (IMP3), Cytokeratin 8/18, and Cytokeratin 14.

    Science.gov (United States)

    Mohanty, Sambit K; Lai, Jin-Ping; Gordon, Ora K; Pradhan, Dinesh; Bose, Shikha; Dadmanesh, Farnaz

    2015-01-01

    To evaluate the expression of insulin-like growth factor II mRNA-binding protein (IMP3), CK8/18, and CK14 in BRCA mutated and sporadic invasive breast carcinoma. Immunohistochemistry for IMP3, CK8/18, and CK14 was performed on 39 cases of invasive breast carcinomas with BRCA mutation (24 BRCA1, 14 BRCA2, and 1 dual BRCA1/BRCA2) and 54 cases of sporadic invasive breast carcinomas. The relationship between the IMP3, CK8/18, and CK14 and the tumor grade and molecular phenotypes were analyzed. IMP3, CK8/18, and CK14 positivity were present in 20 (51%), 22 (56%), and 14 (36%) of 39 BRCA-mutated breast carcinomas, and 11 (20%), 53 (98%), and 24 (44%) of 54 sporadic breast carcinomas respectively. The rates of IMP3 expression and absence of CK8/18 (44% versus 2%) in BRCA-mutated breast carcinomas was significantly higher than the sporadic breast carcinomas (p = 0.002 and p BRCA1-related and BRCA2-related breast carcinomas in the immunoprofile for IMP3, CK8/18, and CK14. No significant correlation was identified between the expression of IMP3 and CK8/18 and the tumor grade in both BRCA-mutated and sporadic breast carcinomas (p > 0.05). In cases with luminal A and B phenotypes, the rates of expression of IMP3 and loss of CK8/18 were significantly higher in BRCA-mutated as compared to sporadic breast carcinoma (p BRCA-mutated breast carcinomas (54% versus 0%, p = 0.001), while no difference was observed for IMP3 expression (p = 0.435). Regardless of mutation type, histologic grade, or molecular phenotype, the absence of CK8/18 expression and presence of IMP3 expression are seen at much higher rate in BRCA mutated breast carcinomas. © 2015 Wiley Periodicals, Inc.

  20. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    Science.gov (United States)

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  1. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis.

    Science.gov (United States)

    Verma, Suresh K; Panda, Pritam Kumar; Jha, Ealisha; Suar, Mrutyunjay; Parashar, S K S

    2017-10-24

    This study investigates the in vivo cytotoxicity of ZnO nanoparticles synthesized at industrial scale with embryonic Zebrafish. Industrial synthesis of ZnO nanoparticles was mimicked at lab scale by high energy ball milling technique by milling bulk ZnO particles for 15 h. Synthesized 7 h and 10 h ZnO nanoparticles showed significant alteration of size, zeta potential and optical properties in comparison to Bulk ZnO. Mortality and hatching rate in Zebrafish embryos were influenced by these alterations. Size and charge dependent effect of ZnO nanoparticles exposure on physiology and development of Zebrafish embryos were evident by malfunctioned organ development and abnormal heartbeat rate. Similar dependency on quenching of ROS due to influential hydrogen bond interaction with glycine residue of Sod1 oxidative stress protein and increased apoptosis were observed in cells. The study revealed the mechanism of cytotoxicity in exposed embryonic Zebrafish as an effect of accumulation and internalization inside cells instigating to generation of hypoxic condition and interference with the normal adaptive stress regulation signaling pathways leading towards enhanced apoptosis. The study revealed hidden size and charge dependent in vivo cytotoxicity mechanism of ZnO nanoparticles in Zebrafish embryos insight of the environmental and clinical importance of attention on industrially synthesized ZnO nanoparticles.

  2. Genetic deletion of TREK-1 or TWIK-1/TREK-1 potassium channels does not alter the basic electrophysiological properties of mature hippocampal astrocytes in situ

    Directory of Open Access Journals (Sweden)

    Yixing eDu

    2016-02-01

    Full Text Available We have recently shown that a linear current-to-voltage (I-V relationship of membrane conductance (passive conductance reflects the intrinsic property of K+ channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (VM essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K+ channels remains elusive. TREK-1 two-pore domain K+ channel (K2P is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of this heterodimer channel to the membrane and contributing to astrocytes’ passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K+ channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, VM, or membrane input resistance (Rin in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K+ channels may shed light on this long-standing and important question in astrocyte physiology.

  3. Hydrodynamic properties of the gonadotropin receptor from a murine Leydig tumor cell line are altered by desensitization

    International Nuclear Information System (INIS)

    Rebois, R.V.; Bradley, R.M.; Titlow, C.C.

    1987-01-01

    The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (G/sub s/). The binding of human choriogonadotropin (hGC) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H 2 O and D 2 O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (v/sub c/), sedimentation coefficient (s/sub 20,w/), and molecular weight (M/sub r/) of the detergent-solubilized hormone-receptor complex (hCG-GR). [ 125 I]hCG was bound to MLTC-1 cells under conditions that allow (37 0 C) or prevent (0 0 C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a M/sub r/ of 213,000, whereas desensitized hCG-GR had a M/sub r/ of 158,000. Deglycosylated hCG (DG-HCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. [ 125 I]DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or G/sub s/ with GR in Triton X-100 solubilized preparations. When hCG was cross-linked to GR and solubilized with sodium dodecyl sulfate (SDS), the M/sub r/ was found to be 116,000, which was similar to that determined by SDS-polyacrylamide gel electrophoresis and less than that of the Triton X-100 solubilized control hCG-GR

  4. Alterations in the Elasticity, Pliability, and Viscoelastic Properties of Facial Skin After Injection of Onabotulinum Toxin A.

    Science.gov (United States)

    Bonaparte, James P; Ellis, David

    2015-01-01

    This prospective cohort study provides evidence and information on the mechanism of action of onabotulinum toxin A on the reduction of skin elasticity and pliability. Understanding the natural course that onabotulinum toxin A has on the elasticity of skin may help physicians understand why there appears to be a progressive reduction in wrinkle levels with repeated treatments. To determine whether onabotulinum toxin A increases skin pliability and elasticity with a corresponding decrease in the contribution of the viscoelastic component of skin resistance. From October 1, 2012, through June 31, 2013, this prospective cohort study enrolled 48 onabotulinum toxin A-naive women (mean [SD] age, 55.2 [11.3] years) with a minimum of mild wrinkle levels at the glabella and lateral orbit (43 completed the study). Patients were treated at a private cosmetic surgery clinic with onabotulinum toxin A and assessed at baseline and 2 weeks, 2 months, 3 months, and 4 months after injection. Standardized onabotulinum toxin A was administered to patients' glabella, supraorbit, and lateral orbit. Skin pliability, elastic recoil, and the ratio of viscoelastic resistance (Uv) to elastic resistance (Ue). For the supraorbit, there was a significant effect of time on pliability (F = 20.5), elastic recoil (F = 6.92), and Uv/Ue ratio (F = 5.6) (P elastic recoil (F = 31.66), and Uv/Ue ratio (F = 10.11) (P elastic recoil (F = 11.43, P tissue edema suggestive of an inflammatory reaction within the skin. However, it remains unclear whether this is due to an intrinsic property of the medication or another unrecognized mechanism. 2.

  5. Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on (1)H NMR, UHPLC-HRMS, and Metabolic Databases.

    Science.gov (United States)

    Chatzimitakos, Theodoros G; Stalikas, Constantine D

    2016-09-02

    Metal nanoparticles (NPs) have proven to be more toxic than bulk analogues of the same chemical composition due to their unique physical properties. The NPs, lately, have drawn the attention of researchers because of their antibacterial and biocidal properties. In an effort to shed light on the mechanism through which the bacteria elimination is achieved and the metabolic changes they undergo, an untargeted metabolomic fingerprint study was carried out on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species. The (1)H NMR spectroscopy, in conjunction with high resolution mass-spectrometry (HRMS) and an unsophisticated data processing workflow were implemented. The combined NMR/HRMS data, supported by an open-access metabolomic database, proved to be efficacious in the process of assigning a putative annotation to a wide range of metabolite signals and is a useful tool to appraise the metabolome alterations, as a consequence of bacterial response to NPs. Interestingly, not all the NPs diminished the intracellular metabolites; bacteria treated with iron NPs produced metabolites not present in the nonexposed bacteria sample, implying the activation of previously inactive metabolic pathways. In contrast, copper and iron-copper NPs reduced the annotated metabolites, alluding to the conclusion that the metabolic pathways (mainly alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, glutathione metabolism, and arginine and proline metabolism) were hindered by the interactions of NPs with the intracellular metabolites.

  6. Altered white matter tract property related to impaired focused attention, sustained attention, cognitive impulsivity and vigilance in attention-deficit/ hyperactivity disorder.

    Science.gov (United States)

    Chiang, Huey-Ling; Chen, Yu-Jen; Lo, Yu-Chun; Tseng, Wen-Yih I; Gau, Susan S

    2015-09-01

    The neural substrate for clinical symptoms and neuropsychological performance in individuals with attention-deficit/hyperactivity disorder (ADHD) has rarely been studied and has yielded inconsistent results. We sought to compare the microstructural property of fibre tracts associated with the prefrontal cortex and its association with ADHD symptoms and a wide range of attention performance in youth with ADHD and healthy controls. We assessed youths with ADHD and age-, sex-, handedness-, coil- and intelligence-matched controls using the Conners' Continuous Performance Test (CCPT) for attention performance and MRI. The 10 target tracts, including the bilateral frontostriatal tracts (caudate to dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and orbitofrontal cortex), superior longitudinal fasciculus (SLF) and cingulum bundle were reconstructed using diffusion spectrum imaging tractography. We computed generalized fractional anisotropy (GFA) values to indicate tract-specific microstructural property. We included 50 youths with ADHD and 50 healthy controls in our study. Youths with ADHD had lower GFA in the left frontostriatal tracts, bilateral SLF and right cingulum bundle and performed worse in the CCPT than controls. Furthermore, alteration of the right SLF GFA was most significantly associated with the clinical symptom of inattention in youths with ADHD. Finally, youths with ADHD had differential association patterns of the 10 fibre tract GFA values with attention performance compared with controls. Ten of the youths with ADHD were treated with methylphenidate, which may have long-term effects on microstructural property. Our study highlights the importance of the SLF, cingulum bundle and frontostriatal tracts for clinical symptoms and attention performance in youths with ADHD and demonstrates the involvement of different fibre tracts in attention performance in these individuals.

  7. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability.

    Directory of Open Access Journals (Sweden)

    Laetitia Davidovic

    2013-03-01

    Full Text Available The Fragile X-Related 1 gene (FXR1 is a paralog of the Fragile X Mental Retardation 1 gene (FMR1, whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD patients. FXR1P is an RNA-binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21--a regulator of cell-cycle progression--in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3' untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.

  8. Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer.

    Science.gov (United States)

    Erturk, Elif; Cecener, Gulsah; Polatkan, Volkan; Gokgoz, Sehsuvar; Egeli, Unal; Tunca, Berrin; Tezcan, Gulcin; Demirdogen, Elif; Ak, Secil; Tasdelen, Ismet

    2014-01-01

    Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

  9. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  10. Utility of hesperidinase for food function research: enzymatic digestion of botanical extracts alters cellular antioxidant capacities and anti-inflammatory properties.

    Science.gov (United States)

    Yu, Lu; Huang, Haiqiu; Yu, Liangli Lucy; Wang, Thomas T Y

    2014-08-27

    Food-derived phytochemicals, many known for their health beneficial effects, often exist in conjugated forms containing sugar moieties such as glucose or rhamnose in foods. The uptake of these compounds requires colonic bacterial cleavage of sugar moieties. However, most studies involved in screening extracts for biological activities do not take this process into account. This study seeks to determine the utility of commercially available hesperidinase to mimic colonic digestion and to test the effects of this treatment on the biological properties of extracts. Using hesperidinase resulted in efficient hydrolysis of Engelhardia roxburghiana Wall. extract containing rhamnose conjugates. Enzymatic digestion enhanced the extract's cellular antioxidant ability by 2-fold in HepG2/C3A and the anti-inflammatory effect on lipopolysaccharide-induced interleukin (IL)-1β and IL-6 expression in mouse macrophage J774A.1 and human monocyte THP-1 cells. Enzymatic digestion also efficiently processed extracts with mixed rhamnose and glucose conjugates and altered their biological activities. Results of the present study supported the importance of considering enzymatic digestion during the biological activity studies of botanicals.

  11. Properties of altered soils by alkaline solution: contribution in the performance evaluation of repositories; Propriedades de solos alterados por solucao alcalina: contribuicao na avaliacao de desempenho de repositorios

    Energy Technology Data Exchange (ETDEWEB)

    Calabria, Jaqueline Alves de Almeida

    2015-07-01

    The radioactive wastes from nuclear technology applications must be properly disposed in a repository, during the necessary time to ensure the human and the environment protection. The surface systems are largely considered for disposal of low and intermediate level radioactive waste, but generally require the use of engineering barriers to control the radionuclides release. An important engineering barrier is the backfill which is situated between the package and structural material, and has the functions of reducing the water infiltration and to promote the retardation of the radionuclide migration, among others. Therefore, the material to be used as backfill such as clays, cement, soils, rocks, must has good sorption, permeability and mechanical properties. The selection of the material will depend also largely on the material availability and installation design. The concrete is also used in the construction of repository, and its interaction with water induces its degradation, resulting in a high pH solution. This solution interacts with the backfilling materials promoting mineralogical alterations that results in significant changes in their key properties and performance as safety component of the repository. In this work, five Brazilian soils of Minas Gerais state, selected according to their generic characteristics along with information from Sistema Brasileiro de Classificacao de Solos (SiBCS) were investigated concerning their potential use as backfilling material in a superficial repository by the determination of retention capacity for cesium and iodine. Sorption-related parameters, used in the performance assessment of the soils, were obtained from experimental data fitting to different sorption isotherms models. The soil that showed the best sorption of Cs, was a clay soil that presented distribution coefficient (K{sub d}) of 90.5 mL.g{sup -1} and maximum sorption capacity (Q{sub max}) of 18.372 mg.g{sup -1}. Regarding the iodine, the sorption was

  12. In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

    OpenAIRE

    Sohrabi, Seyyed Mohsen; Niazi, Ali; Chahardoli, Mahmood; Hortamani, Ali; Setoodeh, Payam

    2014-01-01

    Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal peptides and transferrin motifs in the Lf structure were highly conserved. Examined sequences showed thre...

  13. Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust.

    Science.gov (United States)

    Hanson, Elizabeth; Danbolt, Niels Christian; Dulla, Chris G

    2016-05-01

    Developmental cortical malformations (DCMs) are linked with severe epilepsy and are caused by both genetic and environmental insults. DCMs include several neurological diseases, such as focal cortical dysplasia, polymicrogyria, schizencephaly, and others. Human studies have implicated astrocyte reactivity and dysfunction in the pathophysiology of DCMs, but their specific role is unknown. As astrocytes powerfully regulate glutamate neurotransmission, and glutamate levels are known to be increased in human epileptic foci, understanding the role of astrocytes in the pathological sequelae of DCMs is extremely important. Additionally, recent studies examining astrocyte glutamate uptake in DCMs have reported conflicting results, adding confusion to the field. In this study we utilized the freeze lesion (FL) model of DCM, which is known to induce reactive astrocytosis and cause significant changes in astrocyte morphology, proliferation, and distribution. Using whole-cell patch clamp recording from astrocytes, we recorded both UV-uncaging and synaptically evoked glutamate transporter currents (TCs), widely accepted assays of functional glutamate transport by astrocytes. With this approach, we set out to test the hypothesis that astrocyte membrane properties and glutamate transport were disrupted in this model of DCM. Though we found that the developmental maturation of astrocyte membrane resistance was disrupted by FL, glutamate uptake by individual astrocytes was robust throughout FL development. Interestingly, using an immunolabeling approach, we observed spatial and developmental differences in excitatory amino acid transporter (EAAT) expression in FL cortex. Spatially specific differences in EAAT2 (GLT-1) and EAAT1 (GLAST) expression suggest that the relative contribution of each EAAT to astrocytic glutamate uptake may be altered in FL cortex. Lastly, we carefully analyzed the amplitudes and onset times of both synaptically- and UV uncaging-evoked TCs. We found that in

  14. Unfavorably Altered Fibrin Clot Properties in Patients with Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome): Association with Thrombin Generation and Eosinophilia

    Science.gov (United States)

    Mastalerz, Lucyna; Celińska-Lӧwenhoff, Magdalena; Krawiec, Piotr; Batko, Bogdan; Tłustochowicz, Witold; Undas, Anetta

    2015-01-01

    Objectives Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome), we investigated whether fibrin clot properties are unfavorably altered in EGPA. Methods Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male), aged 48 (range, 21–80) years. The control group comprised 34 age- and sex- matched volunteers. Results Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10−9 cm2), faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s), thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07), higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L), and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min); all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%. Conclusion This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease. PMID:26540111

  15. Unfavorably Altered Fibrin Clot Properties in Patients with Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome: Association with Thrombin Generation and Eosinophilia.

    Directory of Open Access Journals (Sweden)

    Lucyna Mastalerz

    Full Text Available Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome, we investigated whether fibrin clot properties are unfavorably altered in EGPA.Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male, aged 48 (range, 21-80 years. The control group comprised 34 age- and sex- matched volunteers.Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10-9 cm2, faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s, thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07, higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L, and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min; all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%.This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease.

  16. A systematic study on the alteration in physiochemical and metal retention properties of radiolytically degraded TBP-DD-HNO3 and TBP-NPH-HNO3 systems

    International Nuclear Information System (INIS)

    Mishra, Satyabrata; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    PUREX (Plutonium Uranium EXtraction) process using 30% TBP in NPH (n-paraffin hydrocarbon) or DD (dodecane) as the solvent is widely adopted for the selective extraction of Pu and U from a feed containing highly radioactive fission and activation products in about 3-4 M HNO 3 solution in the reprocessing of spent fuels of Fast Breeder Reactors. During extraction the solvent comes in contact with acid and intense radiation. Nitric acid also gets extracted into the solvent. The acid induced radiolytic transformations in the solvent result in the formation of a number of hydrophobic compounds that are normally not removed efficiently from the solvent by alkaline wash before recycling. As a consequence, the extraction and stripping behaviour of actinides as well as hydrodynamic properties such as density, viscosity, and phase disengagement time (PDT) are greatly altered. Published data on the radiation-chemical degradation of the solvent in different diluents are contradictory, as the irradiation procedures are not identical. For instance, Tripathi and Ramanujam have reported values of 0.837 and 0.841 g/cc for the density and 1.96 and 2.16 mPa.s for the viscosity of 30 % TBP-DD + 3 M HNO 3 before and after exposure to 12 MRad respectively. The density and viscosity measured by Venkatesan et al. for 30 % TBP-NPH and 30 % TBP-NPH + 4 M HNO 3 after irradiating to 10 MRad were 0.812 and 0.842 g/cc and 1.844 and 1.945 mPa.s respectively. Hence, a systematic study has been undertaken to compare the physiochemical transformations in 30 TBP-DD/NPH-HNO 3 system during accelerated radiolysis as a function of radiation dose. Radiolytic degradation of different sets of solutions comprising 30 % TBP-DD (I), 30 % TBP-DD + 4 M HNO 3 (v/v) (II), 30 % TBP-NPH (III) and 30 % TBP-NPH + 4 M HNO 3 (v/v) (IV) was carried out using 60 Co gamma source up to 20 MRad absorbed dose. Physiochemical properties and metal retention behaviour of the samples were measured after regular intervals of 5

  17. Mutation I136V alters electrophysiological properties of the NaV1.7 channel in a family with onset of erythromelalgia in the second decade

    Directory of Open Access Journals (Sweden)

    Dib-Hajj Sulayman D

    2008-01-01

    Full Text Available Abstract Background Primary erythromelalgia is an autosomal dominant pain disorder characterized by burning pain and skin redness in the extremities, with onset of symptoms during the first decade in the families whose mutations have been physiologically studied to date. Several mutations of voltage-gated Na+ channel NaV1.7 have been linked with primary erythromelalgia. Recently, a new substitution NaV1.7/I136V has been reported in a Taiwanese family, in which pain appeared at later ages (9–22 years, with onset at 17 years of age or later in 5 of 7 family members, with relatively slow progression (8–10 years to involvement of the hands. The proband reported onset of symptoms first in his feet at the age of 11, which then progressed to his hands at the age of 19. The new mutation is located in transmembrane segment 1 (S1 of domain I (DI in contrast to all NaV1.7 mutations reported to date, which have been localized in the voltage sensor S4, the linker joining segments S4 and S5 or pore-lining segments S5 and S6 in DI, II and III. Results In this study, we characterized the gating and kinetic properties of I136V mutant channels in HEK293 cells using whole-cell patch clamp. I136V shifts the voltage-dependence of activation by -5.7 mV, a smaller shift in activation than the other erythromelalgia mutations that have been characterized. I136V also decreases the deactivation rate, and generates larger ramp currents. Conclusion The I136V substitution in NaV1.7 alters channel gating and kinetic properties. Each of these changes may contribute to increased excitability of nociceptive dorsal root ganglion neurons, which underlies pain in erythromelalgia. The smaller shift in voltage-dependence of activation of NaV1.7, compared to the other reported cases of inherited erythromelalgia, may contribute to the later age of onset and slower progression of the symptoms reported in association with this mutation.

  18. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: a focused review.

    Science.gov (United States)

    Gutmann, J L; Gao, Y

    2012-02-01

    The expanded use of nickel-titanium (NiTi) rotary instruments in root canal procedures has led to the development of a wide variety of shapes, designs and applications. Root canal anatomy has not changed, however, and the same challenges exist in both initial treatment and the revision of unacceptable treatment. These challenges include application with high levels of achievement and low to no levels of adverse effects, such as instrument fracture, root canal wall ledging, dentine wall perforation and so forth. To that end, many manufacturers have been seeking ways to alter the presently available and wide range of root canal instrument designs, with a focus on altering the surface of the alloy or altering the alloy microstructure with post-machining or post-twisting heat treatment. This focused review will address the impact that these modifications have had on instrument flexibility, resistance to cyclic fatigue and cutting efficiency. © 2011 International Endodontic Journal.

  19. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  20. Lignin properties in topsoils of a beech/oak forest after 8 years of manipulated litter fall: relevance of altered input and oxidation of lignin

    NARCIS (Netherlands)

    Klotzbücher, T.; Strohmeier, S.; Kaiser, K.; Bowden, R.D.; Lajtha, K.; Ohm, H.; Kalbitz, K.

    2013-01-01

    Background and aims We studied the response of lignin oxidation in soils of a beech/oak forest to changes in litter fall. Additionally we considered possible factors in lignin oxidation, including altered (i) input of fresh organic matter and (ii) fungi-to-bacteria ratios. Methods The field-based

  1. Alterations in polyadenylation and its implications for endocrine disease

    Directory of Open Access Journals (Sweden)

    Anders eRehfeld

    2013-05-01

    Full Text Available IntroductionPolyadenylation is the process in which the pre-mRNA is cleaved at the poly(A site and a poly(A tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A sites can undergo alternative polyadenylation, producing distinct mRNA isoforms with different 3’ untranslated regions (3’ UTRs and in some cases different coding regions. Two thirds of all human genes undergo alternative polyadenylation. The efficiency of the polyadenylation process regulates gene expression and alternative polyadenylation plays an important part in post-transcriptional regulation, as the 3’ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for microRNAs and RNA-binding proteins.Implications of alterations in polyadenylation for endocrine diseaseAlterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome and many cancer diseases, including several types of endocrine tumor diseases.PerspectivesRecent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SummaryThis review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.

  2. Property (

    CERN Document Server

    Ershov, Mikhail; Kassabov, Martin

    2017-01-01

    The authors introduce and study the class of groups graded by root systems. They prove that if \\Phi is an irreducible classical root system of rank \\geq 2 and G is a group graded by \\Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \\Phi of rank \\geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\\mathrm St}_{\\Phi}(R) and the elementary Chevalley group \\mathbb E_{\\Phi}(R) have property (T). They also show that there exists a group with property (T) which maps onto all finite simple groups of Lie type and rank \\geq 2, thereby providing a "unified" proof of expansion in these groups.

  3. Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties.

    Science.gov (United States)

    Bach-Gansmo, Fiona Linnea; Wittig, Nina Kølln; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik

    2016-10-01

    The ability of osteocytes to demineralize the perilacunar matrix, osteocytic osteolysis, and thereby participate directly in bone metabolism, is an aspect of osteocyte biology that has received increasing attention during the last couple of years. The aim of the present work was to investigate whether osteocyte lacunar properties change during immobilization and subsequent recovery. A rat cortical bone model with negligible Haversian remodeling effects was used, with temporary immobilization of one hindlimb induced by botulinum toxin. Several complementary techniques covering multiple length scales enabled correlation of osteocyte lacunar properties to changes observed on the organ and tissue level of femoral bone. Bone structural parameters measured by μCT and mechanical properties were compared to sub-micrometer resolution SR μCT data mapping an unprecedented number (1.85 million) of osteocyte lacunae. Immobilization induced a significant reduction in aBMD, bone volume, tissue volume, and load to fracture, as well as the muscle mass of rectus femoris. During the subsequent recovery period, the bone structural and mechanical properties were only partly regained in spite of a long-term (28weeks) study period. No significant changes in osteocyte lacunar volume, density, oblateness, stretch, or orientation were detected upon immobilization or subsequent recovery. In conclusion, the bone architecture and not osteocyte lacunar properties or bone material characteristics dominate the immobilization response as well as the subsequent recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Impairment of lysophospholipid metabolism in obesity: altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial.

    Science.gov (United States)

    Del Bas, Josep M; Caimari, Antoni; Rodriguez-Naranjo, Maria Isabel; Childs, Caroline E; Paras Chavez, Carolina; West, Annette L; Miles, Elizabeth A; Arola, Lluis; Calder, Philip C

    2016-08-01

    Plasma lysophospholipids have emerged as signaling molecules with important effects on inflammation, insulin resistance, and fatty liver disease, each of which is linked closely to obesity. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may be able to improve these conditions. The objective of this study was to assess the response of plasma lysophospholipids to obesity, n-3 PUFA consumption, and a high-fat meal challenge to better understand the role of lysophospholipid metabolism in the progression of obesity-related disorders. We determined the concentrations of 8 lysophosphatidylcholines, 11 lysophosphatidylethanolamines, and 7 lysophosphatidylinositols in the plasma of 34 normal-weight and 38 obese subjects randomly assigned to consume corn oil (control) or n-3 PUFA-rich fish oil (3 g/d; n = 15-19/group) for 90 d. Blood samples were collected on the last day of the study under fasting conditions and 6 h after a high-fat meal (1135 kcal, 86 g fat) challenge. The profile of secreted lysophospholipids was studied in HepG2 cells under palmitate-induced steatosis. Obese and normal-weight subjects had different profiles of plasma lysophospholipids. A multivariate combination of the 26 lysophospholipids could discriminate between normal-weight and obese subjects with an accuracy of 98%. The high-fat meal challenge altered the concentration of plasma lysophosphatidylcholines in an oil treatment-dependent manner in normal-weight but not obese subjects, suggesting that obesity impairs the sensitivity of lysophospholipid metabolism to n-3 PUFAs. Noncytotoxic steatosis in HepG2 cells affected the secretion pattern of lysophospholipids, partially resembling the changes observed in the plasma of obese subjects. Obesity has a substantial impact on lysophospholipid metabolism, altering the plasma lysophospholipid profile and abolishing its sensitivity to dietary n-3 PUFAs. These effects could contribute to the onset or progression of alterations associated with obesity

  5. Is Alteration of Tuning Property in Cervical Vestibular-Evoked Myogenic Potential Specific for Ménière’s Disease?

    Directory of Open Access Journals (Sweden)

    Toshihisa Murofushi

    2017-05-01

    Full Text Available ObjectiveThe aim of this study is to show sensitivity and specificity of cervical vestibular-evoked myogenic potential (cVEMP tuning property test to Ménière’s disease (MD in comparison with healthy controls (HC and patients with other vestibular diseases.SubjectsTotally 92 subjects (50 women and 42 men, 20–77 years of age were enrolled in this study. Subjects were composed of 38 definite unilateral MD patients, 11 unilateral benign paroxysmal positional vertigo patients, 14 vestibular migraine patients, 19 unilateral vestibular neuritis patients, and 10 HC.MethodsThe subjects underwent cVEMP testing to 500 and 1,000 Hz short tone bursts (125 dBSPL. The corrected amplitudes of the first biphasic responses (p13–n23 (cVEMP were measured. Then, a tuning property index (the 500–1,000 Hz cVEMP slope was calculated.ResultsThe area of under the ROC curve (AUC was 0.75 in comparison with other vestibular disease patients, while AUC was 0.77 in comparison with other vestibular disease patients plus HC. The best cutoff point of the 500–1,000 Hz cVEMP slope was −19.9. Sensitivity of the tuning property test to MD was 0.74, while specificity was 0.76 to other vestibular disease patients.ConclusionThe tuning property test of cVEMP is useful as a screening test of MD.

  6. The arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1 to repress stress-inducible gene expression.

    Directory of Open Access Journals (Sweden)

    Jiafu Jiang

    Full Text Available The phosphorylation state of the C-terminal domain (CTD of the RNA polymerase II plays crucial roles in transcription and mRNA processing. Previous studies showed that the plant CTD phosphatase-like 1 (CPL1 dephosphorylates Ser-5-specific CTD and regulates abiotic stress response in Arabidopsis. Here, we report the identification of a K-homology domain-containing protein named SHINY1 (SHI1 that interacts with CPL1 to modulate gene expression. The shi1 mutant was isolated from a forward genetic screening for mutants showing elevated expression of the luciferase reporter gene driven by a salt-inducible promoter. The shi1 mutant is more sensitive to cold treatment during vegetative growth and insensitive to abscisic acid in seed germination, resembling the phenotypes of shi4 that is allelic to the cpl1 mutant. Both SHI1 and SHI4/CPL1 are nuclear-localized proteins. SHI1 interacts with SHI4/CPL1 in vitro and in vivo. Loss-of-function mutations in shi1 and shi4 resulted in similar changes in the expression of some stress-inducible genes. Moreover, both shi1 and shi4 mutants display higher mRNA capping efficiency and altered polyadenylation site selection for some of the stress-inducible genes, when compared with wild type. We propose that the SHI1-SHI4/CPL1 complex inhibits transcription by preventing mRNA capping and transition from transcription initiation to elongation.

  7. Host Adaptation and the Alteration of Viral Properties of the First Influenza A/H1N1pdm09 Virus Isolated in Japan.

    Directory of Open Access Journals (Sweden)

    Akira Ainai

    Full Text Available A/Narita/1/2009 (A/N was the first H1N1 virus from the 2009 pandemic (H1pdm to be isolated in Japan. To better understand and predict the possible development of this virus strain, the effect of passaging A/N was investigated in Madin-Darby canine kidney cells, chicken eggs and mice. A/N that had been continuously passaged in cells, eggs, or mice obtained the ability to grow efficiently in each host. Moreover, A/N grown in mice had both a high level of pathogenicity in mice and an increased growth rate in cells and eggs. Changes in growth and pathogenicity were accompanied by amino acid substitutions in viral hemagglutinin (HA and PB2. In addition, the adapted viruses exhibited a reduced ability to react with ferret antisera against A/N. In conclusion, prolonged passaging allowed influenza A/N to adapt to different hosts, as indicated by a high increase in proliferative capacity that was accompanied by an antigenic alteration leading to amino acid substitutions.

  8. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    Science.gov (United States)

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes

    Directory of Open Access Journals (Sweden)

    Shinsuke Ishigaki

    2017-01-01

    Full Text Available Fused in sarcoma (FUS and splicing factor, proline- and glutamine-rich (SFPQ are RNA binding proteins that regulate RNA metabolism. We found that alternative splicing of the Mapt gene at exon 10, which generates 4-repeat tau (4R-T and 3-repeat tau (3R-T, is regulated by interactions between FUS and SFPQ in the nuclei of neurons. Hippocampus-specific FUS- or SFPQ-knockdown mice exhibit frontotemporal lobar degeneration (FTLD-like behaviors, reduced adult neurogenesis, accumulation of phosphorylated tau, and hippocampal atrophy with neuronal loss through an increased 4R-T/3R-T ratio. Normalization of this increased ratio by 4R-T-specific silencing results in recovery of the normal phenotype. These findings suggest a biological link among FUS/SFPQ, tau isoform alteration, and phenotypic expression, which may function in the early pathomechanism of FTLD.

  10. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure

    International Nuclear Information System (INIS)

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-01-01

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28 QPVIV 32 , highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration of the β-hexamer structure by mutating 28 QPVIV 32 to 28 AAAAA 32 had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having β-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  11. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons.

    Science.gov (United States)

    Dasgupta, Ananya; Kim, Joonki; Manakkadan, Anoop; Arumugam, Thiruma V; Sajikumar, Sreedharan

    2017-12-19

    Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation. Copyright © 2017. Published by Elsevier Inc.

  12. Drying Methods Alter Angiotensin-I Converting Enzyme Inhibitory Activity, Antioxidant Properties, and Phenolic Constituents of African Mistletoe (Loranthus bengwensis L) Leaves.

    Science.gov (United States)

    Oboh, Ganiyu; Omojokun, Olasunkanmi Seun; Ademiluyi, Adedayo Oluwaseun

    2016-10-01

    This study investigated the most appropriate drying method (sun drying, oven drying, or air drying) for mistletoe leaves obtained from almond tree. The phenolic constituents were characterized using high-performance liquid chromatography-diode array detector, while the inhibitory effect of the aqueous extracts of the leaves on angiotensin-I converting enzyme (ACE) was determined in vitro as also the antioxidant properties. Oven-dried extract (kidney [276.09 μg/mL] and lungs [303.41 μg/mL]) had the highest inhibitory effect on ACE, while air-dried mistletoe extract (kidney [304.47 μg/mL] and lungs [438.72 μg/mL]) had the least. Furthermore, the extracts dose-dependently inhibited Fe(2+) and sodium nitroprusside-induced lipid peroxidation in rat's heart and kidney. Also, all extracts exhibited antioxidative properties as typified by their radical scavenging and Fe-chelating ability. Findings from this study revealed that oven drying is the best of the 3 drying methods used for mistletoe obtained from almond host tree, thus confirming that diversity in drying methods leads to variation in phenolic constituents and biological activity of plants. © The Author(s) 2015.

  13. A cis-acting region in the N-methyl-D-aspartate R1 3′-untranslated region interacts with the novel RNA-binding proteins beta subunit of alpha glucosidase II and annexin A2: effect of chronic ethanol exposure in vivo

    Science.gov (United States)

    Anji, Antje; Kumari, Meena

    2011-01-01

    A cis-acting region, Δ4, located in the 3′-untranslated region of N-methyl-D-aspartate R (NR) mRNA interacts with several trans-acting proteins present in polysomes purified from fetal cortical neurons. Chronic ethanol exposure of fetal cortical neurons increases Δ4 RNA–protein interactions. This increased interaction is due to an increase in one of the Δ4-binding trans-acting proteins identified as beta subunit of alpha glucosidase II (GIIβ). In this study, we examined whether ethanol-mediated regulation of NR1 mRNA in vivo is similar to that in vitro and whether Δ4–trans interactions are important for ethanol-mediated NR1 mRNA stability. Our data show that polysomal proteins from adult mouse cerebral cortex (CC) formed a complex with Δ4 RNA, suggesting the presence of NR1 mRNA-binding trans-acting proteins in CC polysomes. The intensity of the Δ4 RNA–protein complex was increased with polysomes from chronic ethanol-exposed CC. The Δ4 RNA–protein complex harbored GIIβ and a second trans-acting protein identified as annexin A2 (AnxA2). Ethanol-sensitive GIIβ was upregulated by 70% in ethanol-exposed CC. Heparin, a known binding partner of AnxA2, inhibited Δ4 RNA–protein complex formation. Transient transfection studies using chimeric constructs with and without the Δ4 region revealed that cis–trans interactions are important for ethanol-mediated stability of NR1 mRNA. Furthermore, our data highlight, for the first time, the presence of a binding site on the 3′-untranslated region of NR1 mRNA for AnxA2 and demonstrate the regulation of NR1 mRNA by AnxA2, GIIβ and a third NR1 mRNA-binding protein, which is yet to be identified. PMID:21995826

  14. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  15. Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules.

    Science.gov (United States)

    Jansen, Stephan; Gottschling, Christine; Faissner, Andreas; Manahan-Vaughan, Denise

    2017-08-01

    Hippocampal synaptic plasticity comprises a key cellular mechanism for information storage. In the hippocampus, both long-term potentiation (LTP) and long-term depression (LTD) are triggered by synaptic Ca 2+ -elevations that are typically mediated by the opening of voltage-gated cation channels, such as N-methyl-d-aspartate receptors (NMDAR), in the postsynaptic density. The integrity of the post-synaptic density is ensured by the extracellular matrix (ECM). Here, we explored whether synaptic plasticity is affected in adult behaving mice that lack the ECM proteins brevican, neurocan, tenascin-C, and tenascin-R (KO). We observed that the profiles of synaptic potentiation and depression in the dentate gyrus (DG) were profoundly altered compared to plasticity profiles in wild-type littermates (WT). Specifically, synaptic depression was amplified in a frequency-dependent manner and although late-LTP (>24 hr) was expressed following strong afferent tetanization, the early component of LTP (4 hr) elicited by weaker tetanization was equivalent in WT and KO animals. Furthermore, this latter form of LTP was NMDAR-dependent in WT but not KO mice. Scrutiny of DG receptor expression revealed significantly lower levels of both the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor, of the metabotropic glutamate receptor, mGlu5 and of the L-type calcium channel, Ca v 1.3 in KO compared to WT animals. Homer 1a and of the P/Q-type calcium channel, Ca v 1.2 were unchanged in KO mice. Taken together, findings suggest that in mice that lack multiple ECM proteins, synaptic plasticity is intact, but is fundamentally different. © 2017 Wiley Periodicals, Inc.

  16. In vitro characterization of six STUB1 variants in spinocerebellar ataxia 16 reveals altered structural properties for the encoded CHIP proteins.

    Science.gov (United States)

    Pakdaman, Yasaman; Sanchez-Guixé, Monica; Kleppe, Rune; Erdal, Sigrid; Bustad, Helene J; Bjørkhaug, Lise; Haugarvoll, Kristoffer; Tzoulis, Charalampos; Heimdal, Ketil; Knappskog, Per M; Johansson, Stefan; Aukrust, Ingvild

    2017-04-30

    Spinocerebellar ataxia, autosomal recessive 16 (SCAR16) is caused by biallelic mutations in the STIP1 homology and U-box containing protein 1 ( STUB1 ) gene encoding the ubiquitin E3 ligase and dimeric co-chaperone C-terminus of Hsc70-interacting protein (CHIP). It has been proposed that the disease mechanism is related to CHIP's impaired E3 ubiquitin ligase properties and/or interaction with its chaperones. However, there is limited knowledge on how these mutations affect the stability, folding, and protein structure of CHIP itself. To gain further insight, six previously reported pathogenic STUB1 variants (E28K, N65S, K145Q, M211I, S236T, and T246M) were expressed as recombinant proteins and studied using limited proteolysis, size-exclusion chromatography (SEC), and circular dichroism (CD). Our results reveal that N65S shows increased CHIP dimerization, higher levels of α-helical content, and decreased degradation rate compared with wild-type (WT) CHIP. By contrast, T246M demonstrates a strong tendency for aggregation, a more flexible protein structure, decreased levels of α-helical structures, and increased degradation rate compared with WT CHIP. E28K, K145Q, M211I, and S236T also show defects on structural properties compared with WT CHIP, although less profound than what observed for N65S and T246M. In conclusion, our results illustrate that some STUB1 mutations known to cause recessive SCAR16 have a profound impact on the protein structure, stability, and ability of CHIP to dimerize in vitro. These results add to the growing understanding on the mechanisms behind the disorder. © 2017 The Author(s).

  17. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity.

    Science.gov (United States)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Sinkjaer, Thomas; Nielsen, Jens Bo

    2013-07-01

    Clinical determination of spasticity is confounded by the difficulty in distinguishing reflex from passive contributions to muscle stiffness. There is, therefore, a risk that children with cerebral palsy (CP) receive antispasticity treatment unnecessarily. To investigate this, we aimed to determine the contribution of reflex mechanisms to changes in the passive elastic properties of muscles and tendons in children with CP. Biomechanical and electrophysiological measures were used to determine the relative contribution of reflex and passive mechanisms to ankle muscle stiffness in 35 children with spastic CP (21 males, 14 females; mean age 9 y, SD 3 y 4 mo; range 3-15 y) and 28 control children without CP (19 males, nine females; mean age 8 y 11 mo, SD 2 y 10 mo; range 3-15 y). Twenty-seven children were diagnosed as having spastic hemiplegia, six with spastic diplegia, and two with spastic tetraplegia. According to the Gross Motor Function Classification System, 31 children were classified in level I, two in level II, and two in level III. Only seven children with spastic CP showed reflex stiffness outside the range of the control children. In contrast, 20 children with spastic CP showed abnormal passive muscle stiffness (p<0.001). No correlation between increased reflex or increased passive muscle stiffness and age was observed within the age range studied. These data suggest that increased reflex-mediated muscle stiffness is difficult to distinguish clinically from changes in passive muscle stiffness and that signs of changes in muscle properties are already present from the age of 3 years in children with CP. This emphasizes the importance of accurately distinguishing different contributions to muscle stiffness to avoid unnecessary antispasticity treatment. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  18. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available One of the main differences among platelet-rich plasma (PRP products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF and leukocyte-platelet rich plasma (L-PRP scaffolds was determined by enzyme-linked immunosorbent assay (ELISA and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions.

  19. La Alters the Response Properties of Neurons in the Mouse Primary Somatosensory Cortex to Low-Temperature Noxious Stimulation of the Dental Pulp

    Directory of Open Access Journals (Sweden)

    Yanjiao Jin

    2015-01-01

    Full Text Available Although dental pain is a serious health issue with high incidence among the human population, its cellular and molecular mechanisms are still unclear. Transient receptor potential (TRP channels are assumed to be involved in the generation of dental pain. However, most of the studies were conducted with molecular biological or histological methods. In vivo functional studies on the role of TRP channels in the mechanisms of dental pain are lacking. This study uses in vivo cellular electrophysiological and neuropharmacological method to directly disclose the effect of LaCl 3 , a broad spectrum TRP channel blocker, on the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. It was found that LaCl 3 suppresses the high-firing-rate responses of all nociceptive neurons to noxious low-temperature stimulation and also inhibits the spontaneous activities in some nonnociceptive neurons. The effect of LaCl 3 is reversible. Furthermore, this effect is persistent and stable unless LaCl 3 is washed out. Washout of LaCl 3 quickly revitalized the responsiveness of neurons to low-temperature noxious stimulation. This study adds direct evidence for the hypothesis that TRP channels are involved in the generation of dental pain and sensation. Blockade of TRP channels may provide a novel therapeutic treatment for dental pain.

  20. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel.

    Science.gov (United States)

    Harmer, Stephen C; Mohal, Jagdeep S; Kemp, Duncan; Tinker, Andrew

    2012-05-01

    The nonsense mutations R518X-KCNQ1 and Q530X-KCNQ1 cause LQT1 (long-QT syndrome type 1) and result in a complete loss of I(Ks) channel function. In the present study we attempted to rescue the function of these mutants, in HEK (human embryonic kidney)-293 cells, by promoting readthrough of their PTCs (premature termination codons) using the pharmacological agents G-418, gentamicin and PTC124. Gentamicin and G-418 acted to promote full-length channel protein expression from R518X at 100 μM and from Q530X at 1 mM. In contrast, PTC124 did not, at any dose tested, induce readthrough of either mutant. G-418 (1 mM) treatment also acted to significantly (Pbiophysical properties of the currents produced from R518X, while similar, were not identical with wild-type as the voltage-dependence of activation was significantly (P<0.05) shifted by +25 mV. Overall, these findings indicate that although functional rescue of LQT1 nonsense mutations is possible, it is dependent on the degree of readthrough achieved and the effect on channel function of the amino acid substituted for the PTC. Such considerations will determine the success of future therapies.

  2. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.

    Science.gov (United States)

    Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal

    2017-11-01

    The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    Directory of Open Access Journals (Sweden)

    Kathrin eHoppenrath

    2016-03-01

    Full Text Available Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV fast-spiking interneurons (FSIs, evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs of FSIs start to grow around postnatal day 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo – in vitro whole-cell patch clamp recordings from pre-labelled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28 and older animals (PD40-62. Slices of verum iTBS-treated rats further showed higher rates of spontaneous EPSCs. Based on these and previous findings we conclude that FSIs are particularly sensitive to theta-burst stimulation during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  4. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    Science.gov (United States)

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  5. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner.

    Science.gov (United States)

    Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M

    2014-06-15

    Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Igor eSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  7. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  8. Unraveling Mg2+-RNA binding with atomistic molecular dynamics.

    Science.gov (United States)

    Cunha, Richard A; Bussi, Giovanni

    2017-05-01

    Interaction with divalent cations is of paramount importance for RNA structural stability and function. We report here a detailed molecular dynamics study of all the possible binding sites for Mg 2+ on an RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics, which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg 2+ affinity due to ion competition and hybridization, respectively, and predict that RNA flexibility has a site-dependent effect. This suggests a nontrivial interplay between RNA conformational entropy and divalent cation binding. © 2017 Cunha and Bussi; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Evidence for Alteration in Chemical and Physical Properties of Water and Modulation of its Biological Functions by Sunlight Transmitted through Color Ranges of the Visible Spectrum-A Novel Study

    Directory of Open Access Journals (Sweden)

    M. Rajeswara Rao

    2005-08-01

    Full Text Available We investigated the changes in the properties of water when exposed to sunlight for 40 days. We hypothesize and prove that solar irradiation to water entraps electromagnetic radiation as potential energy, which becomes kinetic energy in various systems. It is postulated that photochemically-induced energy transfers, associated with individual spectral emission of visible spectrum of solar light, exert diverse influences on biological systems. Bottles of distilled water, individually wrapped in spectral-colored cellophane were exposed to sunlight and compared to an unwrapped bottle to determine chemical and physical changes as well as modifications of biological properties. Each bottle of water was named according to the color of cellophane paper with letter E (stands for exposed as a prefix with (E-violet, E-indigo, E-blue, E-green, E-yellow, E-orange, and Ered. E-control (without wrap was exposed to polychromatic sunlight. This study addresses two main issues viz., the chemical and physical changes in E-water and its effect on biological activities. Chemical and physical composition analysis using inductively coupled plasma atomic emission spectrometry; physical conductance by a Wheatstone Bridge type conductivity meter; osmolarity by a vapor pressure osmometer; and, salt solubility profile of 10% sodium bicarbonate were determined. Furthermore, testing the effect of E-waters on human lymphocyte proliferation, mosquito larvae hatching and seed germination determined the functional role of solar radiation through specific spectrum/s of visible light on various biological processes. We found that water exposed to visible spectral emissions of sunlight had an altered elemental composition, electrical conductance, osmolarity and salt-solubility, as well as differences in bio-modulatory effects. A gradual increase in leaching of Boron from Eviolet to E-red was noted. E-indigo showed maximal increase in electrical conductance and maximal salt

  10. chemical properties.

    African Journals Online (AJOL)

    been recognised 't still appears to be the cheapest means of land clearing to which an acceptable alternative has not been found. The study looked into burning the bush'at different time alter slashing. The effects of the time difference on the soil chemical properties were then invcstigatcd. Burning the bush increased the soil ...

  11. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  12. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  13. Altering prolactin concentrations in sows.

    Science.gov (United States)

    Farmer, C

    2016-07-01

    Prolactin has a multiplicity of actions, but it is of particular importance in gestating and lactating animals. In sows, it is involved in the control of mammary development and also holds essential roles in the lactogenic and galactopoietic processes. Furthermore, low circulating concentrations of prolactin are associated with the agalactia syndrome. The crucial role of prolactin makes it important to understand the various factors that can alter its secretion. Regulation of prolactin secretion is largely under the negative control of dopamine, and dopamine agonists consistently decrease prolactin concentrations in sows. On the other hand, injections of dopamine antagonists can enhance circulating prolactin concentrations. Besides pharmacologic agents, many other factors can also alter prolactin concentrations in sows. The use of Chinese-derived breeds, for instance, leads to increased prolactin concentrations in lactating sows compared with standard European white breeds. Numerous husbandry and feeding practices also have a potential impact on prolactin concentrations in sows. Factors, such as provision of nest-building material prepartum, housing at farrowing, high ambient temperature, stress, transient weaning, exogenous thyrotropin-releasing factor, exogenous growth hormone-releasing factor, nursing frequency, prolonged photoperiod, fasting, increased protein and/or energy intake, altered energy sources, feeding high-fiber diets, sorghum ergot or plant extracts, were all studied with respect to their prolactinemic properties. Although some of these practices do indeed affect circulating prolactin concentrations, none leads to changes as drastic as those brought about by dopamine agonists or antagonists. It appears that the numerous factors regulating prolactin concentrations in sows are still not fully elucidated, and that studies to develop novel applicable ways of increasing prolactin concentrations in sows are warranted. Crown Copyright © 2015. Published

  14. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  15. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  16. New insights on the role of epigenetic alterations in hepatocellular carcinoma

    Science.gov (United States)

    Frau, Maddalena; Feo, Claudio F; Feo, Francesco; Pascale, Rosa M

    2014-01-01

    Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs. PMID:27508177

  17. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    Science.gov (United States)

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation

  18. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates.

    Directory of Open Access Journals (Sweden)

    Irina A Zalenskaya

    Full Text Available Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy.To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7 treated with well-characterized pro-inflammatory (PIC and non-inflammatory (NIC compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA.Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes.In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior

  19. Altered Perspectives: Immersive Environments

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  20. Music alters visual perception.

    Science.gov (United States)

    Jolij, Jacob; Meurs, Maaike

    2011-04-21

    Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory) and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  1. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  2. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  3. Genetic alteration in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Chul; Kang, Tae Woong; Lee, Jin Oh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1994-12-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studied the alteration of tumor suppressor genes and oncogenes in hepatocellular carcinoma in Korea. We found that alteration of Rb gene, APC were 33 %, 13 % respectively. But alterations of oncogenes such as myc, ras and mdm2 were rarely found. Our results suggests that HBV may act as oncogenic role in hepatocarcinogenesis instead of oncogenes. 6 figs, 2 tabs. (Author).

  4. Attention alters orientation processing in the human lateral geniculate nucleus.

    Science.gov (United States)

    Ling, Sam; Pratte, Michael S; Tong, Frank

    2015-04-01

    Orientation selectivity is a cornerstone property of vision, commonly believed to emerge in the primary visual cortex. We found that reliable orientation information could be detected even earlier, in the human lateral geniculate nucleus, and that attentional feedback selectively altered these orientation responses. This attentional modulation may allow the visual system to modify incoming feature-specific signals at the earliest possible processing site.

  5. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  6. On the pathologically altered pulmonary pattern

    International Nuclear Information System (INIS)

    Ginzburg, M.A.; Kinoshenko, Yu.T.

    1982-01-01

    The notions ''normal'' and ''pathologically altered pulmonary pattern'' are specified. A grouping of lung pattern alterations based on morphopathogenetic features is provided: blood and lymphatic vascular alterations, changes in the bronchi, lung stroma, and combined alterations. Radiologic appearance of the altered pulmonary pattern is classified in keeping with the basic principles of an X-ray shade examination. The terms, such as ''enriching'', ''strengthening'', ''deformation'', etc., used for describing the pathologically altered pulmonary pattern are defined

  7. Hemorheological alterations related to training and overtraining.

    Science.gov (United States)

    Brun, Jean-Frédéric; Varlet-Marie, Emmanuelle; Connes, Philippe; Aloulou, Ikram

    2010-01-01

    Alterations of blood rheology related to muscular activity have been extensively studied over the last 20 years. It has been shown that exercise exerts a "triphasic" action on the rheological properties of blood. In the short term, exercise induces a transient hyperviscosity, mostly due to a rise in hematocrit and plasma viscosity, but also to alterations in erythrocyte rheology. Reversal of this hyperviscosity pattern over the following 24 h can be described as an "autohemodilution". Later, training results in several profiles of "hemorheologic fitness" with a low hematocrit reflecting an expansion in plasma volume, and improvements in red cell rheology (increased deformability, decreased aggregation, reduced disaggregation shear rate). Some specific aspects of these long-term adaptations have been described, such as the intriguing occurrence of a paradoxical improvement in RBC deformability during exercise in some athletes, and overtraining, which is associated with higher plasma viscosity. Given the variety of modes of exercise and the wide heterogeneity of their effects on blood rheology in the short and long term, many investigations remain to be performed in this area of clinical hemorheology.

  8. Systemic dystrophic alterations of skeleton

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    A roentgenologic picture of dystrophic alterations of bones following hard, acute and chronic infections diseases, distinct disorders of vitanium balance, diseases of endocrine system, disorder of metabolism and diet, long-term exogenous intoxications including medicinal is given. Distinct dystrophic disorders are characterized both by quantitative and qualitative deviations in physiological change of bones

  9. Art as Alterity in Education

    Science.gov (United States)

    Zhao, Guoping

    2014-01-01

    In education, art has often been perceived as entertainment and decoration and is the first subject to go when there are budget cuts or test-score pressures. Drawing on Emmanuel Lévinas's idea of the primacy of radical alterity that breaks the totality of our being, enables self-transformation and ethics, and ensures community as a totality…

  10. Peary, Verifiability, and Altered Data

    Science.gov (United States)

    Rawlins, Dennis

    1991-01-01

    Robert Peary's alleged 1909 sledge-achievement of the North Pole is critically examined for credibility and consistency, with respect to terrestrial magnetism, solar-altitude, drift, and written & eyewitness testimony. Several alterations of the record are detected, and the dubiousness of navigation without determining longitude is emphasized.

  11. DEVELOPMENTAL HYPOTHYROIDISM ALTERS SYNAPTIC TRANSMISSION IN DENTATE GYRUS AND AREA CA1 OF HIPPOCAMPUS.

    Science.gov (United States)

    Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...

  12. Long-term alteration of basaltic glass: Mechanisms and rates

    Science.gov (United States)

    Parruzot, Benjamin; Jollivet, Patrick; Rébiscoul, Diane; Gin, Stéphane

    2015-04-01

    The long-term behavior study of archaeological artifacts and natural minerals and glasses revealed discrepancies between laboratory and field data. For a better understanding of the cause of these discrepancies and to reinforce the use of basaltic glass as an analog for nuclear waste glasses, this study focuses on the determination of alteration rates and processes of synthetic basaltic glass in residual rate regime. Laboratory batch experiments were performed at high surface-to-volume ratios at 90 and 30 °C for more than 1000 days. In all the experiments, the residual rate regime was reached after about 6 months. The residual alteration rates at 30 and 90 °C were 4.0 ± 1.0 × 10-6 and 9.5 ± 3.2 × 10-6 g·m-2·d-1, respectively. At 90 °C, this residual alteration rate is five orders of magnitude lower than the forward alteration rate (0.8 g·m-2·d-1). Altered powders and monoliths were characterized by Transmission Electron Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry. From glass core to solution, the altered materials are structured as follows: pristine glass, gel (corresponding to the palagonitic layer of natural glasses) and intergranular clays. To assess the passivating properties of this alteration film, we used solid characterization, an isotopically-tagged post-leaching experiment and the measurement of mobile species diffusion coefficients through the alteration film at different stages of reaction using various techniques (solution analysis and X-ray Reflectometry). These characterizations showed that the alteration film formed during residual rate alteration is passivating even without clogged porosity within the gel. Diffusion coefficients of water and alkali metals - respectively diffusing to and from the pristine glass - through the alteration film dropped from 10-20 to 10-19 m2·s-1 during the first alteration stages to 10-25 m2·s-1 in residual rate regime.

  13. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What work is covered under an ancillary repair and alteration delegation? 102-72.67 Section 102-72.67 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 72-DELEGATION OF AUTHORITY...

  14. Alteration and alterability of the anorthosite from Angola

    OpenAIRE

    Simão, J.; Silva, Z. C. G.

    2010-01-01

    Siliceous rocks are widely used as dimension stone but the last decades have registered an increase rate of their alteration when exposed to polluted environments. Anorthosites were treated by acidified solutions of HCl, HN03 and H2S04 simulating acid rain and the response was recorded through different experiments such as on the surface of the polished rock and on the surface of uncovered thin sections. The main components, plagioclase and olivine, both responded in similar ways to each acid...

  15. Chemosensory alterations and cancer therapies

    International Nuclear Information System (INIS)

    Bartoshuk, L.M.

    1990-01-01

    Taste and olfaction provide sensory information and sensory pleasure. Cancer therapies affect both. Chemotherapy has not been shown to produce dramatic losses of taste or smell, but systematic studies on various chemotherapeutic agents and types of cancer are lacking. Radiation therapy does produce clear losses of both taste and smell. Both chemotherapy and radiation therapy alter the pleasure produced by taste and smell through the formation of conditioned aversions. That is, foods consumed in proximity with the nausea of therapy come to be unpleasant. The impact of conditioned aversions can be diminished by providing a scapegoat food just before therapy. Alterations in foods may be beneficial to the cancer patient. Increasing the concentrations of flavor ingredients can compensate for sensory losses, and providing pureed foods that retain the cognitive integrity of a meal can benefit the patient who has chewing or swallowing problems

  16. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    Science.gov (United States)

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  17. Nucleoproteins of Negative Strand RNA Viruses; RNA Binding, Oligomerisation and Binding to Polymerase Co-Factor

    Directory of Open Access Journals (Sweden)

    Thibaut Crépin

    2010-01-01

    Full Text Available Commentary on Tawar, R.G.; Duquerroy, S.; Vonrhein, C.; Varela, P.F.; Damier-Piolle, L.; Castagné, N.; MacLellan, K.; Bedouelle, H.; Bricogne, G.; Bhella, D.; Eléouët, J.-F.; Rey, F.A. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 2009, 326, 1279-1283.

  18. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  19. The use of 125iodine-labeled RNA for detection of the RNA binding to ribosomes

    International Nuclear Information System (INIS)

    Mori, Tomohiko; Fukuda, Mitsuru

    1975-01-01

    The in vitro labeling of RNA with radioactive iodine is the efficient method to obtain the RNA with high specific activity. The present paper reports on the application of this technique to the production of iodine-labeled RNA for use in the experiment of binding RNA to ribosomes. Tobacco mosaic virus (TMV) RNA was used as natural mRNA, and E. coli S-30 preparation was used as a source of ribosomes. The TMV-RNA was prepared by bentonite-phenol extraction from TMV, and the method used for the iodation of RNA was based on the procedure described by Getz et al. The iodine-labeled RNA was incubated in a cell-free protein synthesizing system (S-30) prepared from E. coli K-12. After the incubation, the reaction mixture was layered onto sucrose gradient, centrifuged, and fractionated into 18 fractions. Optical density at 260 nm was measured, and radioactivity was counted, for each fraction. The binding of mRNA to ribosomes occurred even at 0 deg C, and the occurrence of the nonspecific binding was also shown. Consequently, the specific binding, i.e. the formation of the initiation complex being involved in amino acid incorporation, may be estimated by subtracting the radioactivity associated with monosomes in the presence of both rRNA and ATA from that in the presence of rRNA only. It was shown that the iodine-labeled RNA can be used for the studies of binding RNA to ribosomes. (Kako, I.)

  20. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish.

    Science.gov (United States)

    Miao, Liyun; Yuan, Yue; Cheng, Feng; Fang, Junshun; Zhou, Fang; Ma, Weirui; Jiang, Yan; Huang, Xiahe; Wang, Yingchun; Shan, Lingjuan; Chen, Dahua; Zhang, Jian

    2017-01-01

    A large amount of maternal RNA is deposited in oocytes and is reserved for later development. Control of maternal RNA translation during oocyte maturation has been extensively investigated and its regulatory mechanisms are well documented. However, translational regulation of maternal RNA in early oogenesis is largely unexplored. In this study, we generated zebrafish zar1 mutants that result in early oocyte apoptosis and fully penetrant male development. Loss of p53 suppresses the apoptosis in zar1 mutants and restores oocyte development. zar1 immature ovaries show upregulation of proteins implicated in endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). More importantly, loss of Zar1 causes marked upregulation of zona pellucida (ZP) family proteins, while overexpression of ZP proteins in oocytes causes upregulation of stress-related activating transcription factor 3 (atf3), arguing that tightly controlled translation of ZP proteins is essential for ER homeostasis during early oogenesis. Furthermore, Zar1 binds to ZP gene mRNAs and represses their translation. Together, our results indicate that regulation of translational repression and de-repression are essential for precisely controlling protein expression during early oogenesis. © 2017. Published by The Company of Biologists Ltd.

  1. RNA-binding protein VICKZ is expressed in a germinal center associated pattern among lymphoma subtypes

    DEFF Research Database (Denmark)

    Natkunam, Y.; Vainer, G.; Zhao, S.C.

    2005-01-01

    and tumorigenesis/metastasis. We generated an antibody that recognizes all three isoforms of VICKZ protein and characterized its expression in normal lymphoid tissue and in lymphoma subtypes. In normal tonsils, VICKZ protein showed a germinal center-specific pattern of expression with staining localized...... to the cytoplasm. Among 868 non-Hodgkin and Hodgkin lymphomas tested by immunohistochemistry on tissue microarrays, staining for VICKZ protein was present in 76% (126/165) of follicular lymphoma, 78% (155/200) of DLBCL, 90% (9/10) of mediastinal large B-cell lymphoma, and 100% (2/2) of Burkitt lymphoma. A subset...... protein in lymphoma subtypes suggests a potential utility for VICKZ in the identification of subgroups of DLBCL associated with different prognoses....

  2. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer

    DEFF Research Database (Denmark)

    Hammer, Niels A; Hansen, Thomas v O; Byskov, Anne Grete

    2005-01-01

    . In the mouse, IMPs were expressed in male and female gonadal cells at embryonic day 12.5 (E12.5). From E16.5, IMP1 and IMP3 became restricted to the developing germ cells, whereas IMP2 expression persisted in the interstitial cells. In mature mouse and human ovaries, IMP1, IMP2 and IMP3 were detected...... in resting and growing oocytes and in the granulosa cells. In testis, IMP1 and IMP3 were found mainly in the spermatogonia, whereas IMP2 was expressed in the immature Leydig cells. Moreover, all three IMPs were detected in human semen. The developmental expression pattern of IMP1 and IMP3 in the human testis...

  3. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Landi, D.; Gemignani, F.; Naccarati, Alessio; Pardini, Barbara; Vodička, Pavel; Vodičková, Ludmila; Novotný, J.; Försti, A.; Hemminki, K.; Canzian, F.; Landi, S.

    2008-01-01

    Roč. 29, č. 3 (2008), s. 579-584 ISSN 0143-3334 R&D Projects: GA ČR GA310/05/2626; GA ČR GA310/07/1430 Institutional research plan: CEZ:AV0Z50390703 Keywords : Colorectal cancer * Messenger RNA * Micro-RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.930, year: 2008

  4. Problem-Solving Test: Nucleocytoplasmic Shuttling of Pre-mRNA Binding Proteins

    Science.gov (United States)

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: transcription, pre-mRNA, RNA processing, RNA transport, RNA polymerase II, direct and indirect immunofluorescence staining, cell fractionation by centrifugation, oligo(dT)-cellulose chromatography, washing and elution of the column, ribonuclease, SDS-polyacrylamide gel electrophoresis,…

  5. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs

    DEFF Research Database (Denmark)

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey

    2017-01-01

    EBF1. Purification of the paraspeckle complex from adipocytes further showed that PSPC1 associates with the RNA export factor DDX3X in a differentiation-dependent manner. Remarkably, PSPC1 relocates from the nucleus to the cytoplasm during differentiation, coinciding with enhanced export of adipogenic...... RNAs. Mice lacking PSPC1 in fat displayed reduced lipid storage and adipose tissue mass and were resistant to diet-induced obesity and insulin resistance due to a compensatory increase in energy expenditure. These findings highlight a role for PSPC1-dependent RNA maturation in the posttranscriptional...

  6. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA

    DEFF Research Database (Denmark)

    Kedde, Martijn; Strasser, Markus J; Boldajipour, Bijan

    2007-01-01

    MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasional...

  7. Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins.

    Science.gov (United States)

    Abil, Zhanar; Gumy, Laura F; Zhao, Huimin; Hoogenraad, Casper C

    2017-06-16

    Localization of mRNA is important in a number of cellular processes such as embryogenesis, cellular motility, polarity, and a variety of neurological processes. A synthetic device that controls cellular mRNA localization would facilitate investigations on the significance of mRNA localization in cellular function and allow an additional level of controlling gene expression. In this work, we developed the PUF (Pumilio and FBF homology domain)-assisted localization of RNA (PULR) system, which utilizes a eukaryotic cell's cytoskeletal transport machinery to reposition mRNA within a cell. Depending on the cellular motor used, we show ligand-dependent transport of mRNA toward either pole of the microtubular network of cultured cells. In addition, implementation of the reprogrammable PUF domain allowed the transport of untagged endogenous mRNA in primary neurons.

  8. Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins

    NARCIS (Netherlands)

    Abil, Zhanar; Gumy, Laura F; Zhao, Huimin; Hoogenraad, Casper C

    2017-01-01

    Localization of mRNA is important in a number of cellular processes such as embryogenesis, cellular motility, polarity, and a variety of neurological processes. A synthetic device that controls cellular mRNA localization would facilitate investigations on the significance of mRNA localization in

  9. The α subunit of E. coli RNA polymerase activates RNA binding by NusA

    OpenAIRE

    Mah, Thien-Fah; Kuznedelov, Konstantin; Mushegian, Arcady; Severinov, Konstantin; Greenblatt, Jack

    2000-01-01

    The Escherichia coli NusA protein modulates pausing, termination, and antitermination by associating with the transcribing RNA polymerase core enzyme. NusA can be covalently cross-linked to nascent RNA within a transcription complex, but does not bind RNA on its own. We have found that deletion of the 79 carboxy-terminal amino acids of the 495-amino-acid NusA protein allows NusA to bind RNA in gel mobility shift assays. The carboxy-terminal domain (CTD) of the α subunit of RNA polymerase, as ...

  10. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite

    OpenAIRE

    Clingman, Carina C; Deveau, Laura M; Hay, Samantha A; Genga, Ryan M; Shandilya, Shivender MD; Massi, Francesca; Ryder, Sean P

    2014-01-01

    eLife digest When an embryo is developing, stem cells must divide and develop into many specialized types of cells. However, if cell division doesn't stop, or if it restarts later in life, it can cause tumors to form. Musashi-1 is a protein that binds to molecules of RNA and helps to promote cell growth during development: mice that lack this protein have serious brain defects and die shortly after birth. Musashi-1 is usually turned off in adult cells that are not dividing. Sometimes, however...

  11. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities.

    OpenAIRE

    Swanson, M S; Dreyfuss, G

    1988-01-01

    Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. We show that the hnRNP C proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. Thes...

  12. Integrity of the core mitochondrial RNA-binding complex 1/nis vital for trypanosome RNA editing

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Faktorová, Drahomíra; Křížová, A.; Kafková, L.; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2015-01-01

    Roč. 21, č. 12 (2015), s. 2088-2102 ISSN 1355-8382 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : RNA editing * mitochondrion * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.344, year: 2015

  13. Effect of altering local protein fluctuations using artificial intelligence

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nishiyama

    2017-03-01

    Full Text Available The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  14. Topological properties of instantons

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1978-07-01

    The pure Yang-Mills theory defined in R 4 space is considered and some relevant properties of gauge field like Instanton are shown. The vacuum structure of the theory is discussed, as well as the problem of topological numbers associated with the Instantons and anti-Instantons solutions. A procedure is presented showing how we can alter this topological number by of any variation in the field parameters. (Author) [pt

  15. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  16. Inverse estimation of soil hydraulic properties under oil palm trees

    NARCIS (Netherlands)

    Rashid, Nor Suhada Abd; Askari, Muhamad; Tanaka, Tadashi; Simunek, Jirka; van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X

    Canopies of forested and agricultural ecosystems can significantly alter rainfall patterns into separate stemflow and throughfall areas. These two areas often have also different organic matter contents and soil compaction properties, and hence also soil hydraulic properties, thus causing further

  17. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  18. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    Science.gov (United States)

    ... Methamphetamine Alters Brain Structures, Impairs Mental Flexibility Email Facebook Twitter March 20, 2014 A new study adds to the copious existing evidence that chronic exposure to addictive drugs alters the brain in ways that make ...

  19. Thermal alteration of aquatic ecosystems

    International Nuclear Information System (INIS)

    Gibbons, J.W.; Sharitz, R.R.

    1974-01-01

    The studies summarized emphasize that heated effluents may function to enrich or to stress an ecosystem, depending upon the biological feature examined. However, the potential for negative impact on aquatic environments must not be underestimated. The ultimate consequences of the sometimes drastic alteration of behavior patterns and life-history phenomena in the surviving inhabitants of thermal areas have yet to be assessed. The relatively short time span of thermal field studies has not allowed thorough understanding of the biological chain reactions that may take place as physiological and genetic adjustments are made. Ensuing changes in species interactions, practically uninvestigated at this time, may create heretofore unsuspected ecosystem changes. Man's challenge for the future is to gain a more thorough comprehension of thermal ecology and to determine how waste heat may be used as an energy subsidy rather than a stress to aquatic systems. These and subsequent studies may assist in understanding how natural ecosystems respond to temperature elevation and will lead to the development of concepts and principles pertaining to thermally altered environmental systems. (U.S.)

  20. Circadian disorganization alters intestinal microbiota.

    Science.gov (United States)

    Voigt, Robin M; Forsyth, Christopher B; Green, Stefan J; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  1. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth

    Science.gov (United States)

    Cosgrove, D. J.

    1990-01-01

    The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.

  2. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    Science.gov (United States)

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  3. Epigenetic alterations underlying autoimmune diseases.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Karami, Jafar; Jamshidi, Ahmad Reza; Malekshahi, Zahra; Nicknam, Mohammad Hossein

    2016-01-01

    Recent breakthroughs in genetic explorations have extended our understanding through discovery of genetic patterns subjected to autoimmune diseases (AID). Genetics, on the contrary, has not answered all the conundrums to describe a comprehensive explanation of causal mechanisms of disease etiopathology with regard to the function of environment, sex, or aging. The other side of the coin, epigenetics which is defined by gene manifestation modification without DNA sequence alteration, reportedly has come in to provide new insights towards disease apprehension through bridging the genetics and environmental factors. New investigations in genetic and environmental contributing factors for autoimmunity provide new explanation whereby the interactions between genetic elements and epigenetic modifications signed by environmental agents may be responsible for autoimmune disease initiation and perpetuation. It is aimed through this article to review recent progress attempting to reveal how epigenetics associates with the pathogenesis of autoimmune diseases.

  4. Window to 'Clovis's' Altered Past

    Science.gov (United States)

    2004-01-01

    This image taken by the Mars Exploration Rover Spirit shows a rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole (center) into it with its rock abrasion tool. An analysis of the interior of the hole with the rover's alpha particle X-ray spectrometer found higher concentrations of sulfur, bromine and chlorine compared to basaltic, or volcanic, rocks at Gusev. This might indicate that Clovis was chemically altered, and that fluids once flowed through the rock depositing these elements. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004).

  5. Self-alteration in HRI

    DEFF Research Database (Denmark)

    Yamazaki, Ryuji; Nørskov, Marco

    Humanlike androids are being developed with the ambition to be immersed into our daily life and meet us on an equal level in social interaction. The possibilities and limitations of these types of robots can potentially change societies and Human-Robot Interaction might affect the very way in which...... and Denmark, we examine how Telenoid, a new type of teleoperated android robot designed as a minimalistic human, affect people in the real world. We introduce Telenoid to real-world as the fields of elderly care and child education by focusing on the social aspects of the android robot that might facilitate...... the ways in which our subjectivity can be innerly transformed, decentred, in other words, self-altered. In our trials so far, we have been investigating the potential of teleoperated androids, which are embodied telecommunication media with humanlike appearances. By conducting pilot studies in Japan...

  6. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  7. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  8. Epigenetic Alterations in Parathyroid Cancers

    Directory of Open Access Journals (Sweden)

    Chiara Verdelli

    2017-02-01

    Full Text Available Parathyroid cancers (PCas are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH; consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile.

  9. 41 CFR 102-72.65 - What are the requirements for obtaining a delegation of individual repair and alteration project...

    Science.gov (United States)

    2010-07-01

    ... for other individual alteration projects when they demonstrate the ability to perform the delegated... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the requirements for obtaining a delegation of individual repair and alteration project authority from GSA? 102-72...

  10. Near-field/altered-zone models report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E. L., LLNL

    1998-03-01

    nonlithophysal and lower lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF

  11. Altered mental status from acyclovir.

    Science.gov (United States)

    Martinez-Diaz, Gabriel J; Hsia, Renee

    2011-07-01

    Acyclovir is widely used in the treatment of herpes virus infections, particularly herpes simplex virus and varicella-zoster virus. Acyclovir, when given promptly upon the start of a herpes zoster eruption, speeds healing and diminishes acute pain. Because acyclovir is a commonly used medication, it is crucial for health providers to be aware of appropriate dosing as well as possible side effects. We present this case to increase awareness of the potential for inappropriate dosing of acyclovir and the presentations of patients with toxic effects. We report the case of a 65-year-old man with a past medical history significant for chronic kidney disease who presented to the Emergency Department with progressive confusion and ataxia over 2 days. Thorough questioning in the patient's native language revealed that he had recently started a medication for a "rash." Neither he nor his family knew the name of the new medication; further investigation revealed it to be acyclovir. Although other diagnoses were considered in the differential diagnosis for this patient with altered mental status, he was treated for presumed acyclovir toxicity and given prompt dialysis, upon which his symptoms resolved. It is important for physicians to remember that even common medications such as acyclovir can have serious side effects and complications. In this case, renal dosing was not used in a patient on hemodialysis. Acyclovir must be renally dosed and carefully monitored through drug level measurement in patients with limited kidney function to prevent serious side effects, such as the neurological sequelae demonstrated in this case report. Emergency physicians should be aware of the potential for inappropriate dosing of this medication and the presentations of patients with toxic effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  13. Acoustic experience alters the aged auditory system.

    Science.gov (United States)

    Turner, Jeremy G; Parrish, Jennifer L; Zuiderveld, Loren; Darr, Stacy; Hughes, Larry F; Caspary, Donald M; Idrezbegovic, Esma; Canlon, Barbara

    2013-01-01

    Presbyacusis, one of the most common ailments of the elderly, is often treated with hearing aids, which serve to reintroduce some or all of those sounds lost to peripheral hearing loss. However, little is known about the underlying changes to the ear and brain as a result of such experience with sound late in life. The present study attempts to model this process by rearing aged CBA mice in an augmented acoustic environment (AAE). Aged (22-23 months) male (n = 12) and female (n = 9) CBA/CaJ mice were reared in either 6 weeks of low-level (70 dB SPL) broadband noise stimulation (AAE) or normal vivarium conditions. Changes as a function of the treatment were measured for behavior, auditory brainstem response thresholds, hair cell cochleograms, and gamma aminobutyric acid neurochemistry in the key central auditory structures of the inferior colliculus and primary auditory cortex. The AAE-exposed group was associated with sex-specific changes in cochlear pathology, auditory brainstem response thresholds, and gamma aminobutyric acid neurochemistry. Males exhibited significantly better thresholds and reduced hair cell loss (relative to controls) whereas females exhibited the opposite effect. AAE was associated with increased glutamic acid decarboxylase (GAD67) levels in the inferior colliculus of both male and female mice. However, in primary auditory cortex AAE exposure was associated with increased GAD67 labeling in females and decreased GAD67 in males. These findings suggest that exposing aged mice to a low-level AAE alters both peripheral and central properties of the auditory system and these changes partially interact with sex or the degree of hearing loss before AAE. Although direct application of these findings to hearing aid use or auditory training in aged humans would be premature, the results do begin to provide direct evidence for the underlying changes that might be occurring as a result of hearing aid use late in life. These results suggest the aged brain

  14. FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis

    Directory of Open Access Journals (Sweden)

    Riccardo De Santis

    2017-11-01

    Full Text Available The FUS gene has been linked to amyotrophic lateral sclerosis (ALS. FUS is a ubiquitous RNA-binding protein, and the mechanisms leading to selective motoneuron loss downstream of ALS-linked mutations are largely unknown. We report the transcriptome analysis of human purified motoneurons, obtained from FUS wild-type or mutant isogenic induced pluripotent stem cells (iPSCs. Gene ontology analysis of differentially expressed genes identified significant enrichment of pathways previously associated to sporadic ALS and other neurological diseases. Several microRNAs (miRNAs were also deregulated in FUS mutant motoneurons, including miR-375, involved in motoneuron survival. We report that relevant targets of miR-375, including the neural RNA-binding protein ELAVL4 and apoptotic factors, are aberrantly increased in FUS mutant motoneurons. Characterization of transcriptome changes in the cell type primarily affected by the disease contributes to the definition of the pathogenic mechanisms of FUS-linked ALS.

  15. An Analysis of the Alteration Specialist Occupation.

    Science.gov (United States)

    Buerkel, Elaine; Rehling, Joseph H.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the textile service occupation. The industry needs properly trained alteration specialists, bushelmen and dressmakers, in the repairing, remodeling, altering or renovating of garments. Their personal…

  16. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Discrete Element Modeling of Micro-scratch Tests: Investigation of Mechanisms of CO2 Alteration in Reservoir Rocks

    Science.gov (United States)

    Sun, Zhuang; Espinoza, D. Nicolas; Balhoff, Matthew T.; Dewers, Thomas A.

    2017-12-01

    The injection of CO2 into geological formations leads to geochemical re-equilibrium between the pore fluid and rock minerals. Mineral-brine-CO2 reactions can induce alteration of mechanical properties and affect the structural integrity of the storage formation. The location of alterable mineral phases within the rock skeleton is important to assess the potential effects of mineral dissolution on bulk geomechanical properties. Hence, although often disregarded, the understanding of particle-scale mechanisms responsible for alterations is necessary to predict the extent of geomechanical alteration as a function of dissolved mineral amounts. This study investigates the CO2-related rock chemo-mechanical alteration through numerical modeling and matching of naturally altered rocks probed with micro-scratch tests. We use a model that couples the discrete element method (DEM) and the bonded particle model (BPM) to perform simulations of micro-scratch tests on synthetic rocks that mimic Entrada sandstone. Experimental results serve to calibrate numerical scratch tests with DEM-BPM parameters. Sensitivity analyses indicate that the cement size and bond shear strength are the most sensitive microscopic parameters that govern the CO2-induced alteration in Entrada sandstone. Reductions in cement size lead to decrease in scratch toughness and an increase in ductility in the rock samples. This work demonstrates how small variations of microscopic bond properties in cemented sandstone can lead to significant changes in macroscopic large-strain mechanical properties.

  18. Physical properties

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities into the physical properties of metals and ceramics at Lawrence Berkeley Laboratory during 1976 are reported. Topics covered include: high field superconductivity; microstructure and mechanical behavior of ceramics, glass-metal, and ceramic-metal systems; high temperature reactions; relation of microstructure to properties in ceramics; and structure and properties of carbon materials and composite materials

  19. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  20. Post-implantation alterations of polypropylene in the human.

    Science.gov (United States)

    Sternschuss, Gina; Ostergard, Donald R; Patel, Hiren

    2012-07-01

    We reviewed the mechanisms by which polypropylene mesh changes after implantation in the human body. The existing polymer and medical literature was reviewed regarding polypropylene, including its chemical characteristics, and compositional and physical properties, which undergo alteration after implantation at various human body locations. We also reviewed the changes in those physical properties that were demonstrable in explanted specimens. Polypropylene in mesh form is commonly considered inert and without adverse reactions after implantation in humans. The literature suggests otherwise with reports of various degrees of degradation, including depolymerization, cross-linking, oxidative degradation by free radicals, additive leaching, hydrolysis, stress cracking and mesh shrinkage along with infection, chronic inflammation and the stimulation of sclerosis. Many substances added to polypropylene for various purposes during manufacture behave as toxic substances that are released during the degradation process. The material may also absorb various substances. These alterations in the chemical structure of polypropylene are responsible for visibly demonstrable fiber changes, resulting in the loss of structural integrity through material embrittlement. The heat of manufacturing polypropylene fibers begins the degradation process, which is augmented by the post-production heat used to flatten the mesh to prevent curling and attach anchoring appendages. Based on available evidence the polypropylene used for surgical treatment of various structural defects is not inert after implantation in the human body. The quest for the perfect mesh must continue. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  2. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.; Luedemann, G.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, these tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange

  3. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district.

    Science.gov (United States)

    Domingos, Filipa; Pereira, Alcides

    2018-05-01

    Alteration processes have strong impacts on the chemical and physical properties of rock masses. Because they can affect the contents and the distribution of U as well as enhance the permeability of the bedrock, they may lead to a significant increase of radon release to the environment. However, their influence on radon emanation and radon production rate has yet to be properly assessed. To investigate the impact of alteration processes on the radiological properties, samples were collected in the Panasqueira region under the influence of surface weathering, deuteric, hydrothermal and fault related alteration. Major and trace elements (U, Th), physical, and radiological properties were measured in metasedimentary and fault rocks. The degree of alteration and weathering progress were assessed through indices of alteration, porosity and bulk density. Overall, an increase of the radon emanation coefficient from (approximately) 0.1 to 0.4 and radon production rate (from 40 to over 160Bq·m -3 ·h -1 ) is observed with the progress of physicochemical alteration. Decoupling of physical and chemical alteration however implies both must be quantified towards a proper assessment of the degree of alteration. The behavior of radiogenic elements upon alteration is shown to be complex and contingent upon the alteration process. An atypical increase of radon emanation in the ore district due to U mobilization was caused by hydrothermal alteration. Because radon emanation is not dependent upon the pelitic nature of the metasedimentary rocks, it may thus become a proxy for W-Sn exploration. The dependency of radon production rate from the latter constrains its use for exploration. Nevertheless, it may provide a reliable estimation of the bedrock contribution to indoor radon concentrations. Higher indoor radon concentrations, hence, a higher risk of exposure to radon are expected in the ore district as well as within fault zones. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Approach to syncope and altered mental status.

    Science.gov (United States)

    MacNeill, Emily C; Vashist, Sudhir

    2013-10-01

    Children who present with an episode of altered mental status, whether transient or persistent, present a diagnostic challenge for practitioners. This article describes some of the more common causes of altered mental status and delineates a rational approach to these patients. This will help practitioners recognize the life-threatening causes of these frightening presentations as well as help avoid unnecessary testing for the more benign causes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Sleep Deprivation Alters Choice Strategy Without Altering Uncertainty or Loss Aversion Preferences

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    2015-10-01

    Full Text Available Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering</